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Abstract

Along with bacteria, fungi can represent a significant component of animal- and plant-associated microbial communities.
However, we have only begun to describe these fungi, much less examine their effects on most animals and plants. Bacteria
associated with the honey bee, Apis mellifera, have been well characterized across different regions of the gut. The mid- and
hindgut of foraging bees house a deterministic set of core species that affect host health, whereas the crop, or the honey
stomach, harbors a more diverse set of bacteria that is highly variable in composition among individual bees. Whether this
contrast between the two regions of the gut also applies to fungi remains unclear despite their potential influence on host
health. In honey bees caught foraging at four sites across the San Francisco Peninsula of California, we found that fungi
were less distinct in species composition between the crop and the mid- and hindgut than bacteria. Unlike bacteria, fungi
varied substantially in species composition throughout the honey bee gut, and much of this variation could be predicted by
the location where we collected the bees. These observations suggest that fungi may be transient passengers and unimportant
as gut symbionts. However, our findings also indicate that honey bees could be vectors of infectious plant diseases as many

of the fungi we found in the honey bee gut are recognized as plant pathogens.
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Recently, the honey bee, Apis mellifera, has emerged as a
model system for uncovering rules that govern the assembly
of host-associated microbial communities and their effects
on host health [1, 2]. Studies on honey bee microbes sug-
gest that different regions of the gut house distinct micro-
bial communities, making it necessary to examine these
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communities separately in order to understand how they
affect host health [3, 4]. For example, in the mid- and hind-
gut (hereafter the intestine, Fig. 1a), a deterministic set
of functionally indispensable core microbes represent the
majority of the microbial cells inhabiting the bee gut [3, 5,
6]. These core species are found across all healthy workers
regardless of location [5]. In contrast, the crop, or the honey
stomach, shows high heterogeneity in microbial species
composition even among healthy workers, likely reflecting
the spatial and temporal variation of ingested environmental
microbes [7-10]. However, research on the honey bee gut
microbiota has focused almost exclusively on bacteria, and
it remains unknown whether the contrast between crop and
intestinal communities applies only to bacteria or is also
observed in other groups of microbes, such as fungi, which
may affect host health in ways that are currently underap-
preciated [11, 12].

In this study, we examined both bacteria and fungi in
foraging workers to test two hypotheses: (1) fungal species
composition is as distinct between the crop and the intes-
tine as is bacterial species composition and (2) fungi, like

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00248-021-01922-5&domain=pdf

L. E. Decker et al.

Fig. 1 a Honey bee gut anatomy
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bacteria, show more variable species composition in the crop
than in the intestine. To test these hypotheses, we collected
a total of 101 A. mellifera foraging workers at four sites on
the San Francisco Peninsula in CA, USA (Fig. 1b, Table S1).
We dissected the entire gut, separating the crop from the
intestine. We then extracted and sequenced the bacterial
V4 region of the 16S ribosomal RNA gene (505-806) and
the fungal ITS1-5.8S-ITS2 region [13] (see Supplementary
Information). Sequences were clustered into operational tax-
onomic unites (OTUs) using VSEARCH [14] and taxonomy
assigned for bacterial and fungal OTUs using QIIME [15]
and UNITE [16].
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As expected, bacterial community composition was most
strongly predicted by gut region (PERMANOVA, gut region:
R*=0.34, p=0.001, Fig. lcf, Fig. 2a), and higher among-
host variation was detected in the crop than in the intestine
(beta deviation [17]: F; 143=14.5, p=0.0002). Although
fungi also showed high variability in the crop (Figs. 1 and
2, beta deviation: F3 161 =40.8, p<0.0001, Fig. S2), fungi
in the intestine were more diverse in species composition
(Shannon, tissue: F64= 6.56, p=0.01, Fig. S3). Addition-
ally, fungi retained more of the among-site differences from
the crop to the intestine than did bacteria (Figs. 1 and 2).
Sample site was the strongest predictor of fungal species
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Fig.2 Relative abundance of
dominant (> 2,000 reads across a)
all samples) microbial genera
across sites and gut regions
within each bee individual
illustrating high variation within
crops. a Dominant bacterial
genera, including Snodgras-
sella, Bombella, Acinetobacter,
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composition not just in the crop, but also in the intestine
(PERMANOVA, site: R?>=0.14, p=0.001, Fig. 1 d and f,
Fig. 2b), with gut region explaining only a small propor-
tion of fungal composition (PERMANOVA, gut region:
site, R2=0.03, p=0.001). Bray—Curtis distance, which is
calculated based on relative OTU abundance, and Jaccard
distance, based on OTU presence/absence, showed qualita-
tively identical results (Figs. 1 and S1).

To further quantify differences between bacteria and
fungi, we applied the CLAMtest, a multinomial species clas-
sification method [18], which differentiated OTUs into four
categories: generalist, crop-associated, intestine-associated,
and too rare to classify. We found that only 1.5% of bacterial
OTUs were categorized as generalists, whereas 7.3% of fun-
gal OTUs fell into this category (Fig. 3a—d). Furthermore,
only 1.8% of bacterial OTUs were classified as intestine-
associated, whereas 11.4% of fungal OTUs were classified
as intestine-associated.

We examined how tightly crop composition was corre-
lated with intestinal composition by applying Mantel tests to
bacterial and fungal data separately. Crop composition was

positively correlated with intestinal composition in both bac-
teria (Mantel »=0.34, p <0.0001, Fig. 3e) and fungi (Mantel
r=0.24, p<0.0001, Fig. 3f). However, quantile regression
analysis indicated that bacteria in the intestine were corre-
lated with those in the crop similarly across all three quan-
tiles (10th slope =0.11, 50th slope =0.24, 90th slope =0.31,
Fig. 3e), whereas the slope of the relationship for fungi
depended on the quantile examined (10th slope =0.78, 50th
slope =0.42, 90th slope =0.08, Fig. 3f).

Taken together, our results reject both of the hypotheses
we set out to test, highlighting contrasting compositional
patterns between bacteria and fungi in the honey bee gut.
Specifically, we found that honey bees retained more of the
across-site differences from the crop to the intestine in fungi
than in bacteria. Furthermore, unlike the constrained set of
bacterial species in the intestine [3], fungal species com-
position was highly variable not just in the crop, but also
in the intestine. The broad distribution of fungal taxa we
found throughout the gut suggests that these microbes are
ingested from external sources, with some of them oppor-
tunistically colonizing the gut [19]. Our Mantel test results
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Fig.3 Fewer bacterial OTUs
were categorized as intestine-
associated and generalists
compared to fungi using a mul-
tinomial species classification
method (clamtest) to sort OTUs
into categories based on relative
abundance in each domain: a
bacteria and b fungi. Summa-
rized classification results for ¢
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further indicate that various fungal taxa disappear in a seem-
ingly stochastic fashion as they move from the crop to the
intestine, perhaps because fungi are low in absolute abun-
dance throughout the gut. These processes inferred for fungi
contrast the deterministic filtering of bacteria from the crop
to the intestine that has been documented previously and
corroborated here [3, 5].

Some of the 20 most common fungal OTUs that could be
identified with moderate certainty in our study were reported
previously as plant pathogens, including Taphrina carpin
and Exidia glandulosa (Table S3). Assuming that some
fungi remain viable as they pass through the gut [20], our
study supports the role of honey bees as vectors of a diver-
sity of plant fungal pathogens. Transmission of phytopatho-
gens on the surface of honey bees has been implicated in
the spread of bacterial and fungal pathogens [21, 22], but
the extent to which fecal transmission of fungal pathogens
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contributes to plant epidemics remains unknown. Honey bee
hives are often transported among multiple orchards and
farms for pollination [23]. Our data indicate that the com-
position of gut fungal communities is specific to foraging
sites. However, if honey bees do act as vectors of plant-
pathogenic fungi, fungal pathogens that would otherwise be
locally restricted could be transmitted more broadly when
hives are transported. It is also possible that some of the
fungal taxa we identified are pathogens to bees and other
arthropods [24], including Aspergillus (Table S3), which can
cause stonebrood in honey bees [25].

In summary, here we provide evidence that fungal species
composition is not as distinct between the crop and intestine
as in bacteria and that fungal species composition is highly
variable across the entire gut, unlike bacteria. These findings
suggest that most fungi found in the honey bee gut may be
transient passengers rather than symbionts that affect the
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health of the host. In future research, quantification of abso-
lute microbial abundance paired with manipulative studies
testing the efficacy of honey bees of vectors of phytopatho-
gens is needed to determine the ecological relevance of this
transience to plant disease transmission and pollination.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00248-021-01922-5.
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