Neural Computing and Applications
https://doi.org/10.1007/500521-021-06885-9

ORIGINAL ARTICLE q

Check for
updates

Adaptive grey wolf optimizer
Kazem Meidani' - AmirPouya Hemmasian' - Seyedali Mirjalili*> - Amir Barati Farimani'*®

Received: 17 August 2021/ Accepted: 19 December 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract

Swarm-based metaheuristic optimization algorithms have demonstrated outstanding performance on a wide range of
optimization problems in both science and industry. Despite their merits, a major limitation of such techniques originates
from non-automated parameter tuning and lack of systematic stopping criteria that typically leads to inefficient use of
computational resources. In this work, we propose an improved version of grey wolf optimizer (GWO) named adaptive
GWO which addresses these issues by adaptive tuning of the exploration/exploitation parameters based on the fitness
history of the candidate solutions during the optimization. By controlling the stopping criteria based on the significance of
fitness improvement in the optimization, AGWO can automatically converge to a sufficiently good optimum in the shortest
time. Moreover, we propose an extended adaptive GWO (AGWO?) that adjusts the convergence parameters based on a
three-point fitness history. In a thorough comparative study, we show that AGWO is a more efficient optimization
algorithm than GWO by decreasing the number of iterations required for reaching statistically the same solutions as GWO
and outperforming a number of existing GWO variants.

Keywords Metaheuristic optimization - Adaptive optimization - Grey wolf optimizer - Fitness-based adaptive algorithm

1 Introduction

Optimization problems in various fields of science and
engineering always require better and more novel opti-
mization algorithms that can improve our ability to find the
optimal value and corresponding decision variables of

<4 Amir Barati Farimani some objective function. Metaheuristic algorithms have
barati@cmu.edu
attracted ever-increasing interest in the previous decade
Kazem Meidani due to their superiority and efficiency in solving difficult
mmeidani @andrew.cmu.edu optimization problems [1, 2]. Such methods are known to
AmirPouya Hemmasian be stochastic, simple, flexible, derivation-free, and global
ahemmasi@andrew.cmu.edu search algorithms. Their simplicity and flexibility have
Seyedali Mirjalili paved the way to be applied in a vast variety of problems in
ali.mirjalili@gmail.com . .
both science and industry.
' Department of Mechanical Engineering, Carnegie Mellon Unlike gradient-based methods which require an explicit
University, Pittsburgh, PA, USA form of the objective function and its derivative, these
2 Centre for Artificial Intelligence Research and Optimization, methods can operate on black-box functions or functions
Torrens University Australia, Adelaide, Australia that have unknown or expensive derivatives. At last, by
> Yonsei Frontier Lab, Yonsei University, Seoul, Republic of employing multiple agents as the population, they are
Korea famous to avoid local optima and converge to the global
4 Machine Learning Department, Carnegie Mellon University, optimum. Metaheuristic algorithms are generally classified
Pittsburgh, PA, USA into nature-inspired and non-nature-based methods. Many
5 Department of Biomedical Engineering, Carnegie Mellon nature-inspired algorithms have been introduced that
University, Pittsburgh, PA, USA mathematically model some phenomena in nature to use it

Published online: 11 January 2022 @ Springer

http://orcid.org/0000-0002-2952-8576
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-021-06885-9&domain=pdf
https://doi.org/10.1007/s00521-021-06885-9

Neural Computing and Applications

for optimization problems. Genetic Algorithm (GA) [3],
Particle Swarm Optimization (PSO) [4], Differential Evo-
lution [5], and some other algorithms are well regarded
among scientists in various areas. There have been a lot of
new variants proposed for each of these algorithms to
improve their performance when showing poor results on
specific types of problems.

Based on No Free Lunch (NFL) theorem [6], there is no
single metaheuristic method that can be proposed to out-
perform all other algorithms for solving every optimization
problem in the world. Therefore, many researchers are
actively working to create and improve metaheuristic
algorithms that can solve the problems more efficiently. It
is worth mentioning that these algorithms do not guarantee
to reach the global minimum and they are all based on
systematic trial and error. Most of these methods employ a
population of agents rather than a single agent to paral-
lelize the search in the space and increase the ability of the
model to avoid local minima.

Metaheuristic algorithms include a wide variety of
methods proposed in different contexts, with different
origins and applications. The origins of a lot of such
methods are inspirations coming from mother nature. Aside
from algorithms mimicking human intelligence, nature-
inspired algorithms have been roughly categorized based
on their origin of inspiration into three classes of Evolu-
tionary algorithms (EA), Physics-inspired algorithms, and
Swarm Intelligence (SI). Algorithms like Tabu Search (TS)
[7]1 and Iterated Local Search (ILS) [8] are based on
strategies to avoid previously visited bad locations during
the search for the optimum or to improve hill-climbing
algorithm to avoid getting stuck at local minima. Evolu-
tionary algorithms get inspiration from the natural com-
petition and selection in the process of natural evolution.
Some of the well-known algorithms in this group are
Differential Evolution (DE) [5], Genetic Algorithm (GA)
[3], Evolution Strategies (ES) [9], and biogeography-based
optimizer (BBO) [10]. Physics-inspired algorithms are
inspired by the laws of physics such as gravity in Gravi-
tational Search Algorithm (GSA) [11] or big bang-big
crunch (BB-BC) [12].

The last group which we focus on is Swarm Intelligence
(SI). SI algorithms are inspired by swarm movements in
various animals in nature such as ant colony optimization
(ACO) [13], Artificial Bee Colony [14], Particle Swarm
Optimization (PSO) [15], Cuckoo Search (CS) [16], and
Bacterial Foraging Optimization (BFO) [17]. For example,
in ACO, the behavior of ants to find the shortest available
path between their colony and the food source is investi-
gated. Many other algorithms have been recently proposed
that model and imitate the group behavior of various
swarms and groups of animals in nature. Grey Wolf
Optimizer (GWO) [18], Whale Optimization Algorithm

@ Springer

(WOA) [19], Moth-flame Optimization (MFO) [20],
Dragonfly Algorithm (DA) [21], Grasshopper Optimization
Algorithm (GOA) [22], and the Ant Lion Optimizer (ALO)
[23] are some well-known examples of SI algorithms.

Grey Wolf Optimizer or GWO [18] is one of the recent
swarm-based metaheuristic algorithms that has attracted a
lot of attention and been used in many applications. As the
name suggests, this algorithm is inspired by the hunting
behavior of grey wolf packs. Having three leaders that
navigate the group toward the optimal values has made this
method a successful algorithm in avoiding local minima
with fast convergence. However, there have been some
drawbacks associated with this algorithm such as lack of
diversity, exploration/exploitation imbalance, and prema-
ture local minima convergence in large-scale problems
[24-26]. There has been an active line of research on how
to improve the original algorithm that brought about sev-
eral variants of GWO [27, 28]. Modifications to the update
steps of GWO, and specifically the convergence parameters
have tried to improve the ability of GWO in dealing with
real-world applications. We discuss these variants in Sect.
2.

The contribution of this study is to overcome the
aforementioned weaknesses in two ways. First, by defining
a fitness-based stopping criterion that observes the signif-
icance of improvements during the optimization process
and makes the optimization efficient by stopping when the
improvements become negligible from the function value
viewpoint. Second, by introducing an exploration/ex-
ploitation parameter that is independent of the iteration
number and is automatically adjusted with the behavior of
the optimization in the recent iterations. We combine these
two contributions in a novel fitness-dependent adaptive
version of GWO named Adaptive GWO (AGWO). In
addition, a three-point fitness-based extension (AGWO?) is
proposed that improves AGWO’s performance, specifically
on unimodal functions.

The structure of this paper is as follows: Some related
works and variants of GWO are mentioned in Sect. 2, and
their novelties and limitations are discussed. In Sect. 3, the
original methodology of the grey wolf optimizer (GWO) is
reviewed and different steps of the algorithm are elaborated
upon and their importance is discussed. Section 4 explains
the proposed algorithm and its implementation details. The
reasonings are provided to support the algorithm and its
extended version (AGWO?). The performance of AGWO
is evaluated using several standard experiments on
benchmark test functions in Sect. 5. The convergence
curves, as well as performance tables are provided to
compare the proposed algorithm with the original GWO
algorithm and some of its recent variants. At last, the

Neural Computing and Applications

results are discussed and some future directions are sug-
gested in Sect. 6.

2 Related works

Recently, there have been many studies to enhance the
GWO algorithm in different ways. Some variants proposed
some adjustment strategies for the GWO parameters, i.e.,
A and C. Some other works integrate novel or currently
existing operators such as local search methods to improve
GWO’s performance. Finally, combining GWO with other
existing metaheuristic algorithms, i.e. hybrid algorithms, is
another way to improve GWOQO'’s characteristics such as its
exploration/exploitation balance. Another aspect of related
studies to this work is adaptive tuning of the parameters.
Adaptive methods have been previously used in combina-
tion with other metaheuristic algorithms and have shown
promising enhancements to them. Although our proposed
fitness-dependent adaptive algorithm is essentially different
from the previous methods, we discuss several adaptive
algorithms along with their mechanisms and features.
Modifications to the update scheme and parameter
adjustments can improve GWO’s performance on some
types of problems. The weighted distance average of the
three best solutions as opposed to the simple average of
them is proposed as wdGWO [29]. Mittal et al. [30] pro-
posed mGWO in which the exploration is enhanced by
modifying the parameters of convergence to nonlinear
form. Modified augmented Lagrangian with improved grey
wolf optimizer (MAL-IGWO) [31] also employs a non-
linear adjustment for the exploration/exploitation parame-
ter a of the GWO and shows a better balance in constrained
optimization problems. Another augmented GWO algo-
rithm also modifies the parameter a to increase the possi-
bility of exploration in comparison with exploitation and is
best suited for small population search. These nonlinear
modifications, however, are successful in improving algo-
rithm’s performance on some particular sets of problems.
For example, mGWO’s exploration favorable change
enhances convergence performance on unimodal functions
but is less effective for more complex multimodal func-
tions. Besides parameter update equations, Fuzzy logic is
also used for the dynamic adaptation of GWO parameters
and the update rule for the position of agents [32, 33].
Relative function values of agents in the population are
used in an adaptive way to modify the parameter a for
obtaining better solutions in partial discharge optimization
problem [34]. However, it uses fitness values in each single
iteration, and similar to other variants, it is strongly
dependent on the iteration number. EE-GWO [35] is an
exploration-enhanced GWO algorithm that applies modi-
fications on both the update step and the nonlinear

parameter setting of exploration/exploitation parameter
a. EE-GWO is shown to suit best for high-dimensional
complex problems rather than more simple unimodal
functions. Random Opposition Based Learning GWO
(ROL-GWO) [36] modifies the parameter C instead of A to
improve the algorithm by increasing exploration. In
Enhanced GWO (EGWO), the diversity is increased with
opposition-based learning, and also the parameter a is
adjusted to oscillate for the first part of the optimization
and attain a constant value in the rest of the iterations [37].
Tuning the parameter adjustment form and their additional
variables is another downside of these methods. Tuning is
usually done by considering a set of functions as training
functions to adjust these parameters. This will bias the
algorithms toward performing well for specific sets of
functions.

Some other variants hybridize GWO with some other
local search or metaheuristic algorithms to improve its
performance. A new search strategy named Dimension
Learning-based Hunting (DLH) is introduced in I-GWO
[38] to enhance the global and local search in GWO.
Although not evaluated on a lot of benchmark functions,
the integration of local search algorithms like Powell local
search optimization and Pattern Search algorithms have
shown promising results in different applications [39, 40].
Lévy flight is integrated with GWO (LGWO) [25] to avoid
local stagnation and improve exploration. With the same
goal, Cellular GWO (CGWO) with topological structure is
introduced that considers topological neighbors for each
wolf that also enhances subgroup exploitation [26]. Evo-
lutionary Population Dynamics (EPD) operator is com-
bined with GWO (EPD-GWO) [41] to relocate bad agents
to better locations in the search space. However, the bal-
ance of the exploitation with exploration, specifically in
unimodal and hybrid functions, may need further
improvements. Hybrid GWO (HGWO) employs crossover
and mutation operators along with GWO to solve economic
dispatch problem [42]. GWO is equipped (E-GWO) with
tournament selection, crossover, and mutation in compan-
ion with a sinusoidal bridging mechanism to improve its
local minima avoidance in multimodal functions. Again,
the survival of fittest (SOF) idea in biological evolution is
added to the vanilla GWO to form another improved ver-
sion of GWO (IGWO) [43]. The differential evolution and
GWO hybrid method is combined with a change of GWO
basic update algorithm, i.e., hierarchy structure, to enhance
its local optima avoidance ability in hierarchy strengthened
GWO (HSGWO) [24]. Quasi-Oppositional Based Learning
(Q-OBL) theory has also been incorporated with GWO to
form QO-GWO algorithm [44]. In another similar work,
the information sharing strategy of the Artificial Bee Col-
ony (ABC) algorithm is integrated with the hierarchical
leadership of GWO to boost the exploration of GWO in

@ Springer

Neural Computing and Applications

complex problems (ABC-GWO) [45]. A hybrid of har-
mony search with GWO (GWO-HS) is used to solve the
parameter selection problem in harmony search [46]. A
categorization of nature-inspired metaheuristic algorithms
along with subcategories of swarm intelligence and dif-
ferent variants of GWO is depicted in Fig. 1.

However, there are some limitations with the imple-
mentation and applications of these algorithms. Usually,
the performance of these algorithms is evaluated not only
by their ability to converge to a good minimum but also by
their convergence speed and computational efficiency.
However, the maximum number of iterations should be
empirically provided to the algorithm which is not an
obvious choice for many optimization problems. In fact, an
unknown objective function has an unknown complexity,
while the required time strongly depends on the objective
function. Two examples of objective functions with dif-
ferent degrees of complexity are depicted in Fig. 2. We
expect the first function (top in Fig. 2) to need much less
time for a good convergence in comparison with the second
function (bottom in Fig. 2). The parameter selection and
adjustment, however, are prior to interaction with the
objective functions. Selecting too short or too long itera-
tions results in premature convergence and the waste of
computational time, respectively. Various types of stop-
ping criteria have been used to realize the convergence of
the optimization, and also several adjustments as men-
tioned above can be made to improve the balance of the
exploration and exploitation during the optimization.
However, none of these algorithms can automatically
adjust the convergence parameters based on the objective

Nature Inspired

function and still need prior input of maximum iteration. In
fact, all of the previously introduced variants of GWO are
dependent on the iteration number.

Adaptive methods have been introduced for some of the
metaheuristic algorithms to set the involved parameters
based on the behavior of the agents in either the fitness
values or their positions. Various parameters used in evo-
lutionary algorithms can be controlled using adaptive
methods [47]. Adaptive Particle Swarm Optimization
(APSO) [48] introduces an average distancing method that
can tune the exploration/exploitation balance and the
weights based on relative positions of particles. In APSO,
the relative positions of agents and their formation with
respect to the best points are exploited as useful informa-
tion on the level of the optimization and adjustment of the
PSO weights. Therefore, instead of direct fitness values of
the agents over the iterations, their mirrored positions
projected on the search space are considered for adaptive
tuning. The fitness history values, however, can be infor-
mative about the behavior and geometry of the objective
function throughout the optimization which is not consid-
ered in APSO. Another novel fitness-based parameter set-
ting is used for updates in adaptive cuckoo search (ACS)
[49]. In the ACS, the fitness values of different agents in
the population are compared with the worst and the best
agents to adjust the movements in each direction of the
space for a given agent. However, the fitness history is not
used and it is still dependent on the iteration number.

Metaheuristic

J

Algorithms ! Swarm Intelligence :
: (S :
JRTLTELCEECECEELEN A
1 Evolutionary : { L
¢ Algorithms [PSO][ACO] [ABC][cs][BFO] [WOA][MFO][DA][ALO][HHO]
Ly © GA C
.+ DE =
.+ ES E GWO
"~...B.B.O..........". |
I 1
.‘............----,‘ .‘|IIIIIIIIIIIIIII..‘ .‘...l-.-------.----.‘ .‘illlllllllllllll..’
. . . a Parameter . + Hybrid algorithms r Operators .
: PhysicsInspired : : Agjustments : : =
->E « GSA . . : « EPD-GWO s =+ LGWO H
s BERG Pl mewo : . HoWO : . pHLewo i
tanassssssssssaaas’ 5+ Augmented GWO = =+ E-GWO : + « ROL-GWO :
» « EE-GWO . = « ABC-GWO . =« QOGWO .
: * MAL-IGWO = +« GWO-HS = =« PGWO .
".-. EGWO o “.: (SOF) IGWO R ".'. wdGWO o

Fig. 1 Classification of nature-inspired metaheuristic algorithms, with
the focus on swarm intelligence (SI) algorithms. Variants of grey wolf
optimizer (GWO) are categorized based on the method of

@ Springer

modification. (Algorithms are mentioned and referenced in the
introduction and related works section)

Neural Computing and Applications

Maximum
Iteration (T)

—— = = =

Parameter
Adjustment
A4 = f(T)
1GWO update!
F* and X*

o o e e e e —

Optimization Process

Fig. 2 Optimization process scheme for non-adaptive metaheuristic
algorithms in the vanilla GWO and other variants. Parameter
adjustment as a function of time is the first step of the optimization

3 Grey wolf optimizer

Our paper is built upon a swarm intelligence (SI) algorithm
named Grey Wolf Optimizer (GWO) that mimics the
hunting behavior of wolf packs. GWO method mathemat-
ically models how grey wolves search, encircle, and attack
the prey. First, it considers the social hierarchy of various
types of wolves in a wolf pack. To this end, wolves are
categorized into four different kinds that have hierarchical
dominance over each other. Three types of Alpha, Beta,
and Delta are known as leaders of the pack that are
assumed to have superior abilities. The Omega wolves are
subordinate ones that follow the navigation of the leaders
(Fig. 3).

Grey wolf hunting consists of three main steps of
searching for prey, encircling and harassing the prey until it

/a\

/ B \ Second leaders

/ 6 \ Third leaders
/ w \Subordinates

Fig. 3 Social Hierarchy of the grey wolves. The first three types are
considered as the leaders and the @ wolves are considered as
subordinate agents that follow the navigation of the leaders

First leaders

D =50

prior to algorithm updates on the objective functions. The objective
functions can be relatively simple and low-dimensional (top) or more
complex and high-dimensional

stops moving, and at last attacking it. The encircling pro-
cess can be modeled mathematically by updating the
position of each wolf in relation to the position of the prey.
Equation la—d can be used to update the position of the
wolves for the next iteration.

nelol, nel, a=2(1-7) (1a)
A =2ary —a, C=2r, (1b)
D = |CX, (1) — X(1)| (1c)
X(t+1) =X, (1) —AD (1d)

where ry,r, are uniform random variables that make the
algorithm intrinsically stochastic and a is the tuning
parameter for exploration and exploitation which is
decreased linearly from 2 to zero over iterations. The
parameters A, C are the only two adjustable parameters in
the GWO algorithm.

The assumption used in the previous equations is that
the position of the prey is known. However, this is not true
in an abstract search space where we are optimizing an
objective function. The GWO algorithm assumes the idea
that hopefully the best three agents in the field, i.e., the
alpha, beta, and delta wolves, are navigating toward the
prey and are closer to the optimal position. Based on this
assumption, all the wolves would follow their behavior and
update their position with the estimated position of prey
defined as the average of the positions of these leader
wolves (Fig. 4, Eq. 2a—c).

@ Springer

Neural Computing and Applications

Fig. 4 The position of the wolves is updated based on the estimated
position of prey (solid red circle) which is the average of the positions
of three leader wolves. The new position depends on parameters A

D, = |C,.X, (1) — X(1)]
Dﬁ = C/}.Xﬁ(l‘) - X(t)| (Za)
Ds = |C5.X5(l) - X(t)l

X, = X, (f) — A,.D,

X, = X/g(t) — Aﬁ.Dﬁ (2b)
X; = X(s(t) — As.Ds
X +X+X
X(t+1) = At R+ A (2¢)

3

4 Adaptive GWO method

One of the main limitations of the GWO algorithm is that it
requires us to select some maximum iteration value
T which influences the computational time of the opti-
mization. If this parameter is selected too small, we would
have premature convergence to a not satisfactory point
which is probably far from the real minimizer of the
objective function. On the other hand, increasing this
parameter to make sure convergence to a presumably good
point may result in wasting computational time for non-
significant improvements in the quality of the final

@ Springer

w or any other
wolves

Estimated
Position of prey

and C which are stochastic. These parameters can be computed by
Egs. 1, 2. The update above is more related to the exploitation phase
where the positions are updated close to the best agents

solution. Therefore, a balance is required for the setting of
this parameter. However, in most practical cases, there is
no or little information about the complexity of the func-
tion and the corresponding enough maximum iteration that
balances between time and effectiveness of the optimiza-
tion algorithm. Finding stopping criteria that are indepen-
dent of the number of iterations can bring about efficient
optimization with the goal of reaching a sufficiently good
optimal value in the shortest amount of time.

In addition to the stopping of the optimization, the
balance of exploration and exploitation throughout the
optimization is a very important aspect in convergence to a
good optimal point. In the GWO algorithm, the variable A
is the critical parameter for the shift of the algorithm from
exploration in the initial iterations toward more exploita-
tion at the end of the optimization process. The essence of
adjustable variable A is such that when |A| > 1, the wolves
diverge from the currently estimated prey and search for
better points, i.e., exploration, and when |A|<1, they
approach and attack the currently estimated prey, i.e.,
exploitation (Fig. 5a). Based on Eq. 1b, this parameter is a
random variable in the range [—a,a|, where a decreases
linearly over time. Hence, we can roughly state that the first
half of the optimization is spent on exploring the search

Neural Computing and Applications

(a)
2 - T —
Exploration ! Exploitation
|
: Al <1
| H—&
1
© 1
4] > 1 |
—F & !
|
1
H
00 T

t (Iteration)

Exploitation

t (Iteration)

Fig. 5 The evolution of parameter a) a, and b) the adjustable variable A during the optimization process for T iterations. A is a random value

uniformly in the range of [—a, d]

space and the agents exploit the so far achieved informa-
tion in the second half of the optimization (Fig. 5b).

The main goal of our proposed method is to make the
optimization algorithm independent of the number of
iterations and avoid setting the maximum iteration in
advance of the optimization process. Optimization prob-
lems cover a wide variety of simple and very complex
objective functions which require different computational
resources to reach a sufficiently good optimal value that
satisfies the requirements of the problem. For example, a
simple two-dimensional unimodal objective function may
need much less computational time and iterations in
comparison with a large-scale, constrained function.
However, a common condition is that we are not aware of
how complex the function is before optimization. Fur-
thermore, the correlation between the complexity and the
maximum required iterations is unknown. In addition, the
linearly decreasing behavior of the exploration/exploitation
parameter A may not be the optimal behavior for different
functions, put aside the fact that the parameter’s update is
itself dependent on the time (Eq. 1b).

The key idea of adaptive grey wolf optimizer (AGWO) is
to leverage the history of the optimization, specifically the
average fitness of the agents in the previous iterations in
order to adjust the optimization parameters based on the
behavior of the function values. In fact, the changes in the
fitness values can lead us to select an appropriate explo-
ration parameter and to evaluate the state of the agents in
the optimization (Fig. 6a). To this end, we make use of the
memory of the system to store a list of average fitness
values and to compute their moving average in the recent
iterations as in the following equations:

)
o Dici Fi (3a)
N

F(t) _ Eifw F(t)

movavg w

(3b)

where N is the population size, w denotes the window
length for the moving average which we set as w = 10 in
the usual case, and i and ¢ indicate the current agent and
iteration, respectively. In the first w steps of the opti-
mization before obtaining enough fitness points to compute
the moving average, we perform a full exploration period
with a = 2 to initialize the search space by selecting some
random points with the most exploration rate possible.
The evaluation of the current fitness score and its
moving average shows that when the current iteration
average fitness is improved, i.e., decreased, in comparison
with the moving average, it implies that the currently
selected exploration/exploitation rate is probably per-
forming well enough. Generally, two cases can happen that
may hinder the performance of the optimization. First,
search agents can get stuck in a locally optimal solution,
i.e., high value in a minimization problem, and then very
small improvements can be considered as good perfor-
mance. The second case is the possibility of the agents
wandering around at a high exploration rate where sudden
small improvements can keep the exploration parameter
high and hinder the algorithm from converging to a mini-
mum value. To alleviate the first problem, similar to many
other algorithms, we have to start the optimization with the
highest exploration rate to allow the search agents to suf-
ficiently search the space. Then, we can reduce the
exploration rate and increase the exploitation over time. To
address the second issue, we propose a damping parame-
ter, i.e., reduction factor, y that can reduce the exploration
rate whenever a significant improvement is not observed
over the recent iterations (Fig. 6b). This parameter reduc-
tion, in some sense, is analogous to learning rate decay
commonly used in gradient-based methods [50].

@ Springer

Neural Computing and Applications

(a) (b)

Fitness
History

Fis
decreasing
significantly

Update
Positions

F movavg (t) F (t)

Adaptive
Mapping

l
a(t)

Fig. 6 a The schematic of the idea of adaptive parameter setting using the information stored from the history of the optimization. b The
flowchart of the stopping criteria and adjusting method of parameter a during the optimization from the initial step. & is set to 1073 and y = 0.95

Algorithm 1: Adaptive Grey Wolf Optimizer (AGWO); the base
algorithm is taken from GWO [18]

Initialize the grey wolf population X; (i =1,2,...,N)
Set a = 2, and calculate A, C using Equation 1
Calculate the fitness of each search agent and store their average value F'
X o = the best search agent
Xy = the second best search agent
Xs = the third best search agent
Finovavg = Moving average of fitness values over last w iterations
Stage 1: Fully Explore for a set number of iterations and keep track of
required variables
for t < Full Exploration Time do
Update the positions of the search agents using Equations 1, 2.
Update A, and C, X, Xg, and X5
Calculate the fitness of all search agents and store F', and compute the Moving
Average of F (Equations 3)
Stage 2: Adaptive Strategy. Stop when either a becomes smaller than
threshold AND function values are not changing significantly
while (a > 6 OR F' < Fmovavg — €) do
Update the positions of the current search agents using Equations 1, 2.
if (F > Frovavg — €) then
| Update exploration parameter as a = ya
Update A, and C, X4, Xg, and X5
Calculate the fitness of all search agents and store F', and compute the
Moving Average of F (Equations 3)

return X,

@ Springer

Neural Computing and Applications

In many optimization problems, the goal is to reach a
good enough solution in the shortest time, i.e., computa-
tional cost. In optimization problems, the optimal function
value is usually unknown but the degree to which the
precision of the answer is acceptable is known. For
example, in the engineering design of a tension spring, we
are not aware of the optimal weight, yet we can claim that
difference in weights of lower than one milligram is neg-
ligible. Therefore, we are not willing to allocate more
computational time for these small decrements. This is a
common approach in different types of optimization
problems including gradient-based and gradient-free
methods. For example, in gradient descent algorithms, the
norm of gradient is compared with a threshold of epsilon

|VF|3<e. Here, we define a parameter e which corre-
sponds to the lowest fitness change that can be presumed
significant. Hence, we can mathematically model the sig-
nificant improvement as the following condition:

FO<p) (4)

movavg

which means we have good fitness improvement when the
function value, on average, is decreased at least by e. The
advantage of setting this threshold parameter e over
selecting maximum iteration 7 in the original GWO algo-
rithm is that we have direct control over the goodness of
the results. As mentioned before, selected T is highly prone
to be too short or too long for the objective function.
However, by selecting ¢ we can monitor the function val-
ues and make sure the convergence to a satisfactory point.

Here, the stopping criteria are designed to check two
conditions. First, if the optimization is not improving the
fitness values and second, if exploration/exploitation
parameter A is too small to allow the agents to explore the
search space and jump to other good points. In this case, we
cannot hope for more significant improvements of the
function value, and we stop the process. Based on the
original algorithm, the value of a defines a hypothetical
hypercube in which the agents’ positions can be updated.
Hence, we define a threshold § = 1073 for the smallest a to
be considered (Fig. 6b). The complete steps of the Adap-
tive Grey Wolf Optimizer (AGWO) are elaborated upon in
algorithm 1.

Another remark is on the computational complexity of
the proposed adaptive algorithm. The additional computa-
tion step in the adaptive algorithm consists of keeping the
average and then moving average of the fitness values to
decide strategy based on them. The initialization, updating
of control parameters and positions, and fitness evaluation
are O(Nd) where N is number of search agents and d is the
dimension of the problem [51]. Also, since the maximum
number of iterations for AGWO is the same as GWO, we
would have a same upper limit O(TNd) where T is the

maximum allowed iterations. However, in the proposed
AGWO, we expect the algorithm to stop much earlier than
T, with a lower bound that depends on the decaying rate 7,
the threshold ¢ and the problem itself. Starting from
a = ay, assuming decaying at every iteration the number of
iterations to reach below threshold should satisfy
ylac gy < 5. Considering w steps of fully exploration (stage
1 in algorithm 1), the lower bound of time will be w + Tz,
which has to be less than maximum number of iterations to
bring about computational efficiency for AGWO. In the
results section, we show that this is indeed the case for
many problems.

4.1 Fitness curve-dependent adaptive GWO
(AGWO)

In the proposed AGWO, we explained how fitness values
are employed as conditions to have a monotonically
decreasing parameter a curve. In this extended version, we
suggest another form of adaptive a in the same AGWO
platform by only changing the a = ya update formula to a
more complicated form that includes information on the
fitness values in a more direct way. Therefore, we still have
both damping with the damping factor y, and the condition
for the significant decrease since they are necessary for
AGWO. In AGWO, the information was used to see the
absolute significant reduction in function value in the
current iteration #. This form of the update does not contain
any information about the fitness curve geometry. How-
ever, the behavior of fitness values in the previous itera-
tions can be informative about whether we should keep the
same exploration rate or decrease this parameter in favor of
more exploitation. In fact, this idea is typically used in
other optimization methods like gradient-based algorithms.
The history of gradients is used to modify the learning rate
in Adagrad [52] and ADAM [53] optimizers that are fre-
quently used in training artificial neural networks (ANNS).
Instead of a paired comparison of fitness values with the
average of previous fitness values, we can inspect their
behavior in three consecutive iterations. The rate of chan-
ges between the last two steps, i.e., 4F;, compared to the
previous two steps, i.e. 4F;_j, contains information on the
geometry of the curve (Fig. 7a). It also has some analogy to
the second derivative of the function (Hessian matrix)
which also stochastically informs us about the smoothness
of the function. The lower rate implies more smoothness,
i.e., going toward convergence, while the higher rate means
a favorable reduction, and thus we keep the exploration
rate. The flowchart for this extended version is depicted in
Fig. 7b. Therefore, the adaptive parameter a is a direct
function of fitness values and is computed as follows:

@ Springer

Neural Computing and Applications

(a

e,
0

‘e,

Fis
decreasing
significantly

Update
Positions

Fig. 7 a The plots of different types of average fitness curve behavior,
and the effect of the curve on the ratio of AF, and AF,;_,. b The
flowchart of the stopping criteria and adjusting method of parameter a

)

where o makes the parameter to consider previous explo-
ration rates and change smoothly. This is analogous in a
sense to the concept of momentum for gradient-based
optimization [54]. In the current work, the value of o is set
to 0.1. d in this equation is an auxiliary parameter, reduced
by damping factor y, which similarly to AGWO reduces the
parameter a from the initial maximum rate toward full
exploitation a — 0.

|AF|
|AFI71|

a:(l—oc)a—i—(oc)xdx(Zx (5)

5 Experimental evaluation and results

In this section, the performance of the proposed AGWO
and its extended version AGWO? are evaluated by com-
paring them to the vanilla GWO and some of its recent
variants via performing various experiments and analyses.
Since AGWO introduces various additional forms and
parameters, its performance needs to be examined not only
in the aspect of convergence to better points but also in the
viewpoint of computational time and its ability to balance
between these two metrics, i.e., convergence to a good
point in the shortest possible time. In this section, we first
introduce the benchmark functions and the experimental
environment used for the tests. Then, we analyze the pro-
posed methods compared to vanilla GWO for their per-
formance on unimodal and multimodal functions for
exploitation and exploration ability, respectively. At last,
these algorithms are compared to some other recently

@ Springer

d=yd

a=1-a)a+ (a)d(2x (AFD

|AF¢—4]

)

during the optimization from the initial step for the extended
AGWO. § is set to 1073 and y = 0.95

proposed variants of GWO with modifications to the con-
vergence parameter a. The advantages and limitations of
the methods are discussed and illustrated by convergence
curves and performance tables.

5.1 Benchmark functions and experimental
environment

To test the performance of the optimization algorithms, we
employ 23 benchmark functions containing different uni-
modal and multimodal search spaces that have been widely
used in the literature [18, 55]. The minimization of these
functions is considered as the objective function, and the
algorithms are evaluated both in terms of computational
time and the accuracy or the quality of the final solution.
The functions consist of seven unimodal functions with the
global optima at the origin, and 14 multimodal functions
with fixed or variable dimensions. The two-dimensional
versions of these benchmark functions are depicted in
Figs. 8 and 9, and the functions are listed in Tables 1
and 2.

Metaheuristic algorithms are stochastic, so we run each
algorithm on every benchmark function multiple times and
report the average and standard deviation of the best fitness
score achieved as well as the total number of iterations in
the case of adaptive algorithms.

Some other variants of GWO modified the parameter a
which is known as exploration/exploitation or convergence
parameter usually to enhance the exploration of the GWO
and converge to better points. Some of these variants along

Neural Computing and Applications

Fig. 9 2D version of some multimodal test functions (Fs—F3) and fixed dimension multimodal functions (F4—F3)

Table 1 Unimodal benchmark functions used for the evaluation of
AGWO

Function Range Dim
Fi(x) =30, [— 100, 100] 30
Fa(w) = Y, bl + 11 [~ 10,10) 30
F3(x) = 300 (5 %) [100, 100] 30
Fy(x) = max,{|x,\ 1<i<N} [— 100, 100] 30
Fs(x) = SV [100(xi — x2)* + (x; — 1)) [= 30, 30] 30
Fo(x) = S, (I +0.5))2 [— 100, 100] 30
Fr(x) = SN ix? 4 random|0, 1) [— 1.28, 1.28] 30

with their nonlinear parameter adjustments are tabulated in
Table 3. We compare our proposed algorithm with some of
these methods to analyze the effect of exploration/ex-
ploitation parameter a on the optimization performance.
Note that only the parameter adjustment of a is following
the update equations given in these algorithms and other
modifications applied in some of these variants have not
been considered in the experiments to have a fair com-
parison of the exploration/exploitation parameter.

5.2 Convergence analysis in GWO
In the first experiment, we inspect the effect of maximum

iteration (7). The importance of the maximum iteration 7
can be understood by comparing the convergence curves

@ Springer

Neural Computing and Applications

Table 2 Multimodal benchmark

functions used for the Function Range Dim
evaluation of AGWO Fy() = Y2, —xsin /[] + 12569.487 [~ 500, 500] 30
Fo(x) = SN, [¥ — 10 cos 2mx; + 10] [-5.12,5.12] 30
Fio(x) = —20exp(—0.2y/% 32N 2 — exp(3 SN | cos (2mx;)) +20 + e (=32, 32] 30
Fii(x) = ﬁzizlxi —II.. 1cos(J) +1 [— 600, 600] 30
Fio(x) = F{10sin (my1) + 305" (i — 1)?[1 + 10sin® (myis)] [50. 50] 30
o — 17} 4+ XY (i, 10,100,4), vy = 14+ 35
k(xi —a)" xi>a
u(xi,a,k,m) =< 0 —a<x;<a
k(=xi—a)" xi<—a
Fi3(x) = 0.1{sin® (3mx;) + SN (xi — 1)7[1 + sin? 37y + 1)] [— 50, 50] 30
+(xy — 1?1 + sin? (2nx")}} + 5V u(xi,5,100,4)
Fia(x) = (555 + X7, S (n)*' —1 [— 65, 65] 2
Fis() = LI o = 552 400027 [=35. 5] 4
Fio(x) = 4x2 — 2.1x} + 12§ + x1x0 — 403 + 423 + 1.03163 [—5,5]
Fi7(x) = (xp — 250 +3x — 6)> + 10(1 —g)cos (x) + 10— 0.397 [-5,5]
Fig(x) = [1 4 (x1 +x2 + 1)*(19 — 14x; 4 32 — 14x; + 6x1x; + 322)] (-2 2] 2
X[30 + (2x; — 3)62)2 x (18 — 32x; + 12x3 + 48x, — 36x1x2 + 27x3)] — 3
Fio(x) = = ciexp(— 23 aij(x; — py)*) + 3.864 (1, 3] 3
Fa(x) = = L ciexp(— Y0 g — py)*) +3.32 [0, 1] 6
Faux)= -0 (X —a)(X —a +c,]*1 +10.1532 [0, 10] 4
Fp(x) == [(X —a)(X —a)" +¢]™" +10.4028 [0, 10] 4
Fas(x) = =20 (X —a)(X —a)" +¢]7" +10.5363 [0, 10] 4
;r:zl(fnfe \I]’:rrizrrrll;ttzfa((éj\;s(t)ments Algorithm a Parameters
GWO [18] a=2(1-1) -
mGWO [30] a=2(1- ’—2) -
Augmented GWO [56] a = 2 — cos(rand) % -
EE-GWO [35] a=2(1-1" p=15
MAL-IGWO [31] =(1-4(1 M%)fl w=1.1
AGWO Y dampmg when F is not decreasing significantly

and the curves of average fitness value over time for dif-
ferent choices of T (Fig. 10). It is observed that increasing
iterations usually would improve the final fitness; however,
the convergence is slower. The underlying reason is the
exploration/exploitation parameter a that is different at a
given time step for different choices of 7, i.e., it is
dependent on 7. Hence, there is a trade-off between the
accuracy and the computational time which strongly

@ Springer

depends on the function which we usually do not know
beforehand.

In these experiments, we consider two cases of AGWO
with a significance threshold e = 107> and with € = 0 that
means no significance threshold is required for the decrease
in the consecutive iterations. In the former case, the ulti-
mate goal is to reach a sufficiently good minimum with the
significance defined by € and the most important aspect of
AGWO is how quickly it can converge to that point.

Neural Computing and Applications

log F

1074 104F |
1074

, w
107 210
10—106
10*137 100

10-13 —— GWO T=2000

—— GWO T=1000 10*
o 1074 GWO T =100 ®
] S
a -75 @ 2
2 10 & 10
8 107106 8
107137 10°

F8
w 104
o
o
~ 9x10°
8 x 103
7 x 103
—— GWO T=2000 100} ! —— GWO T=2000
—— GWO T=1000 \ —— GWO T=1000
GWO T =100 9 9x10° GWO T =100
]
]
S 8x103
i)
S
7 x 103

N
o

/ %

2.0 d 2.0
1.5 1.5 15
© 1.0 © 1.0 © 1.0
0.5 0.5 0.5
0.0 0.0 0.0

1000 1500 2000

F13

1000 1500 200 0

o

500 1000 1500 2000
F22

log F

F18
10
108 103
6
" 10' 10!
810t w
- 10t
10?
2
1073
10°

)

. 18
108 —— GWO T=2000 10! —— GWO T=2000 | — GWO T=2000
‘ —— GWO T=1000 —— GWO T=1000 8 —— GWO T=1000
o 6 GWO T=100 @ o GWO T=100 GWO T=100
é 10 é 107! ‘ 6
n [o
104 13
5 8 a4)
2 g 107 \ & 4
2 102 x-)
P 10°5 k‘\.\ 2
10 0
2.0 2.0 2.0
15 15 155
© 1.0 © 1.0 © 1.0
0.5 0.5 0.5
0.0 0.0 0.0
1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000

Fig. 10 Comparison of average fitness value (top), convergence curve or alpha score in GWO (middle), and exploration/exploitation parameter a

for maximum iteration 7 = 100, T =

Therefore, we compare the average of stopping iteration for
the vanilla GWO algorithm and AGWO. The results for the
iteration and the fitness values obtained by vanilla GWO
and AGWO with a significance threshold of ¢ = 107>
tabulated in Tables 4 and 5. A pairwise t-test with o =
0.05 is used to examine the significance of changes in the
iteration numbers between the two algorithms. The results
show that AGWO, on average, approximately needs 0.51
and 0.57 of the total iterations required for unimodal and
multimodal objective functions, respectively. The last
column of the tables inspects the effectiveness of the
convergence by performing a significance test with the
defined € between the two algorithms. In this test, the win/
tie/loss (W/T/L) corresponds to these conditions:

1000, T = 2000 plotted for the experiments on some of the benchmark functions

. * *
W Ficwo<Fowo — €
. * *
L: Fgwo<Fagwo — €
T : Otherwise

The results of this experiment indicate the efficiency of
AGWO and its ability to automatically find the required
computational time for a balanced optimization to a good
enough solution. We can see that the number of iterations,
on average, is shorter for unimodal functions in comparison
with more complex multimodal functions. The iteration
numbers required for AGWO are almost always mean-
ingfully improved with 22 wins out of 23 functions, while
it is able to preserve its ability to obtain a good fitness

@ Springer

Neural Computing and Applications

Table 4 Comparison of iteration number and statistical test of fitness change based on significance € for unimodal functions

Objective GWO AGWO ¢ = 1079 Iteration t Fitness significant
function test change
Stop Fitness Stop iteration Fitness
iteration
Ave Std Ave Std Ave Std Ave Std
F1 999 0 9.974E-77 1.836E- 240.24 29296 4.832E- 3.236E- W T
76 10 10
F2 999 0 8.602E-45 8.783E- 262.04 2.5997 8468E- 3.041E- W T
45 08 08
F3 999 0 1.586E-17 4478E- 4354 32.6141 7.201E- 1.354E- W T
17 07 06
F4 999 0 1.436E-16 1.956E- 371.36 13.5348 1.109E- 6.362E- W T
16 06 07
F5 999 0 26.445427 0.545875 994.08 24.1030 26.42245 0.81135 T T
F6 999 0 0.380873 0.226604 920.8 83.1264 0.26593 0.23056 W T
F7 999 0 0.000612 0.000246 346.76 9.8317 0.00559 0.00246 W L
Sum = 6993 Sum = 3570.68 WI/T W/T/L
Ratio = 0.5106 6/1 0/6/1

Table 5 Comparison of iteration number and statistical test of fitness change based on significance e for unimodal functions

Objective GWO AGWO € = 1073 Iteration t Fitness significant
function test change
Stop Fitness Stop iteration Fitness
iteration
Ave Std Ave Std Ave Std Ave Std
F8 999 0 6003.424 654.442 712.04 256.7585 6939.184 1780.190 W L
F9 999 0 3.208224 9.68689 710.08 334.0003 17.73550 38.33726 W T
F10 999 0 1.451E- 2.926E-15 266.04 2.8068 1.275E-07 2907E- W T
14 08
F11 999 0 0.00229 6.967E-03 310.6 141.3605 0.00284 0.00602 W T
F12 999 0 0.02298 1.313E-02 6804 160.9713 0.02357 0.01669 W T
F13 999 0 0.351438 1.847E-01 959.12 93.2306 0.27868 0.14179 W T
F14 999 0 1.877959 3.505E+00 424.52 164709 2.63314 3.13365 W T
F15 999 0 0.035660 8.984E-03 390.12 22.9038 0.03408 0.00799 W T
F16 999 0 1.552E- 5.543E-09 425.04 10.8756 1.547E-06 5.187E- W T
06 11
F17 999 0 0.000888 8.891E-07 509.64 65.3409 0.001168 0.001335 W T
F18 999 0 3432E- 3.332E-06 559.04 13.7999 0.000057 0.000043 W L
06
F19 999 0 0.001539 0.00154 513.64 15.4347 0.000240 0.002350 W W
F20 999 0 0.062995 0.07767 557.8 25.0440 0.06957 0.06726 W T
F21 999 0 0.848178 1.94938 71048 32.8343 1.11085 226265 W T
F22 999 0 0.211490 1.03357 720.52 13.5532 — 2.516E- W T
0.000137 06
F23 999 0 0314461 1.13944 71492 26.7670 0.32448 1.59014 W T
Sum: 15984 Sum = 9164 W/T W/T/L
Ratio = 0.5733 14/0 1/11/2

@ Springer

Neural Computing and Applications

value as in GWO with only one loss in unimodal functions
and two losses in multimodal benchmark functions. Inter-
estingly, it shows better performance and wins for F19.
Altogether, AGWO with ¢ = 10~ can satisfy the conver-
gence criteria more efficiently with around half the itera-
tions needed.

It is worth mentioning that some additional stopping
criteria have also been used for some single-objective
metaheuristic algorithms [57-59], These criteria, for
example, can be based on fitness change threshold or dis-
tance-based movements. Although these criteria are also
applicable for GWO, they are independent of parameter a,
which is responsible for the convergence of agents to a
point. Hence, the criterion might be satisfied while we are
still exploring the space for better solutions.

5.3 Exploration and exploitation evaluation

To evaluate the performance of the algorithms for their
exploitation, unimodal functions are usually studied. The
majority of unimodal benchmark functions have symmetric
bounds with the minimizer at the origin with the best
function value of zero. On the other hand, multimodal
functions are suitable for the evaluation of the methods for
local minima avoidance and their sufficient exploration.
Adaptive grey wolf optimizer with ¢ = 0, AGWO with
e =107, the extended AGWO? are compared with the
vanilla GWO as well as three other algorithms, mGWO

parameter a updated following the equations given in
Table 3. AGWO algorithms have external stopping criteria
which save computational time when the parameter a
becomes smaller than a threshold. However, we can still
compare the best fitness value obtained by each algorithm
throughout the optimization. The average and standard
deviation of f* is reported for each algorithm in Tables 6
and 7 corresponding to unimodal and multimodal func-
tions, respectively.

For unimodal functions, the extended version AGWO*
shows superior performance for some of the benchmark
functions, specifically F1, F2, and F4. Two other GWO
variants, augmented GWO and mGWO, which enhanced
exploration rate also appeared to have better performance
than vanilla GWO for unimodal functions. A potential
reason is that after some time (around half of the itera-
tions), the rate of a becomes so small that it will not allow
searching the space for better solutions. The change of
slope in the convergence curves shown in the next section
also supports this reason. This observation implies that
keeping a high exploration rate would result in finding
better points in comparison with spending computational
time for exploitation. We will analyze the convergence
curve in the next section to support this claim. AGWO with
a nonzero significance threshold e is not successful in
outperforming other variants in terms of fitness score.
However, the results are comparable with the average
iteration ratio of 0.51. Setting ¢ = 0, however, brings about

[30], EE-GWO [35], and augmented GWO [56] with the better solutions obtained at the cost of higher
Table 6 The comparison of solutions obtained by GWO variants on unimodal functions
Objective GWO mGWO EE-GWO Augmented GWO AGWO e =10 AGWOe=0 AGWO4
function
F1 Ave 9.973573E-77 3.569268E-99 1.251373E-59 2.550738E-133 4.832403E-10 2.722891E-112 1.250434E-142
Std 1.836394E-76 6.949881E-99 3.010570E-59 1.155946E-132 3.235913E-10 1.004929E-111 3.024885E-142
F2 Ave 8.601920E-45 1.916219E-57 9.317989E-35 1.337620E-78 8.467880E-08 4.215620E-64 2.379787E-89
Std 8.783130E-45 2.297146E-57 6.599263E-35 2.293195E-78 3.040536E-08 5.174775E-64 3.445475E-89
F3 Ave 1.586094E-17 1.537065E-21 1.329863E-13 5.201524E-25 7.201460E-07 5.108610E-14 1.883386E-15
Std 4478424E-17 5.391938E-21 5.144514E-13 1.615881E-24 1.353512E-06 2.190410E-13 4.924030E-15
F4 Ave 1.435774E-16 4.108489E-23 2.269956E-12 5.234153E-30 1.108541E-06 1.907816E-29 3.153981E-34
Std 1.955821E-16 6.544397E-23 2.885322E-12 1.427172E-29 6.362363E-07 3.598499E-29 1.091501E-33
F5 Ave 2.644543E4+01 2.647055E+01 2.641240E401 2.639697E+01 2.642245E401 2.603314E+01 2.685019E+01
Std 5.458750E-01 6.611032E-01 8.989719E-01 5.993160E-01 8.113471E-01 8.540912E-01 8.801562E-01
F6 Ave 3.808731E-01 1.806732E-01 3.183215E-01 5.466271E-01 2.659270E-01 1.895517E-01 9.027241E-01
Std 2.266045E-01 1.668525E-01 2.269263E-01 3.241510E-01 2.305588E-01 2.385307E-01 3.742916E-01
F7 Ave 6.120804E-04 4.453983E-04 1.093969E-03 4.824504E-04 5.592718E-03 6.298299E-03 5.243435E-03
Std 2.464215E-04 2.367432E-04 6.339044E-04 2.371176E-04 2.464485E-03 2.639767E-03 3.378296E-03
Average 1.0 1.0 1.0 1.0 0.5106 0.9058 0.9069

iteration

ratio

@ Springer

Neural Computing and Applications

Table 7 The comparison of solutions obtained by GWO variants on multimodal functions

Objective GWO mGWO EE-GWO Augmented GWO AGWO e =10 AGWOe=0 AGWO4
function
F8 Ave 6.003424E+03 6.861190E4+03 6.167859E+03 8.568503E+4-03 6.939184E+4-03 7.229337E4+03 7.021886E+03
Std 6.544422E+402 1.196285E+03 1.149780E+03 3.618334E+-02 1.780190E+-03 1.634803E+03 1.653241E+403
F9 Ave 3.208224E+00 8.138274E-01 4.679572E+00 1.356495E+00 1.773550E+-01 4.857344E4+00 1.749568E+01
Std 9.686892E+00 2.215883E+00 3.706599E+00 4.772586E+00 3.833726E+01 5.877942E+00 3.038730E+01
F10 Ave 1451284E-14 9.112711E-15 2.090772E-14 9.112711E-15 1.275094E-07 1.138645E-14 1.209699E-14
Std 2.926194E-15 2.029716E-15 4.177121E-15 2.477747E-15 2.906776E-08 3.469312E-15 3.100442E-15
F11 Ave 2.294535E-03 1.345154E-03 2.063429E-03 2.723239E-03 2.836616E-03 4.400894E-03 3.692693E-03
Std 6.966651E-03 4.569892E-03 5.115631E-03 5.834913E-03 6.015639E-03 1.122460E-02 7.387366E-03
F12 Ave 2297590E-02 1.985799E-02 2.659027E-02 3.742882E-02 2.356580E-02 1.911451E-02 4.730619E-02
Std 1.313084E-02 1.387326E-02 1.557176E-02 1.954764E-02 1.669214E-02 8.544951E-03 3.663199E-02
F13 Ave 3.514380E-01 3.493026E-01 2.896706E-01 4.650744E-01 2.786794E-01 2.505606E-01 1.073217E+00
Std 1.846669E-01 1.931763E-01 1.706938E-01 2.129423E-01 1.417926E-01 1.465826E-01 3.564703E-01
F14 Ave 1.877959E+00 1.801666E+00 2.659174E+00 2.662245E+00 2.633143E4-00 2.715619E4+00 1.851291E+00
Std 3.504592E4+00 3.305700E+00 4.045153E4+00 3.856012E+00 3.133647E+00 2.831432E4+00 2.612035E+400
FI5 Ave 3.565976E-02 3.172186E-02 3.485752E-02 3.241719E-02 3.407818E-02 3.407012E-02 3.413328E-02
Std 8.983974E-03 5.416689E-03 8.546793E-03 6.516292E-03 7.994503E-03 8.000542E-03 7.970350E-03
F16 Ave 1.552214E-06 1.560496E-06 1.546527E-06 3.273902E-06 1.546572E-06 1.546518E-06 2.819637E-05
Std 5.543283E-09 1.068046E-08 1.221951E-11 1.631636E-06 5.187123E-11 7.597073E-12 1.305570E-04
F17 Ave 8.879718E-04 8.891014E-04 8.992262E-04 1.105982E-03 1.168076E-03 9.027510E-04 4.640423E-03
Std 8.890569E-07 3.100683E-06 5.813000E-05 2.440331E-04 1.334938E-03 7.540426E-05 1.070648E-02
F18 Ave 3.432271E-06 1.712564E-06 3.673861E-06 1.694000E-06 5.658500E-05 6.872778E-05 5.541708E-05
Std 3.331875E-06 1.972157E-06 4.288000E-06 2.547543E-06 4.321400E-05 6.725822E-05 6.075841E-05
F19 Ave 1.538612E-03 1.711966E-03 2.317183E-03 2.130338E-03 2.395817E-04 1.909137E-03 2.171134E-03
Std 1.543592E-03 1.642117E-03 2.609824E-03 2.012589E-03 2.350427E-03 2.140155E-03 2.275362E-03
F20 Ave 6.299468E-02 7.517542E-02 8.473599E-02 7.667941E-02 6.957426E-02 3.678583E-02 6.515415E-02
Std 7.767082E-02 7.332215E-02 6.886749E-02 7.456391E-02 6.725735E-02 5.654594E-02 7.470911E-02
F21 Ave 8481779E-01 1.014452E+00 4.041968E-01 1.721867E+00 1.110852E+00 1.488746E+00 1.136739E+00
Std 1.949376E4+00 2.024849E+00 1.370689E+00 1.485449E+00 2.262650E+-00 2.692206E+00 2.321960E+00
F22 Ave 2.114896E-01 2.150786E-01 —1.379508E-04 1.367369E+00 —1.367058E-04 5.168687E-01 3.053445E-01
Std 1.033566E4+00 1.041060E4+00 1.262276E-06 5.913019E-01 2.515850E-06 1.785181E400 1.496548E+00
F23 Ave 3.144613E-01 2.186937E-01 3.244796E-01 1.609419E+-00 3.244810E-01 2.143249E-01 2.679329E-01
Std 1.139442E+00 1.059229E+4+00 1.590145E4+00 1.458931E+00 1.590145E+-00 1.050491E400 1.313119E+4-00
Average 1.0 1.0 1.0 1.0 0.5733 0.7019 0.7754

iteration

ratio

computational time (iteration ratio of 0.9). These results
show the influence of new parameter e that can meaning-
fully affect the optimization. As we claimed in the
methodology section, we can see how this parameter is
more meaningful and can be easily adjusted for desired
performance in comparison with the unknown maximum
iteration 7.

Inspection of the results for multimodal functions indi-
cates that instead of the three-point AGWO4, AGWO with
e = 0 shows good convergence, specifically on F12, F13,

F16, F20, and F23 test functions with an average iteration
ratio of 0.7 of the total iterations of other variants. Also,
AGWO with € = 1073 with a 0.57 average iteration ratio
has the best obtained solution for F19 and F22. Unlike
unimodal functions, augmented GWO has relatively poor
performance on some of the multimodal functions. This
observation denotes the importance of keeping the balance
between exploration and exploitation. In fact, biasing
toward more exploration or more exploitation boosts the
performance of the algorithm only for some specific

@ Springer

Neural Computing and Applications

B Unimodal
B Multimodal

1.0 4
0.9 1
0.8 1
0.7 1
0.6 1
0.5 1
0.4 1
0.3 1
0.2 1
0.1 1

Average lteration Ratio

AGWO £ =10"° AGWO £ =0 AGWO & GWO and others

Fig. 11 Bar chart of average iteration ratio of adaptive grey wolf
optimizer (simple and extended version) in comparison with the
vanilla GWO and other variants for both unimodal and multimodal
benchmark functions

benchmark functions. However, in order to perform well
for both unimodal and multimodal functions, an algorithm
requires to automatically adjust its exploration rate based
on the function behavior which is the idea of adaptive
GWO. It is worth emphasizing that the reported numbers in
Table 7 are the fitness values obtained in the whole dura-
tion of optimization for each algorithm. Average iteration
ratios are also shown in Fig. 11 to better illustrate the
computational efficiency of the adaptive algorithms for

both unimodal and multimodal functions. In the next sec-
tion, we examine the convergence curves to have a fair
comparison of these algorithms.

5.4 Convergence evaluation

The performance of different algorithms can be evaluated
by observing how the parameter a and the modified stop-
ping criteria can affect the curves of convergence, i.e., best
solution so far, and the average of function values. The
average curves of every algorithms over 25 replications are
plotted in Figs. 12 and 13 for some of the unimodal and
multimodal benchmark functions, respectively. In each
plot, the top subplot shows how the average fitness value
on all the agents in the population changes through time.
The second subplot compares the best alpha score which is
the same as the convergence curve for GWO algorithms.
And finally, the last subplot shows how exploration/ex-
ploitation parameter a is set for different algorithms. This
setting is constant for non-adaptive algorithms of GWO,
mGWO, EE-GWO, and augmented GWO. However, the
adaptive grey wolf optimizer and its extended version
proposed adaptive behavior of a based on the average fit-
ness curve in the top row of each plot. To better illustrate
the curves, a logarithmic scale is used for some functions.
Also, some initial steps are removed from some of the plots
to be able to distinguish between convergence curves.

F2 F4 F6
ol 101}
10 104F
10-14} 1078}
w . w
2 104} 2 1075 2 102}
i P | s |
10-54} 10-22}
10-74} 10-20} 1004
al — GWO
101 L 10 104 L — mGWO
(] -8} (] 8L o) EE-GWO
é 10 — GWO é 10 — GWO é —— Augmented GWO
2 _37] — mGwo 3 ~15| —— mGWO b —— AGWO £=10"°
s 10 s 10 EE-GWO s 10%f — AGWOEe=0
2 10-56 | — Augmented GWO 2 10-22} — Augmented GWO 2 — AGWO?
= —— AGWO e=10"° = —— AGWO £=10"° =
10-75} — AGWOe=0 10-20p — AGWO =0 100}
— AGWO2 — AGWO2
20F 20F 20F
15F 15F 15F
o 1.0 o 1.0 © 1.0f
05F 0.5} 0.5}
0.0, h . i i A 0.0, i i i i : 0.0, i i i : 3
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Fig. 12 Convergence curves for some unimodal benchmark functions.
The plots consist of three subplots with the horizontal axis being the
number of iterations. The average fitness score over all the wolves in
the population is plotted in the top row. The middle row shows the

convergence curve or the score of the best point found so far. The
behavior of parameter a is depicted in the bottom row. For better
illustration, a logarithmic scale is used

@ Springer

Neural Computing and Applications

F8 F10 F12
SS— o}
10 105
sl
104} a0 i
@ w w 10
o 9% 103 o 107°f o
S} S S
= 8x10° 10-9} 10!
7 %103 » Nl
10 12p 10_1 N
6 x 103 " . n : n i 103} N " . n r
ni ol — GWO — GWO
10 10 MGWO 102 mGWO
o 9x10° o 103} EE-GWO 3 EE-GWO
s 1 —— Augmented GWO S 10! —— Augmented GWO
% 8x103 & 10-6} —— AGWO £=10"° a — AGWO £=10"5
5] 8 — AGWO£=0 S o — AGWO£=0
2 2 109} — AGWO? 2 10 — AGWO?
3 7x10° ~ =
10-12f \ 107
6x103 " N : n n 3 N N . . m— r
20F 20F 2.0F
1.5} 1.5F 15F
o 1.0F o 1.0F o 1.0}f
o5} 05F 0.5F
0.0k, y 0.0F, h . . . A 00L,
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
F16 F20 F22
10F
20F
8 3
15F
6 3
w w
1.0} ik
0.5F 2F
. . i i " \ 0.0 18
— GWO — GwWo — GWO
10-1} mGWO 0.20F mGWO st mGWO
@ EE-GWO EE-GWO EE-GWO
S —— Augmented GWO 19} —— Augmented GWO v 6} —— Augmented GWO
@ —— AGWO £=10"5 S 0.15F —— AGWO £=10"5 S — AGWO £=10-
5 1073 —— AGWO =0 z o 4t — AGWOe=0
3’3’ — AGWO? 0.10} — AGWO2
0.05F
20F
15F
o 1.0f
0.5F
0.0 . = N : | 0.0F, . . : . : 0.0 " = = : .
0 300 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000

Fig. 13 Convergence curves for some multimodal benchmark func-
tions. The plots consist of three subplots with the horizontal axis
being the number of iterations. The average fitness score over all the
wolves in the population is plotted in the top row. The middle row

From Fig. 12, there are multiple observations from these
plots as discussed below:

The effect of ¢ is qualitatively shown in the plots of
unimodal functions. Particularly for F1 to F4, we can see
early stopping of AGWO ¢ = 107> curve after around 200
iterations with the sufficient fitness value achieved. On the
other hand, AGWO ¢ = 0 continues optimization with the
most exploration rate a = 2 for the entire time as shown in

@ Springer

shows the convergence curve or the score of the best point found so
far. The behavior of parameter a is depicted in the bottom row. For
better illustration, a logarithmic scale is used for some functions

Fig. 12 for F2 and F4. As mentioned in the previous sec-
tion, higher portion of exploration in mGWO, augmented
GWO, AGWO ¢ =0, and AGWO? enhances the perfor-
mance for most of the unimodal functions. We can observe
the changes in the slope of fitness curves when the algo-
rithms move to the exploitation section in F2 and F4. This
suggests that spending time for exploitation with small

Neural Computing and Applications

F2 F9 F21
K\V:O,S 4.5 xy=05 4.5 4 ————————o *\y=0.90
_1e Wy =0.90 a0 N\ y=0.5 \
15 \ 4.0 1 \
% y=0.95 \ . \
S 3.5 1 \ \
R N 3.5 \\
* ~ * i
G ~207 Ry o 30 N 7 3.0 \
o \ o 25 * r N
o B o~ \ 2.5 1 \
-] Y | b \
-25 ~ 2.0 \ \
S \ 0.95 2.0 1 \
N 1.5 =< Y ¥=095
S.y=0.99 : B 1.5 1 *o
—-30 1 N |l TTEss y=0.99 ~~Jy=099
S 1.0 Seey 1.0 S<a
200 400 600 800 700 800 900 200 400 600 800 1000

Stopping Iteration

Fig. 14 Final solution with respect to the total number of iterations
before stopping for 3 different benchmark functions (F2, F9, F21)
which are representative of unimodal, high-dimensional multimodal,

parameter a will prevent finding better points further from
the so far optimum.

Another interesting observation is that augmented GWO
with a slight decrease of a from 2 to 1 through the opti-
mization, shows a better curve than AGWO € = 0. It shows
that the desired a is not exactly 2. However, in AGWO we
start from the initial value of @ = 2 and it never decreases
to any lower value since the function value is constantly
decreasing in average. Surprisingly, the extended AGWO*
has superior convergence than augmented GWO for F2 and
F4 with a new automatically adjusted a at some 1.5 <a<2.

At last, although the overall best fitness score of mGWO
is better than AGWO for F6 (as previously shown in
Table 6, we can see faster convergence for AGWO algo-
rithms. In fact, if we stop the optimization at the same
iteration when AGWO satisfies the stopping criteria,
AGWO outperforms mGWO and all other variants in terms
of fitness score.

The analysis of multimodal functions plotted in Fig. 13
also indicates some interesting observations:

First, similar to the reported results from the tables, we
can see the poor performance of augmented GWO in some
of these multimodal functions, while it was a competitive
algorithm for unimodal functions. On the other hand,
vanilla GWO and EE-GWO that had inferior performance
in the unimodal functions showed competitive convergence
curves in these plots. This claim shows how a unique form
of parameter a can bias the performance toward some
specific types of functions. Adaptive tuning of parameter a,
however, shows competitive results in both unimodal and
multimodal functions.

The plots of F10 show an interesting example of the
automatic adjustment happening for AGWO. We can see
that the parameter a is held constant at the most exploration
rate possible a = 2 for around the first 300 iterations when
the function value is quickly decreasing. Next, when the
agents reach a pseudo-stability in the consecutive iterations
without significant improvement, the parameter a starts to

Stopping Iteration

Stopping Iteration

and low-dimensional multimodal landscapes, respectively. Each plot
shows the corresponding values for 4 different choices of decaying
rate

be damped by the damping factor and converges to zero in
less than 100 iterations. The other blind algorithms, how-
ever, continue the optimization with some higher a with
spending computational time on non-significant
improvements.

For some functions, fast convergence starts to happen at
some lower exploration rates which are unknown before-
hand. For example, in F22, we can observe that fitness
values start to decrease quickly after a reaches values
smaller than 1. This observation indicates that a fixed
setting of a to spend around half of the optimization time
on larger values would waste the computational time. This
would result in slower convergence observed for all other
variants in comparison with AGWO. This fast convergence
of AGWO can be used in many applications where the
number of trials is critical and the convergence to a good
point in the shortest amount of time is important.

There is a need for a side remark on the effect of another
important parameter in the AGWO which is the decaying
rate. So far, we have seen the importance of ¢ on the
convergence behavior. We have performed several exper-
iments using different choices of decaying rate y to eval-
uate its effect on both computational time and final
solution. We used four choices of y = 0.50,0.90,0.95,0.99
and computed their fitness value and stopping iteration.
Figure 14 shows the optimization solution with respect to
the number of iterations when the corresponding decaying
rate is used. We can see that generally, higher decaying
rates cause more computational time while bringing about
better solutions. Therefore, a balance has to be kept
between these two aspects. Based on our observations, we
have selected y = 0.95 which results in a good enough time
efficiency while obtaining satisfactory solutions.

To recap, the reported fitness values and iterations in the
performance tables, as well as convergence curves, show
that adaptive exploration/exploitation can improve the
GWO performance for both unimodal and multimodal
functions. Due to the adaptive nature of AGWO, we expect

@ Springer

Neural Computing and Applications

this performance boosting for other optimization problems
like real-world applications too. The adaptive stopping
criterion reduces the computational cost differently for
unimodal and multimodal functions (Fig. 11). The number
of iterations also depends on the value of €. Higher € results
in more efficient optimization with the cost of losing fitness
accuracy at some levels.

Also, the comparison of three different versions of
AGWO in the tables and plots shows that while the
extended version AGWO? is more successful in finding
very accurate optima for unimodal functions, the AGWO
€ = 0 has a better balance for both unimodal and multi-
modal functions, with more illustrated boosted perfor-
mance in complex multimodal functions.

6 Conclusion

In this work, we proposed AGWO and AGWO*, which are
adaptive versions of the grey wolf optimizer. We showed
that the proposed improvements were able to address some
inherent limitations of GWO such as the non-adaptive
balance between exploration and exploitation. The adap-
tive algorithms can adjust the control parameters with
respect to the complexity of the problem by evaluating the
fitness history in an online manner over the course of time.
The algorithm has fitness-based convergence criteria that
allow efficient optimization by introducing a significance
threshold at which we can stop the optimization to avoid
the waste of computational time for non-significant
reductions in the function values. The ideas used for
AGWO and AGWO? are novel in terms of automatic
adjustments; however, the update equations and adaptive
mapping can be improved and optimized for better results
which can be an interesting line of research for future
works.

Funding This work is supported by the start-up fund provided by
CMU Mechanical Engineering, USA, and funding from National
Science Foundation (CBET-1953222), United States.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Code availability The code of the algorithm can be accessed

from: https://github.com/BaratiLab/Adaptive-Grey-Wolf-Optimiza
tion-Algorithm-AGWO.

@ Springer

References

1. Soerensen JS, Johannesen L, Grove U, Lundhus K, Couderc JP,
Graff C (2010) A comparison of IIR and wavelet filtering for
noise reduction of the ECG. In: 2010 computing in cardiology
(IEEE, 2010), pp. 489492

2. Abdel-Basset M, Abdel-Fatah L, Sangaiah AK (2018) Chapter 10 -
metaheuristic algorithms: a comprehensive review. In: Sangaiah AK,
Sheng M, Zhang Z (eds) Computational intelligence for multimedia
big data on the cloud with engineering applications. Intelligent data-
centric systems. Academic Press, London, pp 185-231

3. Holland JH (1992) Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and
artificial intelligence. MIT press, London

4. Kennedy J, Eberhart R (1995) Particle swarm optimization. In:
proceedings of ICNN’95-international conference on neural net-
works, vol. 4 (IEEE, 1995), vol. 4, pp. 1942-1948

5. Storn R, Price K (1997) Differential evolution - a simple and efficient
Heuristic for global optimization over continuous spaces. J Global
Optim 11(4):341. https://doi.org/10.1023/A:1008202821328

6. Wolpert DH, Macready WG (1997) No free lunch theorems for
optimization. IEEE Trans Evolut Comput 1(1):67

7. Glover F (1989) Tabu search-part I. ORSA J Comput 1(3):190.
https://doi.org/10.1287/ijoc.1.3.190

8. Glover F, Kochenberger G (2002) Iterated local search. In:
Gendreau M, Potvin JY (eds) Handbook of metaheuristics.
Kluwer, Netherlands

9. Bick T (1996) Evolutionary algorithms in theory and practice:
evolution strategies, evolutionary programming, genetic algo-
rithms. Oxford University Press, Oxford, UK

10. Simon D (2008) Biogeography-based optimization. IEEE Trans
Evolut Comput 12(6):702. https://doi.org/10.1109/TEVC.2008.
919004

11. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a
gravitational search algorithm. Inf Sci 179(13):2232

12. Erol OK, Eksin I (2006) A new optimization method: big bang-
big crunch. Adv Eng Softw 37(2):106. https://doi.org/10.1016/j.
advengsoft.2005.04.005

13. Dorigo M, Birattari M, Stiitzle T (2006) Ant colony optimization.
IEEE Comput Intell Mag 1(4):28

14. Karaboga D, Basturk B (2007) A powerful and efficient algorithm
for numerical function optimization: artificial bee colony (ABC)
algorithm. J Global Optim 39(3):459

15. Eberhart R, Kennedy J (1995) A new optimizer using particle
swarm theory. In: proceedings of the sixth international sympo-
sium on micro machine and human science, pp. 39-43

16. Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: 2009
world congress on nature & biologically inspired computing,
NaBIC 2009. (IEEE, 2009), pp. 210-214

17. Passino K (2002) Biomimicry of bacterial foraging for distributed
optimization and control. IEEE Control Syst Mag 22(3):52.
https://doi.org/10.1109/MCS.2002.1004010

18. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer.
Adv Eng Softw 69:46

19. Mirjalili S, Lewis A (2016) The whale optimization algorithm.
Adv Eng Softw 95:51

20. Mirjalili S (2015) Moth-flame optimization algorithm: a novel
nature-inspired heuristic paradigm. Knowl Based Syst 89:228

21. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic
optimization technique for solving single-objective, discrete, and
multi-objective problems. Neural Comput Appl 27(4):1053.
https://doi.org/10.1007/s00521-015-1920-1

22. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation
algorithm: theory and application. Adv Eng Softw 105:30. https://
doi.org/10.1016/j.advengsoft.2017.01.004

https://github.com/BaratiLab/Adaptive-Grey-Wolf-Optimization-Algorithm-AGWO
https://github.com/BaratiLab/Adaptive-Grey-Wolf-Optimization-Algorithm-AGWO
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1109/TEVC.2008.919004
https://doi.org/10.1109/TEVC.2008.919004
https://doi.org/10.1016/j.advengsoft.2005.04.005
https://doi.org/10.1016/j.advengsoft.2005.04.005
https://doi.org/10.1109/MCS.2002.1004010
https://doi.org/10.1007/s00521-015-1920-1
https://doi.org/10.1016/j.advengsoft.2017.01.004
https://doi.org/10.1016/j.advengsoft.2017.01.004

Neural Computing and Applications

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw. https://
doi.org/10.1016/j.advengsoft.2015.01.010

Tu Q, Chen X, Liu X (2019) Hierarchy strengthened grey wolf
optimizer for numerical optimization and feature selection. IEEE
Access 7:78012. https://doi.org/10.1109/ACCESS.2019.2921793
Heidari AA, Pahlavani P (2017) An efficient modified grey wolf
optimizer with Lévy flight for optimization tasks. Appl Soft
Comput 60:115. https://doi.org/10.1016/j.as0c.2017.06.044

Lu C, Gao L, Yi J (2018) Grey wolf optimizer with cellular
topological structure. Exp Syst Appl 107:89. https://doi.org/10.
1016/j.eswa.2018.04.012

Negi G, Kumar A, Pant S, Ram M (2021) GWO: a review and
applications. Int J Syst Assur Eng Manag 12(1):1. https://doi.org/
10.1007/s13198-020-00995-8

Faris H, Aljarah I, Al-Betar MA, Mirjalili S (2018) Grey wolf
optimizer: a review of recent variants and applications. Neural
Comput Appl 30(2):413. https://doi.org/10.1007/s00521-017-
3272-5

Malik MRS, Mohideen ER, Ali L (2015) Weighted distance grey
wolf optimizer for global optimization problems. In: 2015 IEEE
international conference on computational intelligence and
computing research (ICCIC)

Mittal N, Singh U, Sohi BS (2016) Modified grey wolf optimizer
for global engineering optimization. Appl Comp Intell Soft
Comput. https://doi.org/10.1155/2016/7950348

Long W, Liang X, Cai S, Jiao J, Zhang W (2017) A modified
augmented Lagrangian with improved grey wolf optimization to
constrained optimization problems. Neural Comput Appl
28(1):421. https://doi.org/10.1007/s00521-016-2357-x
Rodriguez L, Castillo O, Soria J (2016) Grey wolf optimizer with
dynamic adaptation of parameters using fuzzy logic. In: 2016
IEEE congress on evolutionary computation (CEC),
pp. 3116-3123. https://doi.org/10.1109/CEC.2016.7744183
Rodrfguez L, Castillo O, Soria J, Melin P, Valdez F, Gonzalez CI,
Martinez GE, Soto J (2017) A fuzzy hierarchical operator in the
grey wolf optimizer algorithm. Appl Soft Comput 57:315. https://
doi.org/10.1016/j.as0c.2017.03.048

Dudani K, Chudasama A (2016) Partial discharge detection in
transformer using adaptive grey wolf optimizer based acoustic
emission technique. Cogent Eng 3(1):1256083. https://doi.org/10.
1080/23311916.2016.1256083

Long W, Jiao J, Liang X, Tang M (2018) An exploration-en-
hanced grey wolf optimizer to solve high-dimensional numerical
optimization. Eng Appl Artif Intell 68:63. https://doi.org/10.
1016/j.engappai.2017.10.024

Long W, Jiao J, Liang X, Cai S, Xu M (2019) A random oppo-
sition-based learning grey wolf optimizer. IEEE Access
7:113810. https://doi.org/10.1109/ACCESS.2019.2934994
Sharma S, Salgotra R, Singh U (2017) An enhanced grey wolf
optimizer for numerical optimization. In: 2017 international
conference on innovations in information, embedded and com-
munication systems (ICIIECS)

Nadimi-Shahraki MH, Taghian S, Mirjalili S (2021) An improved
grey wolf optimizer for solving engineering problems. Exp Syst
Appl 166:113907. https://doi.org/10.1016/j.eswa.2020.113917
Zhang S, Zhou Y (2015) Grey wolf optimizer based on powell
local optimization method for clustering analysis. Discrete Dyn
Nat Soc. https://doi.org/10.1155/2015/481360

Mahdad B, Srairi K (2015) Blackout risk prevention in a smart
grid based flexible optimal strategy using Grey Wolf-pattern
search algorithms. Energy Convers Manag 98:411. https://doi.
org/10.1016/j.enconman.2015.04.005

Saremi S, Mirjalili SZ, Mirjalili SM (2015) Evolutionary popu-
lation dynamics and grey wolf optimizer. Neural Comput Appl
26(5):1257. https://doi.org/10.1007/s00521-014-1806-7

42.

43.

44.

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

Jayabarathi T, Raghunathan T, Adarsh B, Suganthan PN (2016)
Economic dispatch using hybrid grey wolf optimizer. Energy
111:630. https://doi.org/10.1016/j.energy.2016.05.105

Wang JS, Li SX (2019) An improved grey wolf optimizer based
on differential evolution and elimination mechanism. Sci Rep
9(1):7181. https://doi.org/10.1038/s41598-019-43546-3

Guha D, Roy PK, Banerjee S (2016) Load frequency control of
large scale power system using quasi-oppositional grey wolf
optimization algorithm. Eng Sci Technol Int J 19(4):1693. https://
doi.org/10.1016/j.jestch.2016.07.004

Gaidhane PJ, Nigam MJ (2018) A hybrid grey wolf optimizer and
artificial bee colony algorithm for enhancing the performance of
complex systems. J Comput Sci 27:284. https://doi.org/10.1016/j.
j0cs.2018.06.008

Alomoush AA, Alsewari AA, Alamri HS, Aloufi K, Zamli KZ
(2019) Hybrid harmony search algorithm with grey wolf opti-
mizer and modified opposition-based learning. IEEE Access
7:68764. https://doi.org/10.1109/ACCESS.2019.2917803

Aleti A, Moser I (2016) A systematic literature review of adap-
tive parameter control methods for evolutionary algorithms.
ACM Comput Surv. https://doi.org/10.1145/2996355

Zhan ZH, Zhang J, Li Y, Chung HSH (2009) Adaptive particle
swarm optimization. IEEE Trans Syst Man Cybern Part B (Cy-
bernetics) 39(6):1362. https://doi.org/10.1109/TSMCB.2009.
2015956

Naik MK, Panda R (2016) A novel adaptive cuckoo search
algorithm for intrinsic discriminant analysis based face recogni-
tion. Appl Soft Comput 38:661. https://doi.org/10.1016/j.asoc.
2015.10.039

You K, Long M, Wang J, Jordan MI (2019) How does learning
rate decay help modern neural networks?

Yan F, Xu J, Yun K (2019) Dynamically dimensioned search
grey wolf optimizer based on positional interaction information.
Complexity. https://doi.org/10.1155/2019/7189653

Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods
for online learning and stochastic optimization.] Mach Learn Res
12:2121-2159

Kingma DP, Ba J (2017) Adam: a method for stochastic
optimization

Sutskever I, Martens J, Dahl G, Hinton G (2013) On the impor-
tance of initialization and momentum in deep learning. In: pro-
ceedings of the 30th international conference on international
conference on machine learning - Vol 28 (JMLR.org, 2013),
ICML’13, p. HI-1139-11I-1147

Digalakis J, Margaritis K (2001) On benchmarking functions for
genetic algorithms. Int J Comput Math 77(4):481. https://doi.org/
10.1080/00207160108805080

Qais MH, Hasanien HM, Alghuwainem S (2018) Augmented
grey wolf optimizer for grid-connected PMSG-based wind energy
conversion systems. Appl Soft Comput 69:504. https://doi.org/10.
1016/j.as0c.2018.05.006

Zielinski K, Peters D, Laur R (2005) Stopping criteria for single-
objective optimization

Zielinski K, Laur R (2007) Stopping criteria for a constrained
single-objective particle swarm optimization algorithm. Infor-
matica (Slovenia) 31:51

Fernandez-Vargas JA, Bonilla-Petriciolet A, Rangaiah GP,
Fateen SEK (2016) Performance analysis of stopping criteria of
population-based metaheuristics for global optimization in phase
equilibrium calculations and modeling. Fluid Phase Equilibria
427:104. https://doi.org/10.1016/j.fluid.2016.06.037

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer

https://doi.org/10.1016/j.advengsoft.2015.01.010
https://doi.org/10.1016/j.advengsoft.2015.01.010
https://doi.org/10.1109/ACCESS.2019.2921793
https://doi.org/10.1016/j.asoc.2017.06.044
https://doi.org/10.1016/j.eswa.2018.04.012
https://doi.org/10.1016/j.eswa.2018.04.012
https://doi.org/10.1007/s13198-020-00995-8
https://doi.org/10.1007/s13198-020-00995-8
https://doi.org/10.1007/s00521-017-3272-5
https://doi.org/10.1007/s00521-017-3272-5
https://doi.org/10.1155/2016/7950348
https://doi.org/10.1007/s00521-016-2357-x
https://doi.org/10.1109/CEC.2016.7744183
https://doi.org/10.1016/j.asoc.2017.03.048
https://doi.org/10.1016/j.asoc.2017.03.048
https://doi.org/10.1080/23311916.2016.1256083
https://doi.org/10.1080/23311916.2016.1256083
https://doi.org/10.1016/j.engappai.2017.10.024
https://doi.org/10.1016/j.engappai.2017.10.024
https://doi.org/10.1109/ACCESS.2019.2934994
https://doi.org/10.1016/j.eswa.2020.113917
https://doi.org/10.1155/2015/481360
https://doi.org/10.1016/j.enconman.2015.04.005
https://doi.org/10.1016/j.enconman.2015.04.005
https://doi.org/10.1007/s00521-014-1806-7
https://doi.org/10.1016/j.energy.2016.05.105
https://doi.org/10.1038/s41598-019-43546-3
https://doi.org/10.1016/j.jestch.2016.07.004
https://doi.org/10.1016/j.jestch.2016.07.004
https://doi.org/10.1016/j.jocs.2018.06.008
https://doi.org/10.1016/j.jocs.2018.06.008
https://doi.org/10.1109/ACCESS.2019.2917803
https://doi.org/10.1145/2996355
https://doi.org/10.1109/TSMCB.2009.2015956
https://doi.org/10.1109/TSMCB.2009.2015956
https://doi.org/10.1016/j.asoc.2015.10.039
https://doi.org/10.1016/j.asoc.2015.10.039
https://doi.org/10.1155/2019/7189653
https://doi.org/10.1080/00207160108805080
https://doi.org/10.1080/00207160108805080
https://doi.org/10.1016/j.asoc.2018.05.006
https://doi.org/10.1016/j.asoc.2018.05.006
https://doi.org/10.1016/j.fluid.2016.06.037

	Adaptive grey wolf optimizer
	Abstract
	Introduction
	Related works
	Grey wolf optimizer
	Adaptive GWO method
	Fitness curve-dependent adaptive GWO (\hbox {AGWO}^{\varDelta })

	Experimental evaluation and results
	Benchmark functions and experimental environment
	Convergence analysis in GWO
	Exploration and exploitation evaluation
	Convergence evaluation

	Conclusion
	Funding
	References

