
Strategic Remote Attestation: Testbed
for Internet-of-Things Devices
and Stackelberg Security Game

for Optimal Strategies

Shanto Roy1(B), Salah Uddin Kadir1, Yevgeniy Vorobeychik2,
and Aron Laszka1

1 University of Houston, Houston, TX, USA
shantoroy@ieee.org

2 Washington University in St. Louis, St. Louis, MO, USA

Abstract. Internet of Things (IoT) devices and applications can have
significant vulnerabilities, which may be exploited by adversaries to cause
considerable harm. An important approach for mitigating this threat is
remote attestation, which enables the defender to remotely verify the
integrity of devices and their software. There are a number of approaches
for remote attestation, and each has its unique advantages and disadvan-
tages in terms of detection accuracy and computational cost. Further, an
attestation method may be applied in multiple ways, such as various lev-
els of software coverage. Therefore, to minimize both security risks and
computational overhead, defenders need to decide strategically which
attestation methods to apply and how to apply them, depending on the
characteristic of the devices and the potential losses.

To answer these questions, we first develop a testbed for remote attes-
tation of IoT devices, which enables us to measure the detection accuracy
and performance overhead of various attestation methods. Our testbed
integrates two example IoT applications, memory-checksum based attes-
tation, and a variety of software vulnerabilities that allow adversaries
to inject arbitrary code into running applications. Second, we model the
problem of finding an optimal strategy for applying remote attestation
as a Stackelberg security game between a defender and an adversary. We
characterize the defender’s optimal attestation strategy in a variety of
special cases. Finally, building on experimental results from our testbed,
we evaluate our model and show that optimal strategic attestation can
lead to significantly lower losses than näıve baseline strategies.

Keywords: Remote attestation · Stackelberg security game · Internet
of Things · Security testbed · Software security

1 Introduction

With the growing number of Internet of Things (IoT) devices around the world,
security has been a significant concern for researchers in the last decade. Due to
c© Springer Nature Switzerland AG 2021
B. Bošanský et al. (Eds.): GameSec 2021, LNCS 13061, pp. 271–290, 2021.
https://doi.org/10.1007/978-3-030-90370-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90370-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-90370-1_15

272 S. Roy et al.

more exposure in a resource-limited environment, IoT devices often do not have
access to the latest security primitives, and a number of security issues includ-
ing various software vulnerabilities (e.g., stack and heap-based buffer overflows,
format-string vulnerabilities) exist due to the usage of unsafe languages like
C/C++ and vulnerable functions [11,17,21]. Adversaries can exploit these vul-
nerabilities to compromise devices by altering the software code or the control
flow. Therefore, from a defensive point of view, device attestation that allows an
organization to verify integrity remotely is a powerful tool [17].

IoT devices are a preferable target for adversaries these days, and organi-
zations are implementing various methods to mitigate these attacks. However,
security measures for IoT devices are different from those for servers, since IoT
devices usually have low-power resource-limited configurations and are often
placed in unknown or unsafe locations. To detect and mitigate attacks, a defender
may employ remote attestation methods to verify the integrity of a program.

While remote attestation methods can be effective at detecting compromised
devices, running attestation can also incur significant computational cost, which
may present a prohibitively high overhead on resource-limited IoT devices. There
are a number of approaches for remote attestation, and each has its unique
advantages and disadvantages in terms of detection accuracy and computational
cost. Further, an attestation method may be applied in multiple ways, such as
various levels of software coverage. Therefore, to minimize both security risks and
computational overhead, defenders need to decide strategically which attestation
methods to apply and how to apply them, depending on the characteristic of the
devices and the potential losses.

In this paper, we address these questions by (1) implementing an IoT testbed
for measuring the detection accuracy and performance overhead of remote-
attestation methods and by (2) introducing and solving a game-theoretic model
for finding optimal remote-attestation strategies. Specifically, we formulate and
answer the following research questions.

Q1. Testbed Development: How to develop an IoT security testbed that
can simulate software vulnerability exploitation and evaluate remote
attestation?

Q2. Remote Attestation Methods: What is the trade-off between the detec-
tion rate and computational cost of various remote attestation methods?

Q3. Optimal Attestation Strategies: How to model the strategic conflict
between a defender and an adversary, and how to find optimal attestation
strategies for the defender?

We answer the first question by describing the design and development of
our security testbed for IoT device attestation (Sect. 3). We discuss the archi-
tecture of our testbed as well as the development of major components, such
as vulnerability exploits and attestation methods. Our testbed enables us to
experiment with software vulnerabilities and exploits and to rigorously evaluate
various attestation methods in terms of computational cost and detection rate.

We answer the second question by studying the detection rate and compu-
tational cost of memory-checksum based remote attestation (Sect. 6). We imple-
ment and evaluate memory-checksum based attestation in our testbed for two

Strategic Remote Attestation 273

example IoT applications. We characterize the trade-off between computational
cost and detection rate, which we then use to develop the assumptions of our
game-theoretic model.

We answer the third question by developing a Stackelberg security game to
model the strategic conflict between a defender and an adversary (Sect. 4). We
formulate the defender’s optimal remote-attestation strategy assuming an adver-
sary who always mounts a best-response attack. We show how to compute an
optimal strategy in various special cases, and we demonstrate through numerical
examples that optimal strategies can attain significantly lower losses than näıve
baselines. To the best of our knowledge, our model and analysis constitute the
first effort to provide optimal remote-attestation strategies.

Organization. The rest of the paper is organized as follows: Sect. 2 provides nec-
essary background information. Section 3 discusses the design and development
details of our IoT security testbed. Section 4 introduces the attacker-defender
model based on Stackelberg security games. Section 5 provides analytical results
characterizing the defender’s optimal attestation strategy. Section 6 presents
experimental results from our testbed as well as numerical results on the optimal
attestation strategies. Section 7 gives a brief overview of related work followed
by our concluding remarks and future directions in Sect. 8.

2 Background

ARM processors are very widely used in IoT platforms. Therefore, we develop
an ARM-based IoT security testbed to experiment with exploitation and remote
attestation on ARM devices. Here, we provide a brief overview of IoT device
vulnerabilities, remote attestation methods, and the Stackelberg game model.

2.1 Software Vulnerabilities and Exploitation in IoT Devices

Adversaries can take control of an IoT device by hijacking the code execution flow
of an application and injecting arbitrary executable code into its memory space.
For example, an attacker can use stack- or heap-based buffer overflow or for-
mat string vulnerabilities to inject malicious executable code into a process. By
injecting executable code, the adversary can alter the functionality of an appli-
cation (e.g., providing a backdoor to the adversary or causing harm directly).
While the mitigation for these attacks may be well established in the server and
desktop environment, the unique design characteristics of resource-constrained
embedded devices makes it challenging to adapt the same defenses techniques.
For example, many deeply embedded devices often do not support virtual mem-
ory, which is essential for address space layout randomization (ASLR).

2.2 IoT Remote Attestation

Remote attestation establishes trust in a device by remotely verifying the state
of the device via checking the integrity of the software running on it. Remote

274 S. Roy et al.

attestation methods can be divided into two main categories: hardware and soft-
ware based. Hardware-based attestation requires additional dedicated hardware
(e.g., Trusted Platform Module) on the device [1]. Deploying dedicated hardware
can incur additional cost in terms of hardware cost and power consumption,
which are often prohibitive for inexpensive or low-power devices. In contrast,
software-based attestation requires a software prover on the device, which per-
forms specific computations (e.g., memory- or time-based checksum [13,14]) and
returns the result to the verifier. Note that there are also hardware-software co-
design hybrid platforms for remote attestation [10]. In this paper, we focus on
software-based remote attestation.

Steiner et al. categorized checksum-based memory attestation in terms of
evidence acquisition (software-based, hardware-based, or hybrid), integrity mea-
surement (static or dynamic), timing (loose or strict), memory traversal (sequen-
tial or cell/block-based pseudo random), attestation routine (embedded or on-
the-fly), program memory (unfilled or filled), data memory (unverified, veri-
fied, or erased), and interaction pattern (one-to-one, one-to-many, or many-to-
one) [17]. Memory checksums can be generated based on sequential or pseudo-
random traversal. In sequential traversal, each program memory cell is accessed
in a sequential order. In contrast, in pseudo-random traversal, memory is
accessed in a random cell-by-cell or block-by-block order. The effectiveness of
pseudo-random traversal depends on the probability that each cell has been
accessed at least once.

2.3 Stackelberg Security Games

A Stackelberg security game (SSG) is a game-theoretic model, where typically a
defending player acts as the leader, and the adversarial player acts as the follower.
The leader has the advantage of making the first move, while the follower has the
advantage of responding strategically to the leader’s move. Stackelberg security
games have been successfully applied to finding optimal defensive strategies in
a variety of settings, both in the cyber and physical domain [16]. For example,
SSG have helped researchers and practitioners to address a security issues such
as security-resource allocation at airports, biodiversity protection, randomized
inspections, road safety, border patrol, and so on [5,7,19,24].

Game theory can model attacker-defender interactions and characterize opti-
mal strategies given the players’ strategy spaces and objectives. In our game-
theoretic model of remote attestation, the defender acts as the leader by deciding
how often to perform remote attestation, and the adversary acts as the follower
by deciding which devices to attack. We provide detailed definitions of the envi-
ronment, the player’s strategy spaces, and their objectives in Sect. 4.

3 Testbed Design and Development

In our testbed, multiple IoT applications are running on multiple IoT devices. We
implement and enable various software vulnerabilities (e.g., heap-based buffer

Strategic Remote Attestation 275

overflow) in these applications so that adversaries can remotely compromise the
devices by exploiting these vulnerabilities. As a result, adversaries can modify
the code of processes without crashing or restarting them. We also integrate
memory checksum-based attestation method in the applications. Therefore, a
verifier can remotely verify the integrity of the vulnerable processes.

3.1 Testbed Components

A typical IoT testbed consists of several IoT devices running various IoT server
applications. Our testbed also includes two other types of nodes to mount attacks
(e.g., code injection) against the IoT devices and to detect the attacks using
remote attestation. The architecture of our testbed is presented in Fig. 1.

Known Device
Memory Content

Device Memory

External Verifier

IoT Server

IoT Server

IoT Server

Attacker
Memory Checksum

Challenge
Exploit

Vulnerability

Device Memory

Device Memory

Fig. 1. Remote attestation testbed architecture.

IoT Server Node. We set up various IoT server applications on these nodes, add
vulnerable code snippets to the applications, and debug them to find exploita-
tion opportunities that can be used to perform code-injection attacks. Then,
we incorporate a memory-checksum generator that can calculate a checksum
whenever the application receives a challenge from an external verifier node.

Attacker Node. The attacker is a client node that can interact with the IoT
application servers and execute various exploits (e.g., stack- or heap-based buffer
overflow). The attacker’s purpose is to inject or alter the software code of vul-
nerable applications without crashing the processes.

External Verifier Node. The verifier is responsible for performing memory-
checksum based attestation of the potentially compromised application servers.
For checksum-based attestation, the verifier sends a challenge along with a ran-
dom seed to the potentially compromised server node and records the response
in return to verify.

276 S. Roy et al.

3.2 Testbed Development

To experiment with various remote attestation strategies, we implement the
following features in the testbed: start or terminate various IoT applications,
exploit these applications from an attacker node, and generate challenge-response
for remote attestation.

Testbed Setup. Our testbed uses five Raspberry Pi 3 Model B+ devices (two
IoT application servers, an attacker, and two nodes for the verifier). All devices
run Raspbian Linux. We incorporate two example IoT applications: an irrigation
server1 and a smart home2.

Enabling Vulnerabilities. We disable certain security features of the Linux ker-
nel and the compiler to enable stack- and heap-overflow based exploitation. To
enable these vulnerabilities, we disable the ASLR and stack protection; and
enable code execution while compiling the applications.

Exploitation Simulation. We debug all of the applications on the application
server nodes to find stack- and heap-based vulnerabilities. Then, we create cor-
responding exploit payloads on the attacker node. The attacker node sends a
request to the server, which triggers the vulnerability and thereby injects a shell-
code into the process.

Integrity Verification Simulation. In our testbed, we implement memory-
checksum (sequential- and random-order checksum) as remote attestation strate-
gies, which require an external trusted verifier. The verifier can attest a poten-
tially compromised device by sending the same challenge to the target device
and an identical isolated device, and compare their responses.

4 Game-Theoretic Model of Remote Attestation

Remote attestation enables a defender to detect compromised devices remotely.
However, the effectiveness and computational cost of attestation depends on
strategies, such as when to attest a device and what method of attestation to
employ. As IoT devices are resource-limited and attestation incurs computational
cost, some devices should not be verified frequently (e.g., devices with low value
for an adversary). On the other hand, some devices (e.g., ones with high value
for the adversary) may need frequent attestation.

To find optimal strategies for remote attestation, we propose a game-theoretic
model. Our model is a two-player, general-sum Stackelberg security game, where
the defender is the leader and the adversary is the follower (i.e., defender first
selects its attestation strategy to defend its IoT devices, and then the adversary
chooses which devices to attack considering the defender’s attestation strategy).

1 https://github.com/NamedP1ayer/IrrigationServer.
2 https://github.com/renair/smarthome.

https://github.com/NamedP1ayer/IrrigationServer
https://github.com/renair/smarthome

Strategic Remote Attestation 277

We assume that the defender chooses for each device and for each attestation
method the probability of applying that method to that device; the adversary
chooses for each device whether to attack it or not.

Table 1 summarizes the notation of our game-theoretic model.

4.1 Environment and Players

There is a set of IoT devices D in the environment, where each individual device
δ ∈ D runs various IoT applications and services. As different devices may
have different software stacks, we divide the devices into disjoint classes. These
device classes are denoted E1, E2, . . . , En, where we have i �= j → Ei ∩ Ej = ∅ and⋃

i Ei = D. Devices belonging to the same class have the same vulnerabilities
and may be attacked using the same exploits.

In our Stackelberg game model, there are two players: a defender (leader) and
an attacker (follower). The defender tries to minimize the security risks of the
IoT devices by detecting compromises, while the attacker tries to compromise the
devices but avoid detection. To detect compromised devices, the defender uses
various attestation methods (e.g., memory checksum, control-flow integrity). We
let M denote the set of attestation methods, where each attestation method is
an m ∈ M. If the defender detects a compromised device, the defender resets
the device back to its secure state.

4.2 Strategy Spaces

Knowing the defender’s strategy (i.e., probability of attesting each device using
each method), the attacker chooses which devices to attack. We assume that the
attacker follows a deterministic strategy and chooses for each device whether to
attack it or not. Note that in an SSG, restricting the follower (i.e., the attacker)
to deterministic strategies is without loss of generality. We let the attacker’s
strategy be represented as a vector a = 〈aδ〉δ∈D, where aδ = 1 means attacking
device δ ∈ D, and aδ = 0 means not attacking device δ. Therefore, the attacker’s
strategy space is

a ∈ {0, 1}|D|.

On the other hand, the defender can choose a randomized strategy, i.e., for
each device δ ∈ D and attestation method m ∈ M, the defender chooses the
probability pm

δ ∈ [0, 1] of running attestation method m on device δ. We let the
defender’s strategy be represented as a vector p = 〈pm

δ 〉δ∈D,m∈M, where pm
δ = 0

means never running method m ∈ M on device δ ∈ D, and pm
δ = 1 means always

running method m on device δ. Therefore, the defender’s strategy space is

p ∈ [0, 1]|D×M|.

4.3 Utility Functions

Next, we formalize the players’ objectives by defining their utility functions.

278 S. Roy et al.

Table 1. List of symbols

Symbol Description

Constants

D Set of devices

M Set of attestation method

Ei A set of devices that share common vulnerabilities, where Ei ⊆ D
μm Detection probability of attestation method m ∈ M when executed

on a compromised device

Cm
D Defender’s cost to run attestation method m ∈ M

Cδ
A Attacker’s cost to compromise device δ ∈ D

CE
A Attacker’s cost to develop an exploit for a device class E ⊆ D

Gδ
D, Gδ

A Defender’s/attacker’s gain for compromised device δ ∈ D
Lδ

D, Lδ
A Defender’s/attacker’s loss for compromised device δ ∈ D (represented

as negative values)

Variables

p Defender’s strategy vector

a Attacker’s strategy vector

aδ Attacker’s action (i.e., attack or not) against device δ ∈ D
pm

δ Probability of running attestation method m ∈ M on device δ ∈ D
Functions

Pδ(p) Conditional probability of defender detecting with strategy p that
device δ ∈ D is compromised (given that it is actually compromised)

CT
D(p) Defender’s total cost for strategy p

CT
A(a) Attacker’s total cost For strategy p

UD(p,a) Defender’s expected utility for strategy profile (p,a)

UA(p,a) Attacker’s expected utility for strategy profile (p,a)

Uδ
D(pm

δ , aδ) Defender’s expected utility from device δ ∈ D
Uδ

A(pm
δ , aδ) Attacker’s expected utility from device δ ∈ D

FA(p) Attacker’s best response against defender strategy p

Defender’s Utility. Different attestation methods can have different detection
rates (i.e., different probability of detecting an attack when the method is run
on a compromised device). For each attestation method m ∈ M, we let μm

denote the probability that method m detects that the device is compromised.
However, the defender can run multiple attestation methods on the same

device, and any one of these may detect the compromise. Therefore, the proba-
bility Pδ (p) of detecting that device δ ∈ D is compromised when the defender
uses attestation strategy p is

Pδ (p) = 1 −
∏

m∈M
(1 − μm · pm

δ) . (1)

Strategic Remote Attestation 279

Each attestation method also has a computational cost, which the defender
incurs for running the method on a device. For each attestation method m ∈ M,
we let Cm

D be the cost of running method m on a device. Then, the defender’s
expected total cost CT

D (p) for running attestation following strategy p is

CT
D (p) =

∑

δ∈D

∑

m∈M
Cm

D · pm
δ . (2)

Note that the expected total cost of attestation CT
D(p) depends on the probability

of running attestation (higher the probability pm
δ , higher the expected cost for

device δ and method m).
Next, we let Gδ

D be the defender’s gain when the attacker chooses to attack
device δ ∈ D and the defender detects that the device is compromised. On the
other hand, let Lδ

D be the defender’s loss when the attacker chooses to attack
device δ and the defender does not detect that the device is compromised. Then,
we can express the defender’s expected utility UD(p,a) when the defender uses
attestation strategy p and the attacker uses attack strategy a as

UD(p,a) =
∑

δ∈D

[
Gδ

D · Pδ(p) + Lδ
D · (1 − Pδ(p))

] · aδ − CT
D(p). (3)

Attacker’s Utility. Let CE
A be the cost of developing an exploit for device class E ,

and let Cδ
A be the cost of attacking a particular device δ ∈ D. For any attack

strategy a, the set of device classes that the adversary attacks can be expressed
as {E | ∃ δ ∈ E (aδ = 1)}. Then, we can express the adversary’s total cost CT

A(a)
for attack strategy a as

CT
A(a) =

∑

E

(

CE
A · 1{∃δ∈E(aδ=1)} +

∑

δ∈E
Cδ

A · aδ

)

. (4)

Note that the attacker incurs cost for both developing an exploit for each class
that it targets as well as for each individual device.

Similar to the defender, we let attacker’s gain and loss for attacking a device
δ ∈ D be Gδ

A and Lδ
A when the compromise is not detected and detected, respec-

tively. Then, we can express the adversary’s expected utility UA(p,a) when the
defender uses attestation strategy p and the attacker uses attack strategy a as

UA(p,a) =
∑

δ∈D

[
Lδ

A · Pδ(p) + Gδ
A · (1 − Pδ(p))

] · aδ − CT
A(a). (5)

For the sake of simplicity, we assume that with respect to gains and losses from
compromises, the players’ utilities are zero sum, that is, Gδ

D = −Lδ
A and Lδ

D =
−Gδ

A. Note that the game is not zero sum due to the players’ asymmetric costs
CT

D(p) and CT
A(a).

280 S. Roy et al.

4.4 Solution Concept

We assume that both the defender and attacker aim to maximize their expected
utilities. To formulate the optimal attestation strategy for the defender, we first
define the attacker’s best-response strategy.

In response to a defender’s strategy p, the attacker always chooses an attack
strategy a that maximizes the attacker’s expected utility UA(p,a). Therefore,
we can define the attacker’s best response as follows.

Definition 1 (Attacker’s best response). Against a defender strategy p, the
attacker’s best-response strategy FA(p) is

FA(p) = argmaxa UA(p,a). (6)

Note that the best response is not necessarily unique (i.e., FA may be a set of
more than one strategies). Hence, as is usual in the literature, we will assume tie-
breaking in favor of the defender to formulate the optimal attestation strategy.

Since the defender’s objective is to choose an attestation strategy p that
maximizes its expected utility UD(p,a) anticipating that the attacker will choose
a best-response strategy from F(p), we can define the defender’s optimal strategy
as follows.

Definition 2 (Defender’s optimal strategy). The defender’s optimal attes-
tation strategy p∗ is

p∗ = argmaxp, a∈FA(p) UD(p,a) (7)

5 Analysis of Optimal Attestation Strategies

Here, we present analytical results on our game-theoretic model, characterizing
the defender’s optimal strategy in important special cases. For ease of exposition,
we present these special cases in increasing generality. Due to lack of space, we
omit proofs and details of the analysis in this document. The proofs and details
are available in the extended online version [12].

5.1 Case 1: Single Device and Single Attestation Method

First, we assume that there exists only one device δ and one attestation
method m.

Attacker’s Best-Response Strategy. Whether the attacker’s best response is to
attack or not depends on the defender’s strategy pm

δ . Further, it is easy to see
that if attacking is a best response for some pm

δ , then it must also be a best
response for any p̂m

δ < pm
δ . Therefore, there must exist a threshold value τδ of

the defender’s probability pm
δ that determines the attacker’s best response.

Strategic Remote Attestation 281

Lemma 1. The attacker’s best-response strategy F(p) is

F(p) =

⎧
⎪⎨

⎪⎩

{1} if pm
δ < τδ

{0, 1} if pm
δ = τδ

{0} otherwise,
(8)

where

τδ =
1

μm
· CE

A + Cδ
A − Gδ

A

Lδ
A − Gδ

A

. (9)

In other words, it is a best response for the attacker to attack if the defender’s
attestation probability pm

δ is lower than the threshold τδ; and it is a best response
not to attack if the probability pm

δ is higher than the threshold τδ.

Defender’s Optimal Strategy. The defender may pursue one of two approaches
for maximizing its own expected utility: selecting an attestation probability that
is high enough to deter the attacker from attacking (i.e., to eliminate losses by
ensuring that not attacking is a best response for the attacker); or selecting an
attestation probability that strikes a balance between risk and cost, accepting
that the adversary might attack.

First, from Eqs. (2) and (8), it is clear that the lowest-cost strategy for
deterring the attacker is pm

δ = τδ. Second, if the defender does not deter the
attacker, then it must choose a probability pm

δ from the range [0, τδ] that max-
imizes UD(pm

δ , 1). Then, it follows from Eq. (3) that the optimal probability is
either pm

δ = 0 or τδ, depending on the constants μm, Cm
D , Gδ

D, and Lδ
D.

Proposition 1. The defender’s optimal attestation strategy p∗m
δ is

p∗m
δ =

{
0 if Cm

D ≥ (Gδ
D − Lδ

D) · μm and τδ ≥ Lδ
D

−Cm
D

τδ otherwise.
(10)

Note that the first case corresponds to when deterrence is not necessarily
better than non-deterrence (first condition), and for non-deterrence strategies,
minimizing risks over costs is not better (second condition).

5.2 Case 2: Multiple Devices and Single Device Class

Next, we generalize our analysis by allowing multiple devices D, but assuming a
single device class E = D and single attestation method m.

Attacker’s Best-Response Strategy. First, the attacker needs to decide whether
it will attack at all: if the attacker does not attack at all, it attains UA(p,0) = 0
utility; if the attacker does attack some devices, it incurs the cost CE

A of attacking
the class once, and it will need to make decisions for each individual device δ ∈ D
without considering this cost CE

A. The latter is very similar to Case 1 since for
each individual device δ, the decision must be based on a threshold value τδ of
the attestation probability pm

δ ; however, this threshold must now ignore CE
A.

282 S. Roy et al.

Lemma 2. The attacker’s best-response strategy F(p) is

F(p) =

⎧
⎪⎨

⎪⎩

{a∗} if UA (p,a∗) > 0
{a∗,0} if UA (p,a∗) = 0
{0} otherwise,

(11)

where

a∗
δ =

{
1 if pm

δ < τ δ

0 otherwise,
(12)

and

τ δ =
1

μm
· Cδ

A − Gδ
A

Lδ
A − Gδ

A

. (13)

Note that strategy a∗ is a utility-maximizing strategy for the attacker assum-
ing that it has already paid the cost CE

A for attacking the class. Hence, the deci-
sion between attacking (in which case a∗ is optimal) and not attacking at all
(a = 0) can is based on the utility UA(p,a∗) obtained from strategy a∗ and the
utility UA(p,0) = 0 obtained from not attacking at all.

Defender’s Optimal Strategy. Again, the defender must choose between deter-
rence and acceptance (i.e., deterring the adversary from attacking or accepting
that the adversary might attack). However, in contrast to Case 1, the defender
now has the choice between completely deterring the adversary from attacking
(i.e., adversary is not willing to incur cost CE

A and hence attacks no devices at
all) and deterring the adversary only from attacking some devices (i.e., adver-
sary incurs cost CE

A and attacks some devices, but it is deterred from attacking
other devices).

Proposition 2. The defender’s optimal attestation strategy p∗ is

p∗ =

⎧
⎪⎨

⎪⎩

{
pND

}
if UD

(
pND,a∗) > UD

(
pD,0

)

{
pND,pD

}
if UD

(
pND,a∗) = UD

(
pD,0

)

{
pD

}
otherwise,

(14)

where

(
pND

)m

δ
=

{
0 if Cm

D ≥ (Gδ
D − Lδ

D) · μm and τ δ ≥ Lδ
D

−Cm
D

τ δ otherwise,
(15)

a∗ is as defined in Eq. (12) with p = pND, and

pD = argmin{p:UA(p,1)≤0∧ ∀δ(pm
δ ∈[0,τδ])}

∑

δ∈D
Cm

D · pm
δ . (16)

Note that pND is the optimal attestation strategy if the defender does not
completely deter the adversary from attacking, calculated similarly to Case 1 ;
pD is the optimal attestation strategy if the defender completely deters the
adversary from attacking, which may be computed by solving a simple linear
optimization (Eq. 16).

Strategic Remote Attestation 283

0 20 40 60 80 100
0

50

100

Checksum Memory Coverage [%]

D
et
ec
ti
on

R
at
e
[%

]

irrigation
smarthome

Fig. 2. Detection rate of pseudo-random memory checksum as a function of memory
coverage.

5.3 Case 3: Multiple Devices and Multiple Device Classes

Next, we consider multiple device classes E1, E2, . . . , En. We generalize our pre-
vious results by observing that both the attacker’s and defender’s decisions for
each class of devices are independent of other classes.

Lemma 3. For each device class Ei, let ai be a best response as given by
Lemma 2. Then, 〈a1,a2, . . . ,an〉 is a best-response attack strategy.

Proposition 3. For each device class Ei, let p∗
i be an optimal attestation strat-

egy as given by Proposition 2. Then, 〈p∗
1,p

∗
2, . . . ,p

∗
n〉 is an optimal attestation

strategy.

6 Numerical Results

Here, we present experimental results from our testbed, which confirm our mod-
eling assumptions, as well as numerical results on our game-theoretic model.

6.1 Experimental Results from the Remote Attestation Testbed

We consider an experimental setup with two test applications, an irrigation and a
smarthome application. We implement sequential and pseudo-random memory
checksum as exemplary software-based remote attestation methods. Software-
based attestation incurs various costs; in this section, we study checksum-based
remote attestation in terms of memory and computational overhead. We also
evaluate checksum-based attestation in terms of detection rate.

284 S. Roy et al.

(a) irrigation (b) smarthome

Fig. 3. Running time of checksum calculation as a function of memory coverage.

Detection Rate of Pseudo-random Memory Checksum. In this experiment, we
study the efficacy of pseudo-random memory checksum in terms of detecting
changes to the code of a running application. We use a block-based pseudo-
random technique, where each block is 500 bytes. We start our experiment with
checking 200 blocks, which are selected pseudo-randomly based on a seed value.
Then, we increase the number of blocks by 200 in iterations to measure the
impact of increasing memory coverage. In each iteration, we run the pseudo-
random memory checksum 500 times, using a different random seed each time,
to reliably measure the detection rate for a certain number of blocks.

Figure 2 shows the detection rate of pseudo-random memory checksum as
a function of the fraction of memory covered by the checksum calculation, for
our two test applications. Note that we express the fraction of memory cov-
ered as a percentage. Specifically, we calculate the ratio as (number of blocks ×
block size × 100)/total memory size of the program. We find that detection rate
increases roughly proportionally with memory coverage, ranging from 0% to
100%, which supports our modeling choices.

Running Time of Pseudo-Random Memory Checksum. Next, we study the run-
ning time of calculating pseudo-random memory checksum with memory cov-
erage ranging from 3% to 98%. For each memory-coverage level, we run the
checksum calculation 500 times to obtain reliable running-time measurements.
Figure 3 shows the distribution of running time for various memory-coverage
level for our two test applications. We find that similar to detection rate, the
average of running time also increases proportionally with memory coverage,
which supports our modeling choices.

6.2 Evaluation of Game-Theoretic Model and Optimal Strategies

To evaluate our model and optimal strategies, we consider an example environ-
ment consisting of |D| = 50 IoT devices from 5 different classes (10 devices in
each class Ei), and for simplicity, we consider a single attestation method m

Strategic Remote Attestation 285

p = 0 p = 1 uniform p optimal p∗
−1,000

−500

0

500

U
ti
lit
ie
s

Fig. 4. Comparison between optimal and näıve defender strategies based on the
defender’s utility (blue) and the attacker’s utility (red), assuming that the attacker
chooses its best response.

implemented in these devices. For each device δ, we choose both the defender’s
and the attacker’s gain values Gδ

D and Gδ
A uniformly at random from [20, 40]. We

assume that the game is zero-sum with respect to gains and losses; that is, we let
the players’ losses (Lδ

D, Lδ
A) be Gδ

D = −Lδ
A and Lδ

D = −Gδ
A. Finally, we choose

the detection probability of the attestation method μ uniformly at randomly
from [0.5, 0.9], the attestation cost CD from [0, 10], the exploit development cost
CE

A from [15, 40], and the device attack costs Cδ
A from [1, 3] for each device δ.

Comparison to Näıve Baselines. We compare the defender’s optimal attestation
strategy p∗ to three näıve baseline strategies: p = 0, p = 1, and an optimal
uniform p (i.e., same probability pm

δ for all devices δ, but this probability is
chosen to maximize the defender’s utility given that the adversary always chooses
its best response). Figure 4 shows the players’ utilities for the optimal and näıve
defender strategies, assuming that the adversary chooses its best response in
each case. We see that the optimal strategy outperforms the näıve baselines in
terms of the defender’s utility. Specifically, it outperforms p = 0 and optimal
uniform p by deterring the adversary from attacking, which these näıve baselines
fail to achieve; and it outperforms p = 1 by achieving deterrence at a lower cost.

Detailed Comparison to Näıve Baselines. Figure 5 provides a more detailed com-
parison between the optimal attestation strategy p∗ and the three näıve base-
lines. In contrast to Fig. 4, this figure shows utilities both in the case when the
adversary decides to attack (Fig. 5a) and in the case when it decides to not
attack at all (Fig. 5b). In Fig. 5a, we see that the adversary can obtain a positive
utility from attacking against p = 0 and the optimal uniform p. Therefore, these
strategies do not deter the adversary from attacking. In contrast, the adversary’s
utility is negative against both p = 1 and the optimal strategy p∗. In Fig. 5b,
we see that the defender incurs higher computational cost with p = 1 than with
the optimal strategy p∗, making the latter the better choice.

286 S. Roy et al.

p = 0
p = 1

unif
orm

p

opti
mal p

∗

−1,000

−500

0

500

U
ti
lit
ie
s

(a) Attacker chooses to attack

p = 0
p = 1

unif
orm

p

opti
mal p

∗

−400

−200

0

U
ti
lit
ie
s

(b) Attacker chooses not to attack

Fig. 5. Detailed comparison between optimal and näıve defender strategies based on
the defender’s utility (blue) and the attacker’s utility (red).

Comparison of Strategy Profiles. To better understand how the optimal attes-
tation strategy outperforms the other strategies, we now take a closer look at
the players’ utilities in specific strategy profiles. For the defender, we consider
two strategies: optimal strategy given that the defender does not completely
deter the attacker (pND, see Proposition 2) and optimal strategy that completely
deters the attacker (pD, which is the optimal attestation strategy in this prob-
lem instance). For the adversary, we also consider two strategies: attacking every
device (a = 1, which is a best response against pND in this problem instance)
and not attacking at all (a = 0, which is always a best response against pD).

Figure 6 shows the players’ utilities in the four strategy profiles formed by the
above strategies. We observe that the defender’s utility is highest when it does
not completely deter the adversary from attacking and the adversary does not
attack at all (pND vs. a = 0) since the defender incurs minimal computational
cost and suffers no security losses in this case. However, this is not an equilibrium
since the adversary can attain higher utility by attacking every device (see pND

vs. a = 1), which results in the best utility for the adversary and worst for the
defender. To avoid such catastrophic losses, the defender can use the strategy
of complete deterrence, in which case the adversary will be indifferent between
attacking and not attacking (pD vs. a = 0 and a = 1). Note that since the
defender’s utility is higher if the adversary does not attack, the defender can opt
to tip the balance in favor of not attacking through an infinitesimal change.

7 Related Work

In this section, first we discuss the pros and cons of different IoT testbeds in
the existing literature. Then we discuss existing works related to hardware- or
software-based IoT remote attestation. Finally, we present a few SSG works and
how our approach is different from theirs.

Strategic Remote Attestation 287

pND vs.
a = 1

pND vs.
a = 0

pD vs.
a = 1

pD vs.
a = 0

−1,000

−500

0

500

1,000

U
ti
lit
ie
s

defender’s utility
attacker’s utility

Fig. 6. Players’ utilities in various strategy profiles: not deter vs. attack (pND vs.
a = 1), not deter vs. not attack (pND vs. a = 0), deter vs. attack (pD vs. a = 1),
deter vs. not attack (pD vs. a = 0).

7.1 IoT Security Testbeds

General application- or hardware-oriented IoT testbeds are widely used for
research works. The primary concern for these testbeds are to find ideal con-
figurations or set up in different types of environments [2,4]. Several IoT secu-
rity testbeds are available to test different security and reliability issues. For
example, Siboni et al. proposed an IoT security testbed framework, arguing that
an ideal testbed should ensure reliability, anti-forensics, and adaptivity [15]. In
another work, Arseni et al. developed a heterogeneous IoT testbed named Pass-
IoT, consisting of three different architectures (MCU, SDSoC, traditional CPU)
that can test, optimize, and develop lightweight cryptographic algorithms [3].

Nowadays, the number of IoT applications is rising, and so are associated
security concerns for these applications. Therefore, Tekeoglu et al. developed
a security testbed that can perform privacy analysis of IoT devices, includ-
ing HDMI sticks, IP cameras, smartwatches, and drones [18]. The testbed
enables identifying insecure protocol versions, authentication issues, and privacy
violations.

We find the existing IoT security testbeds offering general security con-
cerns related to cryptographic development, secure protocol implementations,
and data privacy issues. Our remote attestation testbed offers testing applica-
tion vulnerabilities, developing associated exploits, and evaluating mitigation
measures through software-oriented remote attestation. Table 2 presents a com-
parative analysis between our work and the existing IoT security testbeds.

7.2 Remote Attestation

Checksum-based remote attestation has been widely used to secure IoT
devices for a long time. Earlier, Seshadri et al. proposed a cell-based pseudo-
random traversal approach in their software-based attestation scheme entitled
SWATT [14]. The authors developed the 8-bit micro-controller architecture

288 S. Roy et al.

Table 2. IoT security testbeds

Features Works

Arseni et al., 2016 Tekeoglu et al., 2016 Our work

Lightweight encryption algorithms

development

� X X

Vulnerability scans X � �

Authentication, privacy violations X � X

Exploitation development and

analysis

X X �

Mitigation measures testing X X �

Remote attestation experiments X X �

scheme to generate random addresses to checksum using an RC4 stream cipher.
Yang et al. proposed a distributed software-based attestation scheme for WSN
to verify the integrity of code in a distributed fashion [23]. The works led to later
works in terms of cell- and block-based pseudo-random checksum, respectively.

A few recent works include hardware-assisted remote runtime attestation [8]
that addresses runtime attack detection, a low-cost checksum-based remote
memory attestation for smart grid [22], lightweight remote attestation in dis-
tributed wireless sensor networks where all nodes validate each other’s data [9],
and so on. Survey papers on attestation, for example, Steiner et al. presented a
more comprehensive overview on checksum-based attestation [17].

7.3 Stackelberg Security Games

SSGs have been successfully applied to security problems in resource-limited
domains such as airport security, biodiversity protection, randomized inspec-
tions, border patrols, cyber security, and so on [5,7,19]. To the best of our
knowledge, our work is the first to apply game theory in the area of remote
attestation.

While there is no prior work within the intersection of game theory and
remote attestation, a number of research efforts have applied SSGs to other
detection problems that resemble ours. For example, Wahab et al. developed a
Bayesian Stackelberg game that helps the defender to determine optimal detec-
tion load distribution strategy among virtual machines within a cloud envi-
ronment [20]. As another example, Chen et al. develops an SSG model that
detects adversarial outbreak in an IoT environment through determining strate-
gic dynamic scheduling of intrusion detection systems [6].

8 Conclusion and Future Work

IoT device exploitation has been a significant issue lately, and organizations
are investing significant resources and effort into managing these security risks.
An important approach for mitigating this threat is remote attestation, which

Strategic Remote Attestation 289

enables the defender to remotely verify the integrity of devices and their software.
In this work, we developed a testbed that offers research opportunities to explore
and analyze IoT vulnerabilities and exploitation and to conduct experiments
with varous remote attestation methods.

So far, we have developed attack strategies mostly for when kernel and
compiler-based security measures are disabled. In future work, we plan to include
exploitation with security features enabled in the resource-limited IoT environ-
ment. Additionally, in this paper, we evaluated software-based attestation meth-
ods (sequential and random memory-based checksum). We intend to include
some other variants of attestation methods (e.g., hybrid checksum) in the testbed
and to conduct experiments with control-flow integrity.

Further, we have showed how to optimize remote-attestation strategies by
formulating and studying a Stackelberg security game model. Our analytical
results provide algorithmic solutions for finding optimal attestation strategies in
a variety of settings. These results can provide guidance to practitioners on how
to protect IoT devices using remote attestation in resource-limited environments.

In this work we discussed optimal strategies for one attestation method
(|M| = 1). In future, we plan to provide analytical solutions for more gen-
eral cases of multiple devices (|D| > 1), multiple classes (|E| > 1), and multiple
attestation methods (|M| > 1) as well. Additionally, we intend to refine our
model and find optimal strategies in a more complex environment using machine
learning algorithms (e.g., reinforcement learning).

Acknowledgments. This material is based upon work supported by the National Sci-
ence Foundation under Grant No. CNS-1850510, IIS-1905558, and ECCS-2020289 and
by the Army Research Office under Grant No. W911NF1910241 and W911NF1810208.

References

1. Abera, T., et al.: Things, trouble, trust: on building trust in IoT systems. In:
Proceedings of the 53rd Annual Design Automation Conference, pp. 1–6 (2016)

2. Adjih, C., et al.: FIT IoT-LAB: a large scale open experimental IoT testbed. In:
2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pp. 459–464. IEEE
(2015)

3. Arseni, Ş.C., Miţoi, M., Vulpe, A.: Pass-IoT: a platform for studying security,
privacy and trust in IoT. In: 2016 International Conference on Communications
(COMM), pp. 261–266. IEEE (2016)

4. Belli, L., et al.: Design and deployment of an IoT application-oriented testbed.
Computer 48(9), 32–40 (2015)

5. Bucarey, V., Casorrán, C., Figueroa, Ó., Rosas, K., Navarrete, H., Ordóñez, F.:
Building real Stackelberg security games for border patrols. In: Rass, S., An, B.,
Kiekintveld, C., Fang, F., Schauer, S. (eds.) GameSec 2017. LNCS, vol. 10575, pp.
193–212. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68711-7 11

6. Chen, L., Wang, Z., Li, F., Guo, Y., Geng, K.: A stackelberg security game for
adversarial outbreak detection in the internet of things. Sensors 20(3), 804 (2020)

7. Gan, J., Elkind, E., Wooldridge, M.: Stackelberg security games with multiple
uncoordinated defenders. In: Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 703–711 (2018)

https://doi.org/10.1007/978-3-319-68711-7_11

290 S. Roy et al.

8. Geden, M., Rasmussen, K.: Hardware-assisted remote runtime attestation for criti-
cal embedded systems. In: 2019 17th International Conference on Privacy, Security
and Trust (PST), pp. 1–10. IEEE (2019)

9. Kiyomoto, S., Miyake, Y.: Lightweight attestation scheme for wireless sensor net-
work. Int. J. Secur. Appl. 8(2), 25–40 (2014)

10. Nunes, I.D.O., Eldefrawy, K., Rattanavipanon, N., Steiner, M., Tsudik, G.:
VRASED: a verified hardware/software co-design for remote attestation. In: 28th
USENIX Security Symposium (USENIX Security 2019), pp. 1429–1446 (2019)

11. Parikh, V., Mateti, P.: ASLR and ROP attack mitigations for arm-based android
devices. In: Thampi, S.M., Mart́ınez Pérez, G., Westphall, C.B., Hu, J., Fan, C.I.,
Gómez Mármol, F. (eds.) SSCC 2017. CCIS, vol. 746, pp. 350–363. Springer, Sin-
gapore (2017). https://doi.org/10.1007/978-981-10-6898-0 29

12. Roy, S., Kadir, S.U., Vorobeychik, Y., Laszka, A.: Strategic remote attestation:
testbed for Internet-of-Things devices and Stackelberg security game for optimal
strategies. arXiv preprint arXiv:2109.07724 (2021)

13. Seshadri, A., Luk, M., Shi, E., Perrig, A., Van Doorn, L., Khosla, P.: Pioneer:
verifying integrity and guaranteeing execution of code on legacy platforms. In:
Proceedings of ACM Symposium on Operating Systems Principles (SOSP), vol.
173, pp. 10–1145 (2005)

14. Seshadri, A., Perrig, A., Van Doorn, L., Khosla, P.: SWATT: software-based attes-
tation for embedded devices. In: 2004 Proceedings of IEEE Symposium on Security
and Privacy, pp. 272–282. IEEE (2004)

15. Siboni, S., et al.: Security testbed for internet-of-things devices. IEEE Trans.
Reliab. 68(1), 23–44 (2019)

16. Sinha, A., Fang, F., An, B., Kiekintveld, C., Tambe, M.: Stackelberg security
games: looking beyond a decade of success. In: Proceedings of the 27th Inter-
national Joint Conference on Artificial Intelligence. IJCAI (2018)

17. Steiner, R.V., Lupu, E.: Attestation in wireless sensor networks: a survey. ACM
Comput. Surv. (CSUR) 49(3), 1–31 (2016)

18. Tekeoglu, A., Tosun, A.Ş.: A testbed for security and privacy analysis of IoT
devices. In: 2016 IEEE 13th International Conference on Mobile Ad Hoc and Sensor
Systems (MASS), pp. 343–348. IEEE (2016)

19. Trejo, K.K., Clempner, J.B., Poznyak, A.S.: Adapting strategies to dynamic envi-
ronments in controllable Stackelberg security games. In: 2016 IEEE 55th Confer-
ence on Decision and Control (CDC), pp. 5484–5489. IEEE (2016)

20. Wahab, O.A., Bentahar, J., Otrok, H., Mourad, A.: Resource-aware detection and
defense system against multi-type attacks in the cloud: repeated Bayesian stackel-
berg game. IEEE Trans. Dependable Secure Comput. 18(2), 605–622 (2019)

21. Xu, B., et al.: A security design for the detecting of buffer overflow attacks in IoT
device. IEEE Access 6, 72862–72869 (2018)

22. Yang, X., et al.: Towards a low-cost remote memory attestation for the smart grid.
Sensors 15(8), 20799–20824 (2015)

23. Yang, Y., Wang, X., Zhu, S., Cao, G.: Distributed software-based attestation for
node compromise detection in sensor networks. In: 26th IEEE International Sym-
posium on Reliable Distributed Systems (SRDS 2007), pp. 219–230. IEEE (2007)

24. Yin, Z., Korzhyk, D., Kiekintveld, C., Conitzer, V., Tambe, M.: Stackelberg vs.
nash in security games: interchangeability, equivalence, and uniqueness. In: Pro-
ceedings of the 9th International Conference on Autonomous Agents and Multia-
gent Systems, vol. 1, pp. 1139–1146 (2010)

https://doi.org/10.1007/978-981-10-6898-0_29
http://arxiv.org/abs/2109.07724

	Strategic Remote Attestation: Testbed for Internet-of-Things Devices and Stackelberg Security Game for Optimal Strategies
	1 Introduction
	2 Background
	2.1 Software Vulnerabilities and Exploitation in IoT Devices
	2.2 IoT Remote Attestation
	2.3 Stackelberg Security Games

	3 Testbed Design and Development
	3.1 Testbed Components
	3.2 Testbed Development

	4 Game-Theoretic Model of Remote Attestation
	4.1 Environment and Players
	4.2 Strategy Spaces
	4.3 Utility Functions
	4.4 Solution Concept

	5 Analysis of Optimal Attestation Strategies
	5.1 Case 1: Single Device and Single Attestation Method
	5.2 Case 2: Multiple Devices and Single Device Class
	5.3 Case 3: Multiple Devices and Multiple Device Classes

	6 Numerical Results
	6.1 Experimental Results from the Remote Attestation Testbed
	6.2 Evaluation of Game-Theoretic Model and Optimal Strategies

	7 Related Work
	7.1 IoT Security Testbeds
	7.2 Remote Attestation
	7.3 Stackelberg Security Games

	8 Conclusion and Future Work
	References

