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Abstract— We consider a class of multi-agent optimization
problems, where each agent has a local objective function that
depends on its own decision variables and the aggregate of
others, and is willing to cooperate with other agents to minimize
the sum of the local objectives. After associating each agent
with an auxiliary variable and the related local estimates, we
conduct primal decomposition to the globally coupled problem
and reformulate it so that it can be solved distributedly. Based
on the Douglas-Rachford method, an algorithm is proposed
which ensures the exact convergence to a solution of the original
problem. The proposed method enjoys desirable scalability
by only requiring each agent to keep local estimates whose
number grows linearly with the number of its neighbors. We
illustrate our proposed algorithm by numerical simulations on
a commodity distribution problem over a transport network.

1. INTRODUCTION

In a cooperative multi-agent system, there exists a group
of agents each of whom has a specific objective function
depending on the joint decision profile of all agents, and
they cooperate with each other to optimize the sum of their
local objectives. Over the past decade, considerable attention
and effort have been paid to the consensus optimization
problem [1], [2]. There is also some existing work where
each agent keeps its own distinct decision variables [3],
[4]. In this paper, we restrict our attention to a special
case where the influences of other agents’ strategies can
be represented through some aggregative coupling structures
[5]. The aggregative coupling structures have been used
to model numerous applications, e.g., network congestion
control [6], demand side management in smart grids [7],
and charging control of electric vehicles [8]. Besides the
aggregative coupling in the objective functions, in many
circumstances, the decisions of the agents may be subject
to some global resource constraints [9], [10], such as total
energy and communication channel capacity [11]. The cou-
pled objectives and strategy sets of the agents are at odds
with local privacy concerns and limited scalability. Thus,
distributed algorithms are preferred to solve such problems
which only allow local exchanges of information.

Our proposed solution to the above problem is inspired
by some recent work in non-cooperative games on networks,
i.e., the generalized Nash equilibrium problem (GNEP) [12],
which has attracted increasing research interest, especially
through the avenue of operator splitting [13], [14], [15].
For example, the algorithms proposed in [16], [17] carry
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out multiple rounds of communication within each iteration.
With sufficient rounds of information exchange, the proposed
algorithms can converge to an e-neighborhood of a general-
ized Nash equilibrium (GNE). The authors of [18] design a
continuous-time algorithm based on the projected dynamics
and non-smooth tracking strategy, which is only applicable
if the coupling constraints can be expressed as a system of
linear equations. More recently, [19], [20] introduce local
estimates of the aggregates of interest, and then leverage the
forward-backward splitting and proximal-point algorithms to
compute the GNEs, respectively. The authors of [21] further
develop an algorithm that can deal with time-varying com-
munication networks by integrating the projected pseudo-
gradient scheme with dynamic tracking. The convergence
of these methods relies on a proper initialization and an
invariance property throughout the algorithm iterations to
ensure valid estimates, which make them vulnerable to
system noise and malicious attacks.

In this paper, we consider cooperative multi-agent opti-
mization problems that are globally coupled by some ag-
gregates as well as some affine global constraints. We focus
on the cases where the aggregates in objectives and global
constraints share the same linear functional form. Our main
contributions are as follows: a) we present a primal decom-
position scheme that converts the original globally coupled
problem into local problems among individual agents, subject
to some consensus constraints. We show that we can find a
minimizer of the original problem by computing a zero of an
operator derived from the decomposed problem; b) we use
the Douglas-Rachford (DR) splitting method to develop a
distributed algorithm for computing a zero of the previously
derived operator. The exact convergence of the algorithm can
be established without the need for the invariance property.

Basic Notations: For a set of matrices {V;}ics, we let
blkd(V1,...,V|s|) or blkd(V;);es denote the diagonal con-
catenation of these matrices, [Vi,...,V|s|] their horizontal
stack, and [V1;--- ; V|g|] their vertical stack. For a set of vec-
tors {vi}ies, [Vilies or [vi;---;v|s|] denotes their vertical
stack. For a vector v and a positive integer i, [v]; denotes
the ith entry of v. Denote R := R U {+c0}, R, = [0, +00),
and R, = (0,+00). ST (resp. S%,) represents the set of
all n X n symmetric positive semi-definite (resp. definite)
matrices. ts(x) is defined to be the indicator function of a
set S, i.e., if x € S, then ts(x) = 0; otherwise, ts(x) = +oo.
Ns(x) denotes the normal cone to the set S € R" at the point
x:if x € §, then Ng(x) = {u € R" | sup,g{u,z —x) < 0};
otherwise, Ng(x) := @. We use =3 to indicate a point-to-set
map. For an operator T : R" =3 R", Zer(T) = {x € R" |



Tx > 0} and Fix(T) = {x € R" | Tx > x} denote its zero set
and fixed point set, respectively.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. Cooperative Multi-Agent Optimization Problem

We consider a group of agents indexed by N = {1,..., N},
where each agent i € N shall choose its decision variables x;
from its local feasible set X; C R"™. The goal of each agent
i is to minimize its objective J;(x;, s;(x_;)), which depends
both on its own local decision x; and the aggregate of other
agents’ decisions s;(x_;). We let the vector x_; represent
the vertical stack of other agents’ decisions. The aggregate
s; + R™ — R! is assumed to be of the form s;(x_;) =
ZjeNﬂ. Aj)Cj, where Aj € Rlxnf, n_; = ZjeNﬂ. nj, and
N_; denotes the set of all agents except i. Besides the local
feasible sets, the decisions of all agents should also satisfy the
global constraints given by X := {x € X | Y;cn Aixi < ¢},
where x = [x1;5---5xn], X = [[ienXi, and ¢ € R is
a constant vector denoting the total availability of / global
resources shared among all involved agents.

The setting above gives rise to the specific formulations of
the multi-agent optimization problem we are going to study.
In this problem, this group of agents aim to cooperatively
solve the following convex optimization problem:

I)}llel}}rrllgg J(x) = Lien Ji(xi, 5i(x-)) "
subjectto  Y;cp Aixi < c.

Assumption 1. (Existence of Subgradient) For each agent
ieN, Ji(xi,s;) : X; xR — R is an extended-real-valued
closed convex proper (CCP) function in x; and s;.

Assumption 2. (Feasible Sets) Each locc~ll feasible set X; is
nonempty, closed and convex. The set X is nonempty and
satisfies Slater’s constraint qualification [22, Sec. 3.2].

Under Assumptions [I] and 2] the problem (I} admits a
nonempty minimizer set if and only if there exists a multiplier
A € R! such that the Karush-Kuhn-Tucker (KKT) system
below holds [22, Sec. 1.3]:

O, J(x) + AT A+ Ny, (x;) 20, Vie N,

2)
0 <Al C—ZieNAixl‘ > 0,

where the subgradient can be more explicitly written as
Ox; J(x) = 0x, Ji (xis 8i(x-0)) + Xjen, AT 84, J(x),55(x_))).

Assumption 3. The set of minimizers of (1), i.e., {x | J(x) <
+00, J(x) < J(x"),Vx" € X}, is nonempty.

A (typically sparse) communication graph G = (N, &) is
assumed to exist to implement local information exchanges,
where & C N X N denotes the set of directed edges. Let E
be the cardinality of &. We denote by (i, j) a directed edge
with agent i as its tail and agent j as its head. Each agent
can communicate with its neighbors through arbitrators on
the incident edges and then update its local decision variables
accordingly. For brevity of notation, define the sets of agent
i’s in- and out-neighbors as N = {j € N | (j,i) € &}
and N7 := {j € N'| (i, j) € &}, the cardinalities of which

are denoted by N; and N;, respectively. Note that although
the multipliers we are going to introduce are defined in a
directed fashion, we assume each node can send messages
to both its in- and out-neighbors, and G should satisfy the
following assumption.

Assumption 4. (Communicability) The underlying commu-
nication graph G = (N, &) is undirected and connected.
Besides, it has no self-loops and Vi € N, N # 0o

B. The Douglas-Rachford (DR) Splitting Method

A set-valued operator 7 : R” — 2*" is called maximally
monotone if V(x,u) € gra(7) and V(y,v) € gra(7), (x —
y,u —v) 20, and its graph is not properly contained in the
graph of any other monotone operators. By leveraging the
resolvent of 7, i.e., J;& := (I + 7)7', the proximal point
iteration can generate a sequence converging to a zero of 7~
[23, Sec. 23.4]. However, this method has a drawback that
the resolvent of 7 often can not be easily evaluated. Another
potential difficulty is that in a network with multiple agents,
J usually cannot be implemented distributedly.

The DR splitting method decomposes the operator 7~ as
the sum of two other operators A and B, whose resolvents
are easier to evaluate. This can thus alleviate the computa-
tional burden by evaluating J# = (I +A)~! and Jg := (I +
B)~! instead. Moreover, if Zer(7") # @, the convergence of
the DR method can be obtained under very mild assumptions,
ie., A and B are set-valued and maximally monotone [23,
Sec. 26.3].

A common strategy to solve networked problems is that,
rather than focusing on 7°(¢) 3 0, we consider ®~! 77(y) >
0. Here, @ is a positive definite matrix, called the design
matrix, which is introduced to facilitate the distributed im-
plementation. By applying the DR method to the splitting
&' A+®"! B, we obtain the following updating steps:

Calculate Jg1 5 : 5 = Jp1 (G P);
R-R updates : iy *) = 2.y — ),

Calculate Jg-1 4 : gD = T B('ﬁ(k”));

K-M updates . J}(kﬂ) = lZ;(k) + 2,),(1»') (lZ/(kH) _ w(k+]))'

3)

In addition to the aforementioned conditions, if (y*);ey is a
sequence in [0, 1] satisfying Y ey ¥ (1 —=y™) = +c0, then
the sequence (¥®)ren generated by (3) will converge to a
zero of 7~ [23, Thm. 26.11]. The second and fourth steps in
() are trivial and the major workload resides in the first and
third steps. We use ¢® to denote the results of the reflected
resolvent (R-R) updates Rgp-1 4 (X)) = 24 =) and  <+»
the results of the Krasnoselskij-Mann (K-M) updates ® +
2y ® (%D —yk+D) This set of notations is used throughout
for brevity, and similar notations are defined for decisions x©’
(%, x®, x®), multipliers A% (1%, 1%, 1®), etc.

III. DISTRIBUTED ALGORITHM USING PRIMAL
DECOMPOSITION
A. Primal Decomposition of the Problem

Given the multi-agent optimization problem (I)), we intro-
duce for each agent i a variable o; = X jcn  Ajx; € R to



track the aggregate of other agents. The global problem (T))
can be equivalently recast into the following problems:

minimize J;(x;, 07)
(Vi e N) { xi€Xi,oi
subjectto  A;x; +0; < ¢; 4)

all agents collectively satisfy: oy = 2 jep Ajxj, Vi€ N.

We refer the readers to [24, Lemma 1] for a detailed discus-
sion about the equivalence between (I) and (). However, the
current formulation of o7 is still globally dependent, while we
need to estimate it with only local communications. To this
end, we associate a weight matrix W € RV*V with G that
satisfies the conditions in Assumption ] If there is a directed
edge from agent i to agent j (j # i), W;; is assigned some
proper negative value; otherwise, W;; = 0. The diagonal
entries are set to be Wy; = =3 jen Wiy = _2/€NF Wi > 0.
By Assumption 4] the defined weight matrix W has an eigen-
value 0 with multiplicity 1, with an associated eigenvector
15 . Furthermore, we endow each agent i with an auxiliary
variable y; € R/. With the introduction of {y;};c and weight
matrix W, we can decompose the problem (@) as follows:
minimize J;(x;, 0;)
xi €Xi, 0%,y
subjectto A;x; +0; < ¢ (5)
(N =DAix; =i = Wiiyi + Xjen: Wiy
Aix,' +0; = ij]' +(Tj,Vj c /Vi+.

A proof of the equivalence between @) and (B) can be
found in [24, Appendix B]. Besides its own variables, the
problem (3) of agent i only involves the auxiliary variables of
its in-neighbors. Hence, (3 is a locally dependent problem.
To facilitate the distributed implementation, each agent i is
assumed to keep a local estimate for the auxiliary variable
of each of its in-neighbors. Let y;; denote the local estimate
of y; kept by agent i. With these local estimates, we can
rewrite the preceding problem (3) as:
minimize J; (x;, ;)
X €X;,0i.;
subjectto A;x;+0; <c¢ (6)
(N =DAix; — i = Wiiyi + Xjen: Wiy ji
A,-xi+0'i = ijj'+0'j, Yji Zyj,Vj € /Vi+

where y; = [y;; [yj,-]jele]. By this reformulation, the
coupling with other agents is sandboxed inside the consensus
constraints between each auxiliary variable y; and the local
estimate y;; kept by each out-neighbor j. As will be shown
later, these consensus constraints can be enforced by some
simple updating steps, making (6) more tractable than the one
in (3). It is worth highlighting that the local variables kept by
each agent i has dimension n;+/(2+N;) which merely grows
linearly with the number of its in-neighbors and allows better
scalability in a sparsely connected communication network.
To study agent i’s local optimization problem (6), we
consider its associated Lagrangian £; defined as follows:
Li = Ji(xi, 09) + 1x; (i) + 1, (xi, 09) + L5 (X1, 04, ;)

+ 2 jeN; (/le-i(Aixz' +oi—Ajxj—0j) +,ujT~,~(yji -y))s

where A;; is the Lagrange multiplier of the constraint A;x; +
0; —Ajx; — o = 0; uj; is the Lagrange multiplier incen-
tivizing the consensus between y;; and y;; @; := {(x;,07) |
A;x; + 0y < c} denotes the local feasible set corresponding
to the first constraint of (6); and 77 = {(x;,00,¥;) | (N —
DAxi—0; = Wiiyi+2jeM_+ Wiy i} denotes the local feasible
set corresponding to the second constraint of (6).

Summing the Lagrangians of all agents, we obtain the
Lagrangian for the network optimization problem given by:

Let = Z (Ji (xiy 1) + 15, (xi) + 1, (xi 07) + 1 (X0, 03, 9;))
ieN
+ Z (/lzji(Aixi +0; — ijl' — O'J') +ﬂ?i(yj,' - yj)).
(j,i)e&

@)

As will be shown later in the paper, by finding a saddle point
of the network Lagrangian, we can obtain a solution of the
original problem (T)). For convenience, we shall write {y,} in
replacement of the more cumbersome notation {y,;};cx and
similarly for other variables on nodes and edges (e.g. {u;;}
in replacement of {y;;} j’,‘)egg), unless otherwise specified.

Note that the structure of 3; ;yeg 4 (vji = ¥;) in the
network Lagrangian defined above, allows us to organize {y;}
and {y};} into a single vector w = [wi;- - ;w5 - ;WN]
with w; = [y 4595 s Hijy-3 Yijy-1» and construct
a constant symmetric matrix Myl = 'blkd(Myi)l-e N €
REEHNXQESN) accordingly such that the consensus term can
be written as Y (; ;)es ,u]T.l.(yji —y) = 10" (My ® I))w.

To solve the multi-agent optimization problem, we need
to find the stationary points of the network Lagrangian (7).
By taking the subgradient of L, w.r.t. each variable and
reversing the sign of the rows corresponding to the dual
variables, we can derive the set-valued operator 7 given by:

T oy 0(Ziendi(xis 00) + 1, (xi) + 1, (xi, 03)
+i5 (xl-,oa-,yi)) +(2D + M)/’)!’//’

0 0 ATB, 0 (8)
. - 0 0 B 0
with 2D +My = —B’ITA —B’IT 0 0l
0 0 0 M;

where A := blkd(A;);en; B is the incidence matrix of the
communication graph G; B; = (B®1;); M} = blkd(M, )ien
with M being a skew-symmetric matrix generated by re-
versing the sign of the even rows of M,,; M; embeds M
to the lower right corner of a zero matrix; 2D is the skew-
symmetric matrix enforcing the consensus of {A;x; +0;}; o
and A are the stack vectors of {o;} and {4;;}; ¢ denotes the
stack of the these variables, i.e. ¢ = [x;07;4; w].

Theorem 1. Suppose Assumptions [I} 2} and H] hold. Then
for any zero point [x*;0"; A% w*] € Zer(T), x* is a
minimizer of . Conversely, for any minimizer x' of the
problem , we can choose proper o', A7, and w, such
that [x";07; AT '] € Zer(T).

Proof: See [24, Appendix B].



B. Operator Splitting and Distributed Algorithm

We can split the operator 7 into two operators A and B,
and construct a design matrix ®, which are given by:

Ay 9(Y Jilxin o) + (D + M),

ieN
By I 1x () +1q, (xi,03) + 1 (x1, 03, 3,)) + DY,
ieN
7! 0 -1ATB, 0
o] 0 ' -3B 0
° 1 1 _ s
—EBTA —EBT T3l 0
0 0 0 T,
where 71 = blkd(7111p, ..., Tin],) With the scalars 7,, > 0

for i € N; similarly for 7, T3, and 74. These step sizes can
be chosen based on the Gershgorin circle theorem [25] to
guarantee @ € S_,. The operator A is maximally monotone
since in Assumption [I] each objective J; is assumed to be
jointly convex in x; and oy, and D + M; is skew-symmetric.
The maximal monotonicity of 8 can be similarly established.

As suggested in the DR splitting (3), we next evaluate
the analytical expressions for Jo-1 4 and Jg-1 g. For brevity,
let /151';) = Qe Ny /lﬁ.f) - 2je N; /ll(]]f), which can be obtained
through the communications among agent i and its incident
edges. The variable 25? is defined similarly.

For o K*D := Jo 1 4 (4R), it corresponds to the inclusion
(® + A **D 5 &y (K. Each agent i can update its local
decisions x; and local estimates o; by solving the following
problem using local information )Zi(k), &i(k) and the dual

information Z;g) from its incident edges:

minimize J; (x;, 07) + 5 (/l(k))T (Ajx; + 0y)
Xi, O
00 )

~(k) 2 ~ (k)2
s =513+ s lloy - a0 13

After both incident agents solve (9)), the dual variable /l<k+1)

maintained by the edge (j,i) can be updated by:

(k+1) _ (k) l
A =4y 45T

A(’\.+1) A (k+1) A(k+1)
3ji (A i A

A;k+1)), (10)

a(k+l) A (k+1)

where £;"" and 6;""" are the results of Rg-1 4 as shown in
(). The update of w™* is given by (7;' + M) - 0™V =
7,'®@™®, which is independent of the updates of x, o~ and A.

To have the analytical solution to it, notice that:

(k+1) (k+1) k 1) ~ (k) .o,
T S G y=qa;), edge (i, ));
Y+ (= Zjen- M(“] ) =%, agent i (11)
o+ = 5, agent j.

The above computation is restricted to the agent i, its out-
edges, and its out-neighbors. We can thus derive the analyt-
ical expressions for the local updates of auxiliary variables
and their dual variables, which are given in Subroutine E}
For %+ = Jy1 g(f**D), the inclusions of %, &, and
v are coupled locally, and each agent i should update them

Subroutine 1: Auxiliary-Consensus-Update (ACU)

Input: {5;"}, {4;};
for agent i € N do

For each j € N, receive /iy and \";
ety _ 147G (k) (k) K
yi - ]+TZi<l+Ni)( +1+ ijz (/‘11/ +T41y1, ))

end
for edge (j,i) € & do

Receive y”‘*” from its tail and §\) from its head ;

(k+1) . _ ~(k) T4j ~ (k) (k+1)y.
My = zu,l (y,L -y

end
or agenti € N do

For each j € N, receive u"" from its in-edge ;
(k+]> ~(k) (k+1) ,

YViji =Y T UMy s

Yty

end
Return: {y**"}, {u'**"

ji .

by solving the following local system of inclusions:

(k+1) (k+l) =(k+1) =_(k+1) =(k+1)
Oxit@ (X7, 0,77) + Okt (577,07, 50

(1) L AT 5(k+1) | 1 o=(kel) _ a(k+l)
+0x,Lx, (X)) + A A4+ T_“(xi -£77) >0

B()',-LQi ()z;kﬂ)’ 5_i(k+l)) + a(rilf‘ﬁ ()z;kﬂ)’ 5_i(k+1)’y§k+l)) (12)
+l/il('k+” n L(a_ﬁk+1) _ a_{(kn)) 50
aylt‘}- (x(k+l)’ — (k+l) §k+1)) + L 1 (y(k+]) j’f—kﬂ)) 5 0
Define M(f- [(N_I)Atv_ll’_Wll®Il» [W ] +®Il] €

Rlx(u}l(wl*w)) y(ktl) . A(k+1)

, and X R — TLAT A0 and F =
1%V Then, finding zeros of @ is equivalent to
solving the followmg constrained minimization problem:

A_(k+1) 1'2,
i - 2

S 1y xRt 2 L (e x (kD)2

glelg’}ng—l,,zﬁ 2t llxi = %117 + 2707 llos — a7l
+r=lly; = 9N (13)

subjectto Mg - [x;30:9;1 =0,Ax;+0; < ¢

For the variables maintained by the edges, the dual variable
 remains the same, while 1;; is updated by:

/i;liﬁl) — A;I{a—l) +T

e 1 A<k+1>
o (A

(A x(k+1) +O_(k+1) A —(k+1)

(14)
&0 A(l\+1> &
o = AETY o).

Overall, Algorithm [2| summarizes the proposed algorithm for
finding a minimizer of (I) based on the DR framework (3).

IV. CoMMODITY DISTRIBUTION PROBLEM

We consider a commodity distribution problem adapted
from [22, Sec. 1.4.3], [16], where several branches of the
same company produce a common homogeneous commodity.
A transport network exists that has markets as its nodes
and roads as its edges. Denote the node set of this network
by Nr and the edge set Er, the cardinalities of which
are Ny and Er, respectively. These branches attempt to
cooperatively optimize their total profit by deciding the
production quantities at the factories and the distribution
quantities over the markets.



Algorithm 2: Algorithm for Globally-Coupled Multi-
Agent Optimization Problem

Initialize: {T”}.{7,"}, (A7}, ()"} {7 )

Iter(%t% until(kc?)nvergence{ “ “

" hApy ) = ACU{y, " 1 Aa;; D)

for agent i € N do
Receive A% and A{;’ from its in- and out-edges ;
Obtain x{**" and o/**" by solving (©);

3
R-R updates: £**", /), pi?

end

for edge (j,i) € & do

Receive A;#*" + 6" and A" + 61"
Obtain 25" by ([0); R-R updates: A+*";
end

for agent i € N do

Receive A%+ and A%™ from its in- and out-edges ;
Obtain """, &/**" and 3**" by solving (T3);

end

for edge (j,i) € & do

Receive A% + 5" and A" + 5",

Obtain 15" by (T4);

end
K-M updates: %1 = 6) 4 2y () (k1) (ke

Return: {xlf") 1.

Each branch i delivers the commodity from the factories,
denoted by ANr,, to different markets through the transport
network. Let N1, := [Nt |. Its decision vector x; € R with
n; = Er + N, consists of two parts: u; € RfT represents the
quantities of commodity transported through each road er €

Nr, iy .

&Er; vi € R, denotes the quantities of commodity produced
by the factories owned by branch i. These two parts uniquely
determine the distribution of commodity over the markets.
Assuming the factories owned by branch i have maximum
production capacities b; € Ri\]f" , each entry of the vector u; €
RET is upper-bounded by ||b;||;. Denote by By € RNr*Er
the incidence matrix of this transport network, and by E; €
RNT*N7; the indicator matrix which maps from each entry
of v; to the corresponding markets. Then, we have the local
matrix A; = [Br, E;] and the local feasible set X; := {x; €
RETHNT10 < v; < b;,0 < u; < ||billi ® 1g,, Aix;i > 0}

The objective function of branch i € N is given by
Ji(xi,x_i) = %xiTQix,- + cxi||Ax||§ — (w—2Ax)T A;x;, where
A = [AL,...,AN], x = [x1;---;xn], Q; € ST is a
diagonal matrix, and we let w € Ri\]f denote the initial unit
price, and X € Sﬁf the decreasing rate of unit price. We
further assume that there is a maximum capacity ¢ € Ri\]f
for the commodity sold at different markets, and the global
constraints are accordingly defined as > ;cpAix; < c.

We use the transport network of the city of Oldenburg
[26]: it consists of Ny = 29 nodes (markets) and E7 = 2Xx34
edges (roads). Five branches (N = 5) participate in this
problem, each owning a single factory at the given location
({8, 14,21, 10, 29}). Each factory has a maximum production
capacity uniformly randomly chosen from [10, 14]. The
normalized length 7., is defined as the ratio between the
length of road er and the maximum road length. Each
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Fig. 2: The Commodity Distribution over the Transport Net

diagonal entry of matrix Q; corresponding to u; is set as
Tner, while the entries corresponding to v; are fixed to
be 2.8. Moreover, w = 36 - 1n,, and X is a matrix with
[X];; = 0.23, for all i € N7, [X];; = 0.069 - (1 -7, ), for
all (j,i) € &r, and otherwise zero. We also let ; := 0.21
and ¢ = 2 - 1n,. We can verify numerically that each J;
is jointly convex in x; and s; as required in Assumption [}
The communication network G contains a directed circle and
| %] =2 randomly selected directed edges.

The package CVXPY 1.0.31 [27], [28] is used to solve the
constrained optimization problem for each agent. We illus-
trate the performances of Algorithm 2] in Fig[l] Fig[T(a)(b)
describe the relative updating step sizes at each iteration
for x; and y;. FigEKc)(d)(e) illustrate how the feasibility
conditions are satisfied at each iteration. Fig[T{e) shows the



normalized distance between the decision variables obtained
by the proposed algorithm and the unique minimizer. Fig[]
visualizes the solution computed by Algorithm [2} which is
reflected by the commodity distribution over the markets and
the quantity of commodity transported through each road.
These numerical results verify the validity of Algorithm 2]
and show a linear convergence rate towards a solution.

V. CoNCLUSIONS AND FUTURE DIRECTIONS

We propose a distributed solution for multi-agent opti-
mization problems that are globally coupled by aggregates.
Although we only discuss the cases with homogeneous
aggregates in objectives and constraints, with the introduc-
tion of a new set of auxiliary variables and its associated
local estimates, the proposed algorithm can solve problems
with heterogeneous aggregates. Moreover, the results can
be directly extended to handle the problems with convex
constraints. One of our future directions is to extend the
primal decomposition method to the non-cooperative setting.
Even though the analysis in this paper can be applied to non-
cooperative aggregative games with minor modifications, yet
to ensure the convergence of the algorithm candidate, we
need to postulate that the invoked extended pseudogradient
operators are maximally monotone, which holds if and only
if the partial derivatives of local objectives w.r.t. local
decisions do not depend on others’ decisions [13], [29],
[30]. This condition dramatically restricts the applicability of
the proposed method. In addition, we note that even under
the cooperative setting, the solvable multi-agent optimization
problems should have their local objectives jointly convex
in the local decisions and the aggregates. Another future
direction would lie in relaxing this assumption and enable
the proposed algorithm to handle a wider range of problems.
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