
Phys. Fluids 33, 107101 (2021); https://doi.org/10.1063/5.0062546 33, 107101

© 2021 Author(s).

Deep learning for reduced order modelling
and efficient temporal evolution of fluid
simulations 
Cite as: Phys. Fluids 33, 107101 (2021); https://doi.org/10.1063/5.0062546
Submitted: 06 July 2021 • Accepted: 06 September 2021 • Published Online: 01 October 2021

 Pranshu Pant, Ruchit Doshi, Pranav Bahl, et al.

COLLECTIONS

 This paper was selected as Featured

ARTICLES YOU MAY BE INTERESTED IN

On closures for reduced order models—A spectrum of first-principle to machine-learned
avenues
Physics of Fluids 33, 091301 (2021); https://doi.org/10.1063/5.0061577

Super-resolution and denoising of fluid flow using physics-informed convolutional neural
networks without high-resolution labels
Physics of Fluids 33, 073603 (2021); https://doi.org/10.1063/5.0054312

Model fusion with physics-guided machine learning: Projection-based reduced-order
modeling
Physics of Fluids 33, 067123 (2021); https://doi.org/10.1063/5.0053349

https://images.scitation.org/redirect.spark?MID=176720&plid=1700949&setID=405127&channelID=0&CID=617387&banID=520579819&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=048d799cadf7fe6c9128adca2c44223befdd082b&location=
https://doi.org/10.1063/5.0062546
https://aip.scitation.org/topic/collections/featured?SeriesKey=phf
https://doi.org/10.1063/5.0062546
https://orcid.org/0000-0003-0212-0068
https://aip.scitation.org/author/Pant%2C+Pranshu
https://aip.scitation.org/author/Doshi%2C+Ruchit
https://aip.scitation.org/author/Bahl%2C+Pranav
https://aip.scitation.org/topic/collections/featured?SeriesKey=phf
https://doi.org/10.1063/5.0062546
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0062546
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0062546&domain=aip.scitation.org&date_stamp=2021-10-01
https://aip.scitation.org/doi/10.1063/5.0061577
https://aip.scitation.org/doi/10.1063/5.0061577
https://doi.org/10.1063/5.0061577
https://aip.scitation.org/doi/10.1063/5.0054312
https://aip.scitation.org/doi/10.1063/5.0054312
https://doi.org/10.1063/5.0054312
https://aip.scitation.org/doi/10.1063/5.0053349
https://aip.scitation.org/doi/10.1063/5.0053349
https://doi.org/10.1063/5.0053349


Deep learning for reduced order modelling
and efficient temporal evolution of fluid
simulations

Cite as: Phys. Fluids 33, 107101 (2021); doi: 10.1063/5.0062546
Submitted: 6 July 2021 . Accepted: 6 September 2021 .
Published Online: 1 October 2021

Pranshu Pant,a) Ruchit Doshi,b) Pranav Bahl,c) and Amir Barati Farimanid)

AFFILIATIONS

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

a)ppant@andrew.cmu.edu
b)ruchitsd@andrew.cmu.edu
c)pranavbahl_2k17me164@dtu.ac.in
d)Author to whom correspondence should be addressed: barati@cmu.edu

ABSTRACT

Reduced order modeling (ROM) has been widely used to create lower order, computationally inexpensive representations of higher-order
dynamical systems. Using these representations, ROMs can efficiently model flow fields while using significantly lesser parameters.
Conventional ROMs accomplish this by linearly projecting higher-order manifolds to lower-dimensional space using dimensionality reduc-
tion techniques such as proper orthogonal decomposition (POD). In this work, we develop a novel deep learning framework DL-ROM (deep
learning—reduced order modeling) to create a neural network capable of non-linear projections to reduced order states. We then use the
learned reduced state to efficiently predict future time steps of the simulation using 3D Autoencoder and 3D U-Net-based architectures. Our
model DL-ROM can create highly accurate reconstructions from the learned ROM and is thus able to efficiently predict future time steps by
temporally traversing in the learned reduced state. All of this is achieved without ground truth supervision or needing to iteratively solve the
expensive Navier–Stokes (NS) equations thereby resulting in massive computational savings. To test the effectiveness and performance of
our approach, we evaluate our implementation on five different computational fluid dynamics (CFD) datasets using reconstruction perfor-
mance and computational runtime metrics. DL-ROM can reduce the computational run times of iterative solvers by nearly two orders of
magnitude while maintaining an acceptable error threshold.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0062546

I. INTRODUCTION

Physics-based simulation models are proving to be of paramount
importance across various engineering and scientific disciplines. These
models have often found significance in the areas of aerospace design,
HVAC (Heating, ventilation, and air conditioning), cardiovascular
flows, electronics, turbo-machinery, etc.1 The necessity to make an
engineering/scientific decision that involves complex design processes,
empirical discoveries, experimental design, etc., requires the resolution
of the predictions to be very high. These high-fidelity predictions
demand high temporal and spatial resolutions which lead to the
modeling of various complex non-linear processes into a very large-
scale dynamical model. The simulation of such models is often associ-
ated with full-order models (FOM) based on a parametrized system of
physics governing partial differential equations (PDE).

Whenever high-dimensional FOM find their applications in real
time or multi-query scenarios, there is an overwhelming increase in

computational cost/burden which restricts expeditious simulation
result generation.2,3 Some common examples pertaining to these sce-
narios are uncertainty quantification,4,5 flow control,6–8 multi-fidelity
optimization techniques etc. Since conventional FOMs give rise to
increased utilization of computational resources, it is often prohibitive
to use such models in various areas of study. Hence, there is an inher-
ent need for devising methodologies that overcome this issue and
present a reduced representation of high order dynamical system to a
lower dimension. The objective of the reduced representation is to
project the physical features of a system comparable to FOMs, with
minimum loss of information to a lower dimensional space/manifold.
The approach is therefore referred to as reduced order modeling and
is often abbreviated as ROM.

There have been various attempts to model such approaches in
the past.9–14 The development of reduced order models is a challeng-
ing task because models are often neither robust enough to handle

Phys. Fluids 33, 107101 (2021); doi: 10.1063/5.0062546 33, 107101-1

Published under an exclusive license by AIP Publishing

Physics of Fluids ARTICLE scitation.org/journal/phf

https://doi.org/10.1063/5.0062546
https://doi.org/10.1063/5.0062546
https://doi.org/10.1063/5.0062546
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0062546
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0062546&domain=pdf&date_stamp=2021-10-01
https://orcid.org/0000-0003-0212-0068
https://orcid.org/0000-0002-2952-8576
mailto:ppant@andrew.cmu.edu
mailto:ruchitsd@andrew.cmu.edu
mailto:pranavbahl_2k17me164@dtu.ac.in
mailto:barati@cmu.edu
https://doi.org/10.1063/5.0062546
https://scitation.org/journal/phf


parameter alterations nor cost-effective when it comes to dealing with
complex time-varying physical phenomenons. One of the popular
approaches is to express the system as a linear amalgam of the basis
functions formed with the help of snapshots (series of temporal results
generated corresponding to a parameter space) generated using high-
fidelity expensive simulations involving FOMs. These approaches
come under the category of Projection-based-ROMs wherein the focus
is to achieve a transformed space formed from the reduction of high
DOF (degrees of freedom) of the physics governing PDEs.15 This
reduction results in the computation of a low dimensional trial sub-
space corresponding to the state of the system. The computation of a
low-dimensional subspace is inexpensive when approximating solu-
tions that are projected with respect to different points in the parame-
ter space.3 This is achieved while imposing high dimensional FOM
residuals orthogonal to a lower-dimensional space. However,
projection-based ROMs are predominantly linear, this is because they
project onto a linear subspace to extract the reduced representation of
higher order dynamical systems.

Among numerous projection-based ROMs, proper orthogonal
decomposition (POD)16–21 has found its acceptance among many acad-
emicians. It is analogous to its counterparts PCA (principal component
analysis),22 empirical orthogonal functions,23 and Karhunen–Loeve
expansion.24 The eigen decomposition of the snapshot matrix is carried
out using the singular value decomposition (SVD) technique under the
regime of this ROM. The result of the following is a linear ROM, whose
predictions are computed in a linear trial subspace and hence are gener-
ated by linear superimposition of the POD modes. One of the similar
approaches to POD is DMD (dynamic mode decomposition)25–27

wherein the objective is the same, to represent the generated high order
data to a low dimensional subspace but have well-defined dynamics cor-
responding to the subspace. DMD represents significant features of
both, POD and discrete Fourier transforms (DFT) and is often very suc-
cessful in extracting physical insights of the system in the form of spatio-
temporal coherent structures.28–31 DMD although having a wide array
of applications ranging from robotics,32,33 neuroscience,34 epidemiol-
ogy35 to image-video processing,36 is not very helpful in applications
pertaining to flow control, state prediction, estimation etc.

There are various hybrid approaches associated with POD
such as POD-GP (Galerkin Projection),37–40 wherein the Galerkin-
Projection technique is used for the truncation of high-order dis-
cretizations of partial differential equations to a reduced state
which is also governed by a set of ordinary differential equations to
generate temporal coefficients. This methodology makes use of
POD modes which is an orthogonal approach for projection,
thereby making the loss of information inevitable due to the linear-
ity of the approach. Non-orthogonal approaches have also been
introduced in the past, for example, the Petrov–Galerkin29,41,42

model wherein the property of bi-orthogonality is used to obtain
the ROM. Among other approaches, there is a popular approach
known as Koopman operator theory.42,43 This theory has found its
application across various complex non-linear systems, from its
early efforts in the characterization of the dynamics of Hamiltonian
functions44 to the decomposition of dynamics about fluids. This
approach finds a subspace where the high order dynamics can be
linearized and uncoupled.29

More recently, deep learning (DL) has also been used for devel-
oping ROMs.45–49 Due to their inherent non-linear formulation, deep

neural networks are highly proficient at compression tasks with
dimensionality reduction of fluid simulations being one such task.
Thus, neural networks particularly autoencoders can perform similarly
to linear projection methods like POD and DMD by projecting the
FOMs to reduced order states. Moreover, due to the use of non-linear
activation functions, neural networks can perform non-linear projec-
tions and can thus be used to create superior reduced-order
representations.

Through this work, we wish to utilize the recent advancements
made in the realm of deep neural networks and apply them to the field
of ROMs and computational fluid dynamics (CFD) in general. We
aim to create a non-linear dimensionality reduction neural network
that can extract high-quality, reduced order embeddings of the com-
plex fluid-flow phenomenon. We can then use these embeddings to
create high-fidelity reconstructions of fluid data. Furthermore, we can
also use these embeddings to temporally traverse in the reduced state
and yield the full order reconstructions at future steps without solving
the computationally expensive Navier–Stokes (NS) equations. The
mathematical representation of our model has been presented below.
The predicted output at time step tþ 1 can be represented as ŷ tþ1

wherein the y is the state vector. The deep learning model and its
parameters, i.e., its weights and biases are represented as uð; huÞ. The
input to the DL model is concatenated form of state vector at previous
time-steps from t � kth time step to the tth time step where k repre-
sents the number of previous snapshots taken and can be represented
as �k

i¼0yt�i. The error term represents the difference between the pre-
dicted and original state vectors,

y tþ1 ¼ u

�
�
k

i¼0
yt�i; hu

�
þ e; (1)

error ¼ y tþ1 � ŷ tþ1: (2)

II. DATASETS

To assess the capabilities of our novel deep learning approach for
producing a reduced order model and for utilizing the learned reduced
state to predict future time steps of a simulation accurately and effi-
ciently, we present a study of five datasets with different simulation
conditions as seen in Fig. 1. These datasets have been studied well in
the literature, making them well suited for benchmarking this applica-
tion. The data that support the findings of this study are available
from the corresponding author upon reasonable request. The code
used for processing the data and performing this study is available on
GitHub at github.com/pranshupant/DL-ROM. More details about
these datasets are outlined below.

A. Numerical experiments: OpenFOAM

1. Flow around 2D circular cylinder

For our first example (Fig. 2), we consider a two-dimensional
flow past a circular cylinder at Reynolds’ number Re¼ 100. The simu-
lation is a well-known canonical problem and the characteristics of
the problem are periodic vortex shedding behind the bluff body. The
simulation was done using Reynold’s average (RANS) approach.
Incompressible Navier–Stokes equations were solved for laminar flow
around the cylinder using the OpenFOAM solver icoFoam. The solver

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 107101 (2021); doi: 10.1063/5.0062546 33, 107101-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


uses a pressure-implicit and splitting-operators algorithm to solve the
momentum and continuity equation,

r:u ¼ 0; (3)

@

@t
ðuÞ þ r:ðu� uÞ � r:ðvruÞ ¼ �r:p: (4)

The characteristic length/diameter of the cylinder is 1 m. The
computational domain as seen in Fig. 2 is divided into a fine hexa-
hedral mesh of 63 420 elements, which was generated using the
blockMesh utility in OpenFOAM. The inlet is at a distance of eight
units from the center of the cylinder and the outlet is at 25 units.
The kinematic viscosity of the fluid is 0.01 and a uniform inlet
velocity of one unit in the positive X-direction. There is an ambient
pressure condition at the outlet and a no-slip boundary condition
on the cylinder. The time step for the simulation is kept at
dt ¼ 0:008 s. The simulation was carried out in parallel over 16
threads and took over 0.12 s per iteration. After the simulation
reaches the stage of periodicity, the relevant features of the system
are extracted by cutting out a snapshot of two units � eight units
from the whole domain, encompassing only the vortices. The
snapshot is further discretized into 80� 320 linearly interpolated
points in the y and x-direction. The objective here is to recover the
Z-vorticity field from the temporal information gathered from pre-
vious similar snapshots. A total of 2082 snapshots were generated
for the training of the model.

2. Flow around 2D square cylinder

For the second example, we consider a two-dimensional flow
past a square cylinder at Reynolds’ number Re¼ 100. The simulation
problem presents the same physical characteristics as the flow past cir-
cular cylinder wherein a vortex shedding phenomenon is observed
behind the bluff-body. The simulation setup was solved using
Reynold’s Average (RANS) approach. Same as in the previous case,
incompressible Navier–Stokes equations were solved for laminar flow
around the square cylinder using the OpenFOAM solver icoFoam.
The governing equations of the system can be referred from Sec.
IIA 1. Flow around 2D Circular Cylinder wherein the continuity and
momentum equations are specified. The characteristic length here for
the square cylinder is 0.5 meters. The computational domain is divided
into a fine hexahedral mesh of 73 750 elements, which was generated
using the blockMesh utility in OpenFOAM. The inlet is at a distance of
2.5 units from the center of the square cylinder and the outlet is at 16.5
units. The kinematic viscosity of the fluid is 0.01 and a uniform inlet
velocity of two unit in the positive X-direction. The boundary condi-
tions are ambient pressure conditions at the outlet and a no-slip
boundary condition on the square cylinder. The time step for the sim-
ulation is kept at dt ¼ 0:01 s. The simulation was carried out in paral-
lel over 16 threads, which took over 0.25 s per iteration. After the
simulation reaches the stage of periodicity, the relevant features of the
system are extracted by cutting out a snapshot of 2 units� 8 units

FIG. 1. Datasets with different simulation conditions, (1) NOAA—SST—weekly mean sea surface temperature, (2) Flow over plate—with vortex shedding, (3) 2D cylinder—
with Von Karman vortex, (4) 2D square cylinder—with vortex shedding, (5) channel flow—turbulent flow along a channel, OpenFOAM—custom designed dataset with Von
Karman vortex, studied to evaluate the deep learning based approach for reduced order modeling. These datasets are 2D and contain u velocity data (X-direction).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 107101 (2021); doi: 10.1063/5.0062546 33, 107101-3

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


from the whole domain encompassing the relevant fluctuations in the
velocity field. The snapshot is divided linearly into 80� 320 interpo-
lated points in the y and the x-direction. The objective here is to
recover the velocity field from the temporal information gathered
from the previous nine snapshots. A total of 4087 snapshots were gen-
erated for the training of the model.

3. Flow over 2D plate

For the third example, we consider a two-dimensional flow over
a 2D plate. The simulation problem puts forward the physical charac-
teristic of an inclined plane wherein the vortex structure formation
can be observed behind the body. The simulation setup was solved
using Reynold’s average (RANS) approach wherein the K-epsilon tur-
bulence model was used to model the turbulence. Incompressible
Navier–Stokes equations were solved for flow over the flat plate using
the OpenFOAM solver pimpleFoam. The turbulence model used here
is a two transport equation, linear-eddy-viscosity closure model
wherein the equations used are (1) turbulent kinetic energy equa-
tion50—k, (2) turbulent kinetic energy dissipation rate equation50—e
and (3) turbulent viscosity equation50—�t,

D
Dt
ðqkÞ ¼ r � ðqDkrkÞ þ P � qe; (5)

vt ¼ Cl
k2

e
; (6)

D
Dt
ðqeÞ ¼ r � ðqDereÞ þ C1e

k
P þ C3

2
3
kr � u� C2q

e2

k

� �
: (7)

The characteristic length of the 2D plate is 1 m. The computa-
tional domain is divided into a fine hexahedral mesh of 70 600 ele-
ments, which was generated using the blockMesh utility in
OpenFOAM. The inlet is at a distance of two units from the 2D plate
and the outlet is at a distance of 8 units. The kinematic viscosity of the
fluid is 0.000 05 and a uniform inlet velocity of magnitude 1 unit and
the direction of the velocity is 45� to the positive X-direction. There is
an ambient pressure condition at the outlet boundary and a no-slip
boundary condition on the 2D plate. The time step for the simulation
is kept at dt ¼ 0:005 s. The simulation was carried out parallel over 16
threads which resulted in 0.128 s per iteration. After the simulation
reaches the stage of periodicity, the relevant features of the system are
extracted by cutting out a snapshot of 4 units� 8 units from the com-
putational domain encompassing only the vortex structures. The snap-
shot is further divided equally into 180� 360 linearly interpolated
points in the y and the x-direction, respectively. The objective here is
to recover the vorticity magnitude from the temporal information
gathered from previous time step’s snapshots. A total of 1500 snap-
shots were generated for the training of the model.

FIG. 2. Schematic representation of the computational domain with boundary conditions at the inlet and the outlet. The bluff body has a characteristic length and a no-slip
boundary is considered at the wall of the bluff body. Zero pressure gradient at the inlet and a zero velocity gradient at the outlet are considered for the computational study.
Schematic representation of the snapshot cutout a� b has also been represented wherein the values of a and b are different corresponding to the features exhibited by differ-
ent computational studies.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 107101 (2021); doi: 10.1063/5.0062546 33, 107101-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


An important characteristic parameter for the simulation pre-
sented above is the value of the dimensionless constant wall Yþ. The
resulting Yþ value obtained from the simulation carried out on
OpenFOAM is 30.48. Thus, the value of the Yþ is in log-law region
which is the valid range for the corresponding wall-functions used by
K-epsilon turbulence model. Keeping the wall Yþ in the log-law region
allows us to model the region near the wall without needing to resolve
the boundary layer using a very fine mesh. This therefore results in sig-
nificant computational savings.

4. Validation of numerical results

The model validation of the above cases has been presented in
this section. For the first case of two dimensional flow around a circu-
lar cylinder, the validation has been done with the help of experimen-
tal data available for flow at Re¼ 107, as presented by the author
Homann.51,52 Pressure coefficient has been compared and the follow-
ing presents an excellent agreement between measurements and
numerical results throughout, from the accelerating flow region over
the frontal surface of the cylinder to the suction peak and the rear part
of the cylinder [Fig. 3(b)].

For the second case of flow around a square cylinder, the validation
has been done with the help of quantitative comparison between the coef-
ficient of drag Cd values of our study with the numerical results presented
by the authors53–56 at the same Reynolds’ number, i.e., Re¼ 100. The
comparison has been made with four different reported values of time-
mean drag coefficient (Cd) from the aforementioned literature. We see a
good agreement between the reported results and our study [Fig. 3(a)].

Finally for the case of flow around a 2D flat plate, the validation
has been done with the help of quantitative mesh independence studies.
We took meshes with varying degrees of refinement (coarse, medium,
and fine) and analyzed the results for determining independence of the
CFD solution from the grid discretization. Through our analysis, we
found that the results between the medium and fine grids are almost
identical which demonstrates the validity of the simulation [Fig. 3(c)].

B. 2D channel flow dataset

This dataset consists of a 2D direct numerical solutions (DNS) of
channel flow in a grid size of 2048� 512. This DNS dataset was
obtained from the Johns Hopkins Turbulence Database (JHTDB).57–59

The simulation assumes the fluid used to be incompressible. The
Navier–Stokes equations are solved using the Fourier–Galerkin
method and seventh-order B-spline collocation method in the x-z and
(y) direction, respectively. The simulation has bulk velocity¼ 1 and
imposes a pressure gradient of 0.0025. Once the simulation reaches a
statistically stationary state, three component velocity points are added
to the database for recording the dataset. The frames are stored at
every five time-steps of the DNS which corresponds to about one
channel flow-through time. To make this DNS dataset amenable for
use with our deep learning model, we sample the dataset on a uniform
grid of 512� 128 at 2500 timesteps.

C. NOAA optimum interpolation (OI) Sea Surface
Temperature, V2

The NOAA (National Oceanic and Atmospheric Administration)
(OI) sea surface temperature V2 data-set has been made publicly

FIG. 3. Validation Results: (a) Validation of flow around square cylinder at
Re¼ 100 (Cd of the square cylinder is compared with the Numerical results
obtained from the reference) (b) Validation of flow around circular cylinder at
Re¼ 100 (Coefficient of pressure Cp at the surface of the cylinder is com-
pared with the measurements provided by the reference) (c) Validation of flow
past 2D plate at an inclination of 45 deg at Re¼ 20 000 through grid
independence.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 107101 (2021); doi: 10.1063/5.0062546 33, 107101-5

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


available by the Physical Sciences Division at NOAA. The temporal res-
olutions available for the data-set are weekly, monthly, and monthly
long-term mean data. The weekly data are centered on Wednesday for
the brief period of 1990–2011 and on Sunday from 1981 to 1989. For
this study, the temporal resolution of the data-set was chosen as 7days,
i.e., weekly data from 1981 to 2011. The biases of the satellite are tuned
as directed in the literature60,61 following which the data-set is gener-
ated through analysis of in situ and satellite observations. The dataset
contains sea surface temperature data in the units of deg Celsius over
the globe, the uncertainty concerning the real-world data can be
expected in the dataset. The spatial resolution of the data is 1-deg lati-
tude and 1-deg longitude leading to 180� 360 grid points. 2000 snap-
shots of these data are utilized to create our dataset that is used for
training the neural network.

III. METHODOLOGY

To perform the reconstruction of the higher-dimensional CFD
data at a future time step, we utilize a machine learning (ML) model
which in its crux is just a function approximator (f) with learnable
parameters (h). Given, the stacked CFD data from the previous 10 time-
steps as input the machine learning model tries to generate a non-linear
function mapping that can most closely approximate the CFD data at
the next time step as its output. The learning aspect of the model occurs
via iteratively updating the function parameters. This update is based on
the back propagation of the error between the ground truth (y) and the
function prediction (f ðw; hÞ). Thus, the problem reduces down to find-
ing the function parameters h that can minimize the error between the
ground truth and the prediction [Eq. (8)]. This paradigm of learning net-
work parameters is often referred to as supervised learning as the itera-
tive learning is guided by comparison with the ground truth,62

h ¼ argminh eðy; f ðw; hÞÞ (8)

OR

h ¼ argminh jjy � f ðw; hÞjj1:
Here, the error (e) is evaluated using the L1 loss metric.
Machine learning architectures are often categorized based on

the shape, functionality, and characteristics of the approximating func-
tion f. If the function f is represented by connections between multiple
levels of connecting units, the architecture is termed as a multi-level
perceptron (MLP). If the function f has recurrent units in time then
the architecture is called a recurrent neural-network (RNN). Long
short-term memory (LSTMs) is an example of RNNs. If f gradually
reduces the number of parameters such that the output has a lesser
number of parameters than the input parameters then the neural net-
work is referred to as an encoder and if f has greater number of output
parameters then it represents a decoder architecture. The amalgam-
ation of the encoder and decoder architectures forms another architec-
ture that is known as an autoencoder. When the encoder and decoder
functions have intermediate connections between them, the neural
takes on a shape that resembles the letter “U” (refer to Fig. 4), the net-
work is classified as U-Net. Further details about the architectures
used for DL-ROM have been explained in the subsequent sections.

A. Existing approach

Existing deep learning approaches for reduced order modeling
and reconstruction of the same time step of the high order fluid flow

utilize autoencoders.63 To predict future time steps of a simulation
from these reduced order states, Convolutional LSTM Autoencoders64

are used. These models are an amalgamation of three separate models
which are combined to achieve the desired reduced ordered states and
predict the future timesteps in the same input dimensional space.

1. Autoencoders

The main objective of the autoencoder is to perform dimension-
ality reduction on the FOM CFD simulations using the large dataset
and capture the reduced states of the current time step. The dimen-
sionality reduction, in general, can be a loss compression process, for
instance, popular methods such as proper orthogonal decomposition
(POD) can represent the dominant energetic dynamics in the first few
eigenvectors. These eigenvalues can be represented as the reduced
order states and used in further analysis. However, POD projects the
datasets into a linear manifold, whereas autoencoders use non-linear
activations which are non-linear maps having very high compression
ratios. The architecture of the Autoencoders can be designed using dif-
ferent feature extracting layers such as fully connected (FCN) and con-
volutional neural networks (CNN). Depending upon the type of data
and its input format, the autoencoder architecture can be varied. The
autoencoder architecture can be subdivided into two major parts
namely the encoder and the decoder. Two popular variants of autoen-
coders are as follows.

Multi-layered perceptron autoencoder:Here, the architecture of
the encoder is a series of fully connected layers wherein the input is a
one-dimensional vector representing the fluid flow. The middle layer
of the architecture, also known as the bottleneck layer, represents the
compressed state of the high order dynamical systems. These com-
pressed states represent the reduced ordered states of the input, com-
pressed on a non-linear manifold. The decoder takes these reduced
states from the bottleneck layer and reconstructs the input in the origi-
nal dimensional space using another network of fully connected layers
that is also referred to as a decoder.

Convolutional autoencoders: The multi-layered perceptron
autoencoder can be useful if the input is a one-dimensional vector and
does not require to account for the local and spatial characteristics.
However, if the input dimensional space is 2D or higher, to account
for local features, convolutional layers can be very useful because of
their space-invariant properties. Also, the weight sharing property of
CNNs makes them computationally efficient in comparison to their
fully connected layers counterparts.

The architecture of Convolutional Autoencoders65 is very similar
in its approach to the Multi-Layered Perceptron Autoencoder, replac-
ing each fully connected layer with convolutional layers. The features
extracted by a series of convolutional layers in the encoder are then
transformed into a bottleneck layer using one fully connected layer.
The decoder uses transpose convolutions to upsample the bottleneck
layer to the original higher-dimensional space.

2. Long short-term memory networks

To utilize the latent vector or the reduced states of the input and
learn the future latent predictions, we need to preserve the sequential
information contained in the transient CFD simulations. Thus the
goal of predicting the evolution of a high order dynamical system
from its reduced order states becomes one of sequence modeling in

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 107101 (2021); doi: 10.1063/5.0062546 33, 107101-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


deep learning. Recurrent Neural Networks (RNN)66 is a class of artifi-
cial neural networks where connections between nodes form a directed
acyclical graph along the temporal dimension. This temporal informa-
tion can prove to be vital while predicting the future timesteps of a
high order dynamical system.

The Long Short-Term Memory (LSTM) neural network67 is a
special variant of the RNN, which improves network performance by
addressing some drawbacks of the vanilla RNNs. The RNNs suffer
from bottleneck instabilities like vanishing gradients and have fewer
memory retention properties. The LSTM network contains LSTM cells
(Fig. 5) that are made by three gates namely—the input gate, the out-
put gate, and the forget gate to regulate the flow of information. A sep-
arate memory cell, known as Constant Error Carousel (CEC), is
maintained in LSTM cells which helps in longer memory retention.
The input gate does selectively filtering of new information, the forget
gate removes the redundant information and the output gate adds the
essential information to the next cell. These gates prevent LSTM from
vanishing gradient problem. As a result, LSTMs are a powerful tool to
model sequential datasets including application in transient fluid sim-
ulations.64 The working of the LSTM cell can be explained with the
help of Eqs. (9)–(14) and Fig. 6 gives the explanation of the different
symbols used in these equations,

f t ¼ rðWf � ht�1; xt½ � þ bf Þ; (9)

it ¼ rðWi � ht�1; xt½ � þ biÞ; (10)

~Ct ¼ tanhðWC � ht�1; xt½ � þ bCÞ; (11)

ot ¼ rðWo � ht�1; xt½ � þ boÞ; (12)

Ct ¼ f t 	 Ct�1 þ it 	 ~Ct ; (13)

ht ¼ ot 	 tanhðCtÞ: (14)

B. Our approach

Even though the existing approaches described in Sec. IIIA 2
could be used to achieve a deep learning framework that is similar
to the one we envisioned these approaches are plagued by certain

FIG. 4. 3D Autoencoder-based UNet Model Architecture for our framework DL-ROM. Ten timesteps are concatenated to generate temporal context as the input to the architec-
ture. Each block represents the intermediate size of the data. The arrows represent the skip connections between the encoder and decoder part of the architecture. The bottle-
neck represents a 1D vector of the reduced order states of the input.

FIG. 5. Schematic representation of a typical LSTM block. Output of the previous
block and the cell state are concatenated for the input to the Input, Forget and
Output gate of the block. Update in the candidate cell state is carried out in the
form of addition, thereby preserving information for long-term without facing vanish-
ing gradient.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 107101 (2021); doi: 10.1063/5.0062546 33, 107101-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


disadvantages that we tackle with our proposed approach. The use of
LSTMs for temporal sequences can have many disadvantages. LSTMs
usually take a longer time to train, are computationally expensive, and
are often difficult to train. Apart from computational complexities,
these models tend to overfit the training data and often suffer from a
problem known as exploding gradients.

Generally, the fully connected LSTM networks, which take in
vectorized reduced order features as input (as described above) are
used to learn temporal features. This results in loss of spatial correla-
tion information during the recurrence. To tackle this issue, our
approach uses 3D convolutions68 which can extract features in both,
spatial and temporal axes.

1. 3D convolutional autoencoders

A 3D Convolution is a type of convolution where the kernel
slides in three dimensions as opposed to three dimensions with 2D
convolutions. It is mostly used with 3D image/video data that are four
dimensional with the fourth dimension representing the number of
channels. Some use cases for such data are—MRI scans where the rela-
tionship between a stack of images is to be understood; and a low-level
feature extractor for Spatio-temporal data like videos for Gesture

Recognition, Weather forecast, etc. Since high order dynamic simula-
tions can be assumed as a stack of images, we need to extract Spatio-
temporal characteristics for producing reduced ordered states and to
predict the future time steps. Instead of using LSTMs, which are diffi-
cult to train, in this novel approach we make use of 3D Convolutional
Auto-Encoders to efficiently predict ROMs and future time steps.

Our model architecture also comprises an encoder network and a
decoder network. The encoder is made of five layers of 3D convolu-
tions, each followed by BatchNorm and ReLu activations. BatchNorm
or Batch Normalization is a technique to increase the training speed of
Deep Learning models. It reduces the internal covariate shifts between
batches used for training and can help to use larger learning rates with-
out the need to worry about the initialization.69 Rectified Linear Unit
activation functions, also known as ReLU, are used because they are
fast, simple, and efficient to use as compared to the sigmoid functions.
They introduce non-linearity within the network. The derivatives of
ReLU are 1 or 0, thus during backpropagation, it does not suffer from
the vanishing gradient problem as the Sigmoid activation function
does.70 For our convolutional layers, we make use of depth-wise sepa-
rable convolutions.71,72 Depth-wise separable convolutions are similar
to conventional CNNs but with one stark difference. Such convolu-
tions use only one filter for every input channel, thereby significantly

FIG. 6. Explanation of the symbols used
in the Eqs. (9)–(14). These equations
explain the working of an LSTM cell.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 107101 (2021); doi: 10.1063/5.0062546 33, 107101-8

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


reduce the number of parameters that have to be learned while main-
taining similar performance in terms of feature extraction.

Next, the strides of the convolutions are kept greater than one to
reduce the image resolution (compression). The Spatio-temporal fea-
tures extracted from the encoder are flattened and converted into a
one-dimensional feature vector that represents the reduced states.
These reduced states are then reshaped and passed onto the decoder
to reconstruct the high dimensional future time step of the simulation.
The decoder consists of five layers of 3D transposed convolutions,
each followed by BatchNorm and ReLu activation. Transposed convo-
lutions (deconvolutions) with strides greater than one are used to
increase the size of the input data and match it with the original
dimensional space. The output of the decoder is a 2D dimensional
image which represents a future time step in the simulation. The
mathematical foundation of the approach has been presented below.
The /ð; h/Þ is the representation of the convolved decoder network
that has the function of projecting the non-linearly learned reduced
state back to the original high-order dimensional space, which in this
case would be the predicted state vector at time step tþ 1. The term
h/ represents the decoder’s weights and biases, i.e., its parameters. The
convolved encoder model can be presented as wðwt ; hwÞ which is
responsible for the compression of the concatenated input of previous
time-steps �k

i¼0yt�i to a non-linear reduced state f. hw again repre-
sents the weights and biases, i.e., the parameters of the convolved
encoder model. ŷ tþ1 is the predicted state vector and ytþ1 represents
the original state vector at time step tþ 1,

f ¼ w

�
�k
i¼0

yt�i; hw

�
; /ðfÞ ¼ ŷ tþ1; (15)

ŷ tþ1 ¼ /

�
w

�
�
k

i¼0
yt�i; hw

�
; h/

�
: (16)

The stacked input CFD data for the model ½yt…yt�9� represents
the high-dimensional data from the full-order dynamical system. The
bottle-neck f represents the low-dimensional reduced state of the
higher-order CFD simulation data. This reduction in the number of
feature parameters by the encoder function R extracts only the statisti-
cally significant features that can represent the data. Thus, this dimen-
sionality reduction of the input data is analogous to dimensionality
reduction and reconstruction performed by using only the “top k”
eigenvalues that are attained when performing eigenvalue decomposi-
tion. With the only difference being that the neural network approach

includes non-linearities. This “bottle-neck”/reduced representation is
then used as the input to the decoder function U which then recon-
structs the full-order representation of the CFD data at a future time
step ytþ1 and tries to minimize the error between the prediction of the
decoder and the ground truth. (Refer to Fig. 4).

2. 3D U-net

To augment the performance of the 3D Convolutional
Autoencoder, we make use of a U-Net architecture73,76,77 as shown in
Fig. 4. This architecture contains multiple links between its encoder
and decoder at each step, wherein the image resolution is the same.
These links consist of saving snapshots of the weights during the first
phase of the network and copying them to the second phase of the net-
work. This makes the network combining features from different spa-
tial regions of the image and allows it to localize the regions of interest
more precisely. In our approach, we concatenate ten frames of the
higher-order fluid flow taken each after every ten timesteps of the sim-
ulation to account for the temporal context. So, the first input to our
model is 0th, 10th, 20th, …up-till 90th frame concatenated together.
The target time step would be the 100th time step.

As consecutive timesteps of the simulations do not result in sig-
nificant changes in the fluid flow quantities we keep stack frames in
steps of 10. This idea is represented in the Fig. 7. Additionally, we fix
the depth or temporal context of size 10 (ten frames stacked together)
for our approach. Similar preprocessing is done on other inputs. These
inputs are then passed on to the model to capture the reduced states
and predict the future timesteps. The output of the decoder is then
used to compute the loss/error between the target image and model
prediction. The loss function used by our model (DL-ROM) is mean
absolute error (MAE). The mean absolute error (MAE) of an estimator
(of a procedure for estimating an unobserved quantity) measures the
absolute average of the errors, i.e., the average absolute difference
between the estimated values and the ground truth,

LMAE ¼
1
N

XN
n¼1
kek1; (17)

NNDL�ROM ¼ min
1
N

XN
n¼1

����wtþ1 � /

�
w

�
�k
i¼0

wt�i

������
1

: (18)

NNDL�ROM represents the objective function of our DL-ROM
framework. From the equation above we can see that it aims to

FIG. 7. Framework for the transient reduced order model (DL-ROM). 10 snapshots ([yt�9, yt]) of the previously solved CFD data are stacked and used as input to the model.
The model then uses a 3D encoder architecture W to reduce the high-dimensional CFD data to reduced order latent vector. This latent space is then deconvolved using a 3D-
decoder / to produce the higher-order CFD prediction at time step tþ 1 (ŷ tþ1).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 107101 (2021); doi: 10.1063/5.0062546 33, 107101-9

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


minimize the MAE loss between the prediction and the ground truth
for the fluid simulation at time tþ 1 given inputs for timesteps (t-k, t]
(where k¼ 10). This objective is minimized over N training examples/
snapshots of the CFD simulation dataset. Finally, to showcase the
application of DL-ROM to real-world CFD problems we run a looped
prediction simulation for 20 timesteps/iterations beyond the final out-
put of the CFD solver Fig. 8. The simulation evolves using the predic-
tions of the previous timesteps without supervision from the ground
truth values. In this simulation, we input into DL-ROM the last ten
frames of the CFD simulation and subsequently predict the output at
the next time step (tþ 1). This new prediction is then concatenated
with the last 9 CFD timesteps and then sent as input to the model
which now predicts the output for time step (tþ 2). This process is
looped for 20 future iterations (tþ 20) and the trend of MSE between
the ground truth and the looped predictions is subsequently evaluated.
This is used to evaluate the performance of our network compared to
the CFD ground truth in terms of solution accuracy and computa-
tional runtime efficiency.

For training the neural network, the Adam optimizer74 was used
due to its faster convergence capacity. A learning rate scheduler was
also implemented to make use of smaller learning rates as the number
of iteration increased and performance stagnated. The training was
initialized with a learning rate of 0.05. Finally, to train and deploy the
deep learning model, we used a system with an Intel Core I9–9900K
processor with 16GB of RAM and an NVIDIA GeForce RTX 2080Ti
GPU with 12 GB of VRAM.

IV. RESULTS

To experimentally evaluate our approach, we trained our custom
architecture (DL-ROM) on the discussed datasets. Each dataset was
split into training and validation set in a ratio of approximately 6:1.
The loss function used for training our model was a mean absolute
error (MAE). The varied input sizes of different datasets were handled
in the initial and final layers of the encoder and decoder, respectively,
and the remaining part of the model was kept the same for all datasets.
By keeping the majority of the network layers the same across different
datasets we were able to explore the possibility of implementing trans-
fer learning. In neural networks, transfer learning refers to the prior
initialization of network weights by adopting the learned weights of a
previously solved similar problem. Previous works such as Ref. 75

have successfully utilized this technique to speed up the training times
of ML models.

Using an approach similar to the aforementioned reference, we
were able to train models on different datasets [2D sq. cylinder, 2D
plate, channel flow, sea surface temperature (SST)] using the weights
of a model previously trained on the 2D Cylinder dataset. To make the
most use of this feature, we designed the network architecture for DL-
ROM in such a way that apart from the initial and final network layers,
the network architecture was independent of the dataset being used.
Therefore, while implementing transfer learning, only the initial and
final layers of the DL-ROM model were required to be trained from
scratch based on the dataset in use. By performing transfer learning
we consistently saw a considerable speed-up in our training times that
is per the findings of Ref. 75, while maintaining comparable perfor-
mance to conventional training on most datasets (Fig. 9).

As alluded to before, the main objective of our implementation
(DL-ROM) was to create the reduced order embeddings of the high
order dynamical systems and to use these reduced states to predict
future timesteps. To predict the future timesteps, we have used ten
previous frames, each separated by ten timesteps. This is a hyperpara-
meter and can be varied if needed. Different latent sizes for the
reduced order model state were experimented, with size 32 giving the
best reconstruction performance while reducing the computational
overhead for the reduced state representation.

Figure 10 shows the average negative logarithm MSE per pixel
values for different datasets on their respective validation set. DL-
ROM performs well on all the aforementioned datasets. The results
table (Fig. 11) shows the actual label and the predictions of our
approach. On the qualitative evaluation of the results, we came across
some interesting observations. Owing to the large flow gradients, the
region near the obstruction in certain datasets (2D cylinder flow, 2D
square cylinder flow, NOAA-SST) is difficult to predict. On the other
hand, the complex flow structures such as the von-Karman vortex
streets in the wake of these obstructions are accurately predicted for
future timesteps. Additionally, datasets such as 2D Channel flow give
sub-optimal reconstruction results owing to the abundance of small
flow structures in the flow. The information corresponding to these
minute structures is often lost during the process of compression into
the reduced state. Next, we created custom CFD datasets (2D cylinder
flow, 2D airfoil, and 2D flat plate) on OpenFOAM to accurately com-
pare the computational runtimes of our model with an iterative CFD

FIG. 8. DL-ROM can be used in the loop prediction of future simulation timesteps. If the model is given the result of the first ten timesteps, it can progressively predict the future
timesteps by appending the result of time (tþ 1) into the original ten timesteps.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 107101 (2021); doi: 10.1063/5.0062546 33, 107101-10

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


solver. Using our approach we were able to train a network that could
predict future iterations of the fluid simulation while significantly
reducing the iteration time for generating the next time step.

From Fig. 12, it is apparent that DL-ROM outperforms the com-
putational runtimes of CFD simulations by nearly 2 orders of magni-
tude across all three datasets. Also, from Figs. 10 and 11, we can
decipher that the MSE b/w the predictions and the ground truth is
very small, particularly for 2D cylinder, 2D airfoil, and 2D plate
datasets.

Finally, from Figs. 10 and 11, we can see that DL-ROM performs
well on the looped simulation prediction task. From the line plots, we
can see a gradual decrease in the negative log MSE values over the 20
iterations. This decrease can be attributed to the accumulation of
errors over time, but importantly this decrease is very gradual and
does not result in a sudden departure of the prediction from the
ground truth.

V. CONCLUSIONS

Through this work, we present a novel approach to use deep neu-
ral networks to create learned reduced order embeddings for

representing the dynamics of the systems. Using the learned reduced
state we can predict the flow state at future time steps given the
reduced state of the previous time steps in a highly computationally
efficient manner. Our implementation also includes a decoder archi-
tecture that reconstructs the reduced state to a highly accurate approx-
imation of the higher-order state, by minimizing the reconstruction
error with the ground truth simulation of the future time step. To
achieve this functionality we combined state-of-the-art advancements
made in the realm of neural networks such as 3D-Autoencoders, 3D
U-Nets, etc. while eliminating the downsides brought about by the use
of LSTMs in previous implementations and applied it to the field of
ROMs and temporal evolution of fluid simulations. Additionally, deep
learning techniques such as depth-wise separable convolutions and
transfer learning are used to create a novel neural network architecture
(DL-ROM). This architecture takes in fluid flow snapshots from ten
previous timesteps, creates a reduced order model, and predicts the
full order flow state at a future time step.

To evaluate the effectiveness and performance of the network, we
test its reconstruction performance on five different datasets namely,
2D cylinder, 2D square cylinder, 2D plate, 2D channel flow, and the
sea surface temperature (SST) datasets. Our implementation yields
excellent reconstruction results and can accurately predict the future
flow with some minor flow differences mostly around regions with a
high value of gradients. Also owing to our use of a learned reduced-
order state our network can predict future simulation timesteps in sig-
nificantly reduced computational runtimes when compared to CFD
solvers. We observe nearly a two orders of magnitude reduction in
computational runtimes when compared to CFD solvers
(OpenFOAM). Thus, using autoencoder-based 3D-UNets to generate
reduced order models and subsequently using this reduced state to
predict future timesteps presents a novel and effective solution for
reducing the computational runtimes of CFD simulations. Finally, we
also deploy our network to make looped prediction simulations in
which the simulation evolves using the predictions of the previous
timesteps without supervision from the ground truth values. DL-ROM
yields great reconstruction results for this simulation by maintaining
low values of MSE over a span of 20 iterations. Hence, we can

FIG. 9. (a) Comparison of training time per epoch for DL-ROM on different datasets with and without transfer learning. Weights from the training for the 2D cylinder dataset are
transferred to the other models before starting training. Notice the decrease in training times when pre-trained weights from the 2D cylinder dataset are directly used while train-
ing only the initial and final layer of the DL-ROM model as represented by Fig. 4. (b) Comparison of loss/mean absolute error b/w normal training and training with transfer
learning. Using transfer learning we see a considerable speed-up in our training times while maintaining comparable performance to conventional training on most datasets.

FIG. 10. Average negative logarithmic mean squared error per pixel for the five
studied datasets. Note that higher values of the bar represents better performance.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 107101 (2021); doi: 10.1063/5.0062546 33, 107101-11

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


successfully demonstrate that by using deep neural networks such as
ours, we can augment CFD solvers to accelerate the computationally
expensive process of iteratively solving Navier–Stokes equations,
which can drastically improve the turnaround time for CFD simula-
tions. Thus, we can solve the initial iterations of CFD simulations
using conventional, computationally expensive iterative solvers and

subsequently hand off the evaluation of future iterations to our deep
learning model.

DL-ROM would be able to continue the subsequent evaluation of
the simulation at a fraction of the computational cost of the iterative
solver while maintaining an acceptable level of error tolerance from
the ground truth. Alternatively, evaluations from DL-ROM can also

FIG. 11. Results were obtained on the five datasets using our deep learning based approach for reduced order modeling. (a) Depicts the results on the SST, Channel Flow
and 2D Flat plate datasets. (b) Shows the results on the 2D circular and 2D square cylinder datasets. Each dataset is split into training and validation subsets. The labels and
the corresponding predictions presented are from the validation split which is not used for training. Progression of MSE with timesteps evaluated on the validation dataset. The
DL-ROM model is provided with data for only the initial time step. The simulation evolves using the predictions of the previous timesteps without supervision from the ground
truth values. As expected the value of negative log MSE gradually decreases over time due to the accumulation of errors. Note that decreasing line plots of Negative Log MSE
represent increasing MSE values.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 107101 (2021); doi: 10.1063/5.0062546 33, 107101-12

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


be interleaved between sparse evaluations by iterative CFD solvers.
These interleaved CFD evaluations would act to recalibrate future eval-
uations to prevent the large accumulation of errors over time.

ACKNOWLEDGMENTS

This work is supported by the start-up fund provided by CMU
Mechanical Engineering, United States and funding from the
National Science Foundation (CBET–1953222), United States.

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

REFERENCES
1K. Pragati, H. Sharma et al., “Concept of computational fluid dynamics (cfd)
and its applications in food processing equipment design,” J. Food Process.
Technol. 3, 138 (2012).

2S. Fresca, L. Dede, and A. Manzoni, “A comprehensive deep learning-based
approach to reduced order modeling of nonlinear time-dependent parame-
trized PDES,” arXiv:2001.04001 (2020).

3K. Lee and K. T. Carlberg, “Model reduction of dynamical systems on nonlin-
ear manifolds using deep convolutional autoencoders,” J. Comput. Phys. 404,
108973 (2020).

4T. P. Sapsis and A. J. Majda, “Statistically accurate low-order models for uncer-
tainty quantification in turbulent dynamical systems,” Proc. Natl. Acad. Sci.
110, 13705–13710 (2013).

5M. J. Zahr, K. T. Carlberg, and D. P. Kouri, “An efficient, globally convergent
method for optimization under uncertainty using adaptive model reduction
and sparse grids,” SIAM/ASA J. Uncertainty Quantif. 7, 877–912 (2019).

6J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Dynamic mode decomposition
with control,” SIAM J. Appl. Dyn. Syst. 15, 142–161 (2016).

7S. Peitz, S. Ober-Bl€obaum, and M. Dellnitz, “Multiobjective optimal control
methods for the Navier-Stokes equations using reduced order modeling,” Acta
Appl. Math. 161, 171–199 (2019).

8C. W. Rowley and S. T. Dawson, “Model reduction for flow analysis and con-
trol,” Annu. Rev. Fluid Mech. 49, 387–417 (2017).

9Z. Bai, “Krylov subspace techniques for reduced-order modeling of large-scale
dynamical systems,” Appl. Numer. Math. 43, 9–44 (2002).

10I. Akhtar, J. Borggaard, J. A. Burns, H. Imtiaz, and L. Zietsman, “Using func-
tional gains for effective sensor location in flow control: A reduced-order
modelling approach,” J. Fluid Mech. 781, 622–656 (2015).

11D. J. Lucia, P. S. Beran, and W. A. Silva, “Reduced-order modeling: New
approaches for computational physics,” Prog. Aerosp. Sci. 40, 51–117 (2004).

12F. Fang, C. Pain, I. Navon, G. Gorman, M. Piggott, P. Allison, P. Farrell, and A.
Goddard, “A pod reduced order unstructured mesh ocean modelling method
for moderate reynolds number flows,” Ocean Modell. 28, 127–136 (2009).

13M. Buffoni, S. Camarri, A. Iollo, and M. V. Salvetti, “Low-dimensional model-
ling of a confined three-dimensional wake flow,” J. Fluid Mech. 569, 141–150
(2006).

14N. Kazantzis, C. Kravaris, and L. Syrou, “A new model reduction method for
nonlinear dynamical systems,” Nonlinear Dyn. 59, 183–194 (2010).

15O. San and R. Maulik, “Neural network closures for nonlinear model order
reduction,” Adv. Comput. Math. 44, 1717–1750 (2018).

16G. Berkooz, P. Holmes, and J. L. Lumley, “The proper orthogonal decomposition in
the analysis of turbulent flows,” Annu. Rev. Fluid Mech. 25, 539–575 (1993).

17P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley, Turbulence, Coherent
Structures, Dynamical Systems and Symmetry, 2nd ed., Cambridge Monographs
on Mechanics (Cambridge University Press, 2012).

18N. Aubry, P. Holmes, J. Lumley, E. Stone et al., “The dynamics of coherent
structures in the wall region of a turbulent boundary layer,” J. Fluid Mech. 192,
115–173 (1988).

19K. Carlberg and C. Farhat, “A low-cost, goal-oriented ‘compact proper orthogo-
nal decomposition’ basis for model reduction of static systems,” Int. J. Numer.
Methods Eng. 86, 381–402 (2011).

20A. Qamar and S. Sanghi, “Steady supersonic flow-field predictions using
proper orthogonal decomposition technique,” Comput. Fluids 38, 1218–1231
(2009).

21S. Sarkar, S. Ganguly, G. Biswas, and P. Saha, “Effect of cylinder rotation during
mixed convective flow of nanofluids past a circular cylinder,” Comput. Fluids
127, 47–64 (2016).

22H. Hotelling, “Analysis of a complex of statistical variables into principal
components,” J. Educat. Psychol. 24, 417 (1933).

23E. N. Lorenz, Empirical Orthogonal Functions and Statistical Weather
Prediction (Massachusetts Institute of Technology, Cambridge, 1956).

24M. Loeve, Probability Theory: Foundations, Random Sequences (Van
Nostrand, 1955).

25P. J. Schmid, “Dynamic mode decomposition of numerical and experimental
data,” J. Fluid Mech. 656, 5–28 (2010).

26J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz, “On
dynamic mode decomposition: Theory and applications,” arXiv preprint
arXiv:1312.0041 (2013).

27S. Sarkar, S. Ganguly, A. Dalal, P. Saha, and S. Chakraborty, “Mixed convective
flow stability of nanofluids past a square cylinder by dynamic mode decom-
position,” Int. J. Heat Fluid Flow 44, 624–634 (2013).

28M. B. S. S. P. H. D. Rowley and W. Clarence, “Spectral analysis of nonlinear
flows,” J. fluid Mech. 641, 115–127 (2009).

29K. Taira, S. L. Brunton, S. T. Dawson, C. W. Rowley, T. Colonius, B. J.
McKeon, O. T. Schmidt, S. Gordeyev, V. Theofilis, and L. S. Ukeiley, “Modal
analysis of fluid flows: An overview,” AIAA J. 55, 4013–4041 (2017).

30S. Sarkar, S. Ganguly, and M. Mishra, “Single diffusive magnetohydrodynamic
pressure driven miscible displacement flows in a channel,” Phys. Fluids 31,
082102 (2019).

31S. Sarkar, C. Mondal, N. K. Manna, and S. K. Saha, “Forced convection past a
semi-circular cylinder at incidence with a downstream circular cylinder:
Thermofluidic transport and stability analysis,” Phys. Fluids 33, 023603 (2021).

32E. Berger, M. Sastuba, D. Vogt, B. Jung, and H. B. Amor, “Dynamic mode
decomposition for perturbation estimation in human robot interaction,” in The
23rd IEEE International Symposium on Robot and Human Interactive
Communication (IEEE, 2014), pp. 593–600.

33E. Berger, M. Sastuba, D. Vogt, B. Jung, and H. Ben Amor, “Estimation of per-
turbations in robotic behavior using dynamic mode decomposition,” Adv. Rob.
29, 331–343 (2015).

34B. W. Brunton, L. A. Johnson, J. G. Ojemann, and J. N. Kutz, “Extracting
spatial–temporal coherent patterns in large-scale neural recordings using
dynamic mode decomposition,” J. Neurosci. Methods 258, 1–15 (2016).

FIG. 12. Comparing average Central processing unit (CPU) runtime for one iteration of
the simulation. Comparison has been made between CFD (solved on OpenFOAM using
the PimpleFOAM solver) and the DL-ROM machine learning model. The DL-ROM
outperforms the runtimes of CFD simulations by nearly second orders of magnitude.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 107101 (2021); doi: 10.1063/5.0062546 33, 107101-13

Published under an exclusive license by AIP Publishing

http://arxiv.org/abs/2001.04001
https://doi.org/10.1016/j.jcp.2019.108973
https://doi.org/10.1073/pnas.1313065110
https://doi.org/10.1137/18M1220996
https://doi.org/10.1137/15M1013857
https://doi.org/10.1007/s10440-018-0209-7
https://doi.org/10.1007/s10440-018-0209-7
https://doi.org/10.1146/annurev-fluid-010816-060042
https://doi.org/10.1016/S0168-9274(02)00116-2
https://doi.org/10.1017/jfm.2015.509
https://doi.org/10.1016/j.paerosci.2003.12.001
https://doi.org/10.1016/j.ocemod.2008.12.006
https://doi.org/10.1017/S0022112006002989
https://doi.org/10.1007/s11071-009-9531-y
https://doi.org/10.1007/s10444-018-9590-z
https://doi.org/10.1146/annurev.fl.25.010193.002543
https://doi.org/10.1017/S0022112088001818
https://doi.org/10.1002/nme.3074
https://doi.org/10.1002/nme.3074
https://doi.org/10.1016/j.compfluid.2008.11.011
https://doi.org/10.1016/j.compfluid.2015.12.013
https://doi.org/10.1037/h0071325
https://doi.org/10.1017/S0022112010001217
http://arxiv.org/abs/1312.0041
https://doi.org/10.1016/j.ijheatfluidflow.2013.09.004
https://doi.org/10.1017/S0022112009992059
https://doi.org/10.2514/1.J056060
https://doi.org/10.1063/1.5112373
https://doi.org/10.1063/5.0039167
https://doi.org/10.1080/01691864.2014.981292
https://doi.org/10.1016/j.jneumeth.2015.10.010
https://scitation.org/journal/phf


35D. Bistrian, G. Dimitriu, and I. Navon, “Processing epidemiological data using
dynamic mode decomposition method,” AIP Conf. Proc. 2164, 080002 (2019).

36P. J. Schmid, L. Li, M. P. Juniper, and O. Pust, “Applications of the dynamic
mode decomposition,” Theor. Comput. Fluid Dyn. 25, 249–259 (2011).

37J. Borggaard, A. Hay, and D. Pelletier, “Interval-based reduced order models
for unsteady fluid flow,” Int. J. Numer. Anal. Model 4, 353–367 (2007).

38K. Kunisch and S. Volkwein, “Galerkin proper orthogonal decomposition
methods for parabolic problems,” Numer. Math. 90, 117–148 (2001).

39J. Weller, E. Lombardi, M. Bergmann, and A. Iollo, “Numerical methods for
low-order modeling of fluid flows based on pod,” Int. J. Numer. Methods
Fluids 63, 268 (2009).

40K. Kunisch and S. Volkwein, “Galerkin proper orthogonal decomposition
methods for a general equation in fluid dynamics,” SIAM J. Numer. Anal. 40,
492–515 (2002).

41A. C. Antoulas, Approximation of Large-Scale Dynamical Systems (SIAM, 2005).
42E. J. Parish, C. R. Wentland, and K. Duraisamy, “The Adjoint Petrov–Galerkin
method for non-linear model reduction,” Computer Methods in Applied
Mechanics and Engineering 365, 112991 (2020).

43P. Gaspard, Chaos, Scattering and Statistical Mechanics (Cambridge University
Press, 2005), Vol. 9.

44B. O. Koopman, “Hamiltonian systems and transformation in hilbert space,”
Proc. Natl. Acad. Sci. U. S. A. 17, 315 (1931).

45P. Wu, J. Sun, X. Chang, W. Zhang, R. Arcucci, Y. Guo, and C. C. Pain, “Data-
driven reduced order model with temporal convolutional neural network,”
Comput. Methods Appl. Mech. Eng. 360, 112766 (2020).

46Z. Wang, D. Xiao, F. Fang, R. Govindan, C. C. Pain, and Y. Guo, “Model iden-
tification of reduced order fluid dynamics systems using deep learning,” Int. J.
Numer. Methods Fluids 86, 255–268 (2018).

47A. T. Mohan and D. V. Gaitonde, “A deep learning based approach to reduced
order modeling for turbulent flow control using lstm neural networks,” arXiv
preprint arXiv:1804.09269 (2018).

48O. San and R. Maulik, “Machine learning closures for model order reduction
of thermal fluids,” Appl. Math. Modell. 60, 681–710 (2018).

49T. Murata, K. Fukami, and K. Fukagata, “Nonlinear mode decomposition with
convolutional neural networks for fluid dynamics,” J. Fluid Mech. 882, A13
(2020).

50B. E. Launder and D. B. Spalding, “The numerical computation of turbulent
flows,” in Numerical Prediction of Flow, Heat Transfer, Turbulence and
Combustion (Science Direct, 1983), pp. 96–116.

51B. Rajani, A. Kandasamy, and S. Majumdar, “Numerical simulation of laminar
flow past a circular cylinder,” Appl. Math. Modell. 33, 1228–1247 (2009).

52F. Homann, “Influence of higher viscosity on flow around cylinder,” Forsch.
Geb. Ing. 17, 1–10 (1936).

53H. Bai and M. M. Alam, “Dependence of square cylinder wake on reynolds
number,” Phys. Fluids 30, 015102 (2018).

54D.-H. Yoon, K.-S. Yang, and C.-B. Choi, “Flow past a square cylinder with an
angle of incidence,” Phys. Fluids 22, 043603 (2010).

55A. Sharma and V. Eswaran, “Heat and fluid flow across a square cylinder in
the two-dimensional laminar flow regime,” Numer. Heat Transfer, Part A 45,
247–269 (2004).

56C. Norberg, A. Sohankar, and L. Davidson, “Numerical simulation of unsteady
flows around a square two-dimensional cylinder,” in Twelfth Australian Fluid
Mechanics Conference (University of Sydney, 1995), 517–520.

57J. Graham, K. Kanov, X. I. A. Yang, M. Lee, N. Malaya, C. C. Lalescu, R. Burns,
G. Eyink, A. Szalay, R. D. Moser, and C. Meneveau, “A web services accessible

database of turbulent channel flow and its use for testing a new integral wall
model for les,” J. Turbul. 17, 181–215 (2016).

58E. Perlman, R. Burns, Y. Li, and C. Meneveau, “Data exploration of turbulence
simulations using a database cluster,” in Proceedings of the ACM/IEEE
Conference on Supercomputing, SC ’07 (Association for Computing Machinery,
New York, USA, 2007).

59Y. Li, E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chen, A.
Szalay, and G. Eyink, “A public turbulence database cluster and applications to
study Lagrangian evolution of velocity increments in turbulence,” J. Turbul. 9,
N31 (2008).

60R. W. Reynolds, “A real-time global sea surface temperature analysis,” J. Clim.
1, 75–87 (1988).

61R. W. Reynolds, “Impact of mount pinatubo aerosols on satellite-derived sea
surface temperatures,” J. Clim. 6, 768–774 (1993).

62P. Pant and A. B. Farimani, “Deep learning for efficient reconstruction of high-
resolution turbulent dns data,” arXiv:2010.11348 (2021).

63J. Zhai, S. Zhang, J. Chen, and Q. He, “Autoencoder and its various variants,”
in IEEE International Conference on Systems, Man, and Cybernetics (SMC)
(IEEE, 2018), pp. 415–419.

64R. Maulik, B. Lusch, and P. Balaprakash, “Reduced-order modeling of
advection-dominated systems with recurrent neural networks and convolu-
tional autoencoders,” Phys. Fluids 33, 037106 (2021).

65M. Jonathan, M. Ueli, C. Dan, and S. J€urgen, “Stacked convolutional auto-
encoders for hierarchical feature extraction,” in International conference on
artificial neural networks (Springer, Berlin, Heidelberg, 2011), pp. 52–59.

66A. Sherstinsky, “Fundamentals of recurrent neural network (rnn) and long
short-term memory (lstm) network,” Phys. D 404, 132306 (2020).

67S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput. 9, 1735–1780 (1997).

68R. Hou, C. Chen, and M. Shah, “An end-to-end 3d convolutional neural net-
work for action detection and segmentation in videos,” arXiv:1712.01111
(2017).

69S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” arXiv:1502.03167 (2015).

70A. F. Agarap, “Deep learning using rectified linear units (relu),”
arXiv:1803.08375 (2019).

71F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2017), pp. 1251–1258.

72C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Computer Vision and Pattern Recognition (CVPR) (2015).

73O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for
biomedical image segmentation,” arXiv:1505.04597 (2015).

74D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980 (2014).

75L. Guastoni, M. P. Encinar, P. Schlatter, H. Azizpour, and R. Vinuesa,
“Prediction of wall-bounded turbulence from wall quantities using convolu-
tional neural networks,” J. Phys. 1522, 012022 (2020).

76J. Feng, J. Deng, Z. Li, Z. Sun, H. Dou, and K. Jia, “End-to-end res-unet based
reconstruction algorithm for photoacoustic imaging,” Biomed. Opt. Exp. 11,
5321–5340 (2020).

77M. Sharma, A. Sharma, K. R. Tushar, and A. Panneer, “A novel 3d-unet
deep learning framework based on high-dimensional bilateral grid for edge
consistent single image depth estimation,” arXiv:2105.10129 (2021).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 107101 (2021); doi: 10.1063/5.0062546 33, 107101-14

Published under an exclusive license by AIP Publishing

https://doi.org/10.1007/s00162-010-0203-9
https://doi.org/10.1007/s002110100282
https://doi.org/10.1002/fld.2025
https://doi.org/10.1002/fld.2025
https://doi.org/10.1137/S0036142900382612
https://doi.org/10.1016/j.cma.2020.112991
https://doi.org/10.1016/j.cma.2020.112991
https://doi.org/10.1073/pnas.17.5.315
https://doi.org/10.1016/j.cma.2019.112766
https://doi.org/10.1002/fld.4416
https://doi.org/10.1002/fld.4416
http://arxiv.org/abs/1804.09269
https://doi.org/10.1016/j.apm.2018.03.037
https://doi.org/10.1017/jfm.2019.822
https://doi.org/10.1016/j.apm.2008.01.017
https://doi.org/10.1063/1.4996945
https://doi.org/10.1063/1.3388857
https://doi.org/10.1080/10407780490278562
https://doi.org/10.1080/14685248.2015.1088656
https://doi.org/10.1080/14685240802376389
https://doi.org/10.1175/1520-0442(1988)001<0075:ARTGSS>2.0.CO;2
https://doi.org/10.1175/1520-0442(1993)006<0768:IOMPAO>2.0.CO;2
http://arxiv.org/abs/2010.11348
https://doi.org/10.1063/5.0039986
https://doi.org/10.1007/978-3-642-21735-7_7
https://doi.org/10.1007/978-3-642-21735-7_7
https://doi.org/10.1016/j.physd.2019.132306
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1712.01111
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1412.6980
https://doi.org/10.1088/1742-6596/1522/1/012022
https://doi.org/10.1364/BOE.396598
http://arxiv.org/abs/2105.10129
https://scitation.org/journal/phf

	s1
	d1
	d2
	s2
	s2A
	s2A1
	d3
	d4
	s2A2
	f1
	s2A3
	d5
	d6
	d7
	f2
	s2A4
	s2B
	s2C
	f3
	d8
	s3
	s3A
	s3A1
	s3A2
	d9
	d10
	d11
	d12
	d13
	d14
	s3B
	f4
	f5
	s3B3
	f6
	d15
	d16
	s3B4
	d17
	d18
	f7
	s4
	f8
	s5
	f9
	f10
	f11
	l
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	f12
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59
	c60
	c61
	c62
	c63
	c64
	c65
	c66
	c67
	c68
	c69
	c70
	c71
	c72
	c73
	c74
	c75
	c76
	c77

