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Abstract—Power system cybersecurity is emerging as a critical
and urgent problem to the energy sector due to the ongoing
power grid modernization initiative. Load altering attack (LAA)
is an important category of cyberattacks on the modern power
systems, in which the attackers may damage the grid by viciously
altering the remotely controllable loads (RCL) that are not
properly protected. In order to mitigate the impacts of LAAs
on the distribution systems, the promising soft open point (SOP)
technology is deployed in this study. A two-stage optimization
framework is proposed for the optimal installation and operation
of SOPs for defending the distribution systems against LAAs. A
chance-constrained optimization model is developed to guarantee
the confidence level of the proposed two-stage model of SOPs
in mitigating the impacts of LAAs. Further, a Wasserstein
metric based distributionally robust chance-constrained (DRCC)
optimization method is developed to ensure the robustness of
the proposed model against the ambiguity of the empirical
probability distribution in practice. Case studies were performed
on a 69-bus test system to validate the proposed method. The
results of case studies show that the proposed framework is able
to mitigate the impacts of LAAs on distribution systems with
the installation of SOPs. By applying the DRCC optimization
method, the proposed model manages to keep satisfactory con-
fidence levels under the ambiguous probability distributions in
the case studies.

Index Terms—Active distribution network, cybersecurity, dis-
tributionally robust chance-constrained optimization, load alter-
ing attack, soft open point.

NOMENCLATURE

A. Indices and Sets:

a Index of load altering attack (LAA) actions.
i, j Index of buses in distribution system (DS).
i′ Index of parent node of bus i.
i′′ Index of children nodes of bus i.
ω, ω′ Index of scenarios.
ψ Index of soft open points (SOPs).
A Set of LAA actions.
D Ambiguity set of probability distribution.
N Set of buses.
Ni Set of children nodes of bus i.
Nψ Set of buses connected to SOP ψ.
Ω Set of scenarios.
Ψ Set of installed SOPs.
Ψ̃ Set of SOP installation candidates.
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B. Parameters:

Ai Loss coefficient of SOP.
PLi Active power of loads at bus i in DS.
PAi Active power of loads altered by LAAs at bus i.
QLi Reactive power of loads at bus i in DS.
QAi Reactive power of loads altered by LAAs at bus

i.
M A large enough positive constant.
ri Resistance of branches in DS.
xi Reactance of branches in DS.
Smaxi Capacity limit of branches in DS.
V max Upper limit of bus voltage.
V min Lower limit of bus voltage.
α, β Cost coefficients of SOP installation.
ξmaxi Upper reactive power limit coefficient of SOP.
ξmini Lower reactive power limit coefficient of SOP.
ρ Wasserstein distance limit of ambiguity set.
ε Probability coefficient of chance constraint for

scenario ω.
$ω Empirical probability of scenario ω.

C. Variables:

Pi Active power flow of branches in DS.
P SOP
i Active power of SOP at bus i.
P SOP,L

i Power loss of SOP converter connected to bus i.
Qi Reactive power flow of branches in DS.
QSOP
i Reactive power of SOP at bus i.

Si Capacity of SOP converter connected to bus i.
Vi Voltage of buses in DS.
Ii, Ui Intermediate variables for second-order cone pro-

gramming (SOCP) formulation of DistFlow.
uω Intermediate variable of chance constraint.
zψ Installation decision of SOP.
πω Probability of scenario ω.
λω,ω′ Probability with joint distribution in ambiguity set

D.
δω′ , ζω Dual variables of equality constraints of the opti-

mization for calculating Wasserstein distance.
µω,ω′ Dual variables of lower limit constraints of λω,ω′

in the optimization for calculating Wasserstein
distance.

νω,ω′ Dual variables of upper limit constraints of λω,ω′

in the optimization for calculating Wasserstein
distance.
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D. Functions:

FSOP Objective function of optimization model for SOP
installation and sizing decisions.

I. INTRODUCTION

IN recent years, a massive transformation is ongoing in
the power systems towards a more flexible, efficient and

smarter electric grid with the fast-developing operational tech-
nology (OT) and information technology (IT) in the power
systems. Consequently, cyber vulnerability of the grid is
introduced across all levels of power systems [1], [2]. As the
consequences of an effective cyberattack against the power
systems can be extreme and disturbing the normal operation of
the grid can have tremendous financial and security effects to
the entire society, the power systems have become a primary
target of the cyberattacks by malicious adversaries. A real-
world example is the two effective cyberattacks against the
Ukrainian power system in 2015 and 2016 [3]. By the first
attack in 2015, about 225 thousand residents in three provinces
of Ukraine were affected for up to 6 hours [4]. Over 130 MW
of loads were lost and more than 50 substations were discon-
nected from the grid viciously by the attackers. Therefore, the
cybersecurity of power systems against malicious cyberattacks
is emerging as a critical and urgent topic for the entire society.

Load altering attack (LAA) is an important category of
cyberattacks on the modern power systems. The attacker
of LAAs attempts to maliciously alter a group of remotely
controllable loads (RCL) that are not properly secured to
damage the grid through circuit overloads and/or other mech-
anisms [5], [6]. Research [5] identifies the practical loads
that are vulnerable to the Internet-based LAAs and overviews
the defense mechanisms to block the attacks and limit the
damage. Reference [6] studies the dynamic LAAs against the
frequency stability of the power system. In the research, the
fundamental characteristics of the attack models are analyzed
and explained. Meanwhile, the protection schemes against the
dynamic LAAs are designed and proposed in the study. In
[7], the risks of system-wide unstable oscillations and trips
of generators in the grid due to LAAs are investigated. The
vulnerability of the smart grid under LAAs is analyzed in [8]
using a graph theory based method. An anomaly detection
scheme of power consumption is proposed in [9] to indicate
potential malicious LAAs on the grid. The existing researches
on LAAs mentioned above mainly focus on the damage and
influence of LAAs on the generation and transmission sides
of the grid. The impacts of LAAs on the distribution systems
have not been covered in the existing literature. However,
LAAs may cause more direct and damaging results on the
distribution systems. Thus, in this paper, the impacts of LAAs
on the distribution systems are studied.

In order to enhance the robustness of the distribution sys-
tems against malicious attacks, the system operation should be
reinforced. Recently, soft open points (SOPs) are emerging as
a promising power electronics based interconnection solution
in the distribution networks to enhance the controllability
and flexibility of the system operation. A series of recent
researches have explored the application of SOPs to improve

the flexibility of distribution systems. In [10], the benefits
of employing SOPs and other power electronic devices to
support growing distributed generation (DG) are analyzed.
The operation principle of SOPs in distribution systems is
proposed in [11], and an optimal operation model of SOPs in
distribution networks is proposed in [12]. In [13], the dynamic
performance of a medium voltage (MV) distribution network
with a connected SOP under grid side AC faults is investigated.
The bi-level optimization model proposed in [14] considers
the planning of converter-based DG units and SOPs in a
coordinated way for incorporating active management of the
unbalanced distribution networks. The three-Phase unbalanced
conditions of the distribution networks are also considered in
the optimal operation model of SOPs in [15]. In [16], a three-
terminal MV SOP topology is proposed for the distribution
systems with renewable energy sources (RES), and the DC
voltage control strategy of the three-terminal SOP is studied.
The control method of a back-to-back SOP in the distribution
systems to mitigate the voltage fluctuation caused by DG is
studied in [17]. A coordinated control method of voltage and
reactive power of the distribution systems based on SOPs is
proposed in [18] to manage the increasing penetration of DG in
distribution networks. In [19], a voltage regulation framework
is proposed for distribution systems through the SOPs and the
DG inverters. A two-stage robust optimization model is built
for the operation of SOPs in [20] to handle the uncertainties
of photovoltaic (PV) generation in the distribution systems.

The existing literature has provided valuable insights on the
potential of SOPs in improving the distribution system oper-
ation. However, the implementation and operation strategies
of SOPs in the grids against malicious cyberattacks on the
distribution networks have not been studied in the existing
researches. In this paper, the back-to-back SOP is employed
to mitigate the impacts of malicious LAAs on the distribution
systems. A chance-constrained model which considers the
operation of the SOPs against LAAs is developed to determine
the optimal installation and sizing decisions of SOPs in a
set of installation candidates. In the existing literature, most
of the studies focus on the optimal operation and control
strategies of the SOPs in different scenarios, e.g., [11]–[13],
[15]–[20]. In these works, the deployment strategy of SOPs
is not considered. However, the operation constraints of the
SOPs in these works are consistent with the constraints in
the proposed models in this paper. The models in these
works are compatible with the proposed SOP installation and
sizing model and SOP operation strategy against LAAs. In
other scenarios (e.g., normal scenarios, AC faults, etc.), the
distribution system operator (DSO) may operate the SOPs
with the existing models in literature according to his/her
interest and perspective in the corresponding scenario. When
successful LAAs are launched on the distribution system,
the DSO may apply the proposed operation strategy of the
SOPs in this paper to mitigate the impacts of the attacks. In
[14], a coordinated DG-SOP planning model is proposed to
minimize the investment and operation costs. In this paper,
only the investment cost of the SOP installation is considered.
However, it is feasible to extend the proposed model in this
paper to consider the total cost of the SOP installation and

Authorized licensed use limited to: UNIV OF WISCONSIN - MILWAUKEE. Downloaded on December 10,2021 at 22:14:13 UTC from IEEE Xplore.  Restrictions apply. 



1949-3053 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2021.3134176, IEEE
Transactions on Smart Grid

3

operation with proper modification on the optimization model.
Nevertheless, due to the chance constraints on the security of
the distribution network under potential attacks, the proposed
model is subject to additional limits, and the expected total
cost of the SOP installation and operation is supposed to be
higher than the case not considering the security constraints.
The higher cost is paid to enhance the robustness and resilience
of the distribution network against malicious attacks.

In the generic chance-constrained programming framework,
the probability distribution of scenarios is needed and applied
in the chance constraint. In practical applications, the esti-
mated distribution is usually used to solve the optimization
model. However, the actual probability distribution may devi-
ate from the estimated distribution in practice. As a result, the
required confidence level in the chance constraint of the model
is no longer guaranteed. To this end, a distributionally robust
chance-constrained (DRCC) model is proposed in this paper
to improve the robustness of the chance-constrained model
against the probability distribution deviation. The Wasserstein
metric based distributionally robust optimization technique is
applied in the proposed chance-constrained model to provide
robustness of the solution against ambiguity. The Wasserstein
distance based distributionally robust optimization models
have been proposed and studied for the power system op-
eration problems in a few recent researches. For example, a
DRCC dispatch model is developed in [21] with Wasserstein
distance considering the renewable forecasting errors. In [22],
a Wasserstein metric based distributionally robust approximate
framework (WDRA) is proposed for the unit commitment
problem with wind power forecasting errors. A few generic
analyses on the Wasserstein metric based distributionally ro-
bust optimization modeling have also been performed recently.
In [23], a reformulation of the Wasserstein ball with finite
convex optimization problems is proposed. However, to the
best knowledge of the authors, the optimal SOP installation
and operation problem against LAAs considered in this paper
has not been covered or studied in the existing literature. The
objective of the proposed work is to provide a robust and
flexible solution for the optimal SOP installation and operation
decisions against potential LAAs on the distribution networks.
While considering the detailed operation strategies of the
SOPs in the LAAs, the proposed DRCC model determines
the installation decisions of the SOPs in the candidate set of
sites and optimizes the sizing of the SOPs to be installed to
mitigate the impacts of potential LAAs. Thus, the proposed
two-stage model considers both the optimal installation and
operation decisions of the SOPs in the distribution networks.

The contributions of this paper are summarized as follows:
• A two-stage optimization framework is proposed to mit-

igate the impacts of LAAs on the distribution systems
with the installation of SOPs. The proposed framework
manages the optimal planning and operation of the SOPs
for defending the distribution systems against the LAAs.

• A chance-constrained optimization model is developed to
achieve the confidence level of the proposed installation
and operation models of SOPs in thwarting the LAAs
on the distribution systems. The Wasserstein distance
based distributionally robust optimization technique is

applied in the chance-constrained SOP installation and
sizing problem to robustize the SOP installation strategy
against potential LAAs. A corresponding master and
sub-problem based algorithm is developed to solve the
proposed DRCC model.

The rest of the paper is organized as follows. Section II
gives a concise introduction of the LAAs on the distribution
systems. In Section III, the optimal installation and operation
models of SOPs to mitigate the impacts of LAAs are described
in detail. Then, the Wasserstein metric based DRCC model is
proposed in Section IV. In Section V, the case studies of the
proposed model are presented, followed by the conclusions in
Section VI.

II. LOAD ALTERING ATTACKS ON DISTRIBUTION
NETWORKS

In the LAAs, the attackers attempt to damage the power
system by maliciously altering a set of controllable loads
that are not properly secured. In practice, a wide range of
loads can be vulnerable to LAAs, including remotely con-
trollable loads, loads that automatically respond to price or
are controlled by direct load control (DLC) command signals,
and frequency-responsive loads [5], [6]. In the distribution
networks, the volumes of such controllable and responsive
loads (e.g., electric vehicles (EVs) and smart appliances) are
increasing in recent years with the trend towards the smart grid
and active distribution systems. However, due to the high cost
of expanding/upgrading the distribution systems, advanced
resource optimization techniques are used to accommodate the
increasing loads and allow some inherent physical redundancy
within the systems to be reduced in the operation [24]–
[26], which also decrease the resilience of the distribution
systems against successful cyberattacks. Thus, the impacts of
LAAs can be damaging to the normal operation of distribution
systems.

The LAA is a realistic attack scenario on power systems.
Due to the rapidly increasing amount of flexible demand
with automatic and remote control in the smart grid, the
vulnerabilities to LAAs are introduced with the widely applied
information systems to facilitate more advanced functions to
better supply the demand. The research in [5] has studied and
identified a series of practical loads in the consumption sector
of power systems that can be vulnerable to LAAs. Reference
[27] reports and analyzes the real-world cybersecurity flaws
and vulnerabilities in the smart EV charging systems which
may suffer from LAAs. Real-world cybersecurity vulnerabil-
ities and incidents of the heating, ventilation and air condi-
tioning (HVAC) control systems and building management
systems (BMS) have also been reported [28].

The adversaries may aim to interrupt the normal operation
of the grid by LAAs. Unlike other cyberattacks on the power
systems (e.g., switching attacks, false data injection (FDI) at-
tacks), the LAAs do not need to break through the information
or control systems of the system operator, which are usually
well isolated and protected. It makes LAAs much easier and
more realistic for the attackers to prepare and perform the
attacks. Meanwhile, another motivation of the adversaries to
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launch LAAs can be to disturb the optimal energy management
and demand response programs of the flexible loads. Usually,
the smart devices of such demand are shifted from the peak
hours to the valley hours for lower electricity bills with time-
of-use (TOU) or other dynamic pricing schemes, which help
reduce the stress of the grid. However, in the LAAs, the
adversaries may interfere the optimal energy management by
turning on the flexible loads at the peak hours when the
electricity prices are the highest. Consequently, the normal
operation of the grid can be interrupted due to the impacts of
LAAs.

In a successful LAA attempt, the attacker can turn on the
RCL that are compromised by the attack at the victim bus
simultaneously. The redundancy of the distribution network
may not be able to cover such a pulse of the demand. As a
result, the distribution system may face overload problems in
the branches and/or low voltage problems at the buses, and
the network constraints of the distribution system may not be
able to be satisfied. Thus, it is important to search for effective
measures to mitigate the impacts of successful LAAs on the
distribution systems.

In this study, the proposed SOP installation and operation
models aim to mitigate the impacts of potential LAAs on
the distribution networks. The objective and benefits of the
proposed strategies are avoiding network constraint violations,
unwanted load curtailment and tripping of the feeders when
successful LAAs are launched on the distribution systems.
With the proposed chance-constrained SOP installation model
and operation strategy, the probability of network constraint
violations (and consequent load curtailment and/or tripping
of feeders) in the distribution network is limited below a
predefined acceptable confidence level under potential LAAs.

III. OPTIMAL INSTALLATION AND OPERATION
STRATEGIES OF SOPS AGAINST LAAS

In order to mitigate the impacts of the LAAs on the
distribution systems, an optimal SOP installation and operation
model is developed in this paper. The detailed formulation of
the proposed model is presented in this section.

A. Power Flow Formulation

In this study, the DistFlow model [29] is applied to formu-
late the power flow of the distribution system. The DistFlow
formulation can accurately model the power flow in radial AC
distribution networks [29], [30]. Thus, it is widely used in
the distribution system power flow modeling. Existing studies
on the optimal planning and operation problems of distribution
systems have shown that the DistFlow model can achieve high
accuracy in the solutions [31]–[33]. The formulation of the
DistFlow model is presented as follows.∑

i′′∈Ni

Pi′′ = Pi − ri
P 2
i +Q2

i

V 2
i′

− PLi (1)

∑
i′′∈Ni

Qi′′ = Qi − xi
P 2
i +Q2

i

V 2
i′

−QLi (2)

V 2
i = V 2

i′ − 2 (riPi + xiQi) +
(
r2
i + x2

i

) P 2
i +Q2

i

V 2
i′

(3)

where i′ denotes the parent node of bus i, Ni is the set of
children nodes of bus i, Pi and Qi denote the active and
reactive power flows from the parent node i′ to the branch
connected to bus i, and Vi is the voltage of bus i in the
network. The branch flow model of the DistFlow formulation
is demonstrated in Fig. 1. The generic DistFlow model is
non-convex which makes it difficult to solve in optimization
models. Thus, in this study, a second-order cone reformulation
of the DistFlow model is applied. The detailed formulation will
be presented in Section III-C. The linearized DistFlow model
which neglects the loss terms in the power flow has also been
widely applied in literature [34], [35]. However, the DistFlow
model is not linearized in the proposed model in this paper
and the losses in the distribution network are considered.

i

Pi +jQi

Pi+jQi

L L

Pi+jQi
L L

Pi’’+jQi’’
L L

Pi’’+jQi’’
L L
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’i

’’

’’
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n n
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Fig. 1. DistFlow Model for Radial Distribution Networks.

B. SOP Operation Modeling

In this paper, the SOPs are applied in the distribution
network to enhance the flexibility of the system operation. An
SOP can be installed between two feeders in the distribution
system to precisely regulate the power flow. The back-to-
back voltage source converters (VSCs) are well accepted for
the power system applications as they can accurately adjust
the power flow while providing voltage support and reactive
power compensation to the grid [15], [18]. Thus, in this study,
the back-to-back VSCs are applied for the SOP application
in the distribution system. The operation of the SOPs needs
to regulate both the active and reactive power outputs of the
two converters in the back-to-back VSCs. The constraints for
the operation of the back-to-back VSC-based SOPs can be
formulated as follows [14], [15].

P SOP

i + P SOP,L

i + P SOP

j + P SOP,L

j = 0 (4)

P SOP,L

i = Ai

√
P SOP2

i +QSOP2

i (5)

P SOP,L

j = Aj

√
P SOP2

j +QSOP2

j (6)

ξmini Si 6 QSOP

i 6 ξmaxi Si, ξ
min
j Sj 6 QSOP

j 6 ξmaxj Sj (7)√
P SOP2

i +QSOP2

i 6 Si,
√
P SOP2

j +QSOP2

j 6 Sj (8)
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where subscripts i and j indicate the indexes of the nodes to
which the installed SOP is connected. P SOP

i and P SOP
j are the

active power injection to buses i and j of the SOP, respectively.
Similarly, QSOP

i and QSOP
j are the reactive power injection to

buses i and j of the SOP, respectively. P SOP,L

i and P SOP,L

j are
the losses of the SOP’s converters connected to buses i and
j, respectively. Expression (4) is the power balance constraint
considering the loss of the SOPs, and constraints (5)-(6) give
the formulation of the loss of the SOPs with coefficients Ai
and Aj . Constraints (7) and (8) are the reactive power limits
and capacity limits of the SOPs, respectively.

C. Optimal Operation of SOPs Against LAAs

In the operation model of the distribution system against the
LAAs, the DSO needs to coordinate the operation of the SOPs
in the system so that the network constraints can be met under
the attacks. The optimization model of the network operation
with SOPs is presented as follows.

min
∑
i∈N

(
ri
P 2
i +Q2

i

V 2
i′

)
+
∑
ψ∈Ψ

∑
i∈Nψ

P SOP,L

ψ,i (9)

Subject to∑
i′′∈Ni

Pi′′ = Pi − riIi − (PL

i + PA

i ) +
∑
ψ∈Ψi

P SOP

ψ,i

∀i ∈ N
(10)

∑
i′′∈Ni

Qi′′ = Qi − xiIi − (QL

i +QA

i ) +
∑
ψ∈Ψi

QSOP

ψ,i

∀i ∈ N
(11)

V 2
i = V 2

i′ − 2 (riPi + xiQi) +
(
r2
i + x2

i

)
Ii ∀i ∈ N (12)

P 2
i +Q2

i 6 IiUi′ ∀i ∈ N (13)

Ui = V 2
i ∀i ∈ N (14)√

P 2
i +Q2

i 6 Smaxi ∀i ∈ N (15)

V min 6 Vi 6 V max ∀i ∈ N (16)

P SOP

ψ,i + P SOP,L

ψ,i + P SOP

ψ,j + P SOP,L

ψ,j = 0 i, j ∈ Nψ,
∀ψ ∈ Ψ

(17)

√
P SOP2

ψ,i +QSOP2

ψ,i 6
P SOP,L

ψ,i

Aψ,i
∀i ∈ Nψ, ∀ψ ∈ Ψ (18)

ξminψ,i Sψ,i 6 QSOP

ψ,i 6 ξmaxψ,i Sψ,i ∀i ∈ Nψ, ∀ψ ∈ Ψ (19)√
P SOP2

ψ,i +QSOP2

ψ,i 6 Sψ,i ∀i ∈ Nψ, ∀ψ ∈ Ψ (20)

Sψ,i = arg minFSOP ∀i ∈ Nψ, ∀ψ ∈ Ψ (21)

where {Pi, Qi, Vi, Ii, Ui, P SOP

ψ,i , P
SOP,L

ψ,i , QSOP

ψ,i } are variables
in the optimization problem.

The objective of the operation model as (9) aims to min-
imize the total loss in the distribution network. The first
term of (9) is the loss in the branches of the network, and
the second term is the loss of the converters in the SOPs.
The original DistFLow model as (1)-(3) is non-convex. Thus,
the DistFlow model is reformulated into a second-order cone

programming (SOCP) model [32], [36]. Constraints (10)-(14)
give the SOCP formulation of the DistFlow model. As shown
in constraints (10) and (11), the loads in the network may be
altered by successful LAA attempts. Thus, the operation of
the SOPs should mitigate the impacts of the altered demand
in the attacks while satisfying the network constraints of the
grid. Constraints (15)-(16) guarantee the network constraints
of the distribution system operation. The model of the SOP
operation as (4)-(8) is also non-convex. Similarly, a SOCP
reformulation of the SOP operation model is applied [14].
Constraints (17)-(20) show the SOCP model of the SOP
operation. The SOCP reformulation in (17)-(20) relaxes the
equality constraints (5) and (6) with the inequality constraint
(18). Suppose P SOP,L

ψ,i is a solution when (18) is not binding.

It can be expressed as P SOP,L

ψ,i = Aψ,i

√
P SOP2

ψ,i +QSOP2

ψ,i +∆,
where ∆ > 0. As P SOP,L

ψ,i > 0 according to (18), it
can be derived from (17) that P SOP

ψ,i · P SOP

ψ,j 6 0. When
P SOP

ψ,i > 0, it means the SOP draws active power from node
i. When P SOP

ψ,i 6 0, it means the SOP injects active power
to node i. Without loss of generality, assume P SOP

ψ,i 6 0
and P SOP

ψ,j > 0. As −P SOP

ψ,i = P SOP,L

ψ,i + P SOP,L

ψ,j + P SOP

ψ,j =

Aψ,i

√
P SOP2

ψ,i +QSOP2

ψ,i +∆+P SOP,L

ψ,j +P SOP

ψ,j , it can easily be

derived that the value of
∣∣∣P SOP

ψ,i

∣∣∣ decreases when ∆ decreases,
which means more active power is drawn by the SOP at node
i. Then the active power flow Pi′ in the upstream branches of
node i increases, and the voltages Vi′ of the nodes i′ in the
same branches of node i decrease. As a result, the value of the
first term in the objective function (9) decreases. Meanwhile,
a smaller ∆ reduces P SOP,L

ψ,i and the value of the second term
in the objective function (9). Therefore, the objective of the
optimization can always be improved by reducing ∆ when
constraint (18) is not binding. Constraint (18) is binding when
the optimal solution is reached. Thus, the SOCP reformulation
(17)-(20) will result in the optimal solution of the original
model with equality constraints (5) and (6). Intuitively, the
increased P SOP

ψ,i when (18) is not binding can be viewed as an
extra load at node i, which will further increase the burden of
the network. Therefore, the optimal solution is reached when
constraint (18) is binding. As indicated by (21), the capacity
of the SOPs is determined by the solution of the optimization
problem FSOP for the SOP installation and sizing strategy
against LAAs. The detailed formulation of FSOP is presented
in the following subsection.

In this study, the SOPs are dispatched after an attack is
launched and the load at the compromised bus is altered. The
set-points are determined and sent by the DSO to the SOP
controllers. In the LAAs, the attackers only compromise and
gain the control of the RCL in the consumption sector. The
control and communication of the DSO to the local controllers
in the distribution system are assumed to be secured in this
paper.

D. Chance-Constrained Installation Model of SOPs Against
LAAs

In order to determine the optimal installation and sizing
strategies of the SOPs in distribution systems to mitigate the
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impacts of LAAs, a chance-constrained optimization model is
proposed in this study. The chance-constrained optimization
model is presented as follows.

min FSOP =
∑
ψ∈Ψ̃

αzψ + β
∑
i∈Nψ

Sψ,i

 (22)

Subject to∑
i′′∈Ni

Pi′′,a,ω = Pi,a,ω − riIi,a,ω −
(
PL

i,ω + PA

i,a,ω

)
+
∑
ψ∈Ψ̃i

P SOP

ψ,i,a,ω ∀i ∈ N , ∀a ∈ A, ∀ω ∈ Ω
(23)

∑
i′′∈Ni

Qi′′,a,ω = Qi,a,ω − xiIi,a,ω −
(
QL

i,ω +QA

i,a,ω

)
+
∑
ψ∈Ψ̃i

QSOP

ψ,i,a,ω ∀i ∈ N , ∀a ∈ A, ∀ω ∈ Ω
(24)

V 2
i,a,ω = V 2

i′,a,ω − 2 (riPi,a,ω + xiQi,a,ω)

+
(
r2
i + x2

i

)
Ii,a,ω ∀i ∈ N , ∀a ∈ A, ∀ω ∈ Ω

(25)

P 2
i,a,ω +Q2

i,a,ω 6 Ii,a,ωUi′,a,ω ∀i ∈ N , ∀a ∈ A,
∀ω ∈ Ω

(26)

Ui,a,ω = V 2
i,a,ω ∀i ∈ N , ∀a ∈ A, ∀ω ∈ Ω (27)

P SOP

ψ,i,a,ω + P SOP,L

ψ,i,a,ω + P SOP

ψ,j,a,ω + P SOP,L

ψ,j,a,ω = 0

i, j ∈ Nψ, ∀ψ ∈ Ψ̃, ∀a ∈ A, ∀ω ∈ Ω
(28)

√
P SOP2

ψ,i,a,ω +QSOP2

ψ,i,a,ω 6
P SOP,L

ψ,i,a,ω

Aψ,i
∀i ∈ Nψ, ∀ψ ∈ Ψ̃,

∀a ∈ A, ∀ω ∈ Ω

(29)

ξminψ,i Sψ,i 6 QSOP

ψ,i,a,ω 6 ξmaxψ,i Sψ,i ∀i ∈ Nψ, ∀ψ ∈ Ψ̃,

∀a ∈ A, ∀ω ∈ Ω
(30)

√
P SOP2

ψ,i,a,ω +QSOP2

ψ,i,a,ω 6 Sψ,i ∀i ∈ Nψ, ∀ψ ∈ Ψ̃,

∀a ∈ A, ∀ω ∈ Ω
(31)

Sψ,i 6Mzψ zψ ∈ {0, 1}, ∀i ∈ Nψ, ∀ψ ∈ Ψ̃ (32)

P

{√
P 2
i,a,ω +Q2

i,a,ω 6 Smaxi ,

V min 6 Vi,a,ω 6 V max
∀i ∈ N

}
> 1− ε

∀a ∈ A
(33)

where {Pi,a,ω, Qi,a,ω, Vi,a,ω, Ii,a,ω, Ui,a,ω, P SOP

ψ,i,a,ω, P
SOP,L

ψ,i,a,ω,
QSOP

ψ,i,a,ω, zψ, Sψ,i} are variables in the optimization problem.
The objective of the operation model as (22) minimizes the

total cost of the SOP installation in the distribution system. The
first term of (22) is the fixed cost for each SOP installation,
and the second term is the proportional cost to the capacities
of the installed SOPs. Constraints (23)-(27) are the SOCP
formulation of the DistFlow model. Expressions (28)-(31)
are the SOP operation constraints. Constraint (32) limits the
capacities of the SOPs according to the installation decisions.
When the installation decision variable zψ = 1, it means the
SOP is installed. Otherwise, zψ = 0.

Constraint (33) is the joint chance constraint of the opti-
mization model. It enforces the constraint that the probability
of network constraint violations is lower than the predefined
confidence level coefficient ε for any bus in the distribution
system is compromised in the LAAs. In other words, the
probability of the system operation being able to adequately
mitigate the impacts of the LAAs on the distribution system
must be higher than the predefined confidence level 1−ε. The
chance constraint (33) in the original form cannot be solved
directly. In order to solve the optimization with off-the-shelf
solvers, (33) can be reformulated as (34)-(37) below.√

P 2
i,a,ω +Q2

i,a,ω 6 Smaxi +Muω ∀i ∈ N , ∀a ∈ A,

∀ω ∈ Ω
(34)

Vi,a,ω 6 V max +Muω ∀i ∈ N , ∀a ∈ A, ∀ω ∈ Ω (35)

Vi,a,ω > V min −Muω ∀i ∈ N , ∀a ∈ A, ∀ω ∈ Ω (36)∑
ω∈Ω

πωuω 6 ε uω ∈ {0, 1} (37)

When uω = 0, constraints (34)-(36) have exactly the same
expressions as the network constraints in the original chance
constraint (33). Thus, the network constraints are enforced.
When uω = 1, it is easy to find that the network constraints
in the original chance constraint (33) are relaxed by (34)-(36).
Finally, constraint (37) guarantees that the total probability of
the relaxed scenarios is lower than the predefined confidence
level coefficient ε. Thus, the original chance constraint (33) is
enforced by constraints (34)-(37).

The optimization model (9) subject to (10)-(21) in Section
III-C is the operation model of the DSO with the installed
SOPs in the distribution network based on the solution of the
proposed optimization model presented in Section III-D. The
optimization model (22) subject to (23)-(33) in Section III-D
is the optimization model for the optimal strategy of SOP
installation against potential LAAs on the distribution network.
The later model aims to keep the feasibility of the former one
in the face of potential LAAs with an acceptable confidence
level.

In this paper, it is assumed that the attacker will be able to
switch on the vulnerable RCL when compromising the target
bus in the network. The RCL connected to the compromised
target bus of the LAAs is considered stochastic (e.g., EVs).
Thus, with different attack policies and RCL scenarios, the
impacts of the LAAs on the distribution system vary. The
attacker may select the most damaging attack policy when
performing the LAA. The proposed SOP installation and sizing
model covers all the attack policies (including the worst-case
one) in each RCL scenario to maintain the operation of the
DSO with the installed SOPs. Thus, the confidence level of
the network operation against the LAAs is achieved.

The chance-constrained programming method with chance
constraint (33) is applied in this paper. Robust optimization is
another approach to provide conservative and robust solutions
of the problem. However, robust optimization may result in
highly conservative solutions or even infeasibility in certain
cases. Thus, a chance-constrained model is proposed for the
optimal strategies of the SOP installation and sizing in this

Authorized licensed use limited to: UNIV OF WISCONSIN - MILWAUKEE. Downloaded on December 10,2021 at 22:14:13 UTC from IEEE Xplore.  Restrictions apply. 



1949-3053 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2021.3134176, IEEE
Transactions on Smart Grid

7

study. The probability of network constraint violation with
LAAs is kept under an acceptably low level by the proposed
model. The proposed model provides a robust enough and fea-
sible solution in the cases when the budget and resource of the
system are limited which need to be considered and optimized,
and the cases when robust optimization cannot achieve feasible
solutions. The proposed model aims to keep the probability of
network constraint violation with LAAs under an acceptably
low level by the DSO. Meanwhile, it should be noted that
if the highest level of network operation security is preferred
by the DSO, the confidence level coefficient in the proposed
model ε can be set as zero. In this case, the proposed model
is equivalent to the case with robust optimization in which the
network constraints under attack in all the scenarios will be
respected.

While the operation of the SOPs is considered in the model,
the proposed SOP installation model aims to provide the
optimal SOP installation and sizing strategy against potential
LAAs on the distribution network. In practice, it is generally
not feasible for the DSO to install the SOP between any
two nodes of the grid arbitrarily due to practical engineering
reasons, e.g., spatial constraints. Certain possible locations
for the SOP installation will be selected and assumed before
the installation strategy is determined. Thus, the location
candidates of the SOP installation are assumed to be known in
the proposed model. Meanwhile, although placing the SOPs
at the nodes close to the location of the controllable loads
in the network can mitigate the impacts of the LAAs more
directly, however, the placement of SOPs is usually subject
to practical constraints and only certain places are feasible as
discussed above. The proposed model aims to install the SOPs
optimally considering all the selected feasible site candidates
for the SOP installation.

IV. DISTRIBUTIONALLY ROBUST CHANCE-CONSTRAINED
MODELING

In practice, the estimated probability distribution obtained
from the empirical data may not perfectly reflect the true
probability distribution of the scenarios. In order to robustize
the chanced-constrained SOP installation model against the
uncertainty of the empirical probability measure, a Wasserstein
metric based DRCC model is proposed.

A. Ambiguity Set with Wasserstein Distance

The ambiguity set D of the DRCC model is defined based
on the Wasserstein distance. The Wasserstein distance is a well
accepted metric to construct ambiguity set for its strong out-
of-sample performance. The formulation is introduced below.
The Wasserstein distance between two probability measures
dW (π1,π2) :M(Ξ)×M(Ξ)→ R is defined as (38) [21].

dW (π1,π2) = inf
γ∈Γ(π1,π2)

∫
Ξ2

‖ω1 − ω2‖ dγ (ω1,ω2) (38)

where Ξ is the support of the two probability measures;M(Ξ)
is the set of all the distributions with support Ξ; Γ is the set of
all the joint distributions with marginal distributions π1 and

π2. Then the Wasserstein distance based ambiguity set D can
be defined via (39).

D = {π ∈M (Ξ) | dW (π,$) 6 ρ} (39)

As shown above, the Wasserstein distance from any distribu-
tion in the ambiguity set D to the estimated distribution $ is
constrained by ρ. Thus, the ambiguity set D can be viewed
as the Wasserstein ball with radius ρ, the center of which
is the estimated distribution $. The Wasserstein distance-
based ambiguity set can provide an upper confidence bound
without assigning probability weights, has good out-of-sample
performance and has a series of nice characteristics [21], [23].
Thus, in this study, the ambiguity set is constructed based on
the Wasserstein distance.

B. Distributionally Robust Chance-Constrained Model

In the distributionally robust model, the chance constraint
(33) in the original model is replaced by constraint (40) as
follows.

min
π∈D

P

{√
P 2
i,a,ω +Q2

i,a,ω 6 Smaxi ,

V min 6 Vi,a,ω 6 V max
∀i ∈ N

}
> 1− ε

∀a ∈ A
(40)

Similar to the reformulation of (33) by (34)-(37), constraint
(40) can be reformulated as (34)-(36) and (41) as presented
below.

max
π∈D

{∑
ω∈Ω

πωuω

}
6 ε uω ∈ {0, 1} (41)

In order to formulate the ambiguity set D explicitly in the
optimization, the Wasserstein distance needs to be calculated
in a closed form. According to the definition of the Wasserstein
distance, an optimization model is constructed to calculate the
Wasserstein distance of a distribution π from the estimated
distribution $ as follows.

dW (π,$) = min
∑
ω∈Ω

∑
ω′∈Ω

dω,ω′λω,ω′ (42)

Subject to

0 6 λω,ω′ 6 1 ∀ω ∈ Ω, ∀ω′ ∈ Ω (43)∑
ω∈Ω

λω,ω′ = $ω′ ∀ω′ ∈ Ω (44)

∑
ω′∈Ω

λω,ω′ = πω ∀ω ∈ Ω (45)

where dω,ω′ = ‖ω − ω′‖. Then the proposed DRCC opti-
mization model can be formulated as a tri-level optimization
problem by minimizing (22) subject to (23)-(32), (34)-(36),
and ∑

ω∈Ω

πωuω 6 ε uω ∈ {0, 1} (46)

πω = arg max
∑
ω∈Ω

πωuω (47)

Subject to

0 6 πω 6 1 ∀ω ∈ Ω (48)
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∑
ω∈Ω

πω = 1 ∀ω ∈ Ω (49)

dW (π,$) 6 ρ (50)

dW (π,$) = arg min
∑
ω∈Ω

∑
ω′∈Ω

dω,ω′λω,ω′ (51)

Subject to (43)-(45).
In the DRCC model, ω and ω′ are both the indexes for the

scenarios in the sample space Ω. ω and ω′ are the realization
values of scenarios ω and ω′, which are the amounts of RCL
at the vulnerable nodes in scenarios ω and ω′ in this study.
In the ambiguity set D, all the distributions (including the
estimated distribution itself) have the same support as the
estimated distribution. Therefore, both ω and ω′ ∈ Ω, and
both ω and ω′ are obtained from the sample data.

C. Solution Method

In order to solve the tri-level optimization model, a master
and sub-problems algorithm is developed. First, the third-level
optimization problem (51) subject to (43)-(45) is reformulated
by the Karush-Kuhn-Tucker (KKT) conditions as

dω,ω′ +δω′ +ζω−µω,ω′ +νω,ω′ = 0 ∀ω ∈ Ω, ∀ω′ ∈ Ω (52)

µω,ω′ > 0 ∀ω ∈ Ω, ∀ω′ ∈ Ω (53)

νω,ω′ > 0 ∀ω ∈ Ω, ∀ω′ ∈ Ω (54)

µω,ω′λω,ω′ = 0 ∀ω ∈ Ω, ∀ω′ ∈ Ω (55)

νω,ω′ (1− λω,ω′) = 0 ∀ω ∈ Ω, ∀ω′ ∈ Ω (56)

together with (43)-(45), where (52) is the stationarity condition
in the KKT conditions of optimization problem (51) subject
to (43)-(45). It shows the optimal primal point λω,ω′ is a min-
imizer of the Lagrangian with the dual variables δω′ , ζω, µω,ω′

and νω,ω′ . Constraints (53)-(54) are the dual feasibility condi-
tions, and constraints (55)-(56) are the complementary slack-
ness conditions. With the KKT based reformulation of the
third-level problem, the original tri-level optimization model is
converted to an equivalent bi-level optimization model. Then,
the master and sub-problems are constructed to solve the bi-
level optimization model. The master-problem is defined as
follows.

min
zψ,Sψ,i,uω

∑
ψ∈Ψ̃

αzψ + β
∑
i∈Nψ

Sψ,i

 (57)

Subject to (23)-(32), (34)-(36), and∑
ω∈Ω

πωuω 6 ε uω ∈ {0, 1}, ∀{πω} ∈ RΩ (58)

where RΩ is a non-empty set of distributions with support Ω.
RΩ will be constructed with the solutions of the sub-problem,
and the detailed process will be described in Algorithm 1
presented below.

The sub-problem is defined as follows.

max
πω

∑
ω∈Ω

πωuω (59)

Subject to (43)-(45), (48)-(49), (52)-(54), and∑
ω∈Ω

∑
ω′∈Ω

dω,ω′λω,ω′ 6 ρ (60)

µω,ω′ 6Mσω,ω′ ∀ω ∈ Ω, ∀ω′ ∈ Ω (61)

λω,ω′ 6M (1− σω,ω′) ∀ω ∈ Ω, ∀ω′ ∈ Ω (62)

νω,ω′ 6Mςω,ω′ ∀ω ∈ Ω, ∀ω′ ∈ Ω (63)

1− λω,ω′ 6M (1− ςω,ω′) ∀ω ∈ Ω, ∀ω′ ∈ Ω (64)

σω,ω′ + ςω,ω′ 6 1 σω,ω′ , ςω,ω′ ∈ {0, 1},
∀ω ∈ Ω, ∀ω′ ∈ Ω

(65)

where (61)-(65) is an equivalent reformulation of the com-
plementary slackness conditions (55) and (56) to handle the
non-convexity of the sub-problem. With the master and sub-
problems described above, an iterative algorithm is then de-
veloped to solve the proposed DRCC optimization model. The
algorithm is presented as Algorithm 1 below.

Algorithm 1: Master and sub-problems iterations

1. Denote the estimated distribution by $, and set RΩ = {$}. Denote
the objective function of the master-problem by Θm and the objective
function of the sub-problem by Θs.

2. Solve the master-problem and set (z∗,S∗,u∗) = ({z∗ψ}, {S
∗
ψ,i},

{u∗ω}) = arg min Θm(RΩ).
3. Solve the sub-problem and set π∗ = {π∗ω} = arg max Θs(u∗).
4. If

∑
ω∈Ω π

∗
ωu
∗
ω 6 ε then return (z∗,S∗) as the solution, else append

π∗ to RΩ by setting RΩ = {RΩ,π
∗} and go to Step 2.

The sub-problem guarantees that the solution of the algo-
rithm satisfies the lower-level problem of the bi-level model.
The master-problem ensures the optimality of the solution for
the upper-level problem of the bi-level model. The stopping
criteria of Algorithm 1 guarantees that the chance constraint
of the DRCC model is satisfied with the worst-case distribution
in the ambiguity set D. In the objective function of the sub-
problem (59), the values of uω are determined by the solution
of the master-problem, and uω act as parameters in the sub-
problem. Thus, objective function (59) of the sub-problem is
linear, and Algorithm 1 can be solved directly and efficiently
with the off-the-shelf solvers.

V. CASE STUDIES

In order to validate the proposed model, case studies were
conducted on a 69-bus test system. The details of the case
studies are presented in this section.

A. Case Study Parameters

The test system based on the 69-bus system in the case
studies is shown in Fig. 2. The data of the 69-bus test system
can be obtained from the MATPOWER software package [37].
In the case studies, no loop paths in the 69-bus system are
connected to keep it a radial network. The configuration of
the SOP installation candidates follows the test system in [19].
Four potential SOP installations are considered. As shown in
Fig. 2, they are supposed to be connected between Buses 31
and 38, 11 and 43, 50 and 57, 27 and 65, respectively. In
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the case studies, the EV charging demand connected to the
network is assumed to be the RCL which are potential targets
of the LAAs. As shown in the figure, ten buses are assumed
to have EV charging infrastructures. The number of charging
poles at each bus is listed in Table I. The maximum output of
each charging pole is set as 7.2kW, which is a typical capacity
of the Level-2 charging units. The EV driving patterns are
obtained from the real-world driving data from the National
Travel Surveys (NTS) of the Nordic area [38].

SOP2

SOP1

SOP3

272423191615141312 20

656463626160595756555453 58

3534333231302928

11109765432 8

504947 48

46454443424140393736 38

1

5251 6968

6766

25222117 18 26

SOP4

SOPs

Load Bus with RCL

Load Points

SOP Candidates

Fig. 2. 69-Bus Test System with SOPs.

TABLE I
NUMBER OF CHARGING POLES AT EACH BUS

Buses Number of Charging Poles

Buses 21, 37, 40, 54 40

Buses 12, 29, 45, 50, 64 60

Bus 61 80

In the case studies, the real-world daily driving behavior
data from the Danish NTS dataset was used to generate the
scenarios. 24000 daily driving behavior records in weekdays
from the NTS were used to generate 1000000 scenarios
with the bootstrap method. The bootstrap method is a well-
established and widely applied resampling technique used
to estimate the statistic characteristics on a population by
sampling a dataset with replacement. Interested readers are
referred to references [39], [40]. Meanwhile, another separate
10187 records of weekdays driving behaviors from the NTS
dataset were used in the out-of-sample test. In each scenario,
the original charging scheduling of EVs without LAAs is
determined by a TOU charging scheme [41]. The daily load
curve and corresponding TOU in the case studies are shown
in Figs. 3 and 4, respectively.

The loading levels of the network with the TOU-based EV
charging demand without the presence of LAAs are shown in
Fig. 5. As shown in the figure, the loading of the network is
kept below the limits in the peak, flat and valley periods with
the TOU charging scheme when there are no LAAs.

The key parameters of the model in the case studies are
listed in Table II. Meanwhile, in practice, the two converters
in the back-to-back topology generally have the same capacity.
Therefore, it is assumed that the two converters in each SOP
have the same capacity in the case studies.

In this study, the proposed DRCC model was solved using
the proposed Algorithm 1 in Section IV-C. Both the master
and sub-problems in the algorithm can be solved directly
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Fig. 3. Daily Load Curve in the Case Studies.
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Fig. 4. TOU Electricity Prices for EV Charging.
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Fig. 5. Loading Levels without LAAs.

with off-the-shelf solvers. In the case study, the models were
solved with CPLEX on a laptop with Intel Core i5 CPU (1.60-
3.90GHz) and 12GB RAM.

B. SOP Installation and Sizing Strategies

The results of the SOP installation and sizing strategies
with the proposed DRCC model are shown in Table III.
The results with the generic chance-constrained (CC) and
robust optimization (RO) models are also listed in the table
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TABLE II
KEY PARAMETERS IN CASE STUDIES

Parameter Value

SOP Loss Coefficient (Aψ,i) 0.02

SOP Reactive Power Limits (ξmaxψ,i , ξminψ,i ) 0.8, −0.8

System Voltage Limits (Vmax, Vmin) 1.05, 0.95 p.u.

Chance-Constrained Confidence Coefficient (ε) 0.05

Wasserstein Distance Limit (ρ) 0.001

Cost Coefficient of SOP Installation (α) $100K/unit

Cost Coefficient of SOP Installation (β) $100/kW

for comparison. With both the DRCC and CC models, only
three SOPs are installed in the networks while four SOPs are
installed in the result of the RO model. Meanwhile, the total
capacity of the SOPs with the RO model is clearly higher
than the result of the DRCC model. In contrast, the capacity
of the SOPs in the result of the CC model is slightly lower
than the result of the DRCC model. As a result, the costs
of the SOP installation with the DRCC, CC and RO models
are about $420K, $414K and $540K, respectively. While the
difference between the costs with the DRCC and CC models is
marginal, the cost with the RO model is significantly higher,
which is an about 30% raise compared with the other two
models. The characteristics of the solutions from the three
models are as expected. The RO model merely considers and
optimizes the worst-case scenario. Therefore, it results in the
most conservative solution as shown in the table. It should
also be noted that the RO model may result in infeasibility of
the problem is certain cases. The generic CC model relies on
the estimated distribution of the scenarios and does not provide
robustness against the ambiguity of the probability distribution
for the chance constraint. Thus, the generic CC model gives
the most optimistic solution. In contrast, the proposed DRCC
model considers the ambiguity of the probability distribution
and searches for the robust solution given that the estimated
distribution of the scenarios may not be perfectly correct. The
Wasserstein distance based ambiguity set formulation enables
the proposed DRCC model to provide necessary robustness
in the solution and guarantee the satisfaction of the chance
constraint. Thus, as an intermediate approach between the RO
and generic CC models, the proposed DRCC model provides
robustness in the solution without being overly conservative.

TABLE III
SOP INSTALLATION AND SIZING SOLUTIONS WITH DIFFERENT MODELS

SOPs Installation SOP 1 SOP 2 SOP 3 SOP 4

DRCC Installation Decision Y N Y Y
Converter Capacity (kW) 241 NA 127 232

CC Installation Decision Y N Y Y
Converter Capacity (kW) 222 NA 121 227

RO Installation Decision Y Y Y Y
Converter Capacity (kW) 270 11 166 255

The computation time of the DRCC, CC and RO models in
the case studies is about 2514s, 1004s and 171s, respectively.

C. Out-of-Sample Analysis

In the case studies, the confidence level requirement is set
to be 0.95, which means the probability of network constraint
violations under LAAs is required to be lower than 0.05
with the installed SOPs. In other words, the probability of
interruptions in the distribution system due to the LAAs is less
than 0.05. When the distribution of the scenarios is accurate,
the confidence level is guaranteed by both the proposed DRCC
and generic CC models. However, when the ambiguity of the
probability distribution is considered, the confidence level is
not guaranteed by the generic CC model any more. In order to
illustrate the robustness of the proposed DRCC model against
the ambiguity of the probability distribution and its out-of-
sample performance, the proposed Wasserstein distance based
DRCC model and the generic CC model are tested in the out-
of-sample analysis. As mentioned, the scenarios of the out-of-
sample tests were generated with a set of independent driving
records from the NTS other than the data used to solve the
optimization models. Ten out-of-sample tests were conducted,
and the results of the tests are shown in Fig. 6.
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Fig. 6. Confidence Levels with DRCC and CC Models in Out-of-Sample
Tests.

As shown in the figure, with the ambiguity of the distri-
bution, the confidence level with the solution of the generic
CC model is not guaranteed any more and drops below the
predefined criteria in four of the tests. Thus, the generic
CC model shows weak robustness to the ambiguity of the
probability distribution. In contrast, the confidence level with
the solution of the proposed DRCC model remains well above
the criteria in all the tests. The confidence level keeps a
satisfying level above 98% in all the tests, and proves the
robustness of the proposed Wasserstein distance based DRCC
model against the ambiguity of the probability distribution and
its strong out-of-sample performance. Thus, even when the
estimated probability distribution is not completely accurate
in practice, the DRCC model can still maintain the required
confidence level of the solution.

D. Sensitivity Analysis

The chance-constrained confidence coefficient ε and
Wasserstein distance limit ρ are the key parameters in the
models. The chance-constrained confidence coefficient ε sets
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the confidence level criteria of the solution, and Wasserstein
distance limit ρ determines the robustness of the DRCC model
against the ambiguity of distributions. A sensitivity analysis on
the two parameters was conducted to show their impacts on
the solution of the DRCC model.

Figs. 7 and 8 show the cost of SOP installation and average
confidence level in the out-of-sample tests with different
chance-constrained confidence coefficient ε. When the value of
ε increases, it means the DSO can tolerate a lower confidence
level of the solution. As a result, the cost for the SOP installa-
tion decreases and a less robust solution is obtained. However,
as shown in Fig. 8, the proposed Wasserstein distance based
DRCC model still shows a strong out-of-sample performance
and well guarantees the required confidence level with the
increased ε setting.
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Fig. 7. SOP Installation Cost with Different ε.
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Fig. 8. Average Confidence Level in Out-of-Sample Tests with Different ε.

Figs. 9 and 10 show the cost of SOP installation and average
confidence level in the out-of-sample tests with different
Wasserstein distance limit ρ. A higher ρ means a larger
ambiguity set and higher robustness against the ambiguity is
required. Therefore, as shown in the figures, the cost for the
SOP installation increases and higher robustness in the out-
of-sample tests is obtained by the solution when ρ increases.

E. SOP Operation Strategy Against LAAs
In order to illustrate the performance of the proposed

operation model in mitigating the impacts of the LAAs on
the distribution system, the proposed SOP operation model
under the LAA scenarios are tested.

In this paper, it is assumed that the attacker will be able
to switch on the vulnerable RCL when compromising the

0 0.5 1 1.5 2 2.5
Wasserstein Distance Limit ; #10-3

400

450

500

550

SO
P 

In
st

al
la

tio
n 

C
os

t (
k$

)

Fig. 9. SOP Installation Cost with Different ρ.
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Fig. 10. Average Confidence Level in Out-of-Sample Tests with Different ρ.

target bus in the network. In the case study, it is assumed that
the attacker gains the control of the EV charging when the
charging infrastructure at the target bus is compromised. For
instance, when the charging system at Bus 12 is compromised
by the attacker, he/she can turn on the charging of all the idle
EVs that are plugged in the charging poles at the charging
power limit simultaneously. In this case, the default protections
of the EV chargers will not be triggered. However, the network
constraints of the distribution system may be violated due to
the sudden peak demand, and overloading and under-voltage
problems can be caused by the malicious attack action. It
should be noted that the vulnerable RCL is assumed to be
stochastic in the LAA scenarios in the proposed model. In the
case studies, it is assumed that the attacker can switch on the
charging of all the idle EVs connected to the compromised
buses in the LAA attacks. The numbers of the idle EVs
connected to the compromised buses in the scenarios are
stochastic in the case studies.

Fig. 11 shows the ratio of the apparent power to the
limits of the heavy loaded branches in the distribution system
under LAAs without SOPs. Without the installation of SOPs,
overloads of branches in the distribution system occur. As
shown in Fig. 11, without the SOPs, the apparent power in a
series of branches exceeds the limit in the cases when Buses
12, 21, 29, 45, 50, 61 or 64 is compromised. Especially when
the RCL at Bus 12 or 29 are compromised, the apparent power
of the overloaded upstream branches is well above the limit.
As a result, load shedding will be inevitable in these cases.

In contrast, the cases with the proposed SOP operation
model under the LAAs are shown in Fig. 12. The installation

Authorized licensed use limited to: UNIV OF WISCONSIN - MILWAUKEE. Downloaded on December 10,2021 at 22:14:13 UTC from IEEE Xplore.  Restrictions apply. 



1949-3053 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2021.3134176, IEEE
Transactions on Smart Grid

12

Line
 9

Line
 10

Line
 27

Line
 28

Line
 46

Line
 47

Line
 52

Line
 53

Line
 54

Line
 55

Line
 56

Line
 57

Heavy Loaded Branches

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
A

pp
ar

en
t P

ow
er

 L
oa

di
ng

 L
ev

el
Bus 12
Bus 21
Bus 29
Bus 45
Bus 50
Bus 61
Bus 64

Fig. 11. Loading Levels of Branches under LAAs without SOPs.

decisions and capacities of the SOPs in the network are
determined according to the proposed DRCC optimization
model. The results of the test show that with proper operation
of the SOPs in the distribution system, the overloads of the
branches under LAAs in the test is eliminated. The apparent
power of all the branches in the network is constrained within
the limit under the LAAs with the proposed SOP installation
and operation strategies.
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Fig. 12. Loading Levels of Branches under LAAs with SOPs.

Tables IV and V show the operation of the SOPs with the
operation model to mitigate the impacts of LAAs when the
RCL at Buses 12 and 29 are compromised, respectively. The
power injection and losses of the SOPs with the operation
model are listed in the tables.

TABLE IV
OPERATION AND LOSSES OF SOPS WITH BUS 12 COMPROMISED

Unit: kW SOP 1 SOP 2 SOP 3 SOP 4

Active Power (PSOPi ) 0 NA -109 133

Power Loss (PSOP,Li ) 0 NA 2 5

Reactive Power (QSOPi ) 0 NA 15 186

Active Power (PSOPj ) 0 NA 105 -142

Power Loss (PSOP,Lj ) 0 NA 3 5

Reactive Power (QSOPj ) 0 NA 73 184

Further, the proposed installation and operation model of
SOPs also address the voltage problem of the distribution

TABLE V
OPERATION AND LOSSES OF SOPS WITH BUS 29 COMPROMISED

Unit: kW SOP 1 SOP 2 SOP 3 SOP 4

Active Power (PSOPi ) 188 NA -101 -149

Power Loss (PSOP,Li ) 4 NA 2 5

Reactive Power (QSOPi ) 40 NA 14 179

Active Power (PSOPj ) -196 NA 97 139

Power Loss (PSOP,Lj ) 4 NA 3 5

Reactive Power (QSOPj ) 2 NA 83 186

system due to the LAAs. In the test, under-voltage issues occur
in the network when Bus 61 or 64 is compromised in the
LAAs. Fig. 13 shows the nodal voltages of the system under
LAAs in the cases when Bus 61 and Bus 64 is compromised.
As shown in the figure, Buses 60-65 have under-voltage
problems when Bus 61 is compromised, and Buses 61-65 have
under-voltage problems when Bus 64 is compromised without
SOPs in the test. However, if the SOPs are installed, the under-
voltage issues in the networks under LAAs are eliminated with
the proposed SOP installation and operation strategies. The
voltages of all the buses in the distribution network are well
kept within the specified range.
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Fig. 13. Nodal Voltages under LAAs when (a) Bus 61 is compromised, (b)
Bus 64 is compromised.

Tables VI and VII show the operation of the SOPs with
the operation model to mitigate the impacts of LAAs when
the RCL at Buses 61 and 64 are compromised, respectively.
The power injection and losses of the SOPs with the operation
model are listed in the tables.

In order to further demonstrate the benefits of the SOP
installation in mitigating the impacts of LAAs, the distribution
system reconfiguration method [42] is also applied in the LAA
scenarios. Four additional loop paths on the same connection
nodes of the SOP candidates are assumed in the scenarios. The
loop paths are assumed to be equipped with and normally
open circuit breakers. In the cases when Bus 37, 40, 54 or
45 is compromised by the LAAs, the reconfiguration method
manages to maintain the normal operation of the distribution
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TABLE VI
OPERATION AND LOSSES OF SOPS WITH BUS 61 COMPROMISED

Unit: kW SOP 1 SOP 2 SOP 3 SOP 4

Active Power (PSOPi ) 0 NA -113 -152

Power Loss (PSOP,Li ) 0 NA 2 5

Reactive Power (QSOPi ) 0 NA 15 176

Active Power (PSOPj ) 0 NA 108 143

Power Loss (PSOP,Lj ) 0 NA 3 5

Reactive Power (QSOPj ) 0 NA 67 183

TABLE VII
OPERATION AND LOSSES OF SOPS WITH BUS 64 COMPROMISED

Unit: kW SOP 1 SOP 2 SOP 3 SOP 4

Active Power (PSOPi ) 0 NA -110 -149

Power Loss (PSOP,Li ) 0 NA 2 5

Reactive Power (QSOPi ) 0 NA 15 179

Active Power (PSOPj ) 0 NA 105 139

Power Loss (PSOP,Lj ) 0 NA 3 5

Reactive Power (QSOPj ) 0 NA 72 186

system while satisfying the network constraints. However,
in the cases when Bus 12, 21, 29, 45, 50, 61 or 64 is
compromised in the LAAs, the reconfiguration method fails to
mitigate the impacts of the LAAs and unwanted violations of
network constraints cannot be avoided by the reconfiguration.
Nevertheless, with the proposed SOP installation, the impacts
of LAAs can be successfully mitigated in all the cases.

F. Case Study on 141-Bus Test System

In order to further validate the proposed DRCC based SOP
installation and operation model in mitigating potential LAAs,
an additional case study on the 141-bus radial test system from
the MATPOWER package [37] was also performed. The EV
demand data is obtained in the same way as the cases on the
69-bus system. The number of charging poles at the buses
in the test system is listed in Table VIII. Four potential SOP
installations are considered in the test, which are supposed to
be connected between Buses 59 and 105, 32 and 52, 23 and
130, 95 and 125, respectively.The key parameters in the test
are the same as the values listed in the II.

TABLE VIII
NUMBER OF CHARGING POLES IN 141-BUS SYSTEM

Buses Number of Charging Poles

Buses 20, 42, 48, 91, 125 60

Bus 25 80

The SOP installation strategy in the test is shown in IX.
With the installed SOPs in the network, an out-of-sample test
was conducted to validate the SOP installation and sizing
solutions. The result of the out-of-sample test is shown in
Fig. 14. As shown in the figure, the confidence level of the
solution in mitigation the LAAs in the out-of-sample test is
well maintained beyond the predefined confidence level, 95%.
The proposed Wasserstein distance based model can provide

satisfying out-of-sample performance and robustness to the
solution of the SOP installation in mitigating the impacts of
LAAs under the ambiguity of distribution.

TABLE IX
SOP INSTALLATION SOLUTION IN THE TEST ON 141-BUS SYSTEM

SOP Installation SOP 1 SOP 2 SOP 3 SOP 4

DRCC Installation Decision Y N Y N
Converter Capacity (kW) 138 NA 280 NA
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Fig. 14. Confidence Levels with DRCC Models in Out-of-Sample Tests.

G. Discussion

As shown in the case studies, the installed SOPs can provide
voltage support to the network against the LAAs. In [43], a
robust control principle for the Volt-Var and Volt-Watt control
for smart inverters in radial grid in proposed. The results in
[43] show the proposed control policy in [43] can successfully
provide voltage support to the network and keep the stability.
However, the research in [43] only focuses on the voltage
problem in the grid while the network congestion is not
addressed by the method, which is one of the major problems
caused by LAAs. Meanwhile, the active power scheduling of
the inverters in [43] is based on and limited by the DGs, e.g.,
PV. However, DG may not be available or installed for all
the distribution systems, and therefore it is not in the scope
of this paper. Nevertheless, an optimal coordinated control of
the DG inverters and SOPs in the distribution systems with
DG installation will be highly beneficial to the robustness and
resilience enhancement of the grid. It is a meaningful problem
which requires serious study and investigation which will be
carried out in future work.

In this paper, the Wasserstein distance is applied to construct
the ambiguity set and provide robustness to the solution of
the chance-constrained model. As shown in the results of the
case studies, the proposed Wasserstein distance based DRCC
model demonstrates satisfying robustness and performance
compared with the generic CC model. The results of the out-
of-sample tests with real-world data show that the confidence
level requirement is not guaranteed by the generic CC model
with ambiguity of the distribution. In contrast, the proposed
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Wasserstein distance based DRCC model can well maintain
the confidence level required in the case studies. Generally,
Wasserstein metric based model is believed to have strong out-
of-sample performance which has been demonstrated in the
case studies. However, there are also other popular alternative
methods to construct the ambiguity set for the distributionally
robust optimization models, e.g., moment based and diver-
gence based methods. In the proposed model in this paper, the
moment based method will lead to a non-convex model and
increase the difficulty of reaching the solution. A preliminary
study has been conducted on the proposed model using the
divergence based method with χ divergence of order 2. The
result shows the divergence based method can also provide
robustness of the solution against the ambiguity of distribution.
However, more serious study and analysis are needed for the
application of the divergence base methods, which will be
done in future work.

VI. CONCLUSIONS

This paper presents a two-stage optimization framework
to mitigate the impacts of the LAAs on the distribution
systems by implementing the emerging back-to-back SOPs.
The proposed framework includes the optimal installation and
operation strategies of the SOPs for defending the distribu-
tion systems against potential LAAs. A chance-constrained
optimization model is developed to meet the confidence level
requirement of the system in adequately mitigating the impacts
of the LAAs. In order to ensure the robustness of the proposed
model against the ambiguity of the probability distribution
in practice, a Wasserstein metric based DRCC model is
developed. The results of the case studies demonstrate the
performance of the proposed framework. With the installation
of SOPs, the proposed framework is able to mitigate the
impacts of the LAAs on the distribution system. By applying
the DRCC optimization technique, the proposed Wasserstein
distance based model manages to satisfy the confidence level
requirement under the ambiguous probability distributions.
The results also show the satisfying out-of-sample perfor-
mance of the proposed Wasserstein distance based DRCC
model.
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