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reported preferences are strategic variables. We in-
vestigate the incentive and stability properties of soul-
mate mechanisms. In contrast to prior literature, we do
not impose conditions that ensure IMS-completeness.
A fundamental result is that, (1) any group of players
who could change their reported preferences and mu-
tually benefit does not contain any players who were
matched as soulmates and reported their preferences
truthfully. As corollaries, (2) for any IMS-complete
profile, soulmate mechanisms have a truthful strong
Nash equilibrium, and (3) as long as all players mat-
ched as soulmates report their preferences truthfully,
there is no incentive for any to deviate. Moreover, (4)
soulmate coalitions are invariant core coalitions—that
is, any soulmate coalition will be a coalition in every
outcome in the core. To accompany our theoretical
results, we present real-world data analysis and simu-
lations that highlight the prevalence of situations in
which many, but not all, players can be matched as
soulmates. In the Appendix we relate IMS to other
well-known coalition formation processes.
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1 | INTRODUCTION

This paper studies a coalition formation procedure we call Matching Soulmates. To introduce
the framework of our model and the results, let us begin with a simple 7-person example.

Alice would rather be with Alex than anyone else. Alex feels the same way about Alice.
They are soulmates. Since they would be willing to leave any other partners to be together, they
are a threat to the stability of all matching that does not pair them.

Bertie and Ben are not so smitten; Ben would rather be with Alice than anyone, and Bertie
with Alex. As long as Alice and Alex are paired, Bertie and Ben are soulmates in a conditional
sense. As long as Alice and Alex are paired, Ben and Bertie threaten the stability of any
matching in which they are not paired.

Casey, Devin, and Eddie would rather be matched with any of the previously introduced
players. But suppose that among the three, Casey would prefer to be with Devin, Devin would
prefer to be with Eddie, and Eddie would prefer to be with Casey; no pair of these three players
are (conditional) soulmates.

We refer to the process by which Alice and Alex and then Bertie and Ben are matched by
iterated matching of soulmates (IMS) and, when all players can be matched by IMS, we say that
preferences are IMS-complete. While the example considers only a simple model matching pairs
of players, our work applies to coalition formation models in which players have preferences
over arbitrary sets of coalitions of which they are members.

Since Banerjee et al. (2001), this process has been used in a number of papers albeit without
being named or with a different name.' Our work differs from prior literature in that we do not
impose conditions on the model to ensure IMS-completeness.

Another seminal paper is Papai (2004) which asks, in a coalition formation model, whether the
core is unique, consisting of only one partition of the set of players.” Papai demonstrates that a
necessary and sufficient condition on the environment for uniqueness of the core under any pre-
ference profile in that the environment is such that any two admissible coalitions have at most one
member in common and permissible coalitions do not form a cycle, the single-lapping property. This
property ensures that any preference profile in that environment is, in our words, IMS-complete.
Papai continues to show that in a strategic form of her model, the single-lapping property ensures the
existence of a strategy-proof equilibrium; players have no incentive to misrepresent their preferences.

Yn fact, the process is even older. Banerjee et al. (2001, Section 6.5) show that in the context of a housing market
(Shapley & Scarf, 1974), if the players are endowed with appropriate preferences over coalitions of players, then top
trading cycle is equivalent to IMS (in our terminology).

2Appendix A.1 carefully relates several conditions in the literature ensuring nonemptiness of the core.
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The results of Banerjee et al. (2001) and Péapai (2004) are beautiful and important to our
understanding of coalition formation. Their results, however, require strong restrictions. These
restrictions rule out our example above. It is not hard to imagine situations where some, but not
all, players can be matched as soulmates, such as marriage models or roommate models with
cycles.

Our paper breaks from the prior literature in that we consider the properties of mechanisms
that match soulmates, without imposing further restrictions on the model. We consider both
situations where preferences are IMS-complete and ones where preferences do not necessarily
satisfy IMS-completeness. We next list a number of our results. The statements are somewhat
informal, but each will give the reader a rough idea of the result.

A fundamental result (Proposition 1) is that: Given reported preferences and a mechanism
that matches soulmates, there does not exist a deviating coalition containing soulmates who have
reported their true preferences.

This result has the following important corollaries. First, if preferences are IMS-complete,
then the preference revelation game has a truthful strong Nash equilibrium (Corollary 1).
Indeed, we can go further: for any soulmates coalition C and any player i € C, if all other
players in C have reported their true preferences, then player i's best response is to report their
true preferences (Corollary 2).

Note that Proposition 1 and Corollary 2 are positive results that do not require that all
players can be matched as soulmates. However, for such situations, we also provide a ne-
gative result extending Rodrigues-Neto (2007). If true preferences contain a cycle of odd
length, no mechanism that matches soulmates has a truthful strong Nash equilibrium
(Proposition 2).

We also provide several results about the outcome properties of mechanisms that match
soulmates. First, if the core of a coalition formation problem exists for a particular preference
profile, then the coalitions formed by IMS are part of every core partition (Proposition 3 and
Corollary 3). Further, for any profile, if there are blocking coalitions to a partition produced
by a mechanism that matches soulmates, those coalitions do not contain soulmates (Propo-
sition 5). Similarly, all those matched by IMS prefer their match to being alone (individual
rationality, Corollary 5) and if a partition exists that some subset of players mutually prefers,
that subset contains no soulmates (partial Pareto efficiency, Corollary 5). Again, these results
pertain to preferences profiles that may be IMS-incomplete. On the other hand, if the profile
is IMS-complete, then the set of coalitions produced by IMS is the unique core partition
(Proposition 4), and is individually rational and Pareto optimal (Corollary 4). The core result
is also implied by a result in Banerjee et al. (2001) and generalized to settings with restrictions
to the allowable set of coalitions by inal (2019). We also provide a number of informative
examples.

Since our paper establishes that IMS provides desirable properties for those players that it
matches, even when it cannot match all players, we also study the commonality of soulmates
and conditional soulmates in an empirical analysis of real-world data sets and computational
experiments.

Our empirical analysis studies three settings: a roommate's problem’ using data from a
university social network; a similar problem involving building work teams using data on

*The roommates problem was originally introduced by Gale and Shapley (1962) as an extension of the marriage
problem. For a recent review of the literature related to the problem, see Manlove (2013).
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connections within a consulting firm; and a two-sided matching problem using data from a
speed-dating experiment. By studying these environments, we can understand how mechan-
isms implementing IMS can impact productivity in work environments, and compatibility
between matched groups in social settings. In fact, a surprising number of people can be
matched by IMS; about 25%-40% on average in the three environments and as many as 75% for
particular instances of work teams, indicating that IMS may be particularly powerful in pro-
ducing efficient teams in work settings.”

To study how the structure of preferences affects IMS, our computational experiments
analyze how likely players are to be matched by IMS under various preference patterns. We
consider unconstrained preference profiles as well as profiles that are a relaxation of reciprocal
preferences,” and profiles that are a relaxation of common-ranking. While IMS-complete pre-
ferences are rare among unconstrained preferences, they are quite common when preferences
exhibit strong reciprocity or are close to commonly ranked.

These results shed additional light on settings where IMS can be particularly effective. For
instance, in work settings, strong complementarities in worker strengths and expertise may be
reflected in highly reciprocal preferences that would lead many teams to be matched by IMS.
This would provide both strong incentive properties to the mechanism and produce highly
productive teams.

The structure of our paper is as follows. In Section 2 we present the general matching
environment as well as several definitions used throughout the paper. In Section 3 we define
IMS formally and provide several examples. We turn to our key results on incentive compat-
ibility and stability in Sections 4 and 5, respectively. Section 6 contains the results of our
computational and empirical analysis of soulmates.

2 | ENVIRONMENT

We closely follow the model of Banerjee et al. (2001), but do not assume that preferences are
known to the mechanism designer. In contrast to Papai (2004) we do not impose restrictions on
the set of permissible coalitions. Instead, we consider unrestricted environments and focus on
situations where preferences are such that some, possibly all, players can be matched as
soulmates.

The total player set is given by N = {1, ..., n}. A coalition is a nonempty set of players
C € 2M\{@}. Each player i € N has a complete and transitive preference >; over the collection
of coalitions to which she may belong, denoted C; for player i. Coalition formation problems
with this feature are often called “hedonic”, and this property may be understood as requiring
that there are no externalities in the group-formation process. As the notation >; suggests, we
assume that preferences over coalitions are strict.

The set of i's possible preferences is D;. A coalition C € C; is acceptable for i if C = {i} or
C > {l}

A profile (of preferences) > € D = X;enD; is a list of preferences, one for each player in N.
Given profile > € D and any subset S C N, the subprofile (of preferences) for players in S is
denoted by >s € Ds = X;esD;. As is customary, we let >; = >y

“The proportions depend on how indifferences are broken.
>We consider profiles where player i's top k partners also list i among their top k partners. We refer to these as k-
reciprocal profiles.
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The domain of possible true profiles is R C D. In general, the domain of true profiles R
need not be equal to D. Although a preference >; € D; may be a “conceivable” preference for
i, > need not be player i's preference in any true profile > € R.° It is also possible that,
although all preferences >; € D; are i's true preference for some profile > € R, some profiles
(>, >;) with > ; # > ; are not elements of R because true preferences are interdependent. (That
is, <_; cannot be the subprofile for players in N\{i} when i's preference is >;. See, for example,
the domains of k-reciprocal profiles in Section 6.3.)

A coalition structure 7 is a partition of N. For any coalition structure 7 and any player
i € N, let ; denote i's coalition of membership, that is, the coalition in 77 which contains i.

A (direct coalition formation) mechanism is a game form M that associates every reported
profile > € D with a coalition structure 77 € II (IT is the set of all coalition structures). For
every i € N, the set of preferences D; is i's strategy space for the mechanism M. Because
mechanisms are simultaneous game forms, D must be the Cartesian product of the sets D;;
simultaneity makes it impossible for any player or group of players to condition their reports on
the report of other players.’

Together, a pair (M, >), where > € R is a profile of true preferences, determines a pre-
ference revelation game. Again, the strategy space of a player i in this game is the set of her
reported preferences D;. Once profile > € D is reported, the mechanism M determines a
coalition structure, denoted M (>). The coalition containing player i is denoted M;(>); we say
that M matches i with M; (> ). Each player i evaluates their assigned coalition according to their
true preference >;.

This model of direct coalition formation mechanisms generalizes many common matching
environments. When mechanisms are individually rational, restrictions on the collection of
feasible coalitions can often be translated into restrictions on the domain of preferences by
forcing infeasible coalitions that contain i to be “unacceptable” for i (i.e., ordered strictly below i
given >;). As an example, in our environment, the roommates problem is obtained by restricting
D to the set of profiles in which only singletons and pairs of players are acceptable. In the
marriage problem (Gale & Shapley, 1962), only singletons and pairs of players with a player
from each side of the market are acceptable. In the college admission problem (Roth, 1985),
D is such that only coalitions containing a single college and some (or no) students are
acceptable (and that students are indifferent between any two coalitions with the same college).

3 | ITERATED MATCHING OF SOULMATES
Given > € D, a coalition C € 2N is a first-order soulmate coalition if

C> C' forallie C andall ¢’ € C\C. €Y)

The process of IMS involves repeatedly forming (first-order) soulmates coalitions from player
sets decreasing in size as coalitions of soulmates are formed.

®For example, a preference >; in which only {i} is acceptable for i is conceivable. However, the mechanism designer may
believe that i's domain of true preferences R contains preferences in which at least one pair {i, j } is acceptable for i.
“Such conditioning would require M to be a sequential mechanism, which is not allowed in this paper. Recall that,
unlike the space of strategy profiles D, the domain of true profiles R needs not be Cartesian (see above).
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While no ordering is required in the formation of soulmates coalitions, it is easiest to
describe IMS as if it were a dynamic process. In the first round, given a profile of reported
preferences, the mechanism forms soulmates coalitions. The members of these coalitions prefer
their assigned coalition to all others. In the second round, the mechanism forms soulmates
coalitions among the players who are not assigned to coalitions in the first round, and so forth.
Formally, the process of IMS is defined as follows.

Round 1. Form first-order soulmates coalitions (i.e., coalitions satisfying 1). Denote the col-
lection of these coalitions by S;(>). The set of players who belong to a coalition in
S1(>) is denoted by N;(>). These players are called first-order soulmates.

Round r.Form coalitions of first-order soulmates among the players who are not part of a
coalition that forms in any round preceding round r. Call these coalitions rth-order
soulmates coalitions and denote the collection of these coalitions by S,.(>). The set of
players who belong to a coalition in S,(>) is denoted by N, (>). These players are
called rth-order soulmates.

Formally, given any integer r, the rth-order soulmates coalitions are the coali-
tions C that contain no players from Uj-;%Nj(>) and are such that

C> €' foralli € C andall C' € C\C with C' n (UiZINi(>)) = @.

End. The process ends when no coalition forms in some round r*, that is,
Sr*(>) = .

For convenience, we will denote the collection of coalitions U;’;—llsj(>) formed by
this process as IMS(>). We refer to any player who is matched by IMS as a soulmate,
and to every coalition that forms under IMS as a soulmates coalition (or coalition of
soulmates).

A mechanism M is a first-order soulmate mechanism if for every > € D, every first-order
soulmates coalition forms under M (i.e., S;(>) € M (>)). Similarly, a mechanism M is a
soulmate mechanism if for every > € D, the coalitions that form under IMS form under M
(ie., IMS(>) C M(>)).

3.1 | Examples

Our next examples illustrate the process of IMS for particular profiles. Though preferences in
our environment are over coalitions to which a player might belong, to save space in examples
below we will often express these as the player's preferences over partners.

Example 1 (Formation of parliamentary groups). A Left (L), a Center (C), a Right (R),
and a Green (G) party have to form parliamentary groups. Their preferences form a
roommate’s profile: (i) every party prefers a coalition of two to being alone, and (ii) every
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party prefers being alone to being in a coalition of more than two players. The parties
have the following preferences over partners

R: C > G > L,
C: R > G > L,
G: L > C > R,
L: C > G > R.

If we apply IMS to this profile, coalition {R, C} forms in the first round, and coalition
{G, L} forms in the second round.

Example 2 (Marriage, aligned women and cyclic men). In a marriage profile (i)
N=MuU W, (ii) every woman w € W (resp., man m € M) prefers being in a pair with a
man m (resp., woman w) to being alone, and (iii) every woman w € W (resp., man
m € M) prefers being alone to being in any coalition different from a pair with a man m
(resp., woman w). Consider the following profile of preferences over partners

. w w . m m

Wi my >y mp > g, nmp: Wy >y Wy >y Ws,
. w w . m m

Wy, My >2 my >2 ms, ny: Wwp >2 w3 >2 wiy,
. w w . m m

Ws3. my >3 my, >3 s, mz: Wz >3 Wp >3 W

In the first round of IMS, {m;, w;} forms. In the second round, given that m; has already
been matched, {m,, w,} is a coalition of soulmates and forms. In the third round, given
that m; and m, have already been matched {ms, w3} is a coalition of soulmates and forms.
It is easy to see how this example extends to larger sets of players.

Some famous coalition formation mechanisms are soulmate mechanisms. This is the case,
for example, for the deferred acceptance (DA) mechanism in two-sided matching. As we show
in Section 5, this follows from the well-known fact that DA always selects a core partition. In
contrast, despite being a first-order soulmate mechanism, the immediate acceptance (IA) me-
chanism (or Boston mechanism; Abdulkadiroglu & Sonmez, 2003) also used in two-sided
matching is not a soulmate mechanism.

Example 3 (IA is not a soulmate mechanism). Consider the following profile of
preferences over partners in a marriage profile.

wy: m > my
’ my: wy > ow, > ows,

w
Wy nmy >, ny
’ my: wy >0 ow, > ws

. w
w3l nmy >3 m,

In the first round of IA, women propose to their favorite man, and men immediately
form a coalition with the woman they like best among the women from whom they
receive a proposal (hence the name “immediate acceptance”). Thus, at the end of the first
round, coalitions {wy, my} and {w;, m,} have formed. In the subsequent round, there are
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no more men available to form a coalition with w,. Thus, the coalition structure selected
by IA is {{w), mi}, {ws, my}, {w,}}.

In the first round of IMS, only coalition {wy, m} forms. Coalition {w,, m,} forms in the
second round followed by coalition {ws} in the last round. Hence, the coalition structure
selected by IMS is {{w1, my}, {w,, m,}, {ws}} which differs from that selected by IA.

3.2 | IMS-complete profiles

A profile > € D is IMS-complete if all players match through IMS. All the profiles in
Examples 1-3 are IMS-complete, although it is not hard to construct IMS-incomplete profiles
(see Example 5). In the literature, two important classes of IMS-complete profiles are:
(1) profiles satisfying the common-ranking property (Farrell & Scotchmer, 1988)% and (2)
profiles satisfying the top-coalition property (Banerjee et al., 2001). A profile satisfies the
common-ranking property if, for any two coalitions, the players in the two coalitions have the
same preferences over these two coalitions.” A profile satisfies the top-coalition property if for
every subset S C N, there exists a coalition C* C S which is preferred by all its members to any
other coalition made of players from S.'” The common-ranking property implies the top-
coalition property, which itself implies IMS-completeness. We illustrate the relationship be-
tween the three conditions in Figure 1. See Appendix A.1 for a more complete analysis of the
relationship between IMS-completeness and other profile conditions in the literature.""

While profiles satisfying the top-coalition property are IMS-complete the converse is not
necessarily true.'” To gain intuition why, consider a profile in which IMS completes in two
rounds. This implies that there is a coalition C; and a coalition C, such that (i) C; is a coalition
of first-order soulmates in N, (ii) C, is a coalition of first-order soulmates in N\C;, and (iii)
C; U C, = N. The top-coalition property is much stronger as it requires that, for any coalition C,
there be a coalition of first-order soulmates in N\C. This is illustrated more concretely in
Example 1, where the profile is IMS-complete but does not satisfy the top-coalition property
because there is no coalition of first-order soulmates in {C, G, L}."*

8Pycia (2012) leverages the fact that a condition similar to common-ranking (and thus IMS-completeness in our
terminology) is implied when all preference profiles in a domain are pairwise-aligned and the domain is sufficiently
rich. We discuss this further in Appendix A.1.3.

gFormally, there exists an ordering > of 2V such that for all i € N and any C, C’' € C;, we have C > C’ if and only
if C>C'.

19See Banerjee et al. (2001) for examples of games from the literature that feature profiles satisfying the common-
ranking and top-coalition properties.

" Appendix A.1 discusses several other conditions studied in Bogomolnaia and Jackson (2002) that guarantee the
existence of a core coalition structure in our environment (including a weakening of top-coalition introduced in
Banerjee et al., 2001). Of these conditions only weak consecutiveness is implied by IMS-completeness. Appendix A.1 also
studies four additional conditions for the existence of a core coalition structure introduced by Alcalde and Romero-
Medina (2006) and the acyclicity condition introduced by Rodrigues-Neto (2007). IMS-completeness is independent of
any of these last conditions.

In Section 6, we present computational results on the size of the overlap between IMS-complete profiles and profiles
with the top-coalition property.

3Another approach to guarantee that IMS matches all the players is to constrain the set of feasible coalitions. Papai
(2004) shows that if the collection of feasible coalitions satisfies a property she calls single-lapping, then IMS matches all
players.
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FIGURE 1 Venn diagram of the profile conditions. A dot indicates that the section of the Venn diagram is
nonempty. The inclusion relationship is trivial. For examples of profiles of type A see Banerjee et al. (2001,
Section 6). For an example of a profile of type B, see Banerjee et al. (2001, Game 4). Example 1 in this paper is a
profile of type C. Example 5 in this paper is a profile of type D (any other profile for which the core is empty
would also be an example). IMS, iterated matching of soulmates

4 | INCENTIVE PROPERTIES OF SOULMATE
MECHANISMS

41 | Introduction

In this section, we introduce the desirable properties of IMS with respect to players' incentive to
report preferences truthfully. There are at least two reasons to favor mechanisms that provide
incentives to report preferences truthfully. First, if players do not report preferences truthfully,
then desirable properties that the mechanism satisfies with respect to the reported preferences
might not be satisfied with respect to the true preferences.'” Second, mechanisms with good
incentives to report preferences truthfully “level the playing field” (Pathak & S6nmez, 2008) by
protecting naive players who report preferences truthfully against the manipulations of more
strategically skilled players.'”

4.2 | Main result

Any player who reports her preference truthfully and is matched by IMS can find no alternative
preference report that makes her better off. In fact, as Proposition 1 shows, no group of players
containing a truth-telling soulmate can collude to simultaneously make themselves better off.
Moreover, it follows that the reduced game with player set consisting only of players that are
matched as soulmates has a truthful strong Nash equilibrium.

1 As illustrated at the end of Example 5, a mechanism can, for example, produce a core outcome with respect to the
reported preferences that is not Pareto optimal with respect to the true preferences.
5For empirical evidence on the loss incurred by naive players in mechanisms with low incentives to be truthful, see the
school choice laboratory experiments in Basteck and Mantovani (2016a) and Basteck and Mantovani (2016b). See also
Pathak and Sonmez (2008) for a theoretical argument in the case of school choice.
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Proposition 1 (No soulmates among deviators). Suppose that M is a soulmate
mechanism. For any reported preference profile > € D and set of players W that
contains some soulmates, all of whom report their true preferences, there does not exist a
joint deviation >y, by the members of W that makes every player in W better-off than
reporting >yy.

Proof. Consider a player matched in the first round of IMS. That is,i € N;(>). Ifi is in
W then >; is the true preference of i and they cannot be made better off since N; (>) must
contain their favorite coalition.

Now suppose i is matched in some other round of IMS. i € N;,(>) for k > 1. If i is in
W then >; is their true preference and they can only be made better off being matched
with a coalition that contains at least some players matched earlier in the process of IMS.

Thus, to make i better off, there must be some player i’ matched in an earlier round of
IMS under reported preferences > that is also in W. But, this requires that >; is also the
true preference of i’ and that i’ be made better off. Either i’ € N;(>), in which case i’
cannot be made better off (by the logic above), ori’ € Ni'(>) for k' < k in which case this
logic applies recursively—there must be an i" matched even earlier in IMS who is in W
and who has reported truthfully.

Since the number of players (and thus the number of possible rounds of IMS) is finite,
induction leads to the requirement that for players in W matched in some round k of IMS
for k > 1 to be made better off, W must contain a first-order soulmate who, by the
truthful reporting requirement, cannot be made better off. Thus, either W contains no
players who have truthfully reported and are matched in some round of IMS, or not every
player in W is made better off. O

4.3 | Corollaries of Proposition 1 and strong Nash equilibrium

Proposition 1 implies some remarkable incentive properties for IMS-complete profiles. Perhaps
more significantly, soulmate mechanisms retain these properties in general for the players
matched by IMS, even in profiles that are not IMS-complete. These properties are presented
more formally in Corollaries 1 and 2.

Before presenting these corollaries, we provide the formal definition of strong Nash equi-
librium. Given a true profile > € R, game (M, >) has a truthful strong Nash equilibrium if there
exists no group of players S C N and no reported subprofile >; € Ds different from >g such that

M;(>s, >n\s) > M;i(>s,>n\s) forallieS. (2)

Often,'® we care about whether a mechanism M induces games that have a truthful strong
Nash equilibrium for every profile in the domain of true profiles R. Mechanism M is said to
have a truthful strong Nash equilibrium on domainR if (M, >) has a truthful strong Nash
equilibrium for all > € R.

For IMS-complete profiles, the following is a corollary of Proposition 1.

*The terminology strong Nash equilibrium was introduced by Aumann (1959).
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Corollary 1 (Truthful strong Nash equilibrium). Suppose that M is a soulmate
mechanism. For any IMS-complete profile >, the preference revelation game (M, >) has a
truthful strong Nash equilibrium.

In particular, a soulmate mechanism M always has a truthful strong Nash equilibrium on a
domain R containing only IMS-complete profiles. However, the incentive compatibility
properties extend beyond IMS-complete profiles. Proposition 1 implies that even if a profile is
not IMS-complete, soulmate mechanisms are incentive compatible for all soulmates under the
mutual belief that every soulmate tells the truth.

Corollary 2 (Mutual truthfulness among soulmates). Suppose that M is a soulmate
mechanism. Let S be the set of players who are part of a soulmates coalition in >. For all
i € S there is no profitable deviation from truth-telling under the condition that every other
Jj € S(j # i) tells the truth.

4.4 | Impossibilities

The incentive compatibility implied by Proposition 1 does not generally extend to players who
are not matched by IMS, as we illustrate in the following modification of Example 1:

Example 4 (Potential deviation for nonsoulmates). A Left (L), a Right (R), and a Center
(C) party have to form parliamentary groups. All parties prefer being in a coalition to
being alone. The parties have the following preferences over partners:

Consider for instance IMS-serial dictatorship (IMSSP) which consists in first applying
IMS and then using the serial dictatorship mechanism to determine the assignment of
the players who do not match under IMS (any such mechanism is therefore a soulmate
mechanism). Suppose that the series of dictators is R, C, L. Because IMS(>) = &, we
have IMSSP(>) = SD(>), the outcome of the serial dictatorship mechanism given
profile >. Thus, IMSSP(>) = {{R, C},{L}}. L can deviate by reporting C as their most
preferred partner. This forces IMSSP to form {C, L} as a coalition of soulmates, and both C
and L prefer to their match in IMSSP (>).

Our next result shows that the kind of deviation in Example 4 implies that the remarkable
incentive properties identified in Proposition 1 cannot generally be strengthened much further.
Proposition 2 shows that if R is sufficiently rich, with the possibility of containing the kind of
preference structure in Example 4, any soulmates mechanism M will fail to induce a truthful
Nash equilibrium in game (M, >) for some IMS-incomplete > € R.

A similar incompatibility can be found in Takamiya (2012, Proposition 3), which shows
that, without further restrictions, no two-sided matching mechanism that (in our terminology)
is also a first-order soulmate mechanism is strategy-proof. As we demonstrate below, this
impossibility extends to many settings outside of two-sided matching.
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Notice that there is a cycle of preferences among the three parties in Example 4. Suppose
that M is a first-order soulmate mechanism. Mechanism M can form at most one of the three
pairs {L, R}, {L, C}, {R, C}. But then, any party who is not in one of these pairs can manipulate
by reporting that they are the soulmate of one of the others. Hence, no first-order soulmate
mechanism M has a truthful Nash equilibrium on a domain that includes the type of cyclic
profile in Example 4 (and that allows the aforementioned deviations).

The reason the above profile prevents first-order soulmate mechanisms to have a
truthful Nash equilibrium is that it contains a cycle of the type: 1 likes 2 best, 2 likes 3 best,
and 3 likes 1 best. In roommates problems, this impossibility can only occur in profiles
featuring such cycles. As Rodrigues-Neto (2007) argued, roommates profiles that do not
feature cycles of any length are IMS-complete and therefore have a truthful strong Nash
equilibrium by Corollary 1.

It is possible to extend the cycle condition from Rodrigues-Neto (2007) to general coalition
formation environments. In a general coalition formation environment, soulmate mechanisms
may fail to have a truthful Nash equilibrium for reasons other than cycles, but the presence of a
cycle of odd size is sufficient to induce the impossibility.

Our generalized cycle conditions are defined formally in Appendix A.2. Intuitively, in-
dividually cyclic domains have cycles in which coalitions {1, 2}, {2, 3}, and {3, 1} are replaced by
coalitions of the form {1, 2} U Oy, {2, 3} U O,3, and {3, 1} U Os3;, where the Oj, are set of players
that are allowed to rank coalition {j, h, Oj,} as their best coalition. In Appendix A.2, we also
define cyclic domains in which 1, 2, and 3 are replaced by groups of players N;, N,, and Nj; that
can jointly deviate. Individually odd-cyclic and odd-cyclic domains have cycles of the corre-
sponding type that involve an odd number of coalitions.

Proposition 2 (Impossibilities). (i) If R is an odd-cyclic domain, no first-order soulmate
mechanism M has a truthful strong Nash equilibrium on R. (i) If R is an individually
odd-cyclic domain, no first-order soulmate mechanism M has a truthful Nash equilibrium
on R.

The proof of Proposition 2 generalizes the logic of roommates problem cycle discussed
above and can be found in Appendix A.2.

5 | OUTCOME PROPERTIES OF SOULMATE
MECHANISMS

We now introduce properties of the outcomes of a mechanism, where these properties are
evaluated with respect to the reported preferences. As discussed above, properties with respect
to reported preferences will only reflect properties with respect to true preferences when and
for players who have the incentive to report preferences truthfully. In each case below, either
our results pertain to IMS-complete profiles, in which case truth-telling is a strong Nash
equilibrium by Corollary 1, or the properties are focused on the outcomes of those players who
match as soulmates. By Proposition 1, there are strong incentives for truth-telling among those
who would match as soulmates when reporting truthfully. Thus, for soulmates, the properties
with respect to reported preferences can be seen as reliable with respect to true preferences.
Properties with respect to reported preferences may also be relevant per se to the me-
chanism designer. For example, in school choice, a mechanism that selects a core matching
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with respect to the reported preferences provides a protection against challenges of the
matching in court."’
Before presenting the results, we first define some relevant concepts.

5.1 | Definitions

Given any profile > € D, a core partition is a coalition structure 7* in which no subset of
players strictly prefers matching with each other rather than matching with their respective
coalitions in 77*. Formally, 7z* is a core partition if there does not exist a blocking coalition to ¥,
that is, a coalition C € 2N such that C > 7* for alli € C.

A particular kind of blocking coalitions is singletons coalitions {i}, where i prefers being
alone to being in the coalition to which she is matched by the mechanism. Given any profile
> € D, a partition 7* is individually rational if, for alli € N, 7;* = {i} or 7;* >; {i}. Mechanism
M is individually rational if M (>) is individually rational for all > € D.

Blocking coalitions also exist if the outcome of a mechanism fails to be Pareto optimal.
Given any profile > € D, a partition 7* is Pareto optimal if there exists no other coalition
structure that is preferred by every player to 7z*. Clearly, a core partition 7 is Pareto optimal,
because any coalition in a partition 7z’ that is preferred by every player to 7 is a blocking
coalition to 7. Mechanism M is Pareto optimal if M (>) is Pareto optimal for all > € D.

5.2 | Soulmates and the core

Our first result pertains to the relationship between coalitions formed by IMS and the core of a
matching problem. Soulmates coalitions are coalitions in any core partition. The logic of the
proof is similar to that of Proposition 1.

Proposition 3 (Soulmate coalitions are core coalitions). Given any > € D, let m* be a
partition in the core and let C be a coalition formed by IMS (>). Then C € 1*.

Proof. Again, we use the notation in the definition of IMS. Let 7* be a partition in the core
and suppose that C' € S;(>), the set of first-order soulmates coalitions under IMS(>).
Suppose that Ct ¢ 7*. Then, from the definition of first-order soulmates, since each member of
C! would strictly prefer to be in C' rather than in any other coalition, C' can improve upon 7*;
that is, C! > 7;* for all i € C!. But since 7* is in the core, this is a contradiction; therefore
C! € 7*. Now consider the player set N\C' and suppose that C? € S,(>). The coalition C?
can improve upon any partition of N\C' that does not contain C2. This process can be
continued until no more players can be matched by IMS. O

Proposition 3 does not rule out the possibility that the core is empty. If the core is empty, then
there are no core partitions 77* and Proposition 3 is trivially true. When the core is nonempty,

I7If the selected matching is not a core matching, it could be challenged in courts on the basis that students' priorities at
schools have not been respected. It seems plausible that courts will rule based on reported preferences rather than true
preferences. It is harder to imagine a court ruling in favor of a student who complains about a mechanism's outcome
based on unreported true preferences.
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however, the following is a corollary of Proposition 3. Let I (>) be the invariant portion of the core,
that is, the collection of coalitions that belong to every core partition given >. Then, because every
player belongs to at most one coalition in IMS (>), we have the next result.

Corollary 3 (Soulmate coalitions are invariant core coalitions). Given any > € D, if a
core partition exists, then the collection of coalitions IMS (>) C I(>).

In this sense, IMS (>) captures a part of the invariant portion of the core. Observe that, by
Corollary 3, if there are multiple core partitions but I (>) = @ (i.e., no player matches with the
same coalition in every core partition), then IMS (>) = @.'® Also observe that, if mechanism M
always selects a core outcome when one exists, I(>) C M(>) for all > € D. Thus, by
Corollary 3, IMS(>) C M (>) for any such mechanism M (examples include the famous DA
mechanism in two-sided matching).

Our next proposition can be viewed as a consequence of Corollary 3: If IMS successfully
matches all players, the entire match must be a part of any core coalition structure, implying
that it is the unique core coalition structure. Obviously, this implies that any soulmate me-
chanism M selects the unique core coalition structure for every IMS-complete profile. This also
implies that, for any profile > € D, mechanism M selects the unique core coalition in the
reduced game in which the player set is shrunk to IMS (>) itself.

This result is also implied by the proof of Theorem 2 in Banerjee et al. (2001) which shows
that the top-coalition property is sufficient to guarantee the existence of a unique core coalition
structure. As noted by Banerjee et al. (2001), their proof can be generalized to IMS-complete
profiles (in our terminology).'” The result is also similar to Theorem 1 of inal (2019), which
strengthens the implied extension of Theorem 2 of Banerjee et al. (2001) by allowing restric-
tions on the set of allowable coalitions while preferences are defined over all coalitions.

Proposition 4 (Unique core under IMS-complete Profiles). For every IMS-complete
profile > € D, the coalition structure IMS (>) is the unique core coalition structure.

Example 1 together with Proposition 4 proves that the top-coalition condition is sufficient but not
necessary for the core to be nonempty. The same is true of IMS-completeness. Although, by Pro-
position 4, IMS-completeness guarantees that the core is nonempty and unique, IMS-completeness is
not a necessary condition for the core to be nonempty or unique, as the next example shows.

Example 5. Consider the following profile of preferences over partners in a
roommate's profile.

1: 3 > 2 > 4,
2: 4 > 1 >, 3,
3: 2 >3 1 >3 4,
4: 1 > 2 > 3.

If 1 matches with 2 then 3 matches with 4. In this case 2 and 4 form a blocking
coalition. If 1 matches with 4 then 2 matches with 3. In this case 1 and 2 form a blocking

18See, for example, the Latin Square profile (Van der Linden, 2016) in Klaus and Klijn (2006, Example 3.7).
Theorem 2 as stated in Banerjee et al. (2001) does not imply Proposition 4. However, the proof of Theorem 2 as stated

in Banerjee et al. (2001) also proves Proposition 4 as the authors underline.
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coalition. Thus, 1 must match with 3 in any core partition. It is easy to check that
{{1, 3}, {2, 4}} is indeed the unique core coalition structure (because 1 and 2 match with
their favorite coalition, they cannot be part of a blocking coalition, and 3 and 4 can only
benefit by joining a coalition including 2 or 1, respectively). Clearly, IMS does not match
all the players under this profile as there are no soulmates in N.

5.3 | Soulmates, blockers, and Pareto efficiency

As for incentives to misrepresent preferences, soulmate mechanisms retain part of their sta-
bility on IMS-incomplete profiles. Although coalitions can block the outcome of a soulmate
mechanism in IMS-incomplete profiles, these coalitions can only consist of players that do not
match in IMS.

Proposition 5 (No soulmates among blockers). Suppose that M is a soulmate
mechanism. For any profile > € D, any blocking coalition to M(>) contains only
players who are not soulmates.

Proof. Again, we use the notation in the definition of IMS. Clearly, no coalition W that
blocks M (>) contains any players from N; (>), the set of first-order soulmates.

Now suppose that a coalition W, that blocks M (>) contains a player from N, (>), but
contains no player from N (>). Then, for any player i* € W5 N N,(>), there must exist a
coalition C* € Cj such that (i) C* C W5, and (ii) C* ># M;+(>). However, by definition of
IMS, coalition Mp(>) is i*'s most preferred coalition among the coalitions made of
players in N\N;(>). Hence, by (ii), C* must contain at least one player from N;(>),
which contradicts (i). The same logic extends by induction to soulmates of any order. []

The following are corollaries of Propositions 5.

Corollary 4 (Individual rationality and Pareto optimal). Given any IMS-complete profile
>, the coalition structure IMS (>) is individually rational and Pareto optimal.

Corollary 5 (Partial individual rationality and Pareto efficiency). Suppose that M is a
soulmate mechanism. Given any profile > € D,

(i) any player i who is matched with a coalition that she likes less than {i} is not a
soulmate, and

(ii) for any subset of players S C N such that there exists a partition 75 of S with
75 > M;(>) foralli € S, subset S contains no soulmates.

6 | HOW COMMON ARE SOULMATES?

How common are IMS-complete profiles? How likely are players to be matched into a coalition by
IMS? In this section, we study these questions using empirical analysis of real-world data and
computational experiments. We focus primarily on the roommates environment (with an even
number of players) where every player prefers being in any coalition of two better to being alone.
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While IMS-complete profiles are relatively rare (in large player sets) when the set of profiles
is unconstrained, there is often some structure to preference profiles encountered in real-world
problems. Two particularly natural properties of preference profiles are reciprocity, where
individual preferences for others are mutually correlated, and common-ranking, in which
individual preferences over coalitions are correlated.

We demonstrate that IMS matches many players in three real-world data sets concerning en-
vironments where reciprocal or commonly ranked preferences are at least intuitively likely. Our
computational experiments indicate that when preferences are highly reciprocal, or close to com-
monly ranked, IMS matches many players on average and profiles are often IMS-complete.

6.1 | Soulmates in the field

Here we present empirical results on soulmates in applied problems using real-world data sets
in three different environments.

We first consider a roommates problem using social-network data from 1350 students at a
university. We next consider a similar problem involving matching coalitions of no more than
two in a work setting using data from 44 consultants. Finally, we consider a two-sided
matching problem using data from 551 people attending “speed-dating” events.

Each data set includes information we use as a surrogate for preferences.’’ In each case, ties
occur in the preferences we derive from the data. Because of this, for each set of data, we have
run IMS 1000 times with random tie-breaking each time and recorded the proportion of players
matched in each case. More details about the data sets and the precise assumptions used in
deriving preferences are given below.

In each environment IMS was able to match about a third of players on average and
sometimes substantially more depending on the tie-breaking—up to three-quarters in one
instance of the work teams data. This is far more than would be predicted by our results on
unstructured preferences in Section 6.2.

To illustrate better how IMS is operating in these environments, Table 1 details the number
of individuals left after each round of IMS (for a single random tie-breaking of preferences).
This demonstrates that the interative nature of IMS is far from trivial in practice. In each case,
IMS is able to match at least sixth-order soulmates and, for example, in the roommates data
there are 34 fifth-order soulmates for this particular tie-breaking of preferences.

6.1.1 | University roommates

Our roommates data set comes from a network of 1350 users”' of a “Facebook-Like” social network
at the University of California Irvine. The data are provided by and described in Panzarasa et al.
(2009). The data include, for each user, the number of characters sent in private messages to each
other user. We use this information as a surrogate for the preference data of each user, assuming that
if a user sends more characters to i than to j than the user would prefer to be matched with i over j.
We assume that a user would prefer to be matched with any random partner than to remain alone.

20The data in this section were not used to produce an actual matching. Thus, it is less likely that the derived
preferences are already strategic.
*IThe data set contains 1899 users but only 13,500 have the message data we use to produce preferences.
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TABLE 1 Group size remaining after each round of IMS

Dating Dating

Roommates Work teams (overall) (shared interest)
Start 1350 44 551 551
1 1116 36 469 471
2 1000 34 431 435
3 936 32 407 413
4 896 30 395 397
5 862 28 387 385
6 840 26 385 375
7 826 383 371
8 824 369
9 822

Note: Bold numbers indicate the final size at the end of IMS.

Abbreviation: IMS, iterated matching of soulmates.

Over 1000 trials, an average of 39.0% of users is matched by IMS. The maximum was 39.4%.
Since the data measure characters sent—a relatively fine-grained measure—most of the ties
occur where the users have sent zero characters to each other. This has the effect of rando-
mizing the “bottom” of each user's preference list and does not substantially affect IMS. The
success of IMS in this case is likely due to the reciprocity in the derived preferences.
If i sends many messages to j, then it is likely that j sends many to i.

6.1.2 | Work teams

The work coalitions data set comes from a study of 44 consultants within a single company. The data
are provided by and described in Cross et al. (2004). The consultants responded on a 1-5 scale for
each of the other consultants to the question “In general, this person has expertise in areas that are
important in the kind of work I do.” Here, we assume that if a consultant gave a higher score toi than
to j, the consultant would rather be on a coalition with i. (Again, ties in preferences are broken
randomly.) We again assume that a consultant would prefer to be matched with any random partner
than to remain alone.

Over 1000 trials, an average of 31.3% of consultants is matched by IMS. The maximum was 77.3%.
Since the preference measure is less fine-grained in this case, tie-breaking randomization has a
stronger effect. Here, it is likely that elements of reciprocity and common-ranking are present in the
data. Expertise is a relatively objective measure, while the fact that the question asks about “work I
do” makes two consultants with the same focus likely to give each other higher scores.
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6.1.3 | Speed dating

The speed-dating data set comes from a study of 551 students at Columbia University invited to
participate in a speed-dating experiment. The data are provided by and described in Fisman et al.
(2006). Each participant had a 4-min conversation with roughly 10-20 partners and was then asked to
rate each partner on a 1-10 scale in various aspects. Here, we focus on two ratings: “Overall, how
much do you like this person?” and a shared interest rating. For both, we assume that if a participant
gave a higher ranking to i than to j this participant would rather be matched with i than with j.

The proportion matched depends on the question. On average 26.2% can be matched by IMS
based on the overall ranking but 31.0% can be matched using the shared interest rating. The
maximum for the overall rating was 36.6% and 43.2% for shared interest. The improvement of using
shared interest is likely due to the additional reciprocal structure in shared interest data.

6.2 | Unconstrained preferences

In this section, we compare the proportion of IMS-complete profiles to the proportions of other
types of profiles that imply IMS-completeness, some of which are discussed in the literature:
top-coalition, common-ranking, and reciprocal profiles.

Recall that common-ranking profiles are those in which if player i prefers to be matched
with j over k then every other player prefers to be matched with j over k.”

Reciprocal preferences are preferences such that, for any player i, if i prefers coalition T to
all other coalitions, then for all j € T, j also prefers coalition T to all other coalitions.””

To do our analysis, we randomly generated 10, 000 preference profiles for total player set
sizes n = 4, 6, 8, and 10 and tested the IMS-completeness and the top-coalition property. We
have limited the size of player sets since it is computationally hard to test every subset of
players to determine whether even a particular profile has the top-coalition property. Also, even
the simple problem of counting preference profiles that contain at least some soulmates is a
complex problem, not conducive to standard counting techniques. For some analytical results
on this problem see Appendix A.3.

The proportion of common-ranking and reciprocal roommates profiles is much easier to
count than IMS-complete and top-coalition profiles. The number of common-ranking profiles is
n!. Hence, the proportion —"'_ of common-ranking profiles is very small. Even for total player
sets of size 6 the proportior; is 2.41 x 1071°, There are n!((n — 2)!)"/2 reciprocal profiles. In
comparison to common-ranking, reciprocal profiles are far more abundant. When n = 6 about
a half of 1% of all profiles are reciprocal. However, each of these accounts for only a small
portion of the IMS-complete profiles.

n

22Common-ranking profiles are IMS-complete since they satisfy the top-coalition property. For any subset of the
players, the two most highly ranked players form a top-coalition.

ZReciprocal preferences are always IMS-complete since reciprocity partitions the set of players into coalitions of soulmates.
Because reciprocity requires no structure on preferences other than each player's top choice of coalition, reciprocal
preferences need not have the top-coalition property. Furthermore, the top-coalition property does not require that every
player is in a top-coalition within the entire set of players but only that there is at least one top-coalition. Also,
common-ranking and reciprocal preferences are incompatible since common-ranking requires that everyone has the same
favorite partners while reciprocal preferences require players have unique favorite partners.
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TABLE 2 Approximate proportions of unconstrained profiles meeting each of the conditions from 10,000
randomly generated test-cases

IMS-complete Top-coalition Common-ranking Reciprocal
n=4 0.6249 0.3442 0.0185 0.0741
6 0.3064 0.0087 0.0000 0.0057
8 0.1219 0.0000 0.0000 0.0004
10 0.0460 0.0000 0.0000 0.0000

Table 2 compares the approximate proportions of IMS-complete, top-coalition, common-
ranking, and reciprocal profiles. Top-coalition profiles are only a small portion of IMS-complete
profiles as well. In fact, when the number of players is greater than or equal to 8, there were no
top-coalition profiles among the 10,000 test cases.

Even’ though IMS-complete profiles are far more abundant, they still form a vanishing
subset of profiles under unconstrained preferences. In Sections 6.3 and 6.4, we consider
preference domains endowed with natural structure.

6.3 | Soulmates under relaxed reciprocity

Relaxed forms of reciprocity are natural in some environments: if Alice prefers Alex
to all others, it may be that Alex ranks Alice highly as well. If preferences are purely
reciprocal then the preference profile is IMS-complete, but what happens under relaxed
reciprocity?

To study IMS under different degrees of reciprocity, we now introduce a generalization of
reciprocal preferences, k-reciprocal preferences. For the roommates problem, a profile > is
k-reciprocal if for any two playersi and j, j is ini's top k most preferred players if and only ifi is
in j's top k most preferred players.

Example 6. Consider the following profile of preferences over partners in a
roommate's profile.

1: 3 > 2 > 4,
2:1 > 4 >, 3,
304 >3 1 >3 2,
4: 2 > 3 > 1.

The profile is trivially 3-reciprocal, as there are only three possible partners for each
player. In general, n — 1 reciprocal preferences are unconstrained preferences.

The profile is also 2-reciprocal. For example, player 1's two most preferred partners
are players 3 and 2, and 1 is the most preferred partner for player 2, and the second most
preferred for player 3.

**This proportion can be calculated analytically using the results in Appendix A.3. The true value is 1%66 ~ 0.6296.
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As player 3 is player 1's most preferred partner and 1 is not 3's most preferred partner,
the profile is not 1-reciprocal.

We randomly generated 10, 000 k-reciprocal profiles for each combination of total number of
players n € {4, 6, 8,10} and k € {2, 4, 6, n — 1} (recall that k = n — 1 are unconstrained profiles),
tested each profile for IMS-completeness and recorded the number of players matched by IMS.
Results for N = 10 are shown in Figure 2 and full results are reported in Table A2.

Most 2-reciprocal profiles are IMS-complete. While, as expected, the percentage of IMS-complete
profiles decreases k, a large portion of players can be matched by IMS even with moderate amounts
of commonality. For instance, on average in groups of 10, about half of players can be matched by
IMS. For comparison, on average only about 16% can be matched in unconstrained profiles. Inter-
estingly, for k = 2, 4, and 6, the average proportion of players that can be matched by IMS is nearly
constant as n increases.

6.4 | Soulmates under relaxed common-ranking

We now consider a relaxed form of common-ranking where players' preferences are partially cor-
related. Unlike in Section 6.3, where we study a class of preference profiles, here we will instead study
distributions over preference profiles that can be thought of as “noisy” common-rankings.

In this experiment, we randomly generated 10,000 noisy common-ranking profiles for
N =6, 8, 10 using the following procedure. Each player's preference starts with an underlying
common cardinal vector of utilities over partners. Players' utilities are then perturbed via a
normally distributed “noise” term. A player's new ordinal ranking becomes the player's pre-
ference. The larger the variance of the noise, the larger the deviation of the expected perturbed
preference from the original common-ranking profile.

To make the variance of the noise term informative of the extent of commonality of
rankings, we calibrated variances to target specific amounts of ordinal distance between the
rankings. We measure the distance between any two players' ordinal rankings using the
Kemeny distance (swap-distance; Kemeny, 1959). The Kemeny distance counts the number of
pairwise components which have a different ordering in two preference lists.

In the experiment, we chose noise amounts that correspond to an average Kemeny distance
between any two players ranging from 0.2 to 2 (in 0.2 increments). For instance, d = 1 indicates
that, on average, it takes a “swap” of a single pairwise preference component to transform one
player's preference list into another.”

Figure 3 reports the results for N = 10 and the full results are reported in Table A3. Even
with a moderate commonality, a large proportion of profiles is IMS-complete. For example,
with N = 10, approximately two-thirds of profiles are IMS-complete when the variance in
common-ranking is such that player's preference lists difference by on-average one swap
(d = 1). Approximately one-half of profiles are IMS-complete for d = 2. Interestingly, the
likelihood of a profile being IMS-complete does not decrease much with the size of the total
player set, holding the average distance constant.

*5For example, if the two preferences are 1 > 2 > 3 and 2 > 1 > 3, then the Kemeny distance is one, as swapping
player 2 for player 1 in one of the preferences makes the two preferences identical.
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FIGURE 3 Proportion of players matched and IMS-complete profiles for by level of commonality (D) for
N = 10. IMS, iterated matching of soulmates

7 | CONCLUSION

In this paper, we have provided the first detailed study of IMS. Our paper demonstrates that
IMS is a relevant property regardless of whether IMS can match all players, and even when the
core is empty, as is the case in many environments studied in the literature. For instance, in a
recent paper, Graziano et al. (2020) study housing market scenarios where the core may be
empty, Liu (2019) studies the potential emptiness of the core in matching problems with
participation constraints, and Choi (2021) studies international matching markets between
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workers and entrepreneurs. What sort of results can be obtained if soulmate coalitions are
formed before applying other solution concepts in such models?

It may also be fruitful to extend results about IMS beyond the hedonic matching en-
vironments studied in this paper. For instance, how can IMS be applied to matching
environments with externalities such as those studied in Stamatopoulos (2021) and Gonzalez
et al. (2019)?

Beyond coalition formation, IMS may also have implications for concepts that can be
mapped into problems about the existence or structure of the core in a cooperative game. For
instance, Jackson and Van den Nouweland (2005) study the concept of “strongly stable net-
works” through the use of cooperative game theory and the core. How can the invariant core
properties of IMS be used in studying similar concepts?*®

Club economies seem like another situation in which IMS may provide interesting, new
results. For instance, an innovative paper by Windsteiger (2021) introduces the idea of a sorting
technology, such as clubs, that may facilitate segregation. Do exclusive clubs, for example,
London social clubs (once called “gentlemen’s clubs”) match soulmates in contexts for which
there may be discrimination both by price and by personal characteristics of club members?

While this is all speculative, we conjecture that there will be future research advancing the
application of IMS. We conclude by noting two classic contributions on coalition formation
which may be inspiring: see Gamson (1961) for a discussion of coalitions from a sociological
perspective, and Ray (2007) who provides a broad more recent, game-theoretic approach to
coalition formation problems (See also Chung, 2000; Fripertinger & Schopf, 1999; Greenberg &
Weber, 1986; Kaneko & Wooders, 1982, discussed in the Appendix).
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APPENDIX A

A.1 | Relationship between IMS-completeness and other conditions
A.1.1 | Weak consecutiveness, weak top-coalition, and ordinal balancedness
In this appendix, we analyze the relationships between IMS-completeness and three additional
profile conditions notably studied in Bogomolnaia and Jackson (2002) and Banerjee et al.

(2001). These relationships are represented in Figure A1 and Figure A2. Let us first define these
additional profile conditions.

weakly consecutive

FIGURE Al Venn diagram of the relationship between IMS-complete, weak top-coalition, and other profile
conditions in the literature (when preferences are strict). A dot indicates that the section of the Venn diagram is
nonempty. IMS, iterated matching of soulmates
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FIGURE A2 Venn diagram of the relationship between IMS-completeness, ordinal balancedness, and other
profile conditions in the literature (when preferences are strict). A dot indicates that the section of the Venn
diagram is nonempty. IMS, iterated matching of soulmates

Greenberg and Weber (1986) introduced the concept of a consecutive profile (or game) for
transferable utility games.”” Bogomolnaia and Jackson (2002) adapt it to the nontransferable
case. The following follows Bogomolnaia and Jackson (2002). A coalition C € 2V is consecutive
with respect to an ordering > of the players in N if forall j, k, h € N, [j € C, h € C, and j>k>h]
implies k € C. A profile > is weakly consecutive if there exists an ordering > of the players such
that for every coalition structure 77, whenever a coalition S blocks 7z, there exists a consecutive
coalition S’ that also blocks 7.

Shapley and Scarf (1974) introduced the concept of an ordinally balanced profile, again in
the context of games of transferable utility. Bogomolnaia and Jackson (2002) and Banerjee et al.
(2001) propose equivalent adaptations to the nontransferable case. Here we follow
Bogomolnaia and Jackson (2002) in terms of exposition. A collection of coalitions C C 2N s
balanced if there exists a vector d of positive weights d- such that for each player i € N, we
have Y ccciccide = 1. As Bogomolnaia and Jackson (2002) put it, a profile is ordinally ba-
lanced if for each balanced collection of coalitions, there exists a coalition structure such that
each player weakly prefers her coalition in the coalition structure to her worst coalition in the
balanced collection. Formally, a profile > is ordinally balanced if for each balanced collection of
coalitions C C 2N , there exists a coalition structure 7 such that for each i € N, there exists
C e Cwithi € Csuch thatzm; = C or ; >; C.

Finally, Banerjee et al. (2001) introduce a weaker version of the top-coalition property.
Given a set of players S € 2", a coalition C C S is a weak top-coalition of S if and only if C has
an ordered coalition structure {C, ..., Cl} such that (i) for any i € C' and any T C Swithi € T,
we have C > T and (ii) for any k> 1, any i € c* and any TC S with i € T, we have
[T > Cl= [T N (U,xS™) # @] A profile > satisfies the weak top-coalition property if and
only if for any nonempty set of player S C N, there exists a weak top-coalition C.

*’Games with consecutive coalitions have nonempty cores independently of the payoff functions. Kaneko & Wooders
(1982) provide a characterization of conditions on admissible coalition structures for transferable and nontransferable
games to have this property.
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Any of these three additional properties is sufficient for the existence of a core coalition
structure (Banerjee et al., 2001; Bogomolnaia & Jackson, 2002). We now prove every re-
lationship in Figure Al.

IMS-complete = weakly consecutive. See the first part of the proof of Proposition 1 in
Bogomolnaia and Jackson (2002, p. 211) which proves that the top-coalition property implies
the weakly consecutive property. The proof of this result is easily adapted to show that
IMS-completeness implies the weakly consecutive property.
A. IMS-complete, not weak top-coalition

Consider the following profile of preferences over partners in a roommate's profile

1: 2 > 3 > 4
221 > 3 > 4
301 > 4 > 2
4:1 > 2 > 3

The profile is IMS-complete with {{1, 2}{3, 4}} as the outcome of IMS, but it does not satisfy
any of the properties (i) common ranking, (ii) top-coalition, or (iii) weak top-coalition. The
fact that the profile satisfies neither the top-coalition property nor the weak top-coalition
property follows from {2, 3, 4} not having a top-coalition or a weak top-coalition.
B. Weakly consecutive, not IMS-complete, not weak top-coalition
See the second part of the proof of Proposition 1 in Bogomolnaia and Jackson (2002, p. 212)
which proves that the weakly consecutive property does not imply the top-coalition
property. The example given in that proof is weakly consecutive, but fails (i) to be IMS-
complete, (ii) to be ordinally balanced, and (iii) to satisfy the weak top-coalition property.
C. Weakly consecutive, weak top-coalition, not IMS-complete
Consider the following profile of preferences over coalitions, where -+ indicates that the rest
of the preferences are arbitrary

0 {1,2,3} > {1} >

:{1,2,3} > {2} > ..

(1,3} > {1,2,3} > {3} > ..
1 > 2 > 3

AWy =

Let the ordering of the players be 1>2>3. Every coalition structure except {{1, 3}, {2}} is
blocked by {1, 2, 3}, which is consecutive according to i>. Partition {{1, 3}, {2}} is blocked by {1}
which is consecutive too. Hence every coalition structure that is blocked is also blocked by a
consecutive coalition and the profile is weakly consecutive (the core coalition structure is N).

Also, {1, 2, 3} is a weak top-coalition for {1, 2, 3}, and every other set of players admits one of
its singletons as a weak top-coalition (e.g., {1, 3} has {1} as a weak top-coalition). Hence the
profile satisfies the weak top-coalition property.

However, N does not have a top-coalition, and the profile is therefore not IMS-complete.
D. Weak top-coalition, not weakly consecutive

See the second profile on Bogomolnaia and Jackson (2002, p. 212). As the authors show, the
profile satisfies the weak top-coalition property, but is not weakly consecutive. As N does not
have a top-coalition, the profile satisfies neither the top-coalition property nor IMS-completeness.
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E. Common ranking
See profiles of type A in Figure 1.

F. Top-coalition, not common ranking
See profiles of type B in Figure 1.

G. IMS-complete, weak top-coalition, not top-coalition Consider the following profile of
preferences over coalitions, where -+ indicates that the rest of the preference is arbitrary

:{1,2,3} > {1} >

:{1,2,3} > {2} >

(3,4} > {2,3} > {1,2,3} > {3} > ..
3,4} > {4 >

A W N =

Coalition {1, 2,3} is a weak top-coalition for {1,2,3}. Coalitions {1} or {2} are weak
top-coalitions for any other set of players containing 1 or 2. Finally, {3, 4} is a weak top-coalition
for {3, 4}, and {3} and {4} are weak top-coalitions for {3} and {4} respectively. Hence, the profile
satisfies the weak top-coalition property.

The profile is IMS-complete, with IMS yielding coalition structure {{1}, {2}, {3, 4}}. However
there is no top-coalition for 1, 2, 3.

H. Not weakly consecutive, not weak top-coalition
See profiles of type D in Figure 1 (any other profile for which the core is empty would also
be an example).

We now turn to the elements of Figure A2.

IMS-complete = weakly consecutive. See above.

A. IMS-complete, not ordinally balanced, not top-coalition
Consider the following profile of preferences over coalitions, where - indicates that
the rest of the preference is arbitrary

{1,2} > {1,3} > {1} > ..
{1,2} > {2,4} > {2} > ..
{3,5} > {3,4} > {3} > .. (A1)
{1,4} > {4,5} > {4} > ..
{3,5} > {4,5} > {5} > ..

The profile does not satisfy the top-coalition property because {1, 3,4} does not have a
top-coalition.

The profile does not satisfy ordinal balancedness either, with respect to the balanced
collection BC = {{1, 2}, {3, 4}, {3, 5}, {4, 5}}. Any partition satisfying the balancedness condition
with respect to BC must match {1, 2} and cannot match {3, 4, 5}. But then the player who is left
alone among {3, 4, 5} cannot be better-off than in any coalition in BC.

However, the profile is IMS-complete with IMS vyielding coalition structure

{{1, 2}, {3, 5}, {43}
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B. Weakly consecutive, not IMS-complete, not ordinally balanced
See the first profile on Bogomolnaia and Jackson (2002, p. 212). As the authors show,
the profile is weakly consecutive, but violates ordinal balance. The profile fails to be
IMS-complete as N does not have a top-coalition.
C. Weakly consecutive, ordinally balanced, not IMS-complete
Consider the following profile of preferences over coalitions, where -+ indicates that the

rest of the preference is arbitrary

10 {1,2,3) > {1}
2: {1,2,3} > {2}
30 (1,3} > {1,2,3}
4 1 > 2

{3} > ..
3

For every balanced collection that contains {1, 2, 3}, coalition structure {1, 2, 3} is such that
every player likes a coalition in the balanced collection (namely {1, 2, 3}) at least as much as the
coalition structure. The remaining balanced collection are (i) {{1}, {2}, {3}}, (i) {{1, 2}, {3}}, (iii)
{{1}, {2, 3}}, (iv) {{1, 3}, {2}}, and (v) {{1, 2}, {2, 3}, {1, 3}}. For (i)-(iv), the balanced collection is
itself a coalition structure. For (v), coalition structure {1, 2, 3} is again such that every player
likes {1, 2, 3} better than some coalition in {{1, 2}, {2, 3}, {1, 3}}. Hence, the profile is balanced.

However, N does not have a top-coalition and therefore, the profile is IMS- incomplete.

D. Ordinally balanced, not weakly consecutive
Consider the profile at the top of Bogomolnaia and Jackson (2002, p. 214). As the authors
show, the profile is ordinally balanced and is not weakly consecutive.

E. Common ranking, ordinally balanced
Profile

10 {1,2} > {1} > ..
20 {1,2} > {2} > ..

is trivially both a common-ranking profile and an ordinally balanced profile.
F. Common ranking, not ordinally balanced

See Game 5 in Banerjee et al. (2001).

G. Top-coalition, not common ranking, not ordinally balanced
Consider the following profile of preferences over coalitions which is adapted from

profile Al.

{1,2} >
{1,2} >
{3,4} >
(3,4} >
{3,5} >

{1,3}
2.4
{3, 5}
{4, 5}
{45}

>y
>
>3
>
>s

{1}
{2}
{3}
{4}
{5}

The profile satisfies the top-coalition property. The profile however violates ordinal
balancedness for the same reason profile Al violates ordinal balancedness in A.
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H. Ordinally balanced, top-coalition, not common ranking
Consider the following profile of preferences over coalitions, where -+ indicates that the
rest of the preference is arbitrary

10 {1,2} > {1} > ..
2: {1,2} > {2} > ..
3: {1,3} > {3} > ..

The profile satisfies the top-coalition property with {1, 2} as the top-coalition for both
{1, 2, 3} and {1, 2}, {3} as top-coalition for {3}, {2} as top-coalition for {2, 3} and {2}, and {1} as
top-coalition for {1, 3} and {1}.

1. Ordinally balanced, IMS-complete, not top-coalition
Consider the following profile of preferences over coalitions, where - indicates that the
rest of the preference is arbitrary

{12 > {1} > ..
:{1,2} > {2,3} > {2} > ..
D {3,4) > {3} > ..
:{2,4) > (3,4} > {4 > ..

AW N =

The profile is ordinally balanced. For most balanced collections of coalitions, the balanc-
edness condition is satisfied with respect to the core coalition structure 7* = {{1, 2}, {3, 4}}. If
this is not the case for some balanced collections of coalitions, then this collection must contain
{2, 4} and cannot contain any other coalition that includes player 4. But then {2, 4} must have
weight 1 which means the collection does not contain any other coalition that includes player 2
either. Any such balanced collection satisfies the balancedness condition with respect to
partition 7** = {{2, 4}, {1}, {3}}.

The profile does not satisfy the top-coalition property because {2, 3,4} does not have a
top-coalition.

The profile is IMS-complete with IMS yielding coalition structure {{1, 2}, {3, 4}}.

J. Not weakly consecutive, not ordinally balanced
See Example 5 (any other profile for which the core is empty would also be an example).

Let us finally note that ordinal balancedness and the weak top-coalition property are also
independent of one another, in the sense that there exists profile satisfying one of the properties
but not the other, as proven in Bogomolnaia and Jackson (2002, Proposition 1).

A.1.2 | Alcalde and Romero-Medina (2006)

Alcalde and Romero-Medina (2006) present four conditions that guarantee the existence of a
core allocation. Below, we demonstrate there is no containment relation between IMS-complete
and any of these four conditions. The definitions below follow Alcalde and Romero-Medina
(2006) and are, again, for profiles of strict preferences.
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A profile is union responsive if for every i € N and any two coalitions C, C'N such that
C’ C C, and (' is not the most preferred coalition for i in 2€. we have C > C'.
The following profile is IMS-complete but violates union responsiveness

1: {1} >
20 {1,2} > (2,3} > .. (A2)
30 {1,3} > (2,3} > ..

For example, {2, 3} C {1, 2, 3}, {2, 3} is not the most preferred coalition for 2 in 2123k and
{27 3} >2 {1’ 2a 3}
The following profile is union responsive but not IMS-complete.

1: {1,2} > {1,2,3} > {1,3} > ({1},
2: {2,3} > {1,2,3} > {1,2} > {2}, (A3)
3: {1,3} > {1,2,3} > {2,3} > {3}.

A profile is intersection responsive if for every i € N and any two coalitions C, C'Y, C > C’
impliesCn C" >; C'.

Again, profile A2 is IMS-complete but violate intersection responsiveness. For example,
{1,2} n {2, 3} = {2}, {1, 2} >, {2, 3} but {2, 3} >, {2}). The following variant of profile A3 is
intersection responsive but not IMS-complete.

1: {1,2} > {1,2,3} > {1} > {1,3},
2: {2,3} > {1,2,3} > {2} > {1,2},
3: {1,3} > {1,2,3} > {3} > {2,3}.

A profile is singular if for every i € N there is a unique acceptable coalition C € 2V (recall
that an acceptable coalition C is a coalition for which C >; {i}).

Profile A2 is IMS-complete but not singular. The following profile is singular but not
IMS-complete.

10 {1,2} > {1} > ..
2: {2,3} > {2} > ..
3: {1,3} > {3} > ..

Finally, a profile is essential if for every i € N, there is an essential coalition C' € 2V, that is,
a coalition such that

(i) if C' = {i}, then {i} >, C for any C # {i}, and
(i) if C' # {i}, then
(a) {i} > S if and only if S is not a superset of C’, and
(b) for any two coalitions C, C'V, if C' C C ¢ C’, then C > C'.
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The following variant of profile A2 is IMS-complete but not essential. For example, neither
{1, 2} nor {2, 3} are a superset of one another, but both are acceptable for 2.

1. {1} >
2: {1,2} > {2,3} > {2} > ..
3: {1,3} > (2,3} > {3} > ..

The following profile is essential but not IMS-complete

1: {1,2} > {1,2,3} > {1} > ..
2: 2,3} > {1,2,3} > {2} > ..
30 {1,3} > {1,2,3} > {3} > ..

A.1.3 | Pycia (2012)

Pycia (2012) studies rules for sharing coalition surplus that guarantee the existence of a stable
outcome in a generalized many-to-one matching environment. The relevant condition that
Pycia identifies in the induced preferences is that of pairwise alignment. A profile is said to
be pairwise aligned if for any two i,j € N and coalitions C and C’ both containing i and
j,CxCeCxC

Theorem 1 of Pycia (2012) states that, in this environment, when all potential preference
profiles induced by a sharing rule are pairwise aligned and the domain of induced preference
profiles is sufficiently rich, there is a unique stable outcome when preferences are strict.
The proof of uniqueness (see Pycia, 2012, lemma 5) utilizes the logic of matching soulmates,
leveraging the fact that under these conditions, a relaxed version of common ranking holds
which implies that the profile is IMS-complete.

We note that pairwise alignment (in isolation of the additional domain richness require-
ment) is logically distinct from IMS-completeness. The following profile is IMS-complete (and
Top-Coalition) but not pairwise aligned (due to the preferences of 1 and 2 over {1,2,3} and {1,2}).

1: {1,3} > {1,2,3} > {1,2} > {1},
2: {2,3) > (1,2} > {1,2,3} > {2},
30 {2,3} > {1,3} > {1,2,3} > {3}

The following profile is pairwise aligned but not IMS-complete (due to the top-coalition
cycle):

1: {1,3} > {1,2} > {1,2,3} > {1},
2: {1,2} > {2,3} > {1,2,3} > {2},
30 {2,3} > {1,3} > {1,2,3} > {3}.
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This profile demonstrates the importance of the further condition that Pycia's theorem
imposes: that the profile is embeddable in a rich-enough domain of pairwise-aligned pre-
ferences (see Pycia's assumption R1I).

A.14 | Cyclical roommates profiles Rodrigues-Neto (2007)

For roommates profiles, Rodrigues-Neto (2007) defines an acyclicity condition that strengthens
the “no odd rings” condition from Chung (2000). A roommate's profile is acyclic if there exists
no subset of agents {i(1), ..., i(k)} with k > 3 and i(j) # i(j + 1) for all j € {1, ..., k — 1} such
that

i+ 1) >;i(—1) forallj € {2, ...,k — 1},
i(1) >y i(j — 1),and (A4)
i(2) > i(k).

As Chung (2000) shows, the “no odd rings” condition is sufficient for the nonemptiness of the
core. Because the acyclicity condition from Rodrigues-Neto (2007) strengthens the “no odd
rings” condition, it is also sufficient for the core to be nonempty. In fact, as Rodrigues-Neto
(2007) argues, if a roommate's profile is acyclic, then the profile is also IMS-complete. The next
example shows that the converse is not true. Consider the following profile of preferences over
partners in a roommate's profile

= s~ B~ B
NY
DR W N
NV

Ll A
Y
W N =W

Players 1-3 form a cycle but because 1 and 4 are soulmates, the cycle is “broken” after
soulmates have been matched together and the profile is IMS-complete with IMS producing
partition {{1, 4}, {2, 3}}.

A.2 | Cyclical domains and proof of Proposition 2

In this appendix, we provide generalizations to the general coalition formation environment of
cycle notion defined by Rodrigues-Neto (2007) for roommates profiles (see A4). We then use
these generalizations to prove Proposition 2.

A coalition k-cycle is a collection of coalitions

{C12, Cys-.., Gy} such that C; = N, U N, U O,

for some nonempty Ny, .., Ny CN with NN N, = =N,_, NN, =@
and some (possible empty) O,,, Oy, ..., O,y € N\(N; U -+ U N,)

with O, N 0,3 =0,;,N 05, =+ =0, N O, = @
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For instance, a coalition 3-cycle is a triple of coalitions C;,, C,;, C;; such that

C, =N UN,U O;,,Cy5 =N, UN; U O,3, and C;; = N; UN, U Oy,

with N;, N,, N; and O,,, O,;, O5; satisfying the above conditions. In the roommates profile A2,
the coalition 3-cycle corresponds to the situation in which N, N,, and N, are singletons, and
01, = 053 = 05 = 2.

Let [C > C’ > ... ] represent any preference in which C is ranked first, C’ second, and the
rest of the ranking is arbitrary. A domain R is odd-cyclic if there exists a coalition k-cycle with k
odd such that

foralli e 1\6 and allj € {2, vk — 1},

Ri2{[C> Ca> o | [Cu >t Caxt - [}
forall i € Ny,

R 2 {[Ca > Coerpe = | [Cociie > G > - |}
forall i € N, and

R2{[.Cu >t -]}

forall i € Oy, and all Oy, € {Oy,, ..., Oy}

(A5)

For example, a domain R is odd-cyclic if there exists a coalition 3-cycle such that

Ri2{[Coxl o> o | [Co >t Coxt o |} forallien,

JCin >t C > ]} forall i € N,

JCust >t ]} foraliien,

] } forall i € Oy,

-1 forall i € 0,5,and
]}

forall i € O5,.

In the roommates domain described in the text we have

Ri2{[L2 6,04 - ) [B 0,25 ]}
R, 2{[ 334 1,215 . ],

[(1.2} 53 (2.3} 5 . ]},and
Ry 2 {[{3, 142,30 ] [ 6o st ]}

A domain is individually odd-cyclic if it is odd-cyclic for some N, .., N, with
#N; = -« = #N, = 1.
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Proof of Proposition 2. The proof follows the same logic the argument in example 4 in
the text. The proof is for (i). For (ii), simply replace any joint deviation by players N; by a
deviation from the only i € N; (and truthful strong Nash equilibrium by truthful Nash
equilibrium). In order to derive a contradiction, suppose that M has a truthful strong
Nash equilibrium on R and that M is a soulmate mechanism.

Consider profile = in which (a) players in O,,, ..., O,; have preference >, and (b)
players in i € (N, U --- U N;) have preference > (see the definition of an odd cyclic
profile above). Because R is an odd cyclic domain, there exists such an $ € R. Hence,
because M has a truthful strong Nash equilibrium on R, no coalition of players can
deviate when players report profile >.

This implies that either C;, or C,; must form. Otherwise, N; can jointly deviate by
reporting >fvl, that is pretending they are the soulmates of players in N,.

Suppose that C;, forms. If players in N; are matched with their second-ranked
coalition, they could deviate by reporting >12\,3, that is pretending they are the soulmates of
players in N,. To prevent this profitable joint deviation, the players in N, must be
matched with their best coalition Cj,.

Extending the argument by induction, all coalitions Cy,, Cy, ..., G,y must form, for
any odd j < k. But because k is odd this implies that neither Cy, nor Cy_;y form
(because players in N; are already in Cy, and players in N,_; are already in Cg_y,_1))-
However, players in N,_; are matched with their second-ranked coalition, and the
players in N, can therefore jointly deviate by reporting preference >; in which they are
the soulmates of the players in N, _;.

Similarly, if C,; forms, the players in N; can jointly deviate by reporting preference >
in which they are the soulmates of the players in N,. In both cases, a coalition of players
can deviate when players report >, a contradiction. O

A.3 | The difficulty of counting IMS-complete profiles

In the roommates problem, the players' favorite partners can be represented by an endofunc-
tion f: N - N or its equivalent functional graph (directed 1-forest). A pair of soulmates is a
fixed point of f(f(i)) or alternatively a 2-cycle of its functional graph.

These objects are too complex to be directly counted using standard methods. However,
Fripertinger and Schopf (1999) provide useful results by using Polya enumeration theory. Their
Corollary 6 provides a count of functional graphs without 1 or 2-cycles. Dividing this count by
the number of functional graphs with no 1-cycles (for n players this number is (n — 1)")
provides the proportion of preference profiles (of those where being matched is better than
being alone) for n players in which there are no soulmates. Subtracting this from 1 provides
N(n), the probability that at least some players can be matched during IMS:

1 "D (n-=s) , -1 kel
SR L N Lt o

where Z is the symmetric group cycle index polynomial.
It is possible to use N(n) to find an upper bound on the probability that IMS matches
everyone when preferences are uniform by using the approximation that the preferences
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players have over the remaining players when a pair of soulmates are removed is also uniform.
This overestimates the probability that there will be a set of soulmates in the remaining players
since the fact that a particular player was not just matched with a soulmate implies it is more
likely that her favorite among the remaining players does not also like her best.

Using this bound however, the approximate probability that there are more soulmates to
match after removing the first pair is N(n — 2). Continuing this, the approximate probability
that IMS-completes is the probability that there continue to be “more soulmates to remove” as
the group dwindles from N to 2. This is the product:

Nn) - N(n—2)-N(n—4)---NQ2).
This yields the following bounds,” which are compared to the computed proportions from

Section 6.

A.4 | Computational tables

TABLE Al Bound and computed proportion of IMS-complete profiles

Upper
bound Computed
n=4 0.6296 0.6249
6 0.3330 0.3064
8 0.1624 0.1219
10 0.0755 0.0460

Abbreviation: IMS, iterated matching of soulmates.

TABLE A2 Proportion of players matched and IMS-complete profiles by level of reciprocity (r) and group
size (N)

Proportion of IMS-complete
players matched proportion
r=2 r=4 r==6 r=n-1 r=2 r=4 r==6 r=n-1
N=8 099 0.51 0.30 0.24 0.99 0.39 0.18 0.12
10 0.99 0.51 0.29 0.16 0.99 0.34 0.14 0.05
12 0.99 0.50 0.29 0.12 0.99 0.28 0.11 0.01
14 0.99 0.49 0.29 0.09 0.99 0.23 0.08 0.00
16 0.99 0.49 0.28 0.08 0.97 0.17 0.06 0.00
18 0.99 0.49 0.28 0.07 0.94 0.15 0.04 0.00
20 0.98 0.49 0.27 0.06 0.92 0.12 0.03 0.00

Abbreviation: IMS, iterated matching of soulmates.

ZFor n = 4 this procedure yields the true proportion since there are always soulmates when n = 2.
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TABLE A3 Proportion of players matched and IMS-complete profiles by group size (N) and level of
commonality (k)

Proportion of IMS-complete

players matched proportion

N=6 N=8 N=10 N=6 N=8 N=10
k=02 0.93 0.93 0.94 0.91 0.91 0.91
0.4 0.86 0.88 0.87 0.84 0.84 0.82
0.6 0.82 0.82 0.83 0.78 0.77 0.77
0.8 0.77 0.78 0.79 0.73 0.72 0.71
1.0 0.73 0.74 0.76 0.69 0.67 0.67
1.2 0.70 0.72 0.72 0.65 0.64 0.63
1.4 0.67 0.69 0.69 0.62 0.61 0.58
1.6 0.65 0.66 0.67 0.60 0.58 0.56
1.8 0.62 0.64 0.65 0.57 0.55 0.54
2.0 0.59 0.62 0.62 0.54 0.53 0.51

Abbreviation: IMS, iterated matching of soulmates.





