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Abstract
Swarm-based metaheuristic optimization algorithms have demonstrated outstanding performance on a wide range of

optimization problems in both science and industry. Despite their merits, a major limitation of such techniques originates

from non-automated parameter tuning and lack of systematic stopping criteria that typically leads to inefficient use of

computational resources. In this work, we propose an improved version of grey wolf optimizer (GWO) named adaptive

GWO which addresses these issues by adaptive tuning of the exploration/exploitation parameters based on the fitness

history of the candidate solutions during the optimization. By controlling the stopping criteria based on the significance of

fitness improvement in the optimization, AGWO can automatically converge to a sufficiently good optimum in the shortest

time. Moreover, we propose an extended adaptive GWO (AGWOD) that adjusts the convergence parameters based on a

three-point fitness history. In a thorough comparative study, we show that AGWO is a more efficient optimization

algorithm than GWO by decreasing the number of iterations required for reaching statistically the same solutions as GWO

and outperforming a number of existing GWO variants.

Keywords Metaheuristic optimization � Adaptive optimization � Grey wolf optimizer � Fitness-based adaptive algorithm

1 Introduction

Optimization problems in various fields of science and

engineering always require better and more novel opti-

mization algorithms that can improve our ability to find the

optimal value and corresponding decision variables of

some objective function. Metaheuristic algorithms have

attracted ever-increasing interest in the previous decade

due to their superiority and efficiency in solving difficult

optimization problems [1, 2]. Such methods are known to

be stochastic, simple, flexible, derivation-free, and global

search algorithms. Their simplicity and flexibility have

paved the way to be applied in a vast variety of problems in

both science and industry.

Unlike gradient-based methods which require an explicit

form of the objective function and its derivative, these

methods can operate on black-box functions or functions

that have unknown or expensive derivatives. At last, by

employing multiple agents as the population, they are

famous to avoid local optima and converge to the global

optimum. Metaheuristic algorithms are generally classified

into nature-inspired and non-nature-based methods. Many

nature-inspired algorithms have been introduced that

mathematically model some phenomena in nature to use it
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for optimization problems. Genetic Algorithm (GA) [3],

Particle Swarm Optimization (PSO) [4], Differential Evo-

lution [5], and some other algorithms are well regarded

among scientists in various areas. There have been a lot of

new variants proposed for each of these algorithms to

improve their performance when showing poor results on

specific types of problems.

Based on No Free Lunch (NFL) theorem [6], there is no

single metaheuristic method that can be proposed to out-

perform all other algorithms for solving every optimization

problem in the world. Therefore, many researchers are

actively working to create and improve metaheuristic

algorithms that can solve the problems more efficiently. It

is worth mentioning that these algorithms do not guarantee

to reach the global minimum and they are all based on

systematic trial and error. Most of these methods employ a

population of agents rather than a single agent to paral-

lelize the search in the space and increase the ability of the

model to avoid local minima.

Metaheuristic algorithms include a wide variety of

methods proposed in different contexts, with different

origins and applications. The origins of a lot of such

methods are inspirations coming from mother nature. Aside

from algorithms mimicking human intelligence, nature-

inspired algorithms have been roughly categorized based

on their origin of inspiration into three classes of Evolu-

tionary algorithms (EA), Physics-inspired algorithms, and

Swarm Intelligence (SI). Algorithms like Tabu Search (TS)

[7] and Iterated Local Search (ILS) [8] are based on

strategies to avoid previously visited bad locations during

the search for the optimum or to improve hill-climbing

algorithm to avoid getting stuck at local minima. Evolu-

tionary algorithms get inspiration from the natural com-

petition and selection in the process of natural evolution.

Some of the well-known algorithms in this group are

Differential Evolution (DE) [5], Genetic Algorithm (GA)

[3], Evolution Strategies (ES) [9], and biogeography-based

optimizer (BBO) [10]. Physics-inspired algorithms are

inspired by the laws of physics such as gravity in Gravi-

tational Search Algorithm (GSA) [11] or big bang-big

crunch (BB-BC) [12].

The last group which we focus on is Swarm Intelligence

(SI). SI algorithms are inspired by swarm movements in

various animals in nature such as ant colony optimization

(ACO) [13], Artificial Bee Colony [14], Particle Swarm

Optimization (PSO) [15], Cuckoo Search (CS) [16], and

Bacterial Foraging Optimization (BFO) [17]. For example,

in ACO, the behavior of ants to find the shortest available

path between their colony and the food source is investi-

gated. Many other algorithms have been recently proposed

that model and imitate the group behavior of various

swarms and groups of animals in nature. Grey Wolf

Optimizer (GWO) [18], Whale Optimization Algorithm

(WOA) [19], Moth-flame Optimization (MFO) [20],

Dragonfly Algorithm (DA) [21], Grasshopper Optimization

Algorithm (GOA) [22], and the Ant Lion Optimizer (ALO)

[23] are some well-known examples of SI algorithms.

Grey Wolf Optimizer or GWO [18] is one of the recent

swarm-based metaheuristic algorithms that has attracted a

lot of attention and been used in many applications. As the

name suggests, this algorithm is inspired by the hunting

behavior of grey wolf packs. Having three leaders that

navigate the group toward the optimal values has made this

method a successful algorithm in avoiding local minima

with fast convergence. However, there have been some

drawbacks associated with this algorithm such as lack of

diversity, exploration/exploitation imbalance, and prema-

ture local minima convergence in large-scale problems

[24–26]. There has been an active line of research on how

to improve the original algorithm that brought about sev-

eral variants of GWO [27, 28]. Modifications to the update

steps of GWO, and specifically the convergence parameters

have tried to improve the ability of GWO in dealing with

real-world applications. We discuss these variants in Sect.

2.

The contribution of this study is to overcome the

aforementioned weaknesses in two ways. First, by defining

a fitness-based stopping criterion that observes the signif-

icance of improvements during the optimization process

and makes the optimization efficient by stopping when the

improvements become negligible from the function value

viewpoint. Second, by introducing an exploration/ex-

ploitation parameter that is independent of the iteration

number and is automatically adjusted with the behavior of

the optimization in the recent iterations. We combine these

two contributions in a novel fitness-dependent adaptive

version of GWO named Adaptive GWO (AGWO). In

addition, a three-point fitness-based extension (AGWOD) is

proposed that improves AGWO’s performance, specifically

on unimodal functions.

The structure of this paper is as follows: Some related

works and variants of GWO are mentioned in Sect. 2, and

their novelties and limitations are discussed. In Sect. 3, the

original methodology of the grey wolf optimizer (GWO) is

reviewed and different steps of the algorithm are elaborated

upon and their importance is discussed. Section 4 explains

the proposed algorithm and its implementation details. The

reasonings are provided to support the algorithm and its

extended version (AGWOD). The performance of AGWO

is evaluated using several standard experiments on

benchmark test functions in Sect. 5. The convergence

curves, as well as performance tables are provided to

compare the proposed algorithm with the original GWO

algorithm and some of its recent variants. At last, the
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results are discussed and some future directions are sug-

gested in Sect. 6.

2 Related works

Recently, there have been many studies to enhance the

GWO algorithm in different ways. Some variants proposed

some adjustment strategies for the GWO parameters, i.e.,

A and C. Some other works integrate novel or currently

existing operators such as local search methods to improve

GWO’s performance. Finally, combining GWO with other

existing metaheuristic algorithms, i.e. hybrid algorithms, is

another way to improve GWO’s characteristics such as its

exploration/exploitation balance. Another aspect of related

studies to this work is adaptive tuning of the parameters.

Adaptive methods have been previously used in combina-

tion with other metaheuristic algorithms and have shown

promising enhancements to them. Although our proposed

fitness-dependent adaptive algorithm is essentially different

from the previous methods, we discuss several adaptive

algorithms along with their mechanisms and features.

Modifications to the update scheme and parameter

adjustments can improve GWO’s performance on some

types of problems. The weighted distance average of the

three best solutions as opposed to the simple average of

them is proposed as wdGWO [29]. Mittal et al. [30] pro-

posed mGWO in which the exploration is enhanced by

modifying the parameters of convergence to nonlinear

form. Modified augmented Lagrangian with improved grey

wolf optimizer (MAL-IGWO) [31] also employs a non-

linear adjustment for the exploration/exploitation parame-

ter a of the GWO and shows a better balance in constrained

optimization problems. Another augmented GWO algo-

rithm also modifies the parameter a to increase the possi-

bility of exploration in comparison with exploitation and is

best suited for small population search. These nonlinear

modifications, however, are successful in improving algo-

rithm’s performance on some particular sets of problems.

For example, mGWO’s exploration favorable change

enhances convergence performance on unimodal functions

but is less effective for more complex multimodal func-

tions. Besides parameter update equations, Fuzzy logic is

also used for the dynamic adaptation of GWO parameters

and the update rule for the position of agents [32, 33].

Relative function values of agents in the population are

used in an adaptive way to modify the parameter a for

obtaining better solutions in partial discharge optimization

problem [34]. However, it uses fitness values in each single

iteration, and similar to other variants, it is strongly

dependent on the iteration number. EE-GWO [35] is an

exploration-enhanced GWO algorithm that applies modi-

fications on both the update step and the nonlinear

parameter setting of exploration/exploitation parameter

a. EE-GWO is shown to suit best for high-dimensional

complex problems rather than more simple unimodal

functions. Random Opposition Based Learning GWO

(ROL-GWO) [36] modifies the parameter C instead of A to

improve the algorithm by increasing exploration. In

Enhanced GWO (EGWO), the diversity is increased with

opposition-based learning, and also the parameter a is

adjusted to oscillate for the first part of the optimization

and attain a constant value in the rest of the iterations [37].

Tuning the parameter adjustment form and their additional

variables is another downside of these methods. Tuning is

usually done by considering a set of functions as training

functions to adjust these parameters. This will bias the

algorithms toward performing well for specific sets of

functions.

Some other variants hybridize GWO with some other

local search or metaheuristic algorithms to improve its

performance. A new search strategy named Dimension

Learning-based Hunting (DLH) is introduced in I-GWO

[38] to enhance the global and local search in GWO.

Although not evaluated on a lot of benchmark functions,

the integration of local search algorithms like Powell local

search optimization and Pattern Search algorithms have

shown promising results in different applications [39, 40].

Lévy flight is integrated with GWO (LGWO) [25] to avoid

local stagnation and improve exploration. With the same

goal, Cellular GWO (CGWO) with topological structure is

introduced that considers topological neighbors for each

wolf that also enhances subgroup exploitation [26]. Evo-

lutionary Population Dynamics (EPD) operator is com-

bined with GWO (EPD-GWO) [41] to relocate bad agents

to better locations in the search space. However, the bal-

ance of the exploitation with exploration, specifically in

unimodal and hybrid functions, may need further

improvements. Hybrid GWO (HGWO) employs crossover

and mutation operators along with GWO to solve economic

dispatch problem [42]. GWO is equipped (E-GWO) with

tournament selection, crossover, and mutation in compan-

ion with a sinusoidal bridging mechanism to improve its

local minima avoidance in multimodal functions. Again,

the survival of fittest (SOF) idea in biological evolution is

added to the vanilla GWO to form another improved ver-

sion of GWO (IGWO) [43]. The differential evolution and

GWO hybrid method is combined with a change of GWO

basic update algorithm, i.e., hierarchy structure, to enhance

its local optima avoidance ability in hierarchy strengthened

GWO (HSGWO) [24]. Quasi-Oppositional Based Learning

(Q-OBL) theory has also been incorporated with GWO to

form QO-GWO algorithm [44]. In another similar work,

the information sharing strategy of the Artificial Bee Col-

ony (ABC) algorithm is integrated with the hierarchical

leadership of GWO to boost the exploration of GWO in
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complex problems (ABC-GWO) [45]. A hybrid of har-

mony search with GWO (GWO-HS) is used to solve the

parameter selection problem in harmony search [46]. A

categorization of nature-inspired metaheuristic algorithms

along with subcategories of swarm intelligence and dif-

ferent variants of GWO is depicted in Fig. 1.

However, there are some limitations with the imple-

mentation and applications of these algorithms. Usually,

the performance of these algorithms is evaluated not only

by their ability to converge to a good minimum but also by

their convergence speed and computational efficiency.

However, the maximum number of iterations should be

empirically provided to the algorithm which is not an

obvious choice for many optimization problems. In fact, an

unknown objective function has an unknown complexity,

while the required time strongly depends on the objective

function. Two examples of objective functions with dif-

ferent degrees of complexity are depicted in Fig. 2. We

expect the first function (top in Fig. 2) to need much less

time for a good convergence in comparison with the second

function (bottom in Fig. 2). The parameter selection and

adjustment, however, are prior to interaction with the

objective functions. Selecting too short or too long itera-

tions results in premature convergence and the waste of

computational time, respectively. Various types of stop-

ping criteria have been used to realize the convergence of

the optimization, and also several adjustments as men-

tioned above can be made to improve the balance of the

exploration and exploitation during the optimization.

However, none of these algorithms can automatically

adjust the convergence parameters based on the objective

function and still need prior input of maximum iteration. In

fact, all of the previously introduced variants of GWO are

dependent on the iteration number.

Adaptive methods have been introduced for some of the

metaheuristic algorithms to set the involved parameters

based on the behavior of the agents in either the fitness

values or their positions. Various parameters used in evo-

lutionary algorithms can be controlled using adaptive

methods [47]. Adaptive Particle Swarm Optimization

(APSO) [48] introduces an average distancing method that

can tune the exploration/exploitation balance and the

weights based on relative positions of particles. In APSO,

the relative positions of agents and their formation with

respect to the best points are exploited as useful informa-

tion on the level of the optimization and adjustment of the

PSO weights. Therefore, instead of direct fitness values of

the agents over the iterations, their mirrored positions

projected on the search space are considered for adaptive

tuning. The fitness history values, however, can be infor-

mative about the behavior and geometry of the objective

function throughout the optimization which is not consid-

ered in APSO. Another novel fitness-based parameter set-

ting is used for updates in adaptive cuckoo search (ACS)

[49]. In the ACS, the fitness values of different agents in

the population are compared with the worst and the best

agents to adjust the movements in each direction of the

space for a given agent. However, the fitness history is not

used and it is still dependent on the iteration number.

Fig. 1 Classification of nature-inspired metaheuristic algorithms, with

the focus on swarm intelligence (SI) algorithms. Variants of grey wolf

optimizer (GWO) are categorized based on the method of

modification. (Algorithms are mentioned and referenced in the

introduction and related works section)
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3 Grey wolf optimizer

Our paper is built upon a swarm intelligence (SI) algorithm

named Grey Wolf Optimizer (GWO) that mimics the

hunting behavior of wolf packs. GWO method mathemat-

ically models how grey wolves search, encircle, and attack

the prey. First, it considers the social hierarchy of various

types of wolves in a wolf pack. To this end, wolves are

categorized into four different kinds that have hierarchical

dominance over each other. Three types of Alpha, Beta,

and Delta are known as leaders of the pack that are

assumed to have superior abilities. The Omega wolves are

subordinate ones that follow the navigation of the leaders

(Fig. 3).

Grey wolf hunting consists of three main steps of

searching for prey, encircling and harassing the prey until it

stops moving, and at last attacking it. The encircling pro-

cess can be modeled mathematically by updating the

position of each wolf in relation to the position of the prey.

Equation 1a–d can be used to update the position of the

wolves for the next iteration.

r1 2 ½0; 1�; r2 2 ½0; 1�; a ¼ 2 1� t

T

� �
ð1aÞ

A ¼ 2ar1 � a; C ¼ 2r2 ð1bÞ

D ¼ jCXpðtÞ � XðtÞj ð1cÞ

Xðt þ 1Þ ¼ XpðtÞ � A:D ð1dÞ

where r1; r2 are uniform random variables that make the

algorithm intrinsically stochastic and a is the tuning

parameter for exploration and exploitation which is

decreased linearly from 2 to zero over iterations. The

parameters A, C are the only two adjustable parameters in

the GWO algorithm.

The assumption used in the previous equations is that

the position of the prey is known. However, this is not true

in an abstract search space where we are optimizing an

objective function. The GWO algorithm assumes the idea

that hopefully the best three agents in the field, i.e., the

alpha, beta, and delta wolves, are navigating toward the

prey and are closer to the optimal position. Based on this

assumption, all the wolves would follow their behavior and

update their position with the estimated position of prey

defined as the average of the positions of these leader

wolves (Fig. 4, Eq. 2a–c).

Fig. 2 Optimization process scheme for non-adaptive metaheuristic

algorithms in the vanilla GWO and other variants. Parameter

adjustment as a function of time is the first step of the optimization

prior to algorithm updates on the objective functions. The objective

functions can be relatively simple and low-dimensional (top) or more

complex and high-dimensional

Fig. 3 Social Hierarchy of the grey wolves. The first three types are

considered as the leaders and the x wolves are considered as

subordinate agents that follow the navigation of the leaders
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Da ¼ jCa:XaðtÞ � XðtÞj
Db ¼ jCb:XbðtÞ � XðtÞj
Dd ¼ jCd:XdðtÞ � XðtÞj

ð2aÞ

X1 ¼ XaðtÞ � Aa:Da

X2 ¼ XbðtÞ � Ab:Db

X3 ¼ XdðtÞ � Ad:Dd

ð2bÞ

Xðt þ 1Þ ¼ X1 þ X2 þ X3

3
ð2cÞ

4 Adaptive GWO method

One of the main limitations of the GWO algorithm is that it

requires us to select some maximum iteration value

T which influences the computational time of the opti-

mization. If this parameter is selected too small, we would

have premature convergence to a not satisfactory point

which is probably far from the real minimizer of the

objective function. On the other hand, increasing this

parameter to make sure convergence to a presumably good

point may result in wasting computational time for non-

significant improvements in the quality of the final

solution. Therefore, a balance is required for the setting of

this parameter. However, in most practical cases, there is

no or little information about the complexity of the func-

tion and the corresponding enough maximum iteration that

balances between time and effectiveness of the optimiza-

tion algorithm. Finding stopping criteria that are indepen-

dent of the number of iterations can bring about efficient

optimization with the goal of reaching a sufficiently good

optimal value in the shortest amount of time.

In addition to the stopping of the optimization, the

balance of exploration and exploitation throughout the

optimization is a very important aspect in convergence to a

good optimal point. In the GWO algorithm, the variable A

is the critical parameter for the shift of the algorithm from

exploration in the initial iterations toward more exploita-

tion at the end of the optimization process. The essence of

adjustable variable A is such that when jAj[ 1, the wolves

diverge from the currently estimated prey and search for

better points, i.e., exploration, and when jAj\1, they

approach and attack the currently estimated prey, i.e.,

exploitation (Fig. 5a). Based on Eq. 1b, this parameter is a

random variable in the range ½�a; a�, where a decreases

linearly over time. Hence, we can roughly state that the first

half of the optimization is spent on exploring the search

Fig. 4 The position of the wolves is updated based on the estimated

position of prey (solid red circle) which is the average of the positions

of three leader wolves. The new position depends on parameters A

and C which are stochastic. These parameters can be computed by

Eqs. 1, 2. The update above is more related to the exploitation phase

where the positions are updated close to the best agents
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space and the agents exploit the so far achieved informa-

tion in the second half of the optimization (Fig. 5b).

The main goal of our proposed method is to make the

optimization algorithm independent of the number of

iterations and avoid setting the maximum iteration in

advance of the optimization process. Optimization prob-

lems cover a wide variety of simple and very complex

objective functions which require different computational

resources to reach a sufficiently good optimal value that

satisfies the requirements of the problem. For example, a

simple two-dimensional unimodal objective function may

need much less computational time and iterations in

comparison with a large-scale, constrained function.

However, a common condition is that we are not aware of

how complex the function is before optimization. Fur-

thermore, the correlation between the complexity and the

maximum required iterations is unknown. In addition, the

linearly decreasing behavior of the exploration/exploitation

parameter A may not be the optimal behavior for different

functions, put aside the fact that the parameter’s update is

itself dependent on the time (Eq. 1b).

The key idea of adaptive grey wolf optimizer (AGWO) is

to leverage the history of the optimization, specifically the

average fitness of the agents in the previous iterations in

order to adjust the optimization parameters based on the

behavior of the function values. In fact, the changes in the

fitness values can lead us to select an appropriate explo-

ration parameter and to evaluate the state of the agents in

the optimization (Fig. 6a). To this end, we make use of the

memory of the system to store a list of average fitness

values and to compute their moving average in the recent

iterations as in the following equations:

�FðtÞ ¼
P

i2½N� Fi
ðtÞ

N
ð3aÞ

FðtÞ
movavg ¼

Pt
t�w

�FðtÞ

w
ð3bÞ

where N is the population size, w denotes the window

length for the moving average which we set as w ¼ 10 in

the usual case, and i and t indicate the current agent and

iteration, respectively. In the first w steps of the opti-

mization before obtaining enough fitness points to compute

the moving average, we perform a full exploration period

with a ¼ 2 to initialize the search space by selecting some

random points with the most exploration rate possible.

The evaluation of the current fitness score and its

moving average shows that when the current iteration

average fitness is improved, i.e., decreased, in comparison

with the moving average, it implies that the currently

selected exploration/exploitation rate is probably per-

forming well enough. Generally, two cases can happen that

may hinder the performance of the optimization. First,

search agents can get stuck in a locally optimal solution,

i.e., high value in a minimization problem, and then very

small improvements can be considered as good perfor-

mance. The second case is the possibility of the agents

wandering around at a high exploration rate where sudden

small improvements can keep the exploration parameter

high and hinder the algorithm from converging to a mini-

mum value. To alleviate the first problem, similar to many

other algorithms, we have to start the optimization with the

highest exploration rate to allow the search agents to suf-

ficiently search the space. Then, we can reduce the

exploration rate and increase the exploitation over time. To

address the second issue, we propose a damping parame-

ter, i.e., reduction factor, c that can reduce the exploration

rate whenever a significant improvement is not observed

over the recent iterations (Fig. 6b). This parameter reduc-

tion, in some sense, is analogous to learning rate decay

commonly used in gradient-based methods [50].

Fig. 5 The evolution of parameter a) a, and b) the adjustable variable A during the optimization process for T iterations. A is a random value

uniformly in the range of ½�a; a�
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Fig. 6 a The schematic of the idea of adaptive parameter setting using the information stored from the history of the optimization. b The

flowchart of the stopping criteria and adjusting method of parameter a during the optimization from the initial step. d is set to 10�3 and c ¼ 0:95
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In many optimization problems, the goal is to reach a

good enough solution in the shortest time, i.e., computa-

tional cost. In optimization problems, the optimal function

value is usually unknown but the degree to which the

precision of the answer is acceptable is known. For

example, in the engineering design of a tension spring, we

are not aware of the optimal weight, yet we can claim that

difference in weights of lower than one milligram is neg-

ligible. Therefore, we are not willing to allocate more

computational time for these small decrements. This is a

common approach in different types of optimization

problems including gradient-based and gradient-free

methods. For example, in gradient descent algorithms, the

norm of gradient is compared with a threshold of epsilon

krFk22\�. Here, we define a parameter � which corre-

sponds to the lowest fitness change that can be presumed

significant. Hence, we can mathematically model the sig-

nificant improvement as the following condition:

�FðtÞ\Fðt�1Þ
movavg � � ð4Þ

which means we have good fitness improvement when the

function value, on average, is decreased at least by �. The

advantage of setting this threshold parameter � over

selecting maximum iteration T in the original GWO algo-

rithm is that we have direct control over the goodness of

the results. As mentioned before, selected T is highly prone

to be too short or too long for the objective function.

However, by selecting � we can monitor the function val-

ues and make sure the convergence to a satisfactory point.

Here, the stopping criteria are designed to check two

conditions. First, if the optimization is not improving the

fitness values and second, if exploration/exploitation

parameter A is too small to allow the agents to explore the

search space and jump to other good points. In this case, we

cannot hope for more significant improvements of the

function value, and we stop the process. Based on the

original algorithm, the value of a defines a hypothetical

hypercube in which the agents’ positions can be updated.

Hence, we define a threshold d ¼ 10�3 for the smallest a to

be considered (Fig. 6b). The complete steps of the Adap-

tive Grey Wolf Optimizer (AGWO) are elaborated upon in

algorithm 1.

Another remark is on the computational complexity of

the proposed adaptive algorithm. The additional computa-

tion step in the adaptive algorithm consists of keeping the

average and then moving average of the fitness values to

decide strategy based on them. The initialization, updating

of control parameters and positions, and fitness evaluation

are O(Nd) where N is number of search agents and d is the

dimension of the problem [51]. Also, since the maximum

number of iterations for AGWO is the same as GWO, we

would have a same upper limit O(TNd) where T is the

maximum allowed iterations. However, in the proposed

AGWO, we expect the algorithm to stop much earlier than

T, with a lower bound that depends on the decaying rate c,
the threshold d and the problem itself. Starting from

a ¼ a0, assuming decaying at every iteration the number of

iterations to reach below threshold should satisfy

cTdeca0 � d. Considering w steps of fully exploration (stage

1 in algorithm 1), the lower bound of time will be wþ Tdec
which has to be less than maximum number of iterations to

bring about computational efficiency for AGWO. In the

results section, we show that this is indeed the case for

many problems.

4.1 Fitness curve-dependent adaptive GWO
(AGWOD)

In the proposed AGWO, we explained how fitness values

are employed as conditions to have a monotonically

decreasing parameter a curve. In this extended version, we

suggest another form of adaptive a in the same AGWO

platform by only changing the a ¼ ca update formula to a

more complicated form that includes information on the

fitness values in a more direct way. Therefore, we still have

both damping with the damping factor c, and the condition

for the significant decrease since they are necessary for

AGWO. In AGWO, the information was used to see the

absolute significant reduction in function value in the

current iteration t. This form of the update does not contain

any information about the fitness curve geometry. How-

ever, the behavior of fitness values in the previous itera-

tions can be informative about whether we should keep the

same exploration rate or decrease this parameter in favor of

more exploitation. In fact, this idea is typically used in

other optimization methods like gradient-based algorithms.

The history of gradients is used to modify the learning rate

in Adagrad [52] and ADAM [53] optimizers that are fre-

quently used in training artificial neural networks (ANNs).

Instead of a paired comparison of fitness values with the

average of previous fitness values, we can inspect their

behavior in three consecutive iterations. The rate of chan-

ges between the last two steps, i.e., DFt, compared to the

previous two steps, i.e. DFt�1, contains information on the

geometry of the curve (Fig. 7a). It also has some analogy to

the second derivative of the function (Hessian matrix)

which also stochastically informs us about the smoothness

of the function. The lower rate implies more smoothness,

i.e., going toward convergence, while the higher rate means

a favorable reduction, and thus we keep the exploration

rate. The flowchart for this extended version is depicted in

Fig. 7b. Therefore, the adaptive parameter a is a direct

function of fitness values and is computed as follows:
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a ¼ ð1� aÞaþ ðaÞ � d � 2� jDFtj
jDFt�1j

� �
ð5Þ

where a makes the parameter to consider previous explo-

ration rates and change smoothly. This is analogous in a

sense to the concept of momentum for gradient-based

optimization [54]. In the current work, the value of a is set

to 0.1. d in this equation is an auxiliary parameter, reduced

by damping factor c, which similarly to AGWO reduces the

parameter a from the initial maximum rate toward full

exploitation a ! 0.

5 Experimental evaluation and results

In this section, the performance of the proposed AGWO

and its extended version AGWOD are evaluated by com-

paring them to the vanilla GWO and some of its recent

variants via performing various experiments and analyses.

Since AGWO introduces various additional forms and

parameters, its performance needs to be examined not only

in the aspect of convergence to better points but also in the

viewpoint of computational time and its ability to balance

between these two metrics, i.e., convergence to a good

point in the shortest possible time. In this section, we first

introduce the benchmark functions and the experimental

environment used for the tests. Then, we analyze the pro-

posed methods compared to vanilla GWO for their per-

formance on unimodal and multimodal functions for

exploitation and exploration ability, respectively. At last,

these algorithms are compared to some other recently

proposed variants of GWO with modifications to the con-

vergence parameter a. The advantages and limitations of

the methods are discussed and illustrated by convergence

curves and performance tables.

5.1 Benchmark functions and experimental
environment

To test the performance of the optimization algorithms, we

employ 23 benchmark functions containing different uni-

modal and multimodal search spaces that have been widely

used in the literature [18, 55]. The minimization of these

functions is considered as the objective function, and the

algorithms are evaluated both in terms of computational

time and the accuracy or the quality of the final solution.

The functions consist of seven unimodal functions with the

global optima at the origin, and 14 multimodal functions

with fixed or variable dimensions. The two-dimensional

versions of these benchmark functions are depicted in

Figs. 8 and 9, and the functions are listed in Tables 1

and 2.

Metaheuristic algorithms are stochastic, so we run each

algorithm on every benchmark function multiple times and

report the average and standard deviation of the best fitness

score achieved as well as the total number of iterations in

the case of adaptive algorithms.

Some other variants of GWO modified the parameter a

which is known as exploration/exploitation or convergence

parameter usually to enhance the exploration of the GWO

and converge to better points. Some of these variants along

Fig. 7 a The plots of different types of average fitness curve behavior,
and the effect of the curve on the ratio of DFt and DFt�1. b The

flowchart of the stopping criteria and adjusting method of parameter a

during the optimization from the initial step for the extended

AGWOD. d is set to 10�3 and c ¼ 0:95
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with their nonlinear parameter adjustments are tabulated in

Table 3. We compare our proposed algorithm with some of

these methods to analyze the effect of exploration/ex-

ploitation parameter a on the optimization performance.

Note that only the parameter adjustment of a is following

the update equations given in these algorithms and other

modifications applied in some of these variants have not

been considered in the experiments to have a fair com-

parison of the exploration/exploitation parameter.

5.2 Convergence analysis in GWO

In the first experiment, we inspect the effect of maximum

iteration (T). The importance of the maximum iteration T

can be understood by comparing the convergence curves

Fig. 8 2D version of unimodal test functions (30 dimensional versions are used for the experiments)

Fig. 9 2D version of some multimodal test functions (F8–F13) and fixed dimension multimodal functions (F14–F18)

Table 1 Unimodal benchmark functions used for the evaluation of

AGWO

Function Range Dim

F1ðxÞ ¼
PN

i¼1 x
2
i

[- 100, 100] 30

F2ðxÞ ¼
PN

i¼1 jxij þPN
i¼1jxij [- 10, 10] 30

F3ðxÞ ¼
PN

i¼1ð
Pi

j�1 xjÞ
2 [- 100, 100] 30

F4ðxÞ ¼ maxifjxij; 1� i�Ng [- 100, 100] 30

F5ðxÞ ¼
PN�1

i¼1 ½100ðxiþ1 � x2i Þ
2 þ ðxi � 1Þ2� [- 30, 30] 30

F6ðxÞ ¼
PN

i¼1ð½xi þ 0:5�Þ2 [- 100, 100] 30

F7ðxÞ ¼
PN

i¼1 ix
4
i þ random½0; 1Þ [- 1.28, 1.28] 30
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and the curves of average fitness value over time for dif-

ferent choices of T (Fig. 10). It is observed that increasing

iterations usually would improve the final fitness; however,

the convergence is slower. The underlying reason is the

exploration/exploitation parameter a that is different at a

given time step for different choices of T, i.e., it is

dependent on T. Hence, there is a trade-off between the

accuracy and the computational time which strongly

depends on the function which we usually do not know

beforehand.

In these experiments, we consider two cases of AGWO

with a significance threshold � ¼ 10�5 and with � ¼ 0 that

means no significance threshold is required for the decrease

in the consecutive iterations. In the former case, the ulti-

mate goal is to reach a sufficiently good minimum with the

significance defined by � and the most important aspect of

AGWO is how quickly it can converge to that point.

Table 2 Multimodal benchmark

functions used for the

evaluation of AGWO

Function Range Dim

F8ðxÞ ¼
PN

i¼1 �xi sin
ffiffiffiffiffiffi
jxij

p
þ 12569:487 [- 500, 500] 30

F9ðxÞ ¼
PN

i¼1 ½x2i � 10 cos 2pxi þ 10� [- 5.12, 5.12] 30

F10ðxÞ ¼ �20expð�0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i¼1 x

2
i

q
� expð1N

PN
i¼1 cos ð2pxiÞÞ þ 20þ e

[- 32, 32] 30

F11ðxÞ ¼ 1
4000

PN
i¼1 x

2
i �PN

i¼1 cos ð xiffiip Þ þ 1 [- 600, 600] 30

F12ðxÞ ¼ p
N f10 sin ðpy1Þ þ

PN�1
i¼1 ðyi � 1Þ2½1þ 10 sin2 ðpyiþ1Þ� [- 50, 50] 30

þðyN � 1Þ2g þ
PN

i¼1 uðxi; 10; 100; 4Þ; yi ¼ 1þ xiþ1
4

uðxi; a; k;mÞ ¼
kðxi � aÞm xi [ a
0 �a\xi\a
kð�xi � aÞm xi\� a

8<
:

F13ðxÞ ¼ 0:1fsin2 ð3px1Þ þ
PN

i¼1ðxi � 1Þ2½1þ sin2 ð3pxi þ 1Þ� [- 50, 50] 30

þðxN � 1Þ2½1þ sin2 ð2pxnÞ�g þ
PN

i¼1 uðxi; 5; 100; 4Þ
F14ðxÞ ¼ ð 1

500
þ
P25

j¼1
1

jþ
P2

i¼1
ðxi�aijÞ6

Þ�1 � 1 [- 65, 65] 2

F15ðxÞ ¼
P11

i¼1 ½ai �
x1ðb2i þbix2Þ
b2i þbix3þx4

�2 þ 0:0027 [- 5, 5] 4

F16ðxÞ ¼ 4x21 � 2:1x41 þ 1
3
x61 þ x1x2 � 4x22 þ 4x42 þ 1:03163 [- 5, 5] 2

F17ðxÞ ¼ ðx2 � 5:1
4p2 x

2
1 þ 5

p x1 � 6Þ2 þ 10ð1� 1
8pÞ cos ðx1Þ þ 10� 0:397 [- 5, 5] 2

F18ðxÞ ¼ ½1þ ðx1 þ x2 þ 1Þ2ð19� 14x1 þ 3x21 � 14x2 þ 6x1x2 þ 3x22Þ� [- 2, 2] 2

�½30þ ð2x1 � 3x2Þ2 � ð18� 32x1 þ 12x21 þ 48x2 � 36x1x2 þ 27x22Þ� � 3

F19ðxÞ ¼ �
P4

i¼1 ciexpð�
P3

j¼1 aijðxj � pijÞ2Þ þ 3:864 [1, 3] 3

F20ðxÞ ¼ �
P4

i¼1 ciexpð�
P6

j¼1 aijðxj � pijÞ2Þ þ 3:32 [0, 1] 6

F21ðxÞ ¼ �
P5

i¼1 ½ðX � aiÞðX � aiÞT þ ci��1 þ 10:1532 [0, 10] 4

F22ðxÞ ¼ �
P7

i¼1 ½ðX � aiÞðX � aiÞT þ ci��1 þ 10:4028 [0, 10] 4

F23ðxÞ ¼ �
P10

i¼1 ½ðX � aiÞðX � aiÞT þ ci��1 þ 10:5363 [0, 10] 4

Table 3 Parameter adjustments

in some variants of GWO
Algorithm a Parameters

GWO [18] a ¼ 2ð1� t
TÞ –

mGWO [30] a ¼ 2ð1� t2

T2Þ –

Augmented GWO [56] a ¼ 2� cosðrandÞ t
T –

EE-GWO [35] a ¼ 2ð1� t
TÞ

l l ¼ 1:5

MAL-IGWO [31] a ¼ ð1� t
TÞð1� l t

TÞ
�1 l ¼ 1:1

AGWO c damping when F is not decreasing significantly
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Therefore, we compare the average of stopping iteration for

the vanilla GWO algorithm and AGWO. The results for the

iteration and the fitness values obtained by vanilla GWO

and AGWO with a significance threshold of � ¼ 10�5 are

tabulated in Tables 4 and 5. A pairwise t-test with a ¼
0:05 is used to examine the significance of changes in the

iteration numbers between the two algorithms. The results

show that AGWO, on average, approximately needs 0.51

and 0.57 of the total iterations required for unimodal and

multimodal objective functions, respectively. The last

column of the tables inspects the effectiveness of the

convergence by performing a significance test with the

defined � between the two algorithms. In this test, the win/

tie/loss (W/T/L) corresponds to these conditions:

W : F�
AGWO\F�

GWO � �

L : F�
GWO\F�

AGWO � �

T : Otherwise

The results of this experiment indicate the efficiency of

AGWO and its ability to automatically find the required

computational time for a balanced optimization to a good

enough solution. We can see that the number of iterations,

on average, is shorter for unimodal functions in comparison

with more complex multimodal functions. The iteration

numbers required for AGWO are almost always mean-

ingfully improved with 22 wins out of 23 functions, while

it is able to preserve its ability to obtain a good fitness

Fig. 10 Comparison of average fitness value (top), convergence curve or alpha score in GWO (middle), and exploration/exploitation parameter a
for maximum iteration T ¼ 100, T ¼ 1000, T ¼ 2000 plotted for the experiments on some of the benchmark functions
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Table 4 Comparison of iteration number and statistical test of fitness change based on significance � for unimodal functions

Objective

function

GWO AGWO � ¼ 10�5 Iteration t

test

Fitness significant

change
Stop

iteration

Fitness Stop iteration Fitness

Ave Std Ave Std Ave Std Ave Std

F1 999 0 9.974E-77 1.836E-

76

240.24 2.9296 4.832E-

10

3.236E-

10

W T

F2 999 0 8.602E-45 8.783E-

45

262.04 2.5997 8.468E-

08

3.041E-

08

W T

F3 999 0 1.586E-17 4.478E-

17

435.4 32.6141 7.201E-

07

1.354E-

06

W T

F4 999 0 1.436E-16 1.956E-

16

371.36 13.5348 1.109E-

06

6.362E-

07

W T

F5 999 0 26.445427 0.545875 994.08 24.1030 26.42245 0.81135 T T

F6 999 0 0.380873 0.226604 920.8 83.1264 0.26593 0.23056 W T

F7 999 0 0.000612 0.000246 346.76 9.8317 0.00559 0.00246 W L

Sum = 6993 Sum = 3570.68 W/T W/T/L

Ratio = 0.5106 6/1 0/6/1

Table 5 Comparison of iteration number and statistical test of fitness change based on significance � for unimodal functions

Objective

function

GWO AGWO � ¼ 10�5 Iteration t

test

Fitness significant

change
Stop

iteration

Fitness Stop iteration Fitness

Ave Std Ave Std Ave Std Ave Std

F8 999 0 6003.424 654.442 712.04 256.7585 6939.184 1780.190 W L

F9 999 0 3.208224 9.68689 710.08 334.0003 17.73550 38.33726 W T

F10 999 0 1.451E-

14

2.926E-15 266.04 2.8068 1.275E-07 2.907E-

08

W T

F11 999 0 0.00229 6.967E-03 310.6 141.3605 0.00284 0.00602 W T

F12 999 0 0.02298 1.313E-02 680.4 160.9713 0.02357 0.01669 W T

F13 999 0 0.351438 1.847E-01 959.12 93.2306 0.27868 0.14179 W T

F14 999 0 1.877959 3.505E?00 424.52 16.4709 2.63314 3.13365 W T

F15 999 0 0.035660 8.984E-03 390.12 22.9038 0.03408 0.00799 W T

F16 999 0 1.552E-

06

5.543E-09 425.04 10.8756 1.547E-06 5.187E-

11

W T

F17 999 0 0.000888 8.891E-07 509.64 65.3409 0.001168 0.001335 W T

F18 999 0 3.432E-

06

3.332E-06 559.04 13.7999 0.000057 0.000043 W L

F19 999 0 0.001539 0.00154 513.64 15.4347 0.000240 0.002350 W W

F20 999 0 0.062995 0.07767 557.8 25.0440 0.06957 0.06726 W T

F21 999 0 0.848178 1.94938 710.48 32.8343 1.11085 2.26265 W T

F22 999 0 0.211490 1.03357 720.52 13.5532 -

0.000137

2.516E-

06

W T

F23 999 0 0.314461 1.13944 714.92 26.7670 0.32448 1.59014 W T

Sum: 15984 Sum = 9164 W/T W/T/L

Ratio = 0.5733 14/0 1/11/2
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value as in GWO with only one loss in unimodal functions

and two losses in multimodal benchmark functions. Inter-

estingly, it shows better performance and wins for F19.

Altogether, AGWO with � ¼ 10�5 can satisfy the conver-

gence criteria more efficiently with around half the itera-

tions needed.

It is worth mentioning that some additional stopping

criteria have also been used for some single-objective

metaheuristic algorithms [57–59], These criteria, for

example, can be based on fitness change threshold or dis-

tance-based movements. Although these criteria are also

applicable for GWO, they are independent of parameter a,

which is responsible for the convergence of agents to a

point. Hence, the criterion might be satisfied while we are

still exploring the space for better solutions.

5.3 Exploration and exploitation evaluation

To evaluate the performance of the algorithms for their

exploitation, unimodal functions are usually studied. The

majority of unimodal benchmark functions have symmetric

bounds with the minimizer at the origin with the best

function value of zero. On the other hand, multimodal

functions are suitable for the evaluation of the methods for

local minima avoidance and their sufficient exploration.

Adaptive grey wolf optimizer with � ¼ 0, AGWO with

� ¼ 10�5, the extended AGWOD are compared with the

vanilla GWO as well as three other algorithms, mGWO

[30], EE-GWO [35], and augmented GWO [56] with the

parameter a updated following the equations given in

Table 3. AGWO algorithms have external stopping criteria

which save computational time when the parameter a

becomes smaller than a threshold. However, we can still

compare the best fitness value obtained by each algorithm

throughout the optimization. The average and standard

deviation of f � is reported for each algorithm in Tables 6

and 7 corresponding to unimodal and multimodal func-

tions, respectively.

For unimodal functions, the extended version AGWOD

shows superior performance for some of the benchmark

functions, specifically F1, F2, and F4. Two other GWO

variants, augmented GWO and mGWO, which enhanced

exploration rate also appeared to have better performance

than vanilla GWO for unimodal functions. A potential

reason is that after some time (around half of the itera-

tions), the rate of a becomes so small that it will not allow

searching the space for better solutions. The change of

slope in the convergence curves shown in the next section

also supports this reason. This observation implies that

keeping a high exploration rate would result in finding

better points in comparison with spending computational

time for exploitation. We will analyze the convergence

curve in the next section to support this claim. AGWO with

a nonzero significance threshold � is not successful in

outperforming other variants in terms of fitness score.

However, the results are comparable with the average

iteration ratio of 0.51. Setting � ¼ 0, however, brings about

better solutions obtained at the cost of higher

Table 6 The comparison of solutions obtained by GWO variants on unimodal functions

Objective

function

GWO mGWO EE-GWO Augmented GWO AGWO � ¼ 10�5 AGWO � ¼ 0 AGWOD

F1 Ave 9.973573E-77 3.569268E-99 1.251373E-59 2.550738E-133 4.832403E-10 2.722891E-112 1.250434E-142

Std 1.836394E-76 6.949881E-99 3.010570E-59 1.155946E-132 3.235913E-10 1.004929E-111 3.024885E-142

F2 Ave 8.601920E-45 1.916219E-57 9.317989E-35 1.337620E-78 8.467880E-08 4.215620E-64 2.379787E-89

Std 8.783130E-45 2.297146E-57 6.599263E-35 2.293195E-78 3.040536E-08 5.174775E-64 3.445475E-89

F3 Ave 1.586094E-17 1.537065E-21 1.329863E-13 5.201524E-25 7.201460E-07 5.108610E-14 1.883386E-15

Std 4.478424E-17 5.391938E-21 5.144514E-13 1.615881E-24 1.353512E-06 2.190410E-13 4.924030E-15

F4 Ave 1.435774E-16 4.108489E-23 2.269956E-12 5.234153E-30 1.108541E-06 1.907816E-29 3.153981E-34

Std 1.955821E-16 6.544397E-23 2.885322E-12 1.427172E-29 6.362363E-07 3.598499E-29 1.091501E-33

F5 Ave 2.644543E?01 2.647055E?01 2.641240E?01 2.639697E?01 2.642245E?01 2.603314E101 2.685019E?01

Std 5.458750E-01 6.611032E-01 8.989719E-01 5.993160E-01 8.113471E-01 8.540912E-01 8.801562E-01

F6 Ave 3.808731E-01 1.806732E-01 3.183215E-01 5.466271E-01 2.659270E-01 1.895517E-01 9.027241E-01

Std 2.266045E-01 1.668525E-01 2.269263E-01 3.241510E-01 2.305588E-01 2.385307E-01 3.742916E-01

F7 Ave 6.120804E-04 4.453983E-04 1.093969E-03 4.824504E-04 5.592718E-03 6.298299E-03 5.243435E-03

Std 2.464215E-04 2.367432E-04 6.339044E-04 2.371176E-04 2.464485E-03 2.639767E-03 3.378296E-03

Average

iteration

ratio

1.0 1.0 1.0 1.0 0.5106 0.9058 0.9069
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computational time (iteration ratio of 0.9). These results

show the influence of new parameter � that can meaning-

fully affect the optimization. As we claimed in the

methodology section, we can see how this parameter is

more meaningful and can be easily adjusted for desired

performance in comparison with the unknown maximum

iteration T.

Inspection of the results for multimodal functions indi-

cates that instead of the three-point AGWOD, AGWO with

� ¼ 0 shows good convergence, specifically on F12, F13,

F16, F20, and F23 test functions with an average iteration

ratio of 0.7 of the total iterations of other variants. Also,

AGWO with � ¼ 10�5 with a 0.57 average iteration ratio

has the best obtained solution for F19 and F22. Unlike

unimodal functions, augmented GWO has relatively poor

performance on some of the multimodal functions. This

observation denotes the importance of keeping the balance

between exploration and exploitation. In fact, biasing

toward more exploration or more exploitation boosts the

performance of the algorithm only for some specific

Table 7 The comparison of solutions obtained by GWO variants on multimodal functions

Objective

function

GWO mGWO EE-GWO Augmented GWO AGWO � ¼ 10�5 AGWO � ¼ 0 AGWOD

F8 Ave 6.003424E103 6.861190E?03 6.167859E?03 8.568503E?03 6.939184E?03 7.229337E?03 7.021886E?03

Std 6.544422E?02 1.196285E?03 1.149780E?03 3.618334E?02 1.780190E?03 1.634803E?03 1.653241E?03

F9 Ave 3.208224E?00 8.138274E-01 4.679572E?00 1.356495E?00 1.773550E?01 4.857344E?00 1.749568E?01

Std 9.686892E?00 2.215883E?00 3.706599E?00 4.772586E?00 3.833726E?01 5.877942E?00 3.038730E?01

F10 Ave 1.451284E-14 9.112711E-15 2.090772E-14 9.112711E-15 1.275094E-07 1.138645E-14 1.209699E-14

Std 2.926194E-15 2.029716E-15 4.177121E-15 2.477747E-15 2.906776E-08 3.469312E-15 3.100442E-15

F11 Ave 2.294535E-03 1.345154E-03 2.063429E-03 2.723239E-03 2.836616E-03 4.400894E-03 3.692693E-03

Std 6.966651E-03 4.569892E-03 5.115631E-03 5.834913E-03 6.015639E-03 1.122460E-02 7.387366E-03

F12 Ave 2.297590E-02 1.985799E-02 2.659027E-02 3.742882E-02 2.356580E-02 1.911451E-02 4.730619E-02

Std 1.313084E-02 1.387326E-02 1.557176E-02 1.954764E-02 1.669214E-02 8.544951E-03 3.663199E-02

F13 Ave 3.514380E-01 3.493026E-01 2.896706E-01 4.650744E-01 2.786794E-01 2.505606E-01 1.073217E?00

Std 1.846669E-01 1.931763E-01 1.706938E-01 2.129423E-01 1.417926E-01 1.465826E-01 3.564703E-01

F14 Ave 1.877959E?00 1.801666E100 2.659174E?00 2.662245E?00 2.633143E?00 2.715619E?00 1.851291E?00

Std 3.504592E?00 3.305700E?00 4.045153E?00 3.856012E?00 3.133647E?00 2.831432E?00 2.612035E?00

F15 Ave 3.565976E-02 3.172186E-02 3.485752E-02 3.241719E-02 3.407818E-02 3.407012E-02 3.413328E-02

Std 8.983974E-03 5.416689E-03 8.546793E-03 6.516292E-03 7.994503E-03 8.000542E-03 7.970350E-03

F16 Ave 1.552214E-06 1.560496E-06 1.546527E-06 3.273902E-06 1.546572E-06 1.546518E-06 2.819637E-05

Std 5.543283E-09 1.068046E-08 1.221951E-11 1.631636E-06 5.187123E-11 7.597073E-12 1.305570E-04

F17 Ave 8.879718E-04 8.891014E-04 8.992262E-04 1.105982E-03 1.168076E-03 9.027510E-04 4.640423E-03

Std 8.890569E-07 3.100683E-06 5.813000E-05 2.440331E-04 1.334938E-03 7.540426E-05 1.070648E-02

F18 Ave 3.432271E-06 1.712564E-06 3.673861E-06 1.694000E-06 5.658500E-05 6.872778E-05 5.541708E-05

Std 3.331875E-06 1.972157E-06 4.288000E-06 2.547543E-06 4.321400E-05 6.725822E-05 6.075841E-05

F19 Ave 1.538612E-03 1.711966E-03 2.317183E-03 2.130338E-03 2.395817E-04 1.909137E-03 2.171134E-03

Std 1.543592E-03 1.642117E-03 2.609824E-03 2.012589E-03 2.350427E-03 2.140155E-03 2.275362E-03

F20 Ave 6.299468E-02 7.517542E-02 8.473599E-02 7.667941E-02 6.957426E-02 3.678583E-02 6.515415E-02

Std 7.767082E-02 7.332215E-02 6.886749E-02 7.456391E-02 6.725735E-02 5.654594E-02 7.470911E-02

F21 Ave 8.481779E-01 1.014452E?00 4.041968E-01 1.721867E?00 1.110852E?00 1.488746E?00 1.136739E?00

Std 1.949376E?00 2.024849E?00 1.370689E?00 1.485449E?00 2.262650E?00 2.692206E?00 2.321960E?00

F22 Ave 2.114896E-01 2.150786E-01 21.379508E-04 1.367369E?00 21.367058E-04 5.168687E-01 3.053445E-01

Std 1.033566E?00 1.041060E?00 1.262276E-06 5.913019E-01 2.515850E-06 1.785181E?00 1.496548E?00

F23 Ave 3.144613E-01 2.186937E-01 3.244796E-01 1.609419E?00 3.244810E-01 2.143249E-01 2.679329E-01

Std 1.139442E?00 1.059229E?00 1.590145E?00 1.458931E?00 1.590145E?00 1.050491E?00 1.313119E?00

Average

iteration

ratio

1.0 1.0 1.0 1.0 0.5733 0.7019 0.7754
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benchmark functions. However, in order to perform well

for both unimodal and multimodal functions, an algorithm

requires to automatically adjust its exploration rate based

on the function behavior which is the idea of adaptive

GWO. It is worth emphasizing that the reported numbers in

Table 7 are the fitness values obtained in the whole dura-

tion of optimization for each algorithm. Average iteration

ratios are also shown in Fig. 11 to better illustrate the

computational efficiency of the adaptive algorithms for

both unimodal and multimodal functions. In the next sec-

tion, we examine the convergence curves to have a fair

comparison of these algorithms.

5.4 Convergence evaluation

The performance of different algorithms can be evaluated

by observing how the parameter a and the modified stop-

ping criteria can affect the curves of convergence, i.e., best

solution so far, and the average of function values. The

average curves of every algorithms over 25 replications are

plotted in Figs. 12 and 13 for some of the unimodal and

multimodal benchmark functions, respectively. In each

plot, the top subplot shows how the average fitness value

on all the agents in the population changes through time.

The second subplot compares the best alpha score which is

the same as the convergence curve for GWO algorithms.

And finally, the last subplot shows how exploration/ex-

ploitation parameter a is set for different algorithms. This

setting is constant for non-adaptive algorithms of GWO,

mGWO, EE-GWO, and augmented GWO. However, the

adaptive grey wolf optimizer and its extended version

proposed adaptive behavior of a based on the average fit-

ness curve in the top row of each plot. To better illustrate

the curves, a logarithmic scale is used for some functions.

Also, some initial steps are removed from some of the plots

to be able to distinguish between convergence curves.

Fig. 11 Bar chart of average iteration ratio of adaptive grey wolf

optimizer (simple and extended version) in comparison with the

vanilla GWO and other variants for both unimodal and multimodal

benchmark functions

Fig. 12 Convergence curves for some unimodal benchmark functions.

The plots consist of three subplots with the horizontal axis being the

number of iterations. The average fitness score over all the wolves in

the population is plotted in the top row. The middle row shows the

convergence curve or the score of the best point found so far. The

behavior of parameter a is depicted in the bottom row. For better

illustration, a logarithmic scale is used
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From Fig. 12, there are multiple observations from these

plots as discussed below:

The effect of � is qualitatively shown in the plots of

unimodal functions. Particularly for F1 to F4, we can see

early stopping of AGWO � ¼ 10�5 curve after around 200

iterations with the sufficient fitness value achieved. On the

other hand, AGWO � ¼ 0 continues optimization with the

most exploration rate a ¼ 2 for the entire time as shown in

Fig. 12 for F2 and F4. As mentioned in the previous sec-

tion, higher portion of exploration in mGWO, augmented

GWO, AGWO � ¼ 0, and AGWOD enhances the perfor-

mance for most of the unimodal functions. We can observe

the changes in the slope of fitness curves when the algo-

rithms move to the exploitation section in F2 and F4. This

suggests that spending time for exploitation with small

Fig. 13 Convergence curves for some multimodal benchmark func-

tions. The plots consist of three subplots with the horizontal axis

being the number of iterations. The average fitness score over all the

wolves in the population is plotted in the top row. The middle row

shows the convergence curve or the score of the best point found so

far. The behavior of parameter a is depicted in the bottom row. For

better illustration, a logarithmic scale is used for some functions
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parameter a will prevent finding better points further from

the so far optimum.

Another interesting observation is that augmented GWO

with a slight decrease of a from 2 to 1 through the opti-

mization, shows a better curve than AGWO � ¼ 0. It shows

that the desired a is not exactly 2. However, in AGWO we

start from the initial value of a ¼ 2 and it never decreases

to any lower value since the function value is constantly

decreasing in average. Surprisingly, the extended AGWOD

has superior convergence than augmented GWO for F2 and

F4 with a new automatically adjusted a at some 1:5\a\2.

At last, although the overall best fitness score of mGWO

is better than AGWO for F6 (as previously shown in

Table 6, we can see faster convergence for AGWO algo-

rithms. In fact, if we stop the optimization at the same

iteration when AGWO satisfies the stopping criteria,

AGWO outperforms mGWO and all other variants in terms

of fitness score.

The analysis of multimodal functions plotted in Fig. 13

also indicates some interesting observations:

First, similar to the reported results from the tables, we

can see the poor performance of augmented GWO in some

of these multimodal functions, while it was a competitive

algorithm for unimodal functions. On the other hand,

vanilla GWO and EE-GWO that had inferior performance

in the unimodal functions showed competitive convergence

curves in these plots. This claim shows how a unique form

of parameter a can bias the performance toward some

specific types of functions. Adaptive tuning of parameter a,

however, shows competitive results in both unimodal and

multimodal functions.

The plots of F10 show an interesting example of the

automatic adjustment happening for AGWO. We can see

that the parameter a is held constant at the most exploration

rate possible a ¼ 2 for around the first 300 iterations when

the function value is quickly decreasing. Next, when the

agents reach a pseudo-stability in the consecutive iterations

without significant improvement, the parameter a starts to

be damped by the damping factor and converges to zero in

less than 100 iterations. The other blind algorithms, how-

ever, continue the optimization with some higher a with

spending computational time on non-significant

improvements.

For some functions, fast convergence starts to happen at

some lower exploration rates which are unknown before-

hand. For example, in F22, we can observe that fitness

values start to decrease quickly after a reaches values

smaller than 1. This observation indicates that a fixed

setting of a to spend around half of the optimization time

on larger values would waste the computational time. This

would result in slower convergence observed for all other

variants in comparison with AGWO. This fast convergence

of AGWO can be used in many applications where the

number of trials is critical and the convergence to a good

point in the shortest amount of time is important.

There is a need for a side remark on the effect of another

important parameter in the AGWO which is the decaying

rate. So far, we have seen the importance of � on the

convergence behavior. We have performed several exper-

iments using different choices of decaying rate c to eval-

uate its effect on both computational time and final

solution. We used four choices of c ¼ 0:50; 0:90; 0:95; 0:99

and computed their fitness value and stopping iteration.

Figure 14 shows the optimization solution with respect to

the number of iterations when the corresponding decaying

rate is used. We can see that generally, higher decaying

rates cause more computational time while bringing about

better solutions. Therefore, a balance has to be kept

between these two aspects. Based on our observations, we

have selected c ¼ 0:95 which results in a good enough time

efficiency while obtaining satisfactory solutions.

To recap, the reported fitness values and iterations in the

performance tables, as well as convergence curves, show

that adaptive exploration/exploitation can improve the

GWO performance for both unimodal and multimodal

functions. Due to the adaptive nature of AGWO, we expect

Fig. 14 Final solution with respect to the total number of iterations

before stopping for 3 different benchmark functions (F2, F9, F21)

which are representative of unimodal, high-dimensional multimodal,

and low-dimensional multimodal landscapes, respectively. Each plot

shows the corresponding values for 4 different choices of decaying

rate c
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this performance boosting for other optimization problems

like real-world applications too. The adaptive stopping

criterion reduces the computational cost differently for

unimodal and multimodal functions (Fig. 11). The number

of iterations also depends on the value of �. Higher � results

in more efficient optimization with the cost of losing fitness

accuracy at some levels.

Also, the comparison of three different versions of

AGWO in the tables and plots shows that while the

extended version AGWOD is more successful in finding

very accurate optima for unimodal functions, the AGWO

� ¼ 0 has a better balance for both unimodal and multi-

modal functions, with more illustrated boosted perfor-

mance in complex multimodal functions.

6 Conclusion

In this work, we proposed AGWO and AGWOD, which are

adaptive versions of the grey wolf optimizer. We showed

that the proposed improvements were able to address some

inherent limitations of GWO such as the non-adaptive

balance between exploration and exploitation. The adap-

tive algorithms can adjust the control parameters with

respect to the complexity of the problem by evaluating the

fitness history in an online manner over the course of time.

The algorithm has fitness-based convergence criteria that

allow efficient optimization by introducing a significance

threshold at which we can stop the optimization to avoid

the waste of computational time for non-significant

reductions in the function values. The ideas used for

AGWO and AGWOD are novel in terms of automatic

adjustments; however, the update equations and adaptive

mapping can be improved and optimized for better results

which can be an interesting line of research for future

works.
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