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Abstract—We consider the stochastic generalized Nash equi-
librium problem (SGNEP) where a set of self-interested players,
subject to certain global constraints, aim to optimize their
local objectives that depend on their own decisions and the
decisions of others and are influenced by some random factors.
A distributed stochastic generalized Nash equilibrium seeking
algorithm is proposed based on the Douglas-Rachford operator
splitting scheme, which only requires local communications
among neighbors. The proposed scheme significantly relaxes
assumptions on co-coercivity and contractiveness in the existing
literature, where the projected stochastic subgradient method
is applied to provide approximate solutions to the augmented
best-response subproblems for each player. Finally, we illustrate
the validity of the proposed algorithm through a Nash-Cournot
production game.

I. INTRODUCTION
The Nash equilibrium problem (NEP), rooted in the semi-

nal work [1], models a situation where a set of self-interested
players aim to optimize their individual payoffs that depend
not only on their own decisions but also on the decisions of
others. The stochastic generalized Nash equilibrium problem
(SGNEP) extends the NEP by considering additional global
resource constraints that these players should collectively
satisfy [2], [3], and by incorporating stochasticity in players’
objectives. In SGNEPs, instead of deterministic objective
functions, players optimize the expected values of uncertain
objective functions that are dependent on some random
variables. There has been a surge of interest in using SGNEPs
to model problems arising in areas such as power markets
[4], [5] and congestion control [6]. Nevertheless, it remains
challenging to compute the Nash equilibria of SGNEPs, due
to the absence of closed-form expressions of the objective
functions. Fortunately, as has been shown in [7, Ch. 1.4],
many SGNEPs can be formulated as stochastic variational
inequalities (SVIs) and solved by leveraging existing results
from this field, e.g. [8], [9], [10], [11], [12].

There is an enduring research interest in distributing the
computation of Nash equilibria [13], [14], especially through
the avenue of operator splitting technique [15], [16]. Signif-
icant attention and efforts have been devoted to designing
algorithms to solve SGNEPs distributedly under the full-
decision information setting where each player has access
to all other players’ decisions. The authors of [17] propose a
solution based on the preconditioned forward-backward (FB)
operator splitting with the expected-value pseudogradient
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assumed to be restricted co-coercive and approximated via
the stochastic approximation (SA) scheme. To accelerate
game dynamics and relax the co-coercivity assumption, [18]
adopts a forward-backward-forward framework. The work
in [19] provides an inexact generalization of the proximal
best-response (BR) schemes to SNEPs whose corresponding
proximal BR maps admit a contractive property. In addition
to the distributed computation, in most cases, participants
only have access to the local information and decisions of
their neighbors, which constitutes a partial-decision infor-
mation setting [20], [21], [22]. Far less has been studied
when it comes to the distributed solution to SGNEPs under
the partial-decision information setting. The only existing
work to our best knowledge is [23], which also relies on
the FB framework along with the SA method. The conver-
gence of the proposed algorithms in [23] is analyzed under
the assumption that the preconditioned forward operator is
restricted co-coercive, which only allows comparatively small
step sizes.

Our contributions can be summarized in the follow-
ing respects. First, we propose a distributed algorithm to
the SGNEP with merely partial information based on the
Douglas-Rachford splitting and the proximal mapping. In
the proposed algorithm, the involved players are asked to
update their decision vectors in two separate steps: solving
the augmented best-response subproblems, and projecting
onto the local feasible sets after some linear transformations.
The updates of their local estimates and dual variables only
require some trivial linear transformations. This algorithm
can deal with cases where the scenario-based objectives
of players are nonsmooth, and relaxes some commonly-
made assumptions such as the co-coercivity of the operators
after the splitting. Second, we establish the convergence of
the proposed algorithm without resorting to the contractive
property. The proof in this paper is based on the Robbins-
Siegmund theorem and extends the convergence results dis-
cussed in [19]. Drawing tools and techniques from stochastic
approximation and convex analysis, we construct a feasible
inexact solver based on the projected stochastic subgradient
method and discuss the prescribed accuracy within which
the inexact solver to the augmented best-response subprob-
lems should achieve such that the convergence property is
ensured. Complete proofs of the main statements and some
intermediate results are omitted due to the space limit, which
are available in [24].

Basic Notations: For a set of matrices {+8}8∈( , we let
blkd(+1, . . . , +|( |) or blkd(+8)8∈( denote the diagonal con-
catenation of these matrices, [+1, . . . , +|( |] their horizontal



stack, and [+1; · · · ;+|( |] their vertical stack. For a set of vec-
tors {E8}8∈( , [E8]8∈( or [E1; · · · ; E |( |] denotes their vertical
stack. For a matrix + and a pair of positive integers (8, 9),
[+] (8, 9) denotes the entry on the 8th row and the 9 th column
of + . For a vector E and a positive integer 8, [E]8 denotes
the 8th entry of E. Denote R B R ∪ {+∞}, R+ B [0, +∞),
and R++ B (0, +∞). S=+ (resp. (=++) represents the set of
all = × = symmetric positive semi-definite (resp. definite)
matrices. ]S (G) is defined to be the indicator function of a
set S, i.e., if G ∈ S, then ]S (G) = 0; otherwise, ]S (G) = +∞.
#( (G) denotes the normal cone to the set ( ⊆ R= at the point
G: if G ∈ (, then #( (G) B {D ∈ R= | supI∈( 〈D, I − G〉 ≤ 0};
otherwise, #( (G) B ∅. If ( ∈ R= is a closed and convex set,
the map Pj( : R= → ( denotes the projection onto (, i.e.,
Pj( (G) B argminE∈( ‖E − G‖2. We use ⇒ to indicate a point-
to-set map. For an operator ) : R= ⇒ R=, Zer()) B {G ∈
R= | )G 3 0} and Fix()) B {G ∈ R= | )G 3 G} denote its
zero set and fixed point set, respectively. We denote dom())
the domain of the operator ) and gra()) the graph of it.
The resolvent and reflected resolvent of ) are defined as
�) B (� + �)−1 and ') B 2�) − �, respectively.

II. PROBLEM FORMULATION
A. Stochastic Game Formulation and SGNE

In this section, we formalize the stochastic generalized
Nash equilibrium problem (SGNEP) on networks. There
are # players participating in this game, indexed by N B
{1, . . . , #}. Each player 8 ∈ N needs to determine its local
decision vector G8 ∈ X8 to optimize its objective, where
X8 ⊆ R=8 is the local feasible set/action space of player 8. This
Nash equilibrium seeking problem is generalized because,
besides the local constraints {X8}8∈N , the decision vectors of
these players should satisfy some global resource constraints,
i.e.,

∑
8∈N �8G8 ≤ 2. Here, we have the matrix �8 ∈ R<×=8

with < denoting the number of the (global) affine coupling
constraints, and the constant vector 2 ∈ R< representing the
quantities of available resources. Altogether, for each player
8, the feasible set of the decision vector G8 is given by

X̃8 (G−8) B X8 ∩ {G8 ∈ R=8 | �8G8 +
∑
9∈N−8 � 9G 9 ≤ 2}, (1)

where N−8 B N\{8}, and G−8 denotes the stack of decision
vectors except that of player 8. The feasible set of the
collective decision vector G B [G1; · · · ; G# ] is given by

X̃ B X ∩ {G ∈ R= | �G − 2 ≤ 0}, (2)

where X B ∏
8∈N X8 , = B

∑
8∈N =8 , and � B [�1, . . . , �# ].

To capture uncertainty in practical settings, we consider
stochastic games where the objective function J8 (G8; G−8) of
each player 8 is the expected value of certain function �8 .
Formally, given the decisions G−8 of the other players, each
player 8 aims to solve the following local problem:{

minimizeG8 ∈X8 J8 (G8; G−8) = Eb8 [�8 (G8; G−8 , b8)]
subject to �8G8 ≤ 2 −

∑
9∈N−8 � 9G 9

, (3)

where b8 : Ω8 → R=b8 is a random variable in a well-defined
probability space.

Given the above formulation of the SGNEP, we make the
following assumptions that hold throughout the paper.

Assumption 1. (Scenario-Based Objectives) For each player
8 ∈ N , given any fixed sample l8 ∈ Ω8 , the scenario-
based objective �8 (·; ·, b8 (l8)) is proper and continuous. In
addition, �8 (G8; G−8 , b8 (l8)) is a convex function w.r.t. G8
given any fixed G−8 and l8 ∈ Ω8 .

Assumption 2. (Feasible Sets) Each local feasible set X8 is
nonempty, compact, and convex. The collective feasible set
X̃ is nonempty, and the Mangasarian-Fromovitz constraint
qualification (MFCQ) holds [7, Ch 3.2][25, Ch. 16.2.3].

Collectively solving the problems in (3) gives rise to the
stochastic generalized Nash equilibrium (SGNE), the formal
definition of which is given as follows [17], [26]:

Definition 1. The collective decision G∗ ∈ X̃ is a stochastic
generalized Nash equilibrium (SGNE) if no player can benefit
by unilaterally deviating from G∗. Specifically, for all 8 ∈ N ,
J8 (G∗8 ; G∗−8) ≤ J8 (G8; G∗−8) for any deviation G8 ∈ -̃8 (G∗−8).

We restrict our attention to a subset of these SGNEs where
the players share the same coupled constraints, and hence all
the Lagrangian multipliers are in consensus, i.e., _1 = · · · =
_# . This gives rise to a generalized variational inequality
(GVI) problem. This subclass of the SGNEs, known as the
variational stochastic generalized Nash equilibria (v-SGNEs)
[3], [2], enforces the idea of economic fairness and enjoys
better social stability/sensitivity [27]. We will focus on this
subset since we can leverage a variety of tools that have been
developed for solving (G)VIs [7, Ch. 10-12] and then design
the modified best-response dynamics based on it.

Definition 2. The collective decision G∗ ∈ X̃ is a variational
stochastic generalized Nash equilibrium (v-SGNE) if G∗ along
with a suitable 6∗ ∈ ∏

8∈N mG8 J8 (G∗8 ; G∗−8) is a solution of the
GVI(X̃,∏8∈N mG8 J8), i.e.,

(G − G∗)) 6∗ ≥ 0,∀G ∈ X̃. (4)

Under Assumptions 1 and 2, we can recast the problem in
(3) into a set of inclusions by considering the Karush-Kuhn-
Tucker (KKT) conditions of the above GVI:

0 ∈ mG8 J8 (G∗8 ; G∗−8) + �)8 _ + #X8 (G∗8 )
0 ∈ −(�G∗ − 2) + #R<+ (_),

(5)

where _ is the Lagrangian multiplier for the global con-
straints in (3). Notice that the GVI in (4) is not completely
equivalent to the initial SGNEP in (3), and it is possible that
the game admits an SGNE while the GVI has no solution.
We make the following assumption concerning the existence
of v-SGNEs.

Assumption 3. (Existence of v-SGNE) The SGNEP consid-
ered admits a nonempty set of v-SGNEs.

Remark 1. The existence and multiplicity of solutions of
problems with continuously differentiable objectives have
been extensively studied, and the related theories can be



found in [7, Ch. 2&3]. For the problems with nonsmooth
objectives, if the closed-form expressions of the objectives
J8 (G8; G−8) for all 8 ∈ N are available, we can check the
existence of v-GNEs in this GNEP by [25, Prop. 12.11].
Otherwise, [26, Sect. 4] provides sufficient conditions to
guarantee the existence of SGNEs based on the properties of
scenario-based objectives.

B. Network Game Formulation
In network games, there exists an underlying communica-

tion graph G = (N6, E6), where players can communicate
with their neighbors through arbitrators on the edges. The
node set N6 denotes the set of all players, and E6 ⊆ N6×N6
is the set of directed edges, the cardinalities of which are
denoted by #6 and �6, respectively. In this case, N6 = N
and #6 = # . We use (8, 9) to denote a directed edge
having node/player 8 as its tail and node/player 9 as its head.
For notational brevity, let N8 denote the set of immediate
neighbors of player 8 who can directly communicate with it,
N+
8
B { 9 ∈ N | ( 9 , 8) ∈ E6} the set of in-neighbors of player

8, and N−
8
B { 9 ∈ N | (8, 9) ∈ E6} the set of out-neighbors

of player 8. Note that although the multipliers we are going to
introduce are defined in a directed fashion, we assume each
node can send messages to both its in- and out-neighbors,
and G should satisfy the following assumption.

Assumption 4. (Communicability) The underlying commu-
nication graph G = (N6, E6) is undirected and connected.
Besides, it has no self-loops.

We next recast the SGNEP in (3) as the zero-finding prob-
lem of a certain operator that can be carried out distributedly
over G via the network Lagrangian of this game and refer the
interested reader to [28] for more details. Now for each player
8 ∈ N , besides its local decision vector H8

8
∈ X8 , it keeps a

local estimate H 9
8
∈ R= 9 of the player 9’s decision for all

9 ∈ N−8 , which together constitutes its augmented decision
vector H8 . We denote H−8

8
B [H 9

8
] 9∈N−8 the vertical stack of

{H 9
8
} 9∈N−8 and H8 B [H

9

8
] 9∈N the vertical stack of {H 9

8
} 9∈N ,

both in prespecified orders. Here, we use H8
8
to denote the

local decision of each player 8 to distinguish from the case
where only local decision G8 is maintained and considered.
Denote =<8 =

∑
9∈N, 9<8 = 9 and =>8 =

∑
9∈N, 9>8 = 9 . The

extended feasible set X̂ is defined as X̂ B X̂1×X̂2×· · ·×X̂#
with each one defined as X̂8 B R=<8 ×X8 ×R=>8 . For brevity,
we shall write {H8} in replacement of the more cumbersome
notation {H8}8∈N and similarly for other variables on nodes
and edges (e.g. the dual variables {` 98} ( 9 ,8) ∈E6 will be
denoted simply by {` 98}), unless otherwise specified. For the
variables involved in the reformulated zero-finding problem,
we introduced a set of dual variables {_8} to enforce the
global resource constraints. Moreover, another two sets of
dual variables {` 98} and {I 98} are introduced to guarantee
the consensus of {H8} and {_8}. It is worth mentioning that
{H8} and {_8} are maintained by players while {` 98} and
{I 98} are maintained by arbitrators on the edges.
We then give a brief introduction to two commonly used

operators in the distributed solution of GNEP: the pseudo-

gradient F : R= ⇒ R= and the extended pseudogradient
F̃ : R=# ⇒ R=. The pseudogradient F is the vertical stack
of the partial subgradients of the objective functions of all
players, which is given as follows:

F : G ↦→ [mG8 J8 (G8; G−8)]8∈N . (6)

In contrast, the extended pseudogradient F̃ defined in (7)
is a commonly used operator in the partial information
setting, where each player keeps the local estimates of others’
decisions and then uses these estimates as the parametric
inputs.

F̃ : [H8]8∈N ↦→ [mH8
8
J8 (H88; H−88 )]8∈N . (7)

We introduce the following matrices, i.e., the individual
selection matrices {R8}8∈N and their diagonal concatenation
R ∈ R=×=# , to incorporate the extended pseudogradient F̃
into a fixed-point iteration:

R8 = [0=8×=<8 , I=8 , 0=8×=>8 ],R = blkd(R1, . . . ,R# ). (8)

Finally, the set-valued operator T we are going to study is
given below:

T :


y
,
-
z

 ↦→

R) (F̃(y) + Λ) ,) + �=- + d`!=y + #X̂ (y)
#R<#+

(,) − ΛRy + c + �<z + dI!<,
−�)= · y
−�)< · ,

 , (9)

where Λ is the diagonal concatenation of {�8}8∈N , i.e., Λ B
blkd(�1, . . . , �# ); c is the vertical stack of {28}8∈N with∑
8∈N 28 = 2; �= B (�⊗ �=), != B (!⊗ �=), �< B (�⊗ �<),

!< B (! ⊗ �<), � and ! are the incidence matrix and
Laplacian matrix of the underlying communication graph,
respectively, with ! = � · �) ; and y, ,, -, and z are the
stack vectors of {H8}, {_8}, {` 98}, and {I 98}, respectively; k
denotes the stack of these variables, i.e., k B [y; ,; -; z].

Theorem 1. Suppose Assumptions 1 to 4 hold, and there
exists k∗ B [y∗; ,∗; -∗; z∗] ∈ Zer(T). Then y∗ = 1# ⊗ H∗,
,∗ = 1# ⊗_∗, and (H∗, _∗) satisfies the KKT conditions (5) for
v-GNE with G∗ replaced with H∗. Conversely, for a solution
(H†, _†) of the KKT problem in (5), there exist -† and z†

such that k† B [1# ⊗ H†; 1# ⊗ _†; -†; z†] ∈ Zer(T).

Proof: See the proof of Theorem 1 in [28].
Thus, finding a v-SGNE of the game in (3) is equivalent

to solving for a zero point of the operator T. To facilitate the
convergence analysis of the algorithm to be proposed for the
latter task, we make two parallel assumptions, either of which
can guarantee the convergence to a v-GNE [28, Sect. 4].

Assumption 5. (Convergence Condition) At least one of the
following statements holds:

(i) the operator R) F̃+ d`2 != is maximally monotone;
(ii) the pseudogradient F is strongly monotone and Lipschitz

continuous, i.e., there exist [ > 0 and \1 > 0, such that
∀G, G ′ ∈ R=, 〈G − G ′, F(G) − F(G ′)〉 ≥ [‖G − G ′‖2 and
‖F(G) − F(G ′)‖ ≤ \1‖G − G ′‖. The operator R) F̃ is
Lipschitz continuous, i.e., there exists \2 > 0, such that
∀y, y′ ∈ R=# , ‖F̃(y) − F̃(y′)‖ ≤ \2‖y − y′‖.



III. AN AUGMENTED BEST-RESPONSE SCHEME

To compute the zeros of the operator T given in the
previous section, we leverage the Douglas-Rachford (DR)
splitting method which combines operator splitting and the
Krasnosel’skill-Mann (K-M) schemes. Given a nonexpansive
operator & with a nonempty fixed point set Fix(&), the K-M
scheme [29, Sect. 5.2] suggests the following iteration:

k (:+1) B k (:) + W (:) (&k (:) − k (:) ), (10)

where (W (:) ):∈N is a sequence such that W (:) ∈ [0, 1] for all
: ∈ N and

∑
:∈N W

(:) (1−W (:) ) = ∞. Here, we introduce a set
of local bounded box constraints {X�

8
} which can be chosen

manually as long as it satisfies X8 ⊆ X�8 for all 8 ∈ N . We
similarly define the extended box set X̂� B X̂�1 ×X̂

�
2 ×· · · X̂

�
#

where the extended box set of each player 8 is defined as
X̂�
8
B R=<8 × X�

8
× R=>8 . It is easy to see that the normal

cones of X̂� and X̂ satisfy #X̂� +#X̂ = #X̂ . The motivation
for introducing these box sets is to simplify the computation
while maintaining boundedness for the convergence analysis
as we will show later in this paper. We then split the operator
T into the following operators A and B (for details, please
refer to [28, Sect. 3]):

A : k ↦→ (� + AH)k and B : k ↦→ (� + BH)k (11)

with �, AH , and BH defined by

� =


d`

2 !=
1
2 (ΛR)

) 1
2�= 0

− 1
2ΛR

dI
2 !< 0 1

2�<
− 1

2�
)
= 0 0 0

0 − 1
2�

)
< 0 0

 ,
AH : k ↦→


R) F̃(y) + #X̂B (y)

c
0
0

 , BH : k ↦→

#X̂ (y)
#R<#+

(,)
0
0

 .
Furthermore, we introduce the following design matrix Φ

for distributedly computing �Φ−1 A and �Φ−1 B :

Φ =


3−1

1 −
d`
2 != − 1

2 (ΛR)
) − 1

2�= 0
− 1

2ΛR 3−1
2 −

dI
2 !< 0 − 1

2�<
− 1

2�
)
= 0 3−1

3 0
0 − 1

2�
)
< 0 3−1

4

 , (12)

where 31 B blkd(g11�=, . . . , g1# �=) with the scalars g11 ∈
R++, . . . , g1# ∈ R++; similarly for 32, 33 and 34. These step
sizes 31, . . . , 34 should be small enough to guarantee that Φ
is positive definite. Conservative upper bounds for these step
sizes [28, Lemma 1] can be derived using the Gershgorin
circle theorem [30].

Assumption 6. The step sizes 31, . . . , 34 are chosen properly
such that the design matrix Φ in (12) is positive definite.

Notice that because of the incorporation of the design
matrix Φ, now we are working in the inner product space
K which is a real vector space endowed with the inner
product 〈k1, k2〉K = k)1 Φk2. For brevity, let Ā B Φ−1 A
and B̄ B Φ−1 B. In the DR splitting scheme, the general
operator & in (10) is given by ℛ∗ B 'B̄ ◦'Ā and it suggests

the following exact iteration:

k̃ (:+1) B �∗ (k̃ (:) ), with �∗ = Id + W (:) (ℛ∗ − Id). (13)

Given a generic single-valued operator &, we say that &
is restricted nonexpansive w.r.t. a set ( if, for all k ∈
dom& and k∗ ∈ (, ‖&k − &k∗‖ ≤ ‖k − k∗‖ [20]; if,
in addition, ( = Fix(&), then & is quasinonexpansive [29,
Def. 4.1(v)]. From the main convergence results in [28,
Thm. 2&3], if Assumptions 1 to 6 hold, even though ℛ∗
is not contractive, it possesses nonexpansiveness or just
quasinonexpansiveness in the inner-product space K, and
hence the sequence (H (:)

8
):∈N generated by the exact iteration

above will converge to a v-SGNE of the original problem
defined in (3). The detailed description of the exact iteration
is given in [28, Algorithm 1].

However, unlike the problem setting in [28] where each
player has a closed-form objective function, here the objec-
tive function is expected-value, and all too often its closed-
form expression may be too complicated to analyze or not
available at all. Consequently, the argmin operation in the
first player loop of [28, Algorithm 1] can not be solved
exactly. In this case, we need a desirable inexact solver
such that, although at each iteration step, it can only get an
approximate solution, the whole sequence can still eventually
converge to a v-SGNE. We let 'Ā denote the (scenario-
based) approximate operator to the exact reflected resolvent
'Ā, and ℛ denote the corresponding composite 'B̄ ◦ 'Ā .
Substituting the operator ℛ∗ with ℛ in [28, Algorithm 1]
gives rise to the following approximate iteration:

k̃ (:+1) B �(k̃ (:) ), with � = Id + W (:) (ℛ − Id). (14)

The details of (14) are presented in Algorithm 1. For brevity,
let H̃−8 (:)8! B

∑
9∈N

8
( H̃−8 (:)8 − H̃−8 (:)9 ), and similarly for H̃8 (:)8! , _̃ (:)

8!
,

Ĥ
8 (:+1)
8! , and _̂ (:+1)

8!
; let ˜̀−8 (:)8� B

∑
9∈N+

8
˜̀−8 (:)98 −∑

9∈N−
8

˜̀−8 (:)8 9 , and
similarly for ˜̀8 (:)8� , Ĩ (:)8� , ˆ̀ (:+1)8� , and Î (:+1)8� ; let Ĥ (:+1)98 B Ĥ

(:+1)
8 −

Ĥ
(:+1)
9 , and similarly for _̂ (:+1)

98
, H̄ (:+1)98 , and _̄ (:+1)

98
.

Depending on the inexact solver adopted, 'Ā usually
admits no explicit formulas. Yet, as will be shown later, we
can still establish the convergence of Algorithm 1 based on
the specific properties of 'Ā .

IV. CONVERGENCE ANALYSIS AND CONSTRUCTION
OF INEXACT SOLVER

A. General Convergence Results with Approximate Solution
In this subsection, we investigate the sufficient conditions

to guarantee the convergence of Algorithm 1 to a v-SGNE
of the problem (3) through the Robbins-Siegmund theorem
[31]. We start by defining the approximate error and its
norm for each iteration : as n (:) B ℛ(k̃ (:) ) −ℛ∗ (k̃ (:) ) and
Y (:) B ‖n (:) ‖K , where k̃

(:)
B [ ỹ (:) ; ,̃ (:) ; -̃ (:) ; z̃ (:) ]. We next

introduce the residual function res(k̃) B ‖k̃−ℛ∗ (k̃)‖K such
that res(k̃∗) = 0 is a necessary condition for k̃∗ to belong
to the fixed-point set of ℛ∗. This relation can be easily
checked by using [29, Prop. 26.1(iii)]. Let F: denote the f-
field comprised of {k̃ (0) , {b (0)8 }8∈N , . . . , {b (:−1)

8 }8∈N}, where
for each major iteration : ∈ N, b (:)8 = {b (:)

8,0 , . . . , b
(:)
8,)

(:)
8
−1} and



Algorithm 1: Distributed v-SGNE Seeking under
Partial-Decision Information
Initialize: {H̃ (0)8 }, {_̃

(0)
8 }, { ˜̀ (0)98 }, {Ĩ

(0)
98 };

Iterate until convergence:
for player 8 ∈ N do

H
−8 (:+1)
8 = H̃

−8 (:)
8 − g18

2 (d` H̃
−8 (:)
8!
+ ˜̀−8 (:)

8�
) ;

H
8 (:+1)
8

inexactly solves: argminE8 ∈X�8 [J8 (E8; H
−8 (:+1)
8 )

+ 1
2 ((�

)
8
_̃
(:)
8 + d` H̃

8 (:)
8!
+ `8 (:)

8�
)) E8 + 1

g18
‖E8 − H̃

8 (:)
8 ‖2)];

_
(:+1)
8 = _̃

(:)
8 +g28 (�8 (H

8 (:+1)
8 − 1

2 H̃
8 (:)
8 )−

dI
2 _̃

(:)
8! − 1

2 Ĩ
(:)
8�
−28);

Ĥ
(:+1)
8 = 2H (:+1)8 − H̃ (:)8 , _̂

(:+1)
8 = 2_ (:+1)8 − _̃ (:)8 ;

end
for edge ( 9 , 8) ∈ E6 do

`
(:+1)
98 = ˜̀ (:)98 +

g38
2 Ĥ

(:+1)
98 , ˆ̀ (:+1)98 = 2` (:+1)98 − ˜̀ (:)98 ;

I
(:+1)
98 = Ĩ

(:)
98 +

g48
2 _̂

(:+1)
98 , Î

(:+1)
98 = 2I (:+1)98 − Ĩ (:)98 ;

end
for player 8 ∈ N do

H̄
(:+1)
8 = PjX̂8 [ Ĥ

(:+1)
8 − g18

2 (R
)
8 �

)
8 _̂
(:+1)
8 +d` Ĥ

(:+1)
8!
+ ˆ̀ (:+1)

8�
)];

_̄
(:+1)
8 = PjR<+ [_̂

(:+1)
8 + g28 (�8 ( H̄

8 (:+1)
8 − 1

2 Ĥ
8 (:)
8 )

− dI2 _̂
(:+1)
8! − 1

2 Î
(:+1)
8�
)];

end
for edge ( 9 , 8) ∈ E6 do

¯̀ (:+1)98 = ˆ̀ (:+1)98 + g38 ( H̄
(:+1)
98 − 1

2 Ĥ
(:+1)
98 );

Ī
(:+1)
98 = Î

(:+1)
98 + g48 (_̄

(:+1)
98 − 1

2 _̂
(:+1)
98 );

end
K-M updates: k̃ (:+1) = k̃ (:) + 2W (:) (k̄ (:+1) − k (:+1) );
Return: {H (:)8 }.

)
(:)
8 denotes the number of noise realizations that player 8
observes at the :th iteration when implementing the inexact
solver.

Theorem 2. Consider an SGNEP given in (3), and suppose
Assumptions 1 to 6 hold. Moreover, (W (:) ):∈N is a sequence
such that W (:) ∈ [0, 1] and ∑

:∈N W
(:) (1−W (:) ) = +∞. If the

sequence (k̃ (:) ) generated by the inexact solver satisfies

(i) (‖k̃ (:) ‖K ):∈N is bounded a.s.;
(ii)

∑
:∈N W

(:)E [Y (:) | F (:) ] < ∞, a.s. ,

then (y (:) ):∈N and (, (:) ):∈N generated by Algorithm 1
satisfy a.s. lim:→∞ y (:) = (1# ⊗ H∗) and lim:→∞ , (:) =
(1 ⊗ _∗), where H∗ is a v-SGNE to the original SGNEP (3)
and (H∗, _∗) together is a solution to the KKT conditions (5)
of the SGNEP.

Before proceeding, it is worth highlighting why we need
to have both the condition (i) and (ii) to hold in The-
orem 2. With the condition (ii), i.e.,

∑
:∈N W

(:)E [Y (:) |
F (:) ] < ∞ a.s., one can show that (‖k̃ (:) ‖K ):∈N is
bounded a.s. A similar proof for deterministic cases can be
found in [29, Prop. 5.34]. Nevertheless, under the partial-
information setting, ensuring the condition (ii) requires the
fulfillment of condition (i), i.e., the almost-sure boundedness
of (‖k̃ (:) ‖K ):∈N . Thus, we should prove the condition (i)
using a more primitive condition than the condition (ii), and
keep both (i) and (ii) in the statement of Theorem 2.

B. Construction of a Desirable Inexact Solver

As we discussed at the end of Section III, it is chal-
lenging to solve the augmented best-response subproblems
which involve the expected-value objectives precisely (the
argmin problems in the first player for-loop of Algorithm 1).
Moreover, Theorem 2 suggests that we can still obtain a v-
SGNE by solving these augmented best-response subprob-
lems not precisely but up to some prescribed accuracy. In
this subsection, we consider a specific scenario-based solver
using the projected stochastic subgradient method [32][33],
and study the explicit conditions that the projected stochastic
subgradient solver should satisfy to be a feasible inexact
solver in the context of distributed SGNEP with only partial-
decision information.
We first make an assumption regarding the unbiased-

ness and finite-variance properties of a general projected
stochastic subgradient method. Throughout the paper, we
use : to index the major iterations (the iteration of the
v-SGNE seeking Algorithm 1) and C to index the minor
iterations (the iteration of the inexact solver in the first
player for-loop of Algorithm 1). Furthermore, at each major
iteration : , for each player 8, let the augmented scenario-
based objective function be denoted by �̂

(:)
8
(E8; b (:)8,C ) B

�8 (E8; H−8 (:+1)8
, b
(:)
8,C
) + (ĩ (:)

8
)) H8

8
+ 1

2g18
‖E8 − H̃8 (:)8

‖22, and the
augmented expected-value objective function be denoted by
Ĵ
(:)
8
(E8) B J8 (E8; H−8 (:+1)8

) + (ĩ (:)
8
)) E8 + 1

2g18
‖E8 − H̃8 (:)8

‖22,
where ĩ (:)

8
B 1

2 (�
)
8
_̃
(:)
8
+ ˜̀8 (:)

8�
+ d` H̃8 (:)8!

). Note that Ĵ(:)
8
(·)

is the objective in the first player-loop of Algorithm 1 that
needs to be inexactly solved. Here, the vector ĩ (:)

8
represents

some augmented terms that enforce the consensus constraints
and the global resource constraints. For brevity, the local
estimates of the other players’ decisions H−8 (:+1)

8
are omitted

from the arguments of the augmented functions defined
above. Let ) (:)

8
denote the total number of the projected

stochastic subgradient steps taken in the :th major iteration.
The subgradient of the scenario-based objective function at
the :th major iteration and the Cth minor iteration is denoted
by 6 (:)

8,C
∈ mH8

8
�̂
(:)
8
(H8 (:+1)
8,C

; b (:)
8,C
), where C = 0, 1, . . . , ) (:)

8
− 1.

Assumption 7. For each player 8 ∈ N , at each major
iteration : and minor iteration C of Algorithm 1, there exists
a 6 (:)

8,C
∈ mH8

8
�̂
(:)
8
(H8 (:+1)
8,C

; b (:)
8,C
) such that the following two

statements hold:
(i) (Unbiasedness) E [6 (:)

8,C
| f{F: , b (:)8, [C ]}] is almost surely

a subgradient of the expected-value augmented objective
Ĵ
(:)
8
(·) at H8 (:+1)

8,C
, where b (:)

8, [C ] B {b
(:)
8,0 , . . . , b

(:)
8,C−1} with

b
(:)
8, [0] B ∅;

(ii) (Finite variance) E [‖6 (:)
8,C
‖22 | F: ] ≤ U

2
6,8
‖k̃ (:) ‖22 + V

2
6,8

a.s. for some positive constants U6,8 and V6,8 .

We refer the reader to the first paragraph of Section IV-A
for the definitions of the stack vector k̃ (:) and the f-field F:
as a reminder. The proposed projected stochastic subgradient
solver for the first player for-loop of Algorithm 1 is given in
Algorithm 2.

The following lemma discusses the convergence rate of



Algorithm 2: Projected Stochastic Subgradient Inex-
act Solver
For each player 8 ∈ N , at the :th major iteration
of Algorithm 1:
Initialize: H8 (:+1)

8,0 B H̃
8 (:)
8

;
for C = 0 to ) (:)

8
− 1 do

Set ^8,C B 2g18
C+2 ;

H
8 (:+1)
8,C+1 B PjX�

8
[H8 (:+1)
8,C

− ^8,C · 6 (:)8,C ];
end
Return: H8 (:+1)

8
B H

8 (:+1)
8,)
(:)
8

.

Algorithm 2 as a minor updating routine inside Algorithm 1.
We use H

8 (:+1)
8,∗ to denote the accurate minimizer of the

expected-value augmented function Ĵ(:)
8
(·).

Lemma 1. Suppose Assumptions 1 to 7 hold. For each
player 8 ∈ N , the step size at the Cth minor iteration is
set to be ^8,C B

2g18
C+2 . Then, for any ) = 1, . . . , ) (:)

8
,

the distance between the approximate solution and the ac-
curate solution satisfies E [‖H8 (:+1)

8,)
− H8 (:+1)

8,∗ ‖22 | F: ] ≤
(2g18)2)−1 (U2

6,8
‖k̃ (:) ‖22 + V

2
6,8
) a.s.

For each player 8 ∈ N , after the :th major iteration
of Algorithm 1 where player 8 implements ) (:)

8
projected

stochastic subgradient steps in Algorithm 2, E
[
‖H8 (:+1)
8

−
H
8 (:+1)
8,∗ ‖22 | F:

]
≤ (2g18)2 () (:)8

)−1 (U2
6,8
‖k̃ (:) ‖22 + V

2
6,8
). Based

on this result, it is straightforward to derive an upper bound
for the approximate error Y (:) B ‖ℛ(k̃ (:) ) −ℛ∗ (k̃ (:) )‖K .
As will be shown later, this upper bound can be treated as a
function of ) (:) B min{) (:)

8
: 8 ∈ N} which we can tune to

provide a desirable sequence of approximation accuracies.

Lemma 2. Consider the error sequence (Y (:) ):∈N generated
by Algorithm 1 using Algorithm 2 as the inexact solver.
Suppose Assumptions 1 to 7 hold, and the updating step
size of the projected stochastic subgradient method of player
8 ∈ N at the Cth minor iteration is ^8,C B

2g18
C+2 . Then

there exist some positive constants Uk and Vk such that the
following relation holds a.s.:

E
[
Y (:) | F:

]
≤ () (:) )−1/2 (Uk ‖k̃ (:) ‖K + Vk). (15)

We define W
(:)
)
B W (:) () (:) )−1/2. From Theorem 2,

it suffices to have the sequence (W (:)
)
):∈N summable and

(‖k̃ (:) ‖):∈N bounded. To this end, we next focus on prov-
ing the conditions needed to guarantee the boundedness
of (k̃ (:) ):∈N and finally derive the sufficient conditions to
ensure the convergence.

Theorem 3. Consider the sequence (k̃ (:) ):∈N generated
by Algorithm 1 using Algorithm 2 as the inexact solver.
Suppose Assumptions 1 to 7 hold, and the updating step
size of the projected stochastic subgradient method of each
player 8 ∈ N at the Cth minor iteration is ^8,C B 2g18

C+1 . In
addition, the sequence (W (:) ):∈N satisfies 0 ≤ W (:) ≤ 1,∑
:∈N W

(:) (1 − W (:) ) = +∞, and the sequence (W (:)
)
):∈N is

absolutely summable. Then (‖k̃ (:) ‖K ) is bounded a.s., and∑
:∈N W

(:)E [Y (:) | F: ] < ∞ a.s. As a result, the sequence
(k̃ (:) ):∈N will converge to a fixed point of ℛ∗ and the
associated sequence (H (:) ):∈N will converge to a v-SGNE
of the problem (3).

V. CASE STUDY AND NUMERICAL SIMULATIONS

In this section, we apply the proposed algorithm to solve
a stochastic Nash-Cournot production game in networked
regimes. Suppose there are # manufacturers/players com-
peting over < different markets. For each player 8 in this
network, it supplies =8 markets with G8 ∈ R=8 units of
commodities respectively. The basic setup is almost the
same as the one considered in [28, Sect. V] except for the
definition of market prices. In this example, the market prices
is defined as %(�G; b8) = F − Σ�G + b8 , which maps the
total quantities of supply �G ∈ R< to the market unit prices,
where � B [�1, . . . , �# ], G B [G8]8∈N , and the uncertainty
is captured by the zero-mean random vector b8 . We omit
the other details for brevity and refer the interested readers
to [28, Sect. V]. Overall, each player 8 ∈ N , given the
supply strategies of others (G−8), aims to solve the following
optimization problem (16):

minimize
G8 ∈X8

E [G)8 &8G8 + @)8 G8 − (F − Σ�G + b8)) �8G8]

subject to �8G8 ≤ 2 −
∑
9∈N−8 � 9G 9 .

(16)

We consider a game network with # = 10 players and
< = 5 markets. Each player 8 has the dimension =8 of
its decision vector chosen uniformly and at random from
{2, 3, 4, 5}. Each entry of vector 2 is fixed to be 2; the local
feasible set of each player 8 ∈ N is the direct product of =8
connected compact intervals [0, 18 9 ] with 18 9 ∼ * [10, 10.1];
each random noise b8 has the distribution * [−0.2, 0.2].
For the remaining parameters, we draw each entry of the
vector F from * [3, 5] and each diagonal entry of Σ from
* [0.5, 1]. Assuming &8 is diagonal, each diagonal entry
of &8 has [&8] 9 9 ∼ * [1, 2], and each entry of @8 has
[@8] 9 ∼ * [0.1, 0.6]. The communication graph consists of an
undirected circle and 5 randomly selected edges. We choose
d` = 10, 31 = 0.02 ⊗ �#=, 32 = 0.1 ⊗ �#<, 33 = 0.5 ⊗ ��=,
and 34 = 0.5 ⊗ ��<, such that the operator R) F̃+ d`2 !=
is a maximally monotone operator and the matrix Φ is
positive definite. By combining these specifications and the
arguments in [28, Sect. V], we can verify the fulfillment of
the technical assumptions.

We fix the parameter (W (:) ):∈N to be 1
2 and choose

the count of minor steps taken per major iteration to be
) (:) = 0.001 × :2.1 + 20, : + 20, and 20, respectively. The
performances of the proposed algorithm are shown in Fig. 1.
We use the thick and semi-transparent lines to illustrate the
real fluctuation of the metrics throughout the iterations, while
using the thin lines to exhibit the simple moving averages
of the metrics with a window size of 50. In Fig. 1, we
let H (:)

9
denote the stack of player 9’s local decision and

local estimates at the :th iteration, and H∗ the generalized
Nash equilibrium of the game. The average of the normalized



Fig. 1: Performances of Alg. 1 in a Nash-Cournot Game

distances to the v-SGNE is presented in Fig. 1(a), where the
unique v-SGNE is computed using the centralized method
in [34]. Fig. 1(b) shows the relative length of the updating
step at each iteration. Fig. 1(c) and (d) exhibit how the sums
of the standard deviations of the local estimates {H 9 } and
{_ 9 } evolve over the iterations, respectively. The curves of
) (:) ∝ :2.1 illustrate a steady convergence towards the v-
GNE as suggested in Theorem 3, while the trajectories of
) (:) = 20 stop decreasing after some iterations. The curves
of ) (:) ∝ : also keep descending yet with a gentler trend
compared with those of ) (:) ∝ :2.1, which suggests the
possibility of some relaxations to the current conditions in
Theorems 2 and 3.

VI. CONCLUSION AND FUTURE DIRECTIONS
In this paper, we study the stochastic generalized Nash

equilibrium problem and propose a distributed stochastic al-
gorithm under the partial-decision information setting based
on solving augmented best-response subproblems induced by
the Douglas-Rachford scheme. The proposed algorithm is
proved to converge to a true variational stochastic generalized
Nash equilibrium if the sequence of inertial step sizes and
the inverse of the number of realizations per major iteration
decrease altogether at a proper rate. This raises the question
if there exists a less conservative bound for this decreasing
rate such that the proposed algorithm can still converge yet
with a faster convergence rate and fewer observations per
major iteration. Another interesting work remains concerning
the convergence rate analysis of the proposed algorithm
when the operators of interest are nonexpansive or merely
quasinonexpansive.
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