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Abstract—The aim of this paper is to find the distributed
solution of the generalized Nash equilibrium problem (GNEP)
for a group of players that can communicate with each other
over a connected communication network. Each player tries
to minimize a local objective function of its own that may
depend on the other players’ decisions, and collectively all
the players’ decisions are subject to some globally shared
resource constraints. After reformulating the local optimization
problems, we introduce the notion of network Lagrangian and
recast the GNEP as the zero finding problem of a properly
defined operator. Utilizing the Douglas-Rachford operator split-
ting method, a distributed algorithm is proposed that requires
only local information exchanges between neighboring players
in each iteration. The convergence of the proposed algorithm to
an exact variational generalized Nash equilibrium is established
under two different sets of assumptions. The effectiveness of
the proposed algorithm is demonstrated using the example of
a Nash-Cournot production game.

I. Introduction
Due to their numerous practical applications, general-

ized Nash equilibrium problems (GNEP) for games on
networks [1], [2] have received much attention in recent
years. Examples include communication networks [3], charge
scheduling of electric vehicles [4], formation control [5],
and demand management in smart grids [6], etc. In many
such problems, a group of players/decision-makers with self-
interest aim to optimize their individual objectives through
the competition of some shared resources and, due to privacy
concerns, may not be willing to disclose their decisions
to the general public except for a small number of trusted
partners. The goal is then to design distributed protocols
for players so that, using information exchanges between
neighboring players (trusted partners), the group decisions
eventually achieve a generalized Nash equilibrium (GNE).

There has been much existing work on the distributed
solution of the GNEP. When player’s objectives rely only
on the decisions of themselves and their neighbors (i.e.
locally dependent objectives) or these players have access
to the decisions of each other, i.e., in a full-decision infor-
mation setting, some elegant methods are proposed in [7]
based on the monotone operator theory and the forward-
backward (FB) splitting method. To tackle games with non-
differentiable objectives, [8] proposes two algorithms based
on alternating direction method of multipliers (ADMM),
while these players are required to collaboratively solve a
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group of sub-games at every iteration. The authors of [9]
use a proximal-point algorithm (PPA) to compute GNE with
non-differentiable yet linearly coupled objectives. Motivated
by the practical consideration that players are unwilling to
disclose their local information to all other players and the
limited amount of communication channels available, there is
an increasing interest in developing algorithms that compute
GNE in a partial-decision information setting. Under this set-
ting, players on this network only exchange information with
their neighbors (trusted players). The author of [10], [11]
designs an algorithm by combining the FB splitting method
with doubly-augmented information spaces to solve GNEPs
with continuously differentiable local objectives. Recently, a
preprint [12] comes to our attention, which utilizes a PPA to
compute GNEs. The proposed algorithm in [12] allows for
non-differentiable local objectives and enjoys a much more
desirable convergence speed.

In this paper, we focus on GNEPs with generic objectives,
namely, the objectives are globally dependent and have no
special structure. In addition, it is assumed that there are
some globally shared resource constraints for the group
that depends linearly on all players’ decisions. We propose
a distributed algorithm that requires only communications
between neighboring players on an undirected and connected
communication graph based on the Douglas-Rachford (DR)
splitting method. Further, we provide theoretical guarantees
on the exact convergence of the proposed algorithm to a
variational GNE under two different sets of assumptions.
The effectiveness of the proposed algorithm is demonstrated
via a network Nash-Cournot game. Compared to the FB
splitting method in [11], our proposed algorithm allows for
non-differentiable local objectives and possesses a faster con-
vergence rate. The algorithm proposed in [12] requires each
player to solve a constrained optimization problem at each
iteration. By contrast, our proposed method can separate this
constrained optimization problem into two different steps,
i.e., an unconstrained optimization problem and a linear map
followed by a projection onto a convex set, which is easier
to implement and more computationally efficient in practice.
Nevertheless, one drawback is that the amount of information
exchanged at each iteration doubles compared to that of [12].
Complete proofs of the main theorems and some intermediate
results are omitted in the interest of space; for more details,
the interested reader is referred to [13].

Basic Notations: For a set of matrices {+8}8∈( , we
let blkd(+1, . . . , +|( |) denote the diagonal concatenation of
these matrices, [+1, . . . , +|( |] their horizontal stack, and
[+1; · · · ;+|( |] their vertical stack. For a set of vectors
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{E8}8∈( , [E8]8∈( or [E1; · · · ; E |( |] denotes their vertical stack.
For a vector E and a positive integer 8, [E]8 denotes the
8th entry of E. Denote R B R ∪ {+∞}, R+ B [0, +∞),
and R++ B (0, +∞). S=+ (resp. S=++) represents the set of
all = × = symmetric positive semi-definite (resp. definite)
matrices. The notation ]S (G) is defined to be the indicator
function of a set S, i.e., if G ∈ S, then ]S (G) = 0; otherwise,
]S (G) = +∞. We let #( (G) denote the normal cone to the
set ( ⊆ R= at the point G: if G ∈ (, then #( (G) B {D ∈ R= |
supI∈( 〈D, I − G〉 ≤ 0}; otherwise, #( (G) B ∅. If ( ∈ R= is
a closed and convex set, the map Pj( : R= → ( denotes
the projection onto (, i.e., Pj( (G) B argminE∈(

E − G.
We use ⇒ to indicate a point-to-set map. For an operator
) : R= ⇒ R=, Zer()) B {G ∈ R= | )G 3 0} and
Fix()) B {G ∈ R= | )G 3 G} denote its zero set and fixed
point set, respectively. We denote dom()) the domain of the
operator ) and gra()) the graph of it.

II. Problem Formulation
A. Game Formulation and GNE
We consider a set of players indexed by N B {1, . . . , #},

each of which decides on its decision variables G8 ∈ X8 and
optimizes its local objective function �8 (G8; G−8). Here, X8 ⊆
R=8 denotes player 8’s local feasible set. Let the index set
of players except player 8 be defined by N−8 . The vector
G−8 ∈ R=−8 represents the vertical stack of the other players’
decision variables, with =−8 B

∑
9∈N−8 = 9 . Formally, given

the decision of the other players, the player 8 aims to solve
a local optimization problem as follows:

minimize
G8 ∈X8

�8 (G8; G−8)

subject to �8G8 ≤ 2 −
∑
9∈N−8 � 9G 9

, (1)

where �8 ∈ R<×=8 , < is the number of the (global) affine
coupling constraints, and 2 ∈ R< is a constant vector.
Denote the vertical stack of all decision variables by G B
[G1; · · · ; G# ]. The feasible set of the collective decision
vector G, is given by:

X̃ B X ∩ {G ∈ R= |�G − 2 ≤ 0}, (2)

where X B ∏#
8=1X8 , � B [�1, �2, . . . , �# ], and = =∑

8∈N =8 . The feasible decision set of each player 8 ∈ N is
characterized by the set-valued mapping X8 : R=−8 ⇒ R=8 ,
which is defined as:

X̃8 (G−8) B {G8 ∈ X8 |�8G8 ≤ 2 −
∑
9∈N−8 � 9G 9 }. (3)

Assumption 1. (Objective Functions) For each 8 ∈ N , the
objective function �8 is proper and continuous. In addition,
�8 (G8; G−8) is a convex function w.r.t. G8 , given any fixed G−8 .

Assumption 2. (Feasible Sets) Each local feasible set X8
is nonempty, closed, and convex. The collective feasible set
X̃ is nonempty, and the Mangasarian–Fromovitz constraint
qualification (MFCQ) holds [14, Sec. 3.2][15, Sec. 12.2.3].

A generalized Nash equilibrium (GNE) for the game (1)
is a joint decision vector G∗ such that, for each player 8,

G∗
8
∈ X̃8 (G∗−8) is a global minimizer of the local optimization

problem described in (1) [15, Sec. 12.2]. Under the suit-
able conditions described in Assumptions 1 and 2 [1][15,
Sec. 12.2], a solution to the GNEP is equivalent to that of
the Karust-Kuhn-Tucker (KKT) conditions given as follows:

0 ∈ mG8 �8 (G8; G−8) + �)8 _8 + #X8 (G8)
0 ∈ −(�G − 2) + #R<+ (_8),

(4)

for each 8 ∈ N , where _8 is the Lagrangian multiplier for the
inequality constraints for the local problem (1) of player 8.
In this paper, we focus on the variational generalized Nash
Equilibria (v-GNEs), which are a subset of GNEs [2]. The v-
GNEs are solutions to the inclusions in (4) with all {_8}8∈N
on consensus (_1 = · · · = _# ). The KKT conditions for a
v-GNE are:

0 ∈ mG8 �8 (G8; G−8) + �)8 _ + #X8 (G8),∀ 8 ∈ N
0 ∈ −(�G − 2) + #R<+ (_).

(5)

Another way to characterize v-GNE with non-smooth objec-
tives is via generalized variational inequalities (GVI) [16].
Define the pseudogradient/game Jacobian � : R= ⇒ R= as:

� : G ↦→ [mG8 �8 (G8; G−8)]8∈N . (6)

As has been shown in [15, Prop. 12.3], if GVI(X̃, �) admits
a solution, this solution is a v-GNE of the game defined in
(1).

Remark 1. We focus on v-GNE since we can leverage the
rich body of (existence and uniqueness) theory and tools
developed for solving VIs [14][15, Ch. 12], and by keep-
ing all {_8}8∈N on consensus, v-GNE possesses desirable
properties such as "economic fairness" and "better social
stability/sensitivity" [17].

B. Networked Game Formulation
To enable the distributed computation of v-GNE, we

consider an underlying communication graph G = (N6, E6),
where players can communicate with their neighbors through
arbitrators on the directed edges. The node set N6 represents
the set of all the players, and E6 ⊆ N6 × N6 is the set of
directed edges. The cardinalities |N6 | and |E6 | are denoted
by #6 and �6. In this case, N6 = N and #6 = # . We
use (8, 9) to denote a directed edge having node/player 8 as
its tail and node/player 9 as its head. Let N8 denote the
set of immediate neighbors of player 8 who can directly
communicate with it, N+

8
B { 9 ∈ N | ( 9 , 8) ∈ E6} the set of

in-neighbors of player 8, and N−
8
B { 9 ∈ N | (8, 9) ∈ E6}

the set of out-neighbors of player 8. Note that although the
multipliers we are going to introduce are defined in a directed
fashion, we assume each node can send messages to both its
in- and out-neighbors and hence the communication graph
G should satisfy the following assumption.

Assumption 3. (Communicability) The underlying commu-
nication graph G = (N6, E6) is undirected and connected.
Besides, it has no self-loops.
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Our goal is to convert the centralized GNEP in (1) into
the zero-finding problem of a certain operator that can be
carried out distributedly over the graph G. To construct this
operator, in the rest of this section, we will first derive
the network Lagrangian. Let each player extend its decision
space to maintain the local estimates of the other players’
decision vectors. Each player 8 now has the augmented
decision variable H8 ∈ R=, which consists of its local decision
H8
8
∈ R=8 and the local estimate H

9

8
∈ R= 9 of player 9’s

decision for each 9 ∈ N−8 . Let H−88 ∈ R=−8 denote the vertical
stack of H 9

8
for all 9 ∈ N−8 in a prespecified order. Denote

=<8 =
∑
9∈N, 9<8 = 9 and =>8 =

∑
9∈N, 9>8 = 9 . The extended

feasible set X̂ is defined as X̂ B X̂1 × X̂2 × · · · × X̂# , where
the feasible set of each H8 is defined as X̂8 B R=<8×X8×R=>8 .
Notice that R=<8 × #X8 (H88) × R=>8 = #X̂8 (H8).

With the introduction of the local estimates of the other
players’ decisions, the preceding v-GNE problem of each
player 8 can be reformulated as minimizing its local objective
�8 (H88; H−88 ) while subjecting to the global resource constraints
and the consensus constraints among {H8}8∈N . We then
sum the individual Lagrangians of the local optimization
problems and obtain the following network Lagrangian:

Lnet ({H8}, {` 98}, _) B
∑
8∈N

(
�8 (H88 ; G−8) |G−8=H−88 + ]X8 (H

8
8)
)

+ _) (∑8∈N�8H88 − 28) +∑
( 9 ,8) ∈E6 `

)
98 (H8 − H 9 ),

(7)

where {28} is a set of arbitrary vectors satisfying
∑
8∈N 28 =

2; each ` 98 is a Lagrange multiplier ensuring the consensus
between H 9 and H8 . For convenience, we shall write {H8} in
replacement of the more cumbersome notation {H8}8∈N and
similarly for other variables on nodes and edges (e.g. {` 98}
in replacement of {` 98} ( 9 ,8) ∈E6 ), unless otherwise specified.

Notice that the computation of _ in (7) still requires the
direct engagement of all players. We let each player 8 keep
a local estimate _8 to distribute the computation of _ along
with the consensus constraints w.r.t. these local estimates.
To facilitate the convergence, we introduce some second-
order penalty terms for consensus constraints. The modified
augmented network Lagrangian is given as follows:

L∗net B
∑
8∈N

(
�8 (H88 ; G−8) |G−8=H−88 + ]X8 (H

8
8) + _

)
8 (�8H

8
8 − 28)

)
+∑
( 9 ,8) ∈E6

(
`)98 (H8 − H 9 ) − I

)
98 (_8 − _ 9 )

)
+∑
( 9 ,8) ∈E6

( d`
2

H8 − H 92 −
dI

2
_8 − _ 92)

,

(8)

where {I 98} is the set of Lagrange multipliers ensuring
the consensus among {_8}. We let two positive constant
parameters d` and dI control the weights of the second order
penalty terms, whose lower bounds are to be determined later
on.

In the augmented network Lagrangian, each player 8’s
objective function �8 (H88; H−88 ) is only optimized over H8

8
, while

its local estimates H−8
8

of the other players are updated to
satisfy the global and consensus constraints. Accordingly, the
extended pseudogradient F : R=# ⇒ R= is the set-valued
operator defined as

F : y ↦→ [mH8
8
�8 (H88; H−88 )]8∈N , (9)

where y B [H1; · · · ; H# ] ∈ R=# . For y having {H8} on
consensus, � (H8) = F (y). To incorporate the extended

pseudogradient F into a fixed point iteration, we introduce
the individual selection matrices {R8}8∈N and their diagonal
concatenation R ∈ R=×=# given as below:

R8 = [0=8×=<8 , I=8 , 0=8×=>8 ],R = blkd(R1, . . . ,R# ). (10)

Notice that H8
8
= R8H8 and R8R)8 = �=8 .

III. Distributed Algorithm with the DR Splitting
In this section, we recast the GNEP as the zero-finding

problem for a properly defined operator. We derive the
analytical updating steps to solve for the zeros by lever-
aging the Douglas-Rachford operator splitting method and
constructing a design matrix. The analysis of monotonicity
and convergence will be discussed in Section IV.

A. Zero-finding Problem
To solve the distributed GNE seeking problem, we need

to find the stationary points of the augmented network
Lagrangian (8). By taking the partial derivative of L∗net
w.r.t. each variable and reversing the sign of the rows
corresponding to _8 and `8 , we can obtain the following set-
valued operator T :

T :


y
,
-
z

 ↦→

R) (F (y) + Λ) ,) + �=- + d`!=y + #X̂ (y)
#R<#+

(,) − ΛRy + c + �<z + dI!<,
−�)= · y
−�)< · ,

 , (11)

where Λ is the diagonal concatenation of {�8}, i.e., Λ B
blkd(�1, . . . , �# ); c is the vertical stack of {28}; �= B (�⊗
�=), != B (! ⊗ �=), �< B (� ⊗ �<), !< B (! ⊗ �<),
� and ! are the incidence matrix and Laplacian matrix of
the underlying communication graph, respectively, with ! =
� · �) ; ,, -, and z are the stack vectors of {_8}, {` 98}, and
{I 98}, respectively; k denotes the stack of the former primal
and dual variables, i.e., k B [y; ,; -; z].

Theorem 1. Suppose Assumptions 1-3 hold, and there exists
k∗ B [y∗; ,∗; -∗; z∗] ∈ Zer(T ). Then y∗ = 1# ⊗ H∗, ,∗ =
1# ⊗ _∗, and (H∗, _∗) satisfies the KKT conditions (5) for
v-GNE with G replaced with H∗. Furthermore, for a solution
(H†, _†) of the KKT problem in (5), there exist -† and z†

such that k† B [1# ⊗ H†; 1# ⊗ _†; -†; z†] ∈ Zer(T ).

Theorem 1 implies that we can convert the solution of
v-GNE of the original GNEP into the zero-finding problem
of the operator T in (11). In the next subsection, we will
propose a candidate algorithm to solve the latter problem.

B. Operator Splitting
Given a generic set-valued operator ) : Rℓ ⇒ Rℓ , ) is

monotone if, for any (G, D) ∈ gra()) and (G ′, D′) ∈ gra()),
〈G − G ′, D − D′〉 ≥ 0. If ) is maximally monotone, a point
in Zer()) could in principle be determined through the
proximal-point algorithm, namely, the fixed point iteration
using its resolvent operator �) : Rℓ → Rℓ defined as �) B
(� + ))−1 [18, Thm. 23.41]. However, it is often infeasible
or computationally intensive to evaluate the resolvent in a
distributed manner for operators arising in network problems
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such as the one in (11). For this purpose, we consider the
Douglas-Rachford (DR) splitting technique, where ) = �+�
is split into two maximally monotone operators � and �

whose resolvents can be more conveniently and efficiently
computed. The resolvent and reflected resolvent of � are
defined as �� B (�+�)−1 and '� B 2��−�, respectively. As
� is maximally monotone, �� is firmly nonexpansive and '�
is non-expansive, i.e., for any G and G ′,

��G− ��G ′2 +
(� −

��)G− (�− ��)G ′
2 ≤

G−G ′2 and
'�G−'�G ′ ≤ G−G ′2

(see [18, Cor. 23.11]). Similar properties hold for �.
The DR splitting algorithm can be viewed as a special case

of the Krasnosel’skii-Mann algorithm. Given a nonexpansive
operator & which has a nonempty fixed point set Fix(&), the
Krasnosel’skii-Mann algorithm suggests the iteration:

G (:+1) = G (:) + W (:) (&G (:) − G (:) ). (12)

If (W (:) ):∈N is a sequence in [0, 1] satisfying ∑
:∈N W

(:) (1−
W (:) ) = ∞, then (G (:) ):∈N converges to a point in Fix(&)[18,
Sec. 5.2]. In the DR algorithm, & in (12) is set to be
'�'�. Then, the iteration in (12) converges to some G∗ ∈
Fix('�'�). It follows from [18, Sec. 26.3] that ��(G∗) ∈
Zer(� + �) = Zer()). The detailed steps of the Douglas-
Rachford splitting are given below:

Calculate �� : G (:+1) B ��(G̃ (:) );
R-R updates : Ĝ (:+1) B 2 · G (:+1) − G̃ (:) ;
Calculate �� : Ḡ (:+1) B �� (Ĝ (:+1) );
K-M updates : G̃ (:+1) B G̃ (:) + 2W (:) (Ḡ (:+1) − G (:+1) ).

(13)

Here, R-R updates stand for evaluating the reflected resolvent
of � and K-M updates the Krasnoselskĳ-Mann updates.
Now we focus on the operator T defined in (11) and split

it into two operators A and B defined as follows:

A : k ↦→ (� + AH)k and B : k ↦→ (� + BH)k (14)

with �, AH , and BH written as

� =


d`

2 !=
1
2 (ΛR)

) 1
2�= 0

− 1
2ΛR

dI
2 !< 0 1

2�<
− 1

2�
)
= 0 0 0

0 − 1
2�

)
< 0 0

 , (15)

AH : k ↦→


R) F (y)

c
0
0

 , and BH : k ↦→


#X̂ (y)
#R<#+

(,)
0
0

 . (16)

Given the split operators A and B, to allow for the
distributed evaluation of the resolvents �A and �B , a positive
definite matrix Φ is designed. It is constructed in a way such
that � +Φ is lower or upper triangular. One choice is

Φ =


3−1

1 −
d`

2 != − 1
2 (ΛR)

) − 1
2�= 0

− 1
2ΛR 3−1

2 −
dI
2 !< 0 − 1

2�<
− 1

2�
)
= 0 3−1

3 0
0 − 1

2�
)
< 0 3−1

4

 , (17)

where 31 B blkd(g11�=, . . . , g1# �=) with g18 > 0 for 8 ∈ N ;
similarly for 32, 33 and 34.
Let Ã denote Φ−1A and B̃ denote Φ−1 B. Note that

0 ∈ (A +B)k if and only if 0 ∈ (Ã + B̃)k. The Douglas-
Rachford splitting method (13) is then leveraged to find a
zero of Ã + B̃. A detailed version with explicit operations at
each node and edge is given in Algorithm 1, with the first
player for-loop and the first edge for-loop implementing the
computation of �Ã and its reflected resolvent 'Ã , while the
second player and edge for-loops the computation of �B̃ .
In the pseudocode, for notational convenience, we define

H̃
−8 (:)
8! B

∑
9∈N

8
( H̃−8 (:)8 − H̃−8 (:)9 ), and similarly for H̃8 (:)8! , _̃ (:)8! ,

Ĥ
8 (:+1)
8! , and _̂ (:+1)8! ; define ˜̀−8 (:)8� B

∑
9∈N+

8
˜̀−8 (:)98 − ∑

9∈N−
8

˜̀−8 (:)8 9 ,
and similarly for ˜̀8 (:)8� , Ĩ (:)8� , ˆ̀ (:+1)8� , and Î (:+1)8� ; define Ĥ (:+1)98 B
Ĥ
(:+1)
8 − Ĥ (:+1)9 , and similarly for _̂ (:+1)98 , H̄ (:+1)98 , and _̄ (:+1)98 . The

computational workload is concentrated on the update of
local decision H8

8
inside the first player for-loop described

by an unconstrained minimization problem and the update
of H̄8

8
inside the second player for-loop described by a

linear transformation followed by a projection onto the local
feasible set, while the other updates are computationally
trivial. The result {H (:)8 } returned by Algorithm 1 will be
proved in the next section to converge to a v-GNE of the
problem (1) under some suitable conditions.

Algorithm 1: Distributed GNE Seeking
Initialize: {H̃ (0)8 }, {_̃

(0)
8 }, { ˜̀ (0)98 }, {Ĩ

(0)
98 };

Iterate until convergence:
for player 8 ∈ N do

H
−8 (:+1)
8 = H̃

−8 (:)
8 − g18

2 (d` H̃
−8 (:)
8!
+ ˜̀−8 (:)

8�
) ;

H
8 (:+1)
8 = argminE

8
∈R=8 [�8 (E8; H

−8 (:+1)
8 )

+ 1
2 ((�8

) _̃
(:)
8 + d` H̃

8 (:)
8!
+ `8 (:)

8�
)) E8 + 1

g18

E8 − H̃8 (:)8

2)];
_
(:+1)
8 = _̃

(:)
8 +g28 (�8 (H

8 (:+1)
8 − 1

2 H̃
8 (:)
8 )−

dI
2 _̃

(:)
8!
− 1

2 Ĩ
(:)
8�
−28);

Ĥ
(:+1)
8 = 2H (:+1)8 − H̃ (:)8 , _̂

(:+1)
8 = 2_ (:+1)8 − _̃ (:)8 ;

end
for edge ( 9 , 8) ∈ E6 do

`
(:+1)
98 = ˜̀ (:)98 +

g38
2 Ĥ

(:+1)
98 , ˆ̀ (:+1)98 = 2` (:+1)98 − ˜̀ (:)98 ;

I
(:+1)
98 = Ĩ

(:)
98 +

g48
2 _̂

(:+1)
98 , Î

(:+1)
98 = 2I (:+1)98 − Ĩ (:)98 ;

end
for player 8 ∈ N do

H̄
(:+1)
8 = PjX̂8 [ Ĥ

(:+1)
8 − g18

2 (R
)
8 �

)
8 _̂
(:+1)
8 +d` Ĥ

(:+1)
8!
+ ˆ̀ (:+1)

8�
)];

_̄
(:+1)
8 = PjR<+ [_̂

(:+1)
8 + g28 (�8 ( H̄

8 (:+1)
8 − 1

2 Ĥ
8 (:)
8 )

− dI2 _̂
(:+1)
8!
− 1

2 Î
(:+1)
8�
)];

end
for edge ( 9 , 8) ∈ E6 do

¯̀ (:+1)98 = ˆ̀ (:+1)98 + g38 ( H̄
(:+1)
98 − 1

2 Ĥ
(:+1)
98 );

Ī
(:+1)
98 = Î

(:+1)
98 + g48 (_̄

(:+1)
98 − 1

2 _̂
(:+1)
98 );

end
K-M updates: k̃ (:+1) = k̃ (:) + 2W (:) (k̄ (:+1) − k (:+1) );
Return: {H (:)8 }.

Before the first (resp. second) player for-loop of the :-
th iteration, each player 8 receives the multipliers ˜̀ (:)98 and
Ĩ
(:)
98 (resp. ˆ̀ (:+1)98 and Î (:+1)98 ) from each in-edge ( 9 , 8), ˜̀ (:)8 9 and
Ĩ
(:)
8 9 (resp. ˆ̀ (:+1)8 9 and Î

(:+1)
8 9 ) from each out-edge (8, 9), and

H̃
(:)
9 along with _̃ (:)9 (resp. Ĥ (:+1)9 along with _̂ (:+1)9 ) from each

neighbor 9 . At the end of the first player for-loop, each player
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8 sends Ĥ (:+1)8 and _̂ (:+1)8 to its incident edges and neighboring
players. In contrast, at the end of the second player for-loop,
each player 8 sends H̄ (:+1)8 and _̄

(:+1)
8 to its incident edges,

while sending H̃
(:+1)
8 and _̃

(:+1)
8 to its neighboring players

for the computation in the next iteration. Before the first
(resp. second) edge for-loop, each edge ( 9 , 8) receives Ĥ (:+1)8

and _̂ (:+1)8 (resp. H̄ (:+1)8 and _̄ (:+1)8 ) from its head 8, and Ĥ (:+1)9

and _̂ (:+1)9 (resp. H̄ (:+1)9 and _̄ (:+1)9 ) from its tail 9 ; after the
computation is completed, the edge ( 9 , 8) then sends ˆ̀ (:+1)98

and Î (:+1)98 (resp. ˜̀ (:+1)98 and Ĩ (:+1)98 ) to its head 8 and tail 9 . At
each iteration, player 8 will receive (2=+ 2<) variables from
each neighbor and send the same amount back to it. At the
same time, player 8 will also receive and send (2= + 2<)
variables from and to the arbitrator on each incident edge.

IV. Convergence Results

To analyze the convergence properties of the Algorithm 1,
we make two parallel assumptions, either of which can
guarantee the convergence to a v-GNE. Moreover, depending
on the specific game scenario, either one could be less
restrictive than the other.

Assumption 4. (Convergence Condition A) The GNEP ad-
mits at least one v-GNE, and the operator R) F + d`2 != is
maximally monotone.

Assumption 5. (Convergence Condition B) The pseudo-
gradient operator � is strongly monotone and Lipschitz
continuous, i.e., there exist [ > 0 and \1 > 0, such that
∀G, G ′ ∈ R=, 〈G − G ′, � (G) − � (G ′)〉 ≥ [

G − G ′2 and� (G) −� (G ′) ≤ \1
G− G ′. The operator R) F is Lipschitz

continuous, i.e., there exists \2 > 0, such that ∀y, y′ ∈ R=# ,F (y) − F (y′) ≤ \2
y − y′

.
Remark 2. The Lipschitz continuity of F and that of �
implies each other. To see the forward direction, ∀y, y′ ∈
R=# and assuming their local estimates are on consensus
(H8 = H 9 and H′8 = H

′
9
for all 8, 9), we have

� (H8) −� (H8 ′) =F (y) −F (y′) ≤ \2
y− y′ = √#\2

H8 − H8 ′. However, \1
could provide a tighter Lipschitz constant than

√
#\2, i.e.,� (H8) −� (H8 ′) ≤ \1

H8 − H8 ′ ≤ √#\2
H8 − H8 ′. The other

direction has been analyzed in [19, Lemma 3] which also
suggests [ ≤ \2 ≤ \1.

From the monotone operator theory perspective, Assump-
tion 4 is the least restricted when it comes to guaranteeing the
convergence of the proposed algorithm. However, verifying
the fulfillment of this assumption is cumbersome and all too
often can only be done numerically (see [20, Sec. 4.2.3] for
example). From a practical perspective, Assumption 5, which
is commonly assumed in the literature [11], [12], is much
more accessible and can often be reduced to verifying the
properties of � [19, Lemma 3]. Nevertheless, we still keep
Assumption 4 since it includes a considerable class of games
that fail to satisfy Assumption 5. For example, consider a
two-player game where each player 8 has its objective defined
by �8 (G8; G−8) B G3

8
with X8 B R+. Obviously, this game

fulfills Assumption 4 but not Assumption 5. Another example

would be that �8 (G8; G−8) is continuous yet non-differentiable
in G8 for any fixed G−8 .

Lemma 1. Suppose {31, 32, 33, 34} in the design matrix Φ
satisfy the following inequalities: g−1

18 >
1
2
�81 + (

1
2 + d`)d8 ,

g−1
28 >

1
2
�8∞ + ( 1

2 + dI)d8 ,∀8 ∈ N , and g−1
3 9 > 1, g−1

4 9 > 1,
∀ 9 ∈ E6. Then Φ is positive definite.

Here, 38 denotes the degree of node/player 8. Lemma 1 is
the direct result of the Gershgorin circle theorem: a sufficient
condition for the design matrix to be positive definite is that
all of its Gershgorin discs lie on the positive orthant [21].
The proof is trivial, and therefore omitted here.

Let K be the inner product space obtained by endowing
the vector space R=(#+�6 )+<(#+�6 ) with the inner product
〈k, k ′〉K = 〈Φk, k ′〉.
Lemma 2. Suppose the design matrix Φ is positive definite.
Then the operator B̃ is maximally monotone on K, and its
reflected resolvent 'B̃ is nonexpansive on K.
Lemma 3. Suppose the design matrix Φ is positive definite
and Assumptions 2 and 4 hold. Then the operator Ã is
maximally monotone on K, and its reflected resolvent 'Ã
is nonexpansive on K.
Theorem 2. Suppose that Assumptions 1-4 hold and the
design matrix Φ satisfies the inequalities in Lemma 1. Then
the sequence (y (:) ):∈N and (, (:) ):∈N generated by Algo-
rithm 1 satisfy lim:→∞ y (:) = (1# ⊗ H∗) and lim:→∞ , (:) =
(1# ⊗ _∗), where H∗ is a v-GNE to problem (1) and (H∗, _∗)
together is a solution to the KKT conditions (5).

Theorem 2 directly follows from the fact that Ã and B̃ are
two maximally monotone operators on K and the standard
D-R results [18, Thm. 26.11]. Next, we are going to analyze
the convergence properties under the Assumption 5 instead
using the key notion of restricted monotonicity [11]. Given
an operator ) , we say that ) is restricted monotone w.r.t. a
set ( if, for all (G, D) and (G∗, D∗) ∈ gra()) with G∗ ∈ (, 〈G−
G∗, D − D∗〉 ≥ 0. Restricted nonexpansiveness and restricted
firm nonexpansiveness are defined similarly. In particular, a
single-valued operator ) is quasinonexpansive if for all G ∈
dom()) and G∗ ∈ Fix()), we have

)G − G∗ ≤ G − G∗ [18,
Def. 4.1]. The preliminary results are included in Lemma 4
and the main results will be given in Theorem 3 below.

Lemma 4. Suppose Assumptions 1-3 and 5 hold and d` ≥
2
f1
( (\1+\2)2

4[ +\2). Then the operator Ã is restricted monotone
w.r.t. Zer(T ) on K, i.e., for any k and k∗ with k∗ ∈ Zer(T ),
〈k − k∗, Ã(k) − Ã(k∗)〉K ≥ 0. Moreover, its reflected
resolvent 'Ã is restricted nonexpansive w.r.t. Zer(T ) on K.
Remark 3. We observe that under Assumption 1, even
though Ã is merely restricted monotone w.r.t. Zer()) on
K, �Ã is still well-defined and single-valued on K. The
computation of k (:+1) ∈ �Ã (k̃ (:) ) is explicitly described in
the first player and edge for-loops in Algorithm 1. Obviously,
the iterations of {H−8 (:+1)

8
}, , (:+1) , - (:+1) , and z (:+1) are

linear and hence single-valued. The updates of {H8
8
} are

described by a set of unconstrained optimization problems.
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Each objective is the sum of a convex function and a proximal
term, and hence admits a unique argmin solution.

Theorem 3. Suppose that Assumptions 1-3 and 5 hold, the
design matrix Φ satisfies the inequalities in Lemma 1, and
d` ≥ 2

f1
( (\1+\2)2

4[ + \2) as suggested in Lemma 4. Then
the sequences (y (:) ):∈N and (, (:) ):∈N generated by Algo-
rithm 1 satisfy lim:→∞ y (:) = (1# ⊗ H∗) and lim:→∞ , (:) =
(1# ⊗ _∗), where H∗ is a v-GNE to problem (1) and (H∗, _∗)
together is a solution to the KKT conditions (5).

Altogether, Theorems 2 and 3 establish the convergence
of the proposed algorithm to a v-GNE regardless of the ini-
tialization. Nevertheless, the convergence speed will depend
on the initial point, the choices of 31 to 34, d` and dI , and
the topology of G. Characterizing the convergence speed is
one of our future directions.

V. Case Study and Numerical Simulations

In this study, we evaluate the performance of the proposed
algorithm with a Nash-Cournot game over a network. In the
Nash-Cournot game, # manufacturers/players indexed by N
are involved in producing a homogeneous commodity and
competing for < different markets. The maximal capacities
of these < markets are denoted by the vector 2 ∈ R<++.

For each manufacturer 8 in this network, it supplies =8
markets with G8 ∈ R=8 units of commodities respectively. It
is subject to the global market capacity constraints �8G8 ≤
2 − ∑

9∈N−8 � 9G 9 . The binary full-column-rank matrix �8 ∈
R<×=8 maps each entry of the decision vector G8 to one
among the < markets. Specifically [�8] 9 ,: = 1 implies that
the firm 8 supplies market 9 with [G8]: units of commodities.
Let = B

∑
8∈N =8 , G B [G1; · · · ; G# ] ∈ R=, and � B

[�1, �2, . . . , �# ] ∈ R<×=. Then, �G ∈ R< denotes the total
quantities of commodities delivered to these < markets.
The local objective function is assumed to be of the form

�8 (G8; G−8) = 58 (G8)−(%(�G))) �8G8 . We set 58 (G8) = G)8 &8G8+
@)
8
G8 as the local production cost function, with &8 ∈ S=8++.

Let %(�G) = F − Σ�G map the total quantities of supply to
their unit prices, where F ∈ R<++ and Σ ∈ diag(R<++).

To sum up, manufacturer 8 ∈ N , given the supply strategies
of others (G−8), aims to solve the optimization problem:

minimize
G8 ∈X8

G)8 &8G8 + @)8 G8 − (F − Σ · �G)) �8G8

subject to �8G8 ≤ 2 −
∑
9∈N−8 � 9G 9 .

(18)

A. Analysis of Nash-Cournot Game
For any 8 ∈ N , the objective function �8 (G8; G−8) is a

smooth function, and it satisfies the Assumption 1. To find
the pseudogradient �, notice that ∇G8 �8 (G8; G−8) = (2&8 +
�)
8
Σ�8)G8 + �)8 Σ�G + @8 − �)8 F. By concatenating these

partial derivatives together, we obtain � : G ↦→ ("� +
�) Σ�)G + q − �) F, where "� B blkd( [2&8 + �)8 Σ�8]8∈N)
and q B [@1; · · · ; @# ].
Since &8 � 0,∀8 ∈ N , and Σ � 0, we can conclude that

"� � 0 and �) Σ� < 0. Altogether, "� + �) Σ� � 0.
Its minimal eigenvalue f�min > 0 and maximal eigenvalue

Fig. 1: Convergence Result of Algorithm 1 on Nash Cournot
Game (Under Assumption 4)

f�max > 0 are the strongly monotone constant ([) and the
Lipschitz constant (\1) of the pseudogradient �, respectively.
The extended pseudogradient F can be expressed as:
F : x ↦→ "� · Rx + blkd( [�)8 Σ�]8∈N)x + q − �) F, where
R is defined in (10). It can be further simplified to the form:
F : x ↦→ R(�# ⊗ ("� + �) Σ�))x + q − �) F. The Lipschitz
constant of F is given by the greatest singular value of
R(�# ⊗ ("� + �) Σ�)), and denoted by fFmax.

B. Simulation Results
In the numerical study, let # = 20 and < = 10. The

communication graph consists of a directed circle and 10
randomly selected edges which satisfies Assumption 3. The
related parameters are drawn uniformly randomly from suit-
able intervals. Each entry of vector 2 satisfies 28 ∼ * [0.5, 1];
for %(�G), each entry of vector F satisfies F8 ∼ * [2, 4]
and each diagonal entry of Σ satisfies Σ88 ∼ * [0.5, 0.7]; for
58 (G8), assuming &8 is diagonal, the diagonal entry [&8] 9 9 ∼
* [1, 1.5], and each entry of @8 has [@8] 9 ∼ * [0.1, 0.6]; the
feasible set X8 is the direct product of =8 connected compact
interval [0,X8 9max], and X8 9max ∼ [0.2, 0.5]; manufacturer 8
supplies to =8 markets with =8 ∼ {2, . . . , 6}.
For the case of Assumption 4, since F is affine in this

case, it suffices to select a d` ≥ 2 such that 1
2 ("F + "

)
F ) +

d`

2 (! ⊗ �=) < 0, where "F = R) · R(�# ⊗ ("� + �) Σ�));
hence R) F + d`2 != is maximally monotone. Let 31 = g1�#=,
32 = g2�#<, 33 = g3��=, and 34 = g4��<, which are chosen
according to Lemma 1.
For the case of Assumption 5, for �, [ = f�min ≈ 2.6513,

and \1 = f�max ≈ 10.6646; for F , \2 = fFmax ≈ 4.7084.
The nodes on G have maximal degree equal to 4. Moreover,
for the Laplacian matrix !, f1 ≈ 0.4701. Then, based on
Lemmas 1 and 4, select d` = 115 ≥ 2

f1
( (\1+\2)2

4[ + \2) ≈
114.8432, dI = 1, g1 = 0.00195, g2 = 0.14, and g3 = g4 =
0.9. We compare the performance of the proposed algorithm
with the proximal-point algorithm in [12] and the FB splitting
method in [11] under the same communication graph and
properly chosen parameters such as step sizes.
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Fig. 2: Convergence Result of Algorithm 1 on Nash Cournot
Game (Under Assumption 5)

The performances of our proposed algorithm are illustrated
in Fig. 1 and 2, under the Assumptions 4 and 5, respectively.
Fig. 1/2a show the average of the normalized distances to the
v-GNE calculated using the centralized method from [22].
Note that H:

9
denotes player 9’s local estimate of the decision

vector at the :th iteration, and H∗ the generalized Nash
equilibrium of the game. Fig. 1/2b show the relative length
of the updating step at each iteration. Let H̄: B 1

#

∑
9∈N H

:
9
.

Fig. 1/2c exhibit how the sum of the standard deviations
of the local estimates {H 9 } 9∈N , i.e.,

∑=
ℓ=1 ( 1

#

∑
9∈N ( [H:9 ]ℓ −

[ H̄: ]ℓ)2)
1
2 , evolves over the iterations. It measures the level

of consensus among different local estimates H 9 . Fig. 1/2d
are almost the same as Fig. 1/2c except that we are now
investigating the consensus of local dual variables {_ 9 } 9∈N .
The numerical results verify Theorems 2 and 3 and show
a linear convergence rate for each metric considered. As
illustrated in Fig. 2, our proposed algorithm achieves a
similar convergence rate as the proximal point algorithm in
[12] and shows a much faster convergence compared with
the FB splitting algorithm in [11], whose step sizes are
severely restricted to satisfy the cocoercive conditions of the
preconditioned forward operator.

VI. Conclusion and Future Directions

This paper focuses on the GNEP with generic interde-
pendence inside the local objectives and affine coupling
constraints. A distributed algorithm is proposed, which en-
sures exact convergence to a v-GNE and only requires
local communications. For future directions, it would be
interesting to develop a set of equivalent transformations that
can simplify the problem solution while preserving the v-
GNE. Moreover, in this paper, we let each player keep a
local copy of all players’ decisions. It would be beneficial
to explore the possibility of reducing the number of local
estimates for those games with structured interdependency,
e.g., average/network aggregate games.
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