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Abstract—With the phenomenal growth of IoT devices and
their exponentially increasing applications at the edge of the
network, it has become imminent to provide secure, flexible,
and programmable network services to support user privacy,
security, and quality of service. However, such services can be
only be enabled and effectively applied when the edge systems
automatically identify these devices. Existing IoT classification
systems are based on supervised training methods that require
labeled data and manual feature extraction. Such approaches
suffer from many challenges such as privacy, labeling efforts,
and adaptability to new devices. This paper develops a multi-
stage multi-class classifier based on semi-supervised generative
adversarial networks that perform automatic feature extraction
with minimal labeled data. The classifier can identify devices
with 96% accuracy when only 3% of the training data is labeled.
Moreover, the classifier can infer the device type (IoT, Non-IoT,
and anomaly) of any new device correctly with 90% accuracy.
We also show how our model can support novelty detection, such
as zero-day malware attacks.

Index Terms—Edge Computing, Generative Adversarial Net-
works, Internet Of Things, IoT Privacy, IoT Security, Semi
Supervised GAN

I. INTRODUCTION

The rapid growth of IoT devices, their use cases, and
autonomous communication behavior have created new chal-
lenges for the edge infrastructure. A number of recent works
have shown new network-based security and privacy at-
tacks [5]. Therefore, the edge-based infrastructure should
provide secure and reliable services for IoT devices. For
example, a network-based security service should effectively
identify and isolate malware traffic as soon it appears in the
network. Given these requirements, the edge-based systems
should efficiently and rapidly identify any new devices join-
ing the network. Moreover, such device identification should
support different scenarios, such as identifying the instances
of known devices or malware, identifying the type of any
new device (unknown), and anomalies. However, most of the
current IoT classification approaches are based on supervised
machine learning models [14], [15] and suffer from many
challenges such as labeling efforts, privacy challenges with
data collection, and difficulty identifying new devices that
were not part of the training.

Generative adversarial networks (GANs) [9] have shown
to model unknown complex distributions well and generate
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synthetic data close to the training data’s true distribution.
Given this capability, many recent extensions of GAN have
been proposed for the Generative and classification Tasks.
Very recently, semi-supervised GAN (SGAN) [17], [20], an
extension to the GAN model, has shown excellent results in
image classification, spam detection, and medical data where
the availability of labeled data is very limited. The SGAN
model consists of a multi-class classifier that can perform
automatic feature extraction with very limited labeled data.
Moreover, in the training of SGAN, the classifier is exposed
to the additional synthetic data points with noise that give the
classifier better generalization capability. Several features of
the SGAN model, such as multi-class classification, automatic
feature extraction, and the capture of the hidden distribution
of different classes, are aligned with the requirements and
objectives of building a real-world IoT classifier. Motivated
by the above observations, in this paper, we develop IoT clas-
sifiers for real-world scenarios using SGAN. We summarize
the contributions of this paper as follows:

o We design and develop iKnight, a Semi-supervised GAN-
based multistage multi-class classifier for classifying IoT
devices for different scenarios such as known device,
unknown device, malware, and anomaly with very few
labeled data.

o We evaluate the features of iKnight using real IoT devices
and malware network traffic datasets.

II. RELATED WORK & BACKGROUND
A. Related Work

In recent years, there has been a significant interest in IoT
device fingerprinting research [6], [8], [15] and activity infer-
ence analysis [3], [5]. While some works proposed supervised
classifiers based on features such as device-dependent features
for device identification [15], others used time series based fea-
tures [3] and flow level metadata [5] to detect activities of IoT
devices. Recently, authors in [14] used CNN and RNN based
deep learning classifier for network classification, but this
technique is also based on supervised learning that is highly
dependent on labeled data availability. Recently, researchers
have proposed a unsupervised clustering approach for IoT
device classification [22]. Also, in [18], authors utilize IoT
based raw network packets as their features for classifying IoT
devices using autoencoders and bayesian modeling. We believe
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Fig. 1: Semi-supervised GAN (SGAN) Architecture

that multi-class classifiers are much more useful for real-world
scenarios given their ease of deployment, maintenance, and
scalability.

A very recent work has used a semi-supervised based
approach towards classifying network applications belonging
to QUIC, VPN, and Non-VPN datasets [11]. However, it is a
well-known fact that IoT based network traffic is very different
from traditional network traffic. Furthermore, IoT environ-
ments have a number of unique challenges, such as malware
infections and anomaly detection, which are addressed in our
work.

B. Semi-supervised GAN

The amount of labeled data has a significant impact on the
accuracy of classifiers in machine learning models. However,
many real-world problems have fewer labeled data and sig-
nificant labeling efforts would be expected. Some researchers
have recently proposed semi-supervised learning using GANSs,
generally known as semi-supervised GAN (SGAN) [17], [20].
The SGAN has shown promising results for image classifica-
tion problems with sparsely labeled data. The SGAN model,
as shown in Figure 1, consists of a generator, discriminator,
and an additional classifier model whose weights are shared
with the discriminator [20]. Like the vanilla GAN model,
the Generator and Discriminator are trained in a min-max
adversarial game where the Generator’s objective is to generate
fake data and the objective of the discriminator is to identify
between fake and real data. However, in SGAN, in addition
to this, the classifier model learns to classify the K classes of
the training data.

In SGAN, the discriminator is trained on unlabeled data
(from training) and the fake data from Generator, and the
classifier is trained on a very few labeled data. The rationale
behind this is that the feature representations learned from the
discriminator, in order to identify the real data distribution,
improve the classifier efficiency. Furthermore, the min-max
game-based adversarial training will force the Generator to
create synthetic samples that create additional data points to
the classifier; thus, improving its efficiency [17]. In SGAN
training, both the discriminator and the classifier are exposed
to real labeled data, real unlabeled data, and fake data from
the Generator. This approach generalizes better than other
semi-supervised methods that do not have access to additional
synthetic data points during training.

III. IKNIGHT FRAMEWORK

In this paper, we design and implement iKnight, an IoT
network classifier for Edge-based systems. Figure 2 shows
an overview of the iKnight framework that consists of an
Encoding Engine and Device Discovery Engine. In iKnight,
the encoding engine encodes the new device’s flow and passes
the encoded flow to the device discovery engine. The device
discovery engine uses a multi-stage multi-class SGAN based
classifier to identify a new device class (device name) or its
type (IoT vs Non-IoT). We discuss below the implementations
of these two components.

A. Encoding Engine

The iKnight encoding engine encodes the raw network
flow packets of new devices using an encoding scheme. An
encoding scheme is a process of mapping the raw network
packets to a feature matrix that we define as a flow encoded
matrix, which is sent to the device discovery engine for device
type identification. The multi-stage multi-class SGAN model
in the device discovery engine uses these raw encoded features
to extract the hidden features and identify the device type
automatically. An efficient encoding scheme is a significant
factor for the efficiency of the device type identification.
In iKnight, we use two encoding schemes; flow-only and
flow-with-inter-arrival-time schemes in which we discuss their
implementations below.

Flow Encoding Scheme: In the flow-only encoding
scheme, we use the raw network byte-stream representation
of the packets as features. We first convert each byte-stream
representation of the packet of the flow into their equivalent
hexadecimal integer value. This hexadecimal flow array is then
encoded as a three-dimensional image matrix; a flow encoded
NumPy matrix with height, width, and depth. Each row of the
flow encoded matrix consists of a packet hex stream arranged
as a 2-dimensional array with a size of 56*56 (accommodates
the maximum 1500 bytes of a MAC packet). The packet rows
are ordered in the flow matrix as per their arrival sequence.
This encoding scheme is similar to pixel intensity arrangement
in a non-gray image matrix where each row is a 2D matrix
representing the different channels of the image. The flow
encoded matrix’s depth is the number of packets in the flow,
a configurable parameter, which we find as the first 5 packets
based on experiments. If the flow has less than 5 packets, then
the rest of the packets rows of the flow encoded matrix are
appended with zeros, an approach similar to [18].
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Flow and Inter-arrival Encoding Scheme: Similar to
Flow encoding scheme, but using use of both the raw network
byte stream and the packets’ inter-arrival time for the flow-
with-inter-arrival-time scheme. We arrange the 2D packets in
the flow encoded matrix as rows similar to the flow-only
scheme. However, we append an additional row at the end
containing the inter-arrival times of the packets in their arrival
sequence. Moreover, we convert the inter-arrival values to a
hex decimal value similar to the packet data. We discuss the
impact of these encoding schemes on device type inference in
the evaluation section.

B. Device Discovery Engine

The iKnight Device Discovery Engine is a multi-stage
classifier that can identify the device under different scenarios,
such as identifying the device ID for a known device, and the
device type for an unknown device. We define a device as
known if it is available to the Classifier during training and un-
known otherwise. In iKnight, we take a two-stage approach for
device discovery. In the first stage, iKnight uniquely identifies
all known devices by classifying them into the corresponding
classes. However, for any unknown device, iKnight classifies it
as unknown class, unlike other multi-class classifiers that will
incorrectly identify an unknown class as one of the known
classes. In the second stage, iKnight infers the device type
of the unknown class as either an IoT, non-IoT, malware, or
unknown. However, we refer to the unknown class in stage #2
as an anomaly, given it does not fall into any known network
traffic classes. This type of inference at stage #2 will help
the network administrators to identify the types of unknown
devices and, consequently, to adapt network policies. Some
of these policies can give higher network priority to specific
device types (IoT vs. Non-IoT), enforce any known anti-
malware patches for malware, and issue alerts in case of an
anomaly for immediate actions. We use data sets from publicly
available IoT and malware datasets to implement stage #1 and
stage #2 classifiers. Then we perform data pre-processing and
training on both classifiers as per their objectives using an
SGAN CNN model. We discuss below the datasets, training
procedure, and the model architecture for both stages in detail.

Publicly available IoT and Malware Datasets: In both
stages, we utilized semi-supervised GAN in our classification
models. In our experiments, we use the publicly available

TABLE I: The list of IoT and non-IoT devices used in
experiments

[ Device Name | Device Type |
Smart Things Hub
Amazon Echo Speaker
iHome Speaker
Triby Speaker Speaker
Netatmo Welcome Camera
TP-Link Day Night Cloud Camera Camera
Samsung SmartCam Camera
Dropcam Camera
Insteon Camera Camera
Withings Smart Baby Monitor Camera
Nest Dropcam Camera
Belkin Wemo Switch Acutator
TP-Link Smart Plug Acutator
Light Bulbs LiFX Smart Bulb Acutator
NEST Protect Smoke Alarm Sensor
Netatmo Weather Station Sensor
Withings Smart Scale Sensor
Blipcare Blood Pressure Meter Sensor
Withings Aura smart Sleep Sensor
PIX-Star Photo-frame Digital Frame
Laptop Non-IoT
Android Phone Non-IoT
iPhone Non-IoT
Samsumg Galaxy Tab Non-IoT

UNSW [21] and IoT-23 datasets [4]. We use the network
traffic traces from different classes of IoT devices and non-IoT
devices from the UNSW dataset as shown in Table I. The IoT-
23 consists of labeled IoT malware network traffic flows from
twenty different malware binary files (each different class)
executed on a raspberry PI device in a controlled environment
with flows labeled as either benign or malicious. We select
60,000 flows from the UNSW dataset and 10000 malicious
flows from four different malware classes, Mirai, Trojan,
Hakai, and Torii, for our experiments. For the stage #1 model,
we train the model with twenty [oT devices, while for the stage
#2 model, we use the combined network flows of twenty IoT
devices, four Non-IoT devices, and four malware classes.

Data Pre-Prepossessing: Figure 3 shows the iKnight stage
#1 and stage #2 model training pipeline. We first extract flows
from the raw pcap files using the pkt2flow tool [1], which
splits the pcap files into individual flows. We then convert
all the packets of a flow into raw byte stream using scapy
tool [2]. For both models, we use raw TCP and UDP flows
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for our training data. We remove the MAC layer header and
device-dependent fields (source address, a destination address,
destination port, source port, and checksum) from IP and
transport layer headers to make our training data network
independent. We then train the model at each stage with two
types of training data; network-independent-headers-payload
and only payload. We discuss the effect of the selection of
each training data in the evaluation section. The training data
at each stage consists of randomly sampled flows for all classes
with balanced representation. We use the Encoding Engine
discussed earlier to create the flow encoded matrix for each
flow as the input to the SGAN training.

Training: In stage #1 SGAN model training, we split
the dataset with 80% for training and 20% for testing. As
discussed earlier in Section II-B, SGAN training consists
of training both the Discriminator and Classifier with mini-
batches of data in each epoch. Therefore, we select labeled
flow samples for training the Classifier and unlabeled flows for
training the Discriminator. Then, we train the SGAN model
for multiple epochs, where each epoch consists of multiple
batches of training data. We then validate the stage #1 SGAN
model with the testing data. The SGAN training process for
stage #2 is similar to stage #1, except that we filter the flows
of a specific device and use the filtered flows to infer the
device type class during validation. For example, we filter out
all the flows of Dropcam during training and then evaluate
the trained model with these filtered flows to validate whether
the trained model is capable of inferring the correct type of
device as IoT. We repeat this process for all the device classes
(IoT, Non-IoT, Malware) and report the average accuracy. This
process effectively evaluates the ability of the Classifier to
infer unknown devices, which is discussed in the evaluation.

Model architecture: Our model architecture consists of a
Generator, Discriminator, and Classifier. The Classifier shares
the weights with the Discriminator [20] and has a Softmax
layer [16] used to classify the flows’ device or device type
classes label. For our Generator and Discriminator models,
we adopt an architecture very similar to that of DCGAN [19].
Note that the approach of using DCGAN for SGAN is also
very recently used by [11]. However, we design our model
with layers and hyper-parameters that is optimized specifically
for byte stream based flow encoding scheme training data
which consists of inputs of a 56*56*n Numpy array, where n
is the number of packets the flow. For both the Discriminator
and GAN model, we use Adam optimizer [12].
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Fig. 4: The accuracy of stage #1 classifier in iKnight’s Device
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IV. EVALUATION

A. Experiment setup

We implement iKnight Device Discovery Engine using
Keras [7] and python, and train it on a GPU enabled machine
with installed and 32 GB of memory. In the below sections,
we evaluate iKnight for the different features of a real-world
classifier discussed earlier in section V.

B. Impact of training data and encoding schemes

Figure 4 shows how the accuracy of the stage #1 classifier
improves with the number of labeled samples. Therefore, the
device type classification depends on the number of labeled
samples, as discussed earlier. In our experiments, for both
stage #1 and stage #2 classifiers, we achieve the highest accu-
racy with only 3% labeled flows of each device. Therefore, the
best configuration of iKnight can achieve high accuracy with
very few labeled data. We show the confusion matrix for stage
1 classifier using packets-with-payload-only encoding scheme
in Figure 5.

In addition, Figure 4 also shows the increase in the ac-
curacy of stage #l classifier from 92% to 96% when the
training data selection is changed from packets-with-payload-
only to packets-with-network-independent-header. Therefore,
the network-independent-header fields for IoT devices sig-
nificantly improve the IoT device classification due to its
features that help the classifier to uniquely identify each
of the device classes more than packets-with-payload-only.
Similarly, Figure 6 shows that the stage #2 classifier’s ac-
curacy significantly improves by 9% with the change of the
encoding scheme from packets-with-payload-only to packets-
with-network-independent-header while identifying the device
type of an unknown device (i.e., Dropcam). Therefore, the
network-independent-header improves the unknown device
type classification.
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fying an unknown device (i.e., Dropcam) as IoT device

Moreover, we observe from Figure 4 that the system’s
accuracy increases by 3% with an increase in the number of
flow packets from three to five. However, a further increase in
the number of packets does not affect the classifier’s accuracy.
Additionally, the encoding scheme flow-with-inter-arrival-time
with five packets also does not increase the accuracy. The
rationale behind this could be that the weights of the SGAN
classifier have learned the best possible parameters from the
raw encoded packet data. The additional meta-data information
(inter-arrival time) does not improve their ability to increase
the classifier’s overall feature space representation. However,
we note that a better choice of encoding design, such as the
location and the representation of inter-arrival times inside
the flow encoding matrix, can improve the system’s accuracy.
However, finding the optimal system encoding scheme for
iKnight is outside the scope of this paper. Therefore, the best
configuration of iKnight is the first five packets of the flow with
network-independent-header and the encoding scheme flow-
only.

C. Performance comparison to other classifiers

One of the advantages of SGAN is its ability to achieve high
accuracy compared to supervised machine learning algorithms

TABLE II: The accuracy of iKnight stage #1 classifier using
packets-with-payload-only encoding scheme across twenty
IoT devices shown in Table I

Classification

Method Type Accuracy
Kmeans unsupervised (all unlabelled) 0.01
Kmeans + PCA unsupervised (all unlabelled) 0.03
KNN supervised (3% labeled) 0.85
Decision Tree supervised (3% labeled) 0.86
Random Forest supervised (3% labeled) 0.88
CNN supervised (3% labeled) 0.90
semi supervised (3% label + all
SGAN unlabelled) 0.92

with less labeled data. Therefore, we compare iKnight with the
most popular classification algorithms used for IoT network
classification tasks. We compare the SGAN stage #1 classifier
using packets-with-payload-only encoding scheme with both
supervised and unsupervised classifiers as shown in Table II.
Each of the supervised classifiers was trained with 3% labeled
data, and each of the unsupervised classifiers was trained with
all the unlabeled data. Finally, the SGAN classifier was trained
with both the 3% labeled and the unlabeled data. We use the
same packets-with-payload-only encoding scheme for all the
classifiers. Table II shows that SGAN, which was trained with
the same number of labeled flows, outperforms all other super-
vised classification algorithms. Moreover, SGAN also exceeds
the unsupervised K means algorithm, where both SGAN and
K means were trained using the same number of unlabelled
training samples. While SGAN extensively performs well over
all other algorithms, we have around 2% increase in accuracy
over CNN. We believe this can be further enhanced by a
better choice of encoding schemes, which can help SGAN
extract the training data’s distribution very well. For example,
a combination of flow-level metadata and flow-byte stream
encoding can help GANs model with a lot of information
during training and, consequently, build a better latent space
representing the training data.

D. Unknown device type and anomaly detection performance

In this section, we evaluate iKnight for the different un-
known device type and anomaly detection scenarios.

For evaluating iKnight stage #2, unknown device type iden-
tification scenario, we randomly choose five IoT devices, three
Non-IoT devices, and all the four Malware classes. For each of
the unknown devices, we first filter out the corresponding flows
from the training data and validate the trained model with
the filtered out flows of the unknown device, as discussed in
section IV. We repeat this process for all the selected devices.
Figure 7 shows the stage #2 device type classification accu-
racy using packets-with-network-independent-header encoding
scheme for different classes of unknown devices. The accuracy
of the unknown IoT and malware device types is higher than
that of unknown Non-IoT device types. We believe this could
be due to the few number of Non-IoT devices in the training
data in which a better representation of each device type
class in the training data can further improve the classification
accuracy of the stage #2 classifier. The average accuracy for
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Fig. 7: The accuracy of iKnight stage #2 classifier of unknown
devices using packets-with-network-independent-header for
different type classes (i.e., IoT, Non-IoT, Malware)

each of the device type classes for the unknown scenario is [oT
device type with 94%, Non-IoT with 80%, and the Malware
with 97%. The overall unknown accuracy for different classes
of device types is 90%.

Figure 6 shows the Stage #2 classifier’s ability in identifying
the type of an unknown device (i.e., Dropcam) as an IoT device
with 97% accuracy. The classifier’s accuracy is higher when
the model is trained with packets-with-network-independent-
header than when trained with packets-with-payload-only. This
shows that iKnight can effectively capture the hidden feature
space distribution for each of the IoT, Non-IoT, and Malware
known device types. Moreover, this enables iKnight to have a
better-generalized feature space representation of each device
type class, which improves its ability to identify the type of
unknown devices.Therefore, iKnight is capable of identifying
the class types of unknown devices and known devices.

Semi-supervised GANs have recently shown good perfor-
mance in identifying unknown classes as unknown (anomaly)
[13], also known as novelty detection. This SGAN capability
helps the Stage #1 classifier to identify any device that is not
part of the training data as unknown, and also benefits the
Stage #2 classifier to identify the type of unknown device as
IoT, Non-IoT, Malware, or any anomaly (i.e., novelty detec-
tion). As future work, we are planning to run more experiments
to evaluate SGAN capability in anomaly detection.

V. DISCUSSION

In this paper, we evaluated and implemented the features
of SGAN based IoT classification system and highlighted that
SGAN based approach has several features that benefit the
design of an IoT classifier. However, in IoT based scenarios,
the user can add new devices to the network that were not part
of the initial training set. Moreover, the device can have up-
dated packet signatures due to a firmware change. In our future
work, we plan to extend iKnight with continuously learning
to identify new devices or devices with updated firmware
by utilizing the Generator of the SGAN. The Generator can
produce synthetic training data of old classes that can be
used with new classes (ground truth) to incrementally train
the classifier, an approach similar to [23] recently proposed

for continuous image generation. Additionally, we would
also transform iKnight into a very lightweight model using
Knowledge distillation [10] for efficient deployment on edge
devices.
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