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The  South  African  clawed  frog,  Xenopus  laevis,  has  a strong  history  as  a suitable  model  for  environmental
studies.  Its  embryos  and  transparent  tadpoles  are  highly  sensitive  to the  environment  and  their  devel-
opmental  processes  are  well  described.  It  is  also  amenable  for molecular  studies.  These  characteristics
enable  its use  for rapid  identification  and  understanding  of exposure-induced  defects.  To  investigate
the  consequences  of chemical  exposure  on aquatic  animals,  Xenopus  laevis  embryos  and  tadpoles  were
exposed  to  the biocide,  methylisothiazolinone  (MIT).  Frog  tadpoles  exposed  to MIT  following  tail  amputa-
tion  lost  their  natural  regenerative  ability.  This  inhibition  of regeneration  led to a failure  to  regrow  tissues
including  the spinal  cord,  muscle,  and notochord.  This  MIT-dependent  regenerative  defect  is due to  a fail-
ure  to close  the  amputation  wound.  A  wound  healing  assay  revealed  that  while  untreated  embryos  close
their  wounds  within  one  day  after  injury,  MIT-treated  animals  maintained  open  wounds  that  did not
reduce  in  size  and  caused  lethality.  Concomitant  exposure  of  MIT  with  chemicals  containing  thiol  groups
vis such  as glutathione  and N-acetyl  cysteine  restored  normal  wound  healing  and regeneration  responses  in
tadpoles.  Together  these  results  indicate  that exposure  to MIT  impairs  developmental  wound  repair  and
tissue  regeneration  in Xenopus  laevis.  Thus,  this  study  reveals  new  aspects  of MIT  activity  and  demon-
strates  that  Xenopus  laevis  is  a well-suited  model  for facilitating  future  research  into  chemical  exposure
effects  on  injury  responses.

©  2016  Elsevier  B.V.  All  rights  reserved.
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uran frog Xenopus laevis is a molecularly tractable model
ed for biomedical research, including developmental biol-
biology, biochemistry, neurobiology, and regeneration

d Lin, 2014; Gurdon and Hopwood, 2000; Khokha, 2012).
, the development of Xenopus laevis embryos is exter-
, and well understood, facilitating quick identification of
nd molecular pathways (Heasman, 2006). Xenopus lae-
s multi-level studies from the gene to cellular to tissue

smal levels (Grant et al., 2015; LaBonne and Zorn, 2015;
and Liu, 2012). It is also a highly useful, though currently
ilized, model for environmental studies (Berg et al., 2009;
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, 1987; Mouche et al., 2011).
us laevis has a long history as a model for environmen-
ure and related studies. Frog embryos are cultured in
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etri dishes and develop into tadpoles within five days
l., 2000). Moreover, tadpoles are transparent, making it

dentify potential tissue and developmental defects. The
ryo Teratogenesis Assay Xenopus (FETAX) assay is an

ed method to assess developmental toxicity of chemicals
 et al., 1983). It is reliable and gives similar in vivo results as
ian studies (Fort et al., 2000; Leconte and Mouche, 2012).
n, studies of chemicals effects in Xenopus laevis (including
e disrupting compounds, hormones, and environmental
s) have contributed to the understanding of their toxico-
pact (Bevan et al., 2002; Collier et al., 2008; Gao et al.,
ori et al., 2016; Kim et al., 2013; Levy et al., 2004; Li et al.,

mpsett et al., 2013; Zaya et al., 2011).
ic toxicology studies using Xenopus laevis have focused
fying and understanding effects on animal development,
tive health, and environment (Güngördü et al., 2016;
al., 2010; Haywood et al., 2004; Slaby et al., 2016). How-

e may  be additional chemical exposure effects which may
entified readily but which could be of important con-

 for survivability. For example, the tadpole tail is a key
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e for survival. It is not only needed for swimming but
 aid in escape from predator (Hoff and Wassersug, 2000;
rff Hoff and Wassersug, 1986). An inability to heal wounds

 can lead to tadpole death (Ho and Whitman, 2008). Thus,
e responses to injuries may  negatively impact the ability
al not only to heal but also overall health, and the ability

 from predators.
enopus laevis tadpole tail is a complex structure with
rd, notochord, muscle, epidermis, and vasculature (Beck
, 1999). The tail appendage has similar major tissues
tures as a human limb. But in contrast to human limbs,
arval tail has high regenerative ability. It can regenerate
tructures. The tail of a developmental stage 40 tadpole
pproximately five days after fertilization) can be ampu-
. 1B) to assay for regeneration. Following injury, Xenopus

 regeneration is comprised of three major steps: wound
nitiation of regeneration marked by the establishment of
neration bud”, and tail outgrowth and patterning (Tseng
, 2008). Wound healing occurs in the first 0–12 h after

on (hpa) (Ho and Whitman, 2008). After successful wound
n outgrowth called the “regeneration bud” is observed at

y site and contains the tissue-specific stem cells needed
ring the tail (Fig. 1C,D) (Slack et al., 2004). After 24 h,
athways that drive appendage extension, innervation, and
g, are activated (Chen and Lin, 2014; Tseng and Levin,

 seven days, the tail is successfully restored (Fig. 1E Stage
ming tadpole stage) (Tseng et al., 2007).
lisothiazolinone (commonly known as MIT) is a biocide
as a broad-spectrum antimicrobial agent and is used to
e growth of bacteria, fungi, algae, slime, and mold (Collier
0). Found in numerous household and personal products
g wall paint, air conditioners, shampoos, detergents, cos-
tions, and baby wipes), MIT  is used to extend product shelf
dustrial applications, such as water cooling systems and
ge tanks, it is used at higher concentrations to block micro-
th. The noted surge in contact dermatitis (skin reactions)

 been attributed in part to MIT  exposure (De Groot and
er, 1989; Monsálvez et al., 2011). Similarly, occupational

 to MIT  at significantly higher doses than consumer prod-
own to cause severe burns (Gruvberger and Bruze, 1998).
lso been reported to be toxic to aquatic animals including
er fish, daphnia, and Xenopus laevis tadpoles (EPA, 1998;
nd Aizenman, 2012). However, the cellular effects and
ms of MIT  function remain unclear.
ntains an active thiol moiety that reacts with molecules

ntain SH residues (Collier et al., 1990). As MIT  exposure
 potential health issue for aquatic animals and humans,

 few studies on the mechanisms of MIT  action in ani-
els. To date, several reports have examined MIT effects
d cells. It can act as a neurotoxin, inhibiting neural out-

t lower concentrations while inducing apoptosis at higher
 et al., 2002). MIT  also disrupts association of Src kinase

 in cultured neurons (He et al., 2006). In addition, MIT
 is known to induce cell death in human keratinocytes
ttorre et al., 2003). However, the in vivo effects of MIT

 animals remain largely unexamined. A report indicated
blethal concentrations, MIT-exposed Xenopus laevis tad-
wed defective neural behavior (Spawn and Aizenman,

 this study, we demonstrate that Xenopus laevis is a suit-
el for studying the consequences of chemical exposure on
jury responses.
im of this study is to investigate the effects of MIT  on
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e consequence on regeneration, we examined the tail
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xposure, we used molecular markers to examine the cel-
nges on specific tail tissue types. We  then determined
oral requirement for MIT  to inhibit tail regeneration. We
sed whether MIT  exposure causes wound healing defects.
e  hypothesized that by using antioxidants glutathione
N-acetyl Cysteine (NAC) to provide additional thiol groups
t with MIT, these chemicals would protect thiol groups in
llular proteins, rescuing these substrates from MIT mod-
. Thus we  investigated whether presence of antioxidants
nt MIT-induced regeneration defects.

ials and methods

al care and tail regeneration assay

Xenopus laevis frogs were purchased from Nasco
e, WI). Xenopus laevis were grown via approved protocols
elines (UNLV Institutional Animal Care and Use Commit-
ryos were obtained via in vitro fertilization and were

 0.1X Marc’s Modified Ringer (MMR;  0.1 M NaCl, 2.0 mM
 MgSO4, 2 mM CaCl2, 5 mM HEPES, pH 7.8) medium (Sive

00). Tail regeneration assay was performed as described
 al., 2007). In brief, tadpoles at stages 40/41 (Nieuwkoop
r, 1994) were anaesthetized with 0.01% tricaine methane-
. Tails were amputated midway between the cloaca and

 a scalpel blade. After surgery, tadpoles were transferred
 MMR,  allowed to recover, and then cultured in 0.1X MMR
without reagent) at 22 ◦C for seven days and scored for
eration. To quantify and compare regeneration in groups

les treated with different dosages and/or reagents, we
each tail regenerate into one of four phenotype cate-
ll, good, weak, none) as described previously (Tseng et al.,
ll regeneration represents complete reconstitution of the

 all major components (spinal cord, notochord, fin, and
Good regeneration represents a tail with major compo-

 missing some fin tissue. Weak regeneration represents a
p with visible but very little tissue regrowth. None indi-
t no regenerate tissue was  observed. Each experiment was
d three times with batches of tadpoles (n > 30 for each
) resulting from fertilizations of different females.

ents

icals used include methylisothiazolinone (Sigma Aldrich,
MO), glutathione (TCI America, Portland, OR), and N-acetyl
Amresco, Solon, OH). Methlyisothiazolinone, glutathione,
etyl cysteine were dissolved in deionized water to make
utions, which were stored at −20 ◦C. Specific treatment
ations were made by diluting the stock solutions with 0.1X
this study focused on tissue regeneration and wound heal-
icals were used at concentrations that enabled normal

and tadpole development based on external morphol-
entrations of methylisothiazolinone used include 50 �M,
nd 100 �M.  Embryos or tadpoles were transferred to
containing chemicals after experimental surgery and brief

 time. Solutions were not changed during the length of
-day treatment. The effect of regeneration inhibition was
hen MIT  was  changed daily (n = 40 per condition for three
s, p > 0.2).

unohistochemistry
les were fixed in MEMFA  (100 mM MOPS (pH 7.4), 2 mM
M MgSO4, and 3.7% formaldehyde). Antibody stainings

formed according to (Sive et al., 2000). Primary anti-
sed include: 12/101 (1:5; muscle), Xen1 (1:50; neural
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Fig. 1. Tail Regeneration in Xenopus laevis.
(A) A developmental Stage 40 tadpole. (B) A Stage 40 tadpole with tail amputated midway from the tip of the tail to the cloaca. (C) At one day post amputation (dpa), a
regeneration bud is formed as shown in (D, open arrow). (E) By seven days, a fully formed tail is regenerated. Dashed lines show the plane of amputation. Scale bar = 2 mm

Fig. 2. Effects of MIT on Regeneration.
(A-B)  Untre poles 

Quantificat prese
test. * deno  three

tissues), 

ies Hybri
anti-acet
ated tadpoles and tadpoles treated with 50 �M MIT  regenerate tails. (C-D) Tad
ion of tail regeneration showing the effect of MIT  on tail regeneration. Dashed lines re
tes p < 0.01 as compared to control. N = 30 for each treatment, which was replicated
and MZ15 (1:50; notochord) from Developmental Stud-
doma Bank at the University of Iowa (Iowa City, IA), and
ylated �-tubulin (1:500; axonal patterning) from Sigma-

Aldrich  (S
Technolo
diamidin
treated with 75 �M MIT  and 100 �M MIT  fail to regenerate tails. (E)
nt the plane of amputation. Results were compared using Kruskal-Wallis

 times.
t. Louis, MO). Alexa Fluor secondary antibodies from Life
gies (Carlsbad, CA) were used at 1:500 dilution. DAPI (4′,6-
o-2-phenylindole) (Life Technologies), a commonly used
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Fig. 3. Effects of MIT  on Tissue Regrowth.
Tadpole  tails were stained using: (A) spinal cord marker, Xen1, (B) muscle marker, 12/101, (C) notochord marker, MZ15 and (D) nerve marker, anti-acetylated tubulin.
DAPI was  used to visualize DNA. Compared to untreated tadpoles (A1-A2), tadpoles treated with MIT  (A3-A4) lack spinal cord regrowth after amputation. Muscles also
begin  to de hord g
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nt DNA stain that binds strongly to A-T regions, was used
ear stain for cells in tail regenerates. Each experiment
ormed three times with tadpoles (n > 10 for each anti-
ulting from fertilizations of different females. Images were
using a Zeiss Axio Imager 2 fluorescent microscope.

oral treatment

ess when exposure of MIT  is most critical for disruption
eneration, tadpoles were exposed to 75 �M MIT  for dif-

rations of time. To exclude the possibility that MIT  effects
fter its removal, temporal experiments were performed

IT  was added at specific time points (12 and 24 hpa) after
tation. Each experiment was performed three times with
f tadpoles (n > 30 for each condition) resulting from fer-
s of different females.

nd healing assay

il regeneration assay can be used to detect deficiencies
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2.6.  
irectly test for impairment in wound closure, a classical
aevis embryo wound healing assay (Rajnicek et al., 1988;

 al., 2005) was used. Frog embryos are able to heal
ction and both the head and tail halves continue to

MIT  co
containin
residues 

ols in vit
rowth is also inhibited in MIT-treated tadpoles (C3) as compared to the
 treated with MIT  (D3), as compared to untreated tadpoles (D1). Dashed

independently (Rajnicek et al., 1988). Embryos at Stage
de-vitellinized and allowed to heal superficial nicks that

 occurred during devitellinization. Once healed, embryos
sversely bisected into equal halves using a scalpel blade.

 halves were transferred to control plates (n = 10) and
aining plates (n = 10 per treatment). MIT concentrations

ent plates included 50 �M and 75 �M.  Experiment was
d three times with embryos from three different fertiliza-
ges were acquired using a Zeiss V20 Stereomicroscope to

und areas at indicated time points post bisection. Wound
ents were obtained using Zen software (Zeiss). For each

e total surface area of the initial wound and individual
reas at specific time points were outlined and total pixel
surement obtained for each image. To determine the per-
f wound healed, the wound area at a specific timepoint

racted from the total initial wound area at the injury site;
ber was  then divided by the total initial area of the bisec-

xidant treatment
ntains an active sulfur moiety that reacts with molecules
g sulfhydryl (SH) groups, such as those found in cysteine
(Collier et al., 1990). MIT  also reacts with protein thi-
ro (Frerot et al., 2013). These observations indicate that
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 to MIT  may  cause covalent modifications that alter pro-
tions. The antioxidants N-acetyl cysteine and glutathione
d at 75 �M,  a 1:1 molar ratio to MIT. Each chemical was
parately to the experimental plate. Each experiment was
d at least three times with tadpoles provided by three
fertilizations from different females and males. Each repli-
n ≥ 30 for control and each treatment plate.

stical analysis

ata from tail regeneration assay scoring was used to com-
extent of tail regeneration in control vs. treatments as
y described (Tseng et al., 2010). Comparison of two treat-
as analyzed with Mann–Whitney U test for ordinal data

 ranks, using normal approximation for large sample sizes.
treatments were compared using a Kruskal–Wallis test
n’s Test corrected for tied ranks post-hoc. Data obtained
nd healing assays were analyzed using the Student’s t-

s

egeneration

 tadpoles were exposed to MIT  after tail amputation,
ed to regenerate tails (n > 30 per treatment, p < 0.01)

ontrol, untreated tadpoles regenerated tails at almost
. 2A). Tadpoles treated with 50 �M MIT  did not show an
le effect on either regeneration or development (Fig. 2B).

, 75 �M MIT  and 100 �M MIT  exposure both mostly
egeneration (Fig. 2C-D) (p < 0.01).

ts on cellular regeneration

h post amputation (hpa), differences in nerve innerva-
cle formation, and notochord and spinal cord regeneration
mined using antibodies that identify these specific tissues
shed lines indicate amputation site, yellow arrowheads
issing tissues). Control untreated tadpoles with ampu-

 showed spinal cord tissues extending into the regenerate
2), whereas 75 �M MIT-treated tail stumps lacked spinal

enerative outgrowth (Figs. 3A3-4). Control tail regen-
o contained new muscle, whereas 75 �M MIT-treated

ps showed muscle degeneration at the amputation site
 Fig. 3B1 and Fig. 3B3). Similarly, control tail regener-
ained new notochord tissues, but 75 �M MIT-treated tail
id not (compare Fig. 3C1 to Fig. 3C3). Lastly, control

 regenerating tails showed strong nerve innervation into
y growing tail tissues (Fig. 3D1). In contrast, 75 �M MIT-
dpoles showed a lack of similar innervation into the injury
3D3).

oral requirement for MIT

tail regeneration assay, there is a high level of mortality at
M MIT  level (62% mortality compared to 7% for untreated
n ≥ 30 per condition) and most tadpoles did not survive for
ion of the seven-day assay. Tadpoles that had undergone
tation were placed together with tadpoles carrying intact
a 100 �M MIT  environment. The uncut tadpoles showed
s of lethality as compared to the injured tadpoles.
netics of tail wound healing in both control untreated and
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Fig. 5. Effects of MIT  on Wound Healing.
Stage  25 embryos were treated as follows: (A) control, (B) 50 �M MIT, or (C) 75 �M
MIT. Wound borders are outlined in red. Wounds at one hour of untreated embryos
(A1),  50 �M MIT  (B1), and 75 �M MIT  (C1). Wounds at three hours of untreated
embryos  (A2), 50 �M MIT  (B2), and 75 �M MIT (C2). Wounds at 24 hpa of untreated
tadpoles  (A4), 50 �M MIT  (B4), and 75 �M MIT  (C4); n = 10 per treatment, p < 0.01.
Embryos shown in (C3) do not survive past six hours. (D) Quantification of wound
closure area
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Fig. 6. Effects of Thiol-Containing Compounds on MIT  Treatment.
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