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ABSTRACT

Many apps performing security-sensitive tasks (e.g., online bank-

ing) attempt to verify the integrity of the device they are running

in and the integrity of their own code. To ease this goal, Android

provides an API, called the SafetyNet Attestation API, that can be

used to detect if the device an app is running in is in a łsafež state

(e.g., non-rooted) and if the app’s code has not been modified (using,

for instance, app repackaging). In this paper, we perform the first

large-scale systematic analysis of the usage of the SafetyNet API.

Our study identifies many common mistakes that app developers

make when attempting to use this API. Specifically, we provide a

systematic categorization of the possible misusages of this API, and

we analyze how frequent each misuse is. Our results show that,

for instance, more than half of the analyzed apps check SafetyNet

results locally (as opposed to using a remote trusted server), ren-

dering their checks trivially bypassable. Even more surprisingly,

we found that none of the analyzed apps invoking the SafetyNet

API uses it in a fully correct way.
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1 INTRODUCTION

Because of Android’s high market share, many companies and
businesses use Android applications to provide their services but
there are characteristics of Android that can be exploited by at-
tackers to compromise Android devices and applications. These
characteristics include rooting the device, repackaging applications,
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monitoring network traffic, and using unofficial OS distributions.

Rooting the device allows users to achieve superuser privileges,

change system settings, and gain access to private memory areas.

There are tools available for these exploits which make them rela-

tively easier to perform. For this reason, some applications want

to check the status of OS and their code. Specifically, they want

to check if the OS on the Android device is non-rooted, and the

application is not modified. Because by having higher privileges

(rooting) and modifying the application, an attacker has much more

feasibility to steal information, access premium features, send false

information, and compromise the application server.

There are ways of detecting root and repackaging on Android

which developers can implement in their applications [19, 46]. How-

ever, these methods are shown to be bypassable [28, 37]. Tradition-

ally apps can check for the presence of the binary su (which allows

obtaining root privileges) to verify that the device has not been

rooted. Complementarily, they can check the contents of the file in

which they are stored to verify that they have not been modified.

Performing these ad-hoc checks has 2 main limitations:

(1) These checks are complex and error-prone to implement.

(2) Since these checks are performed in the app’s code, an at-

tacker can reverse engineer the app’s code and patch it so

that it does not perform these checks anymore.

To ease this task and provide a unified, easy-to-use solution, Google

implemented a comprehensive API called SafetyNet Attestation

API [24] in Android for detecting compromised devices and tam-

pered applications. SafetyNet determines the state of the app and

the device integrity in a separate component, running outside the

app’s process. Apps can call SafetyNet to obtain the results of these

checks and send these results to a remote server, where they can

check if they are correct. SafetyNet is better than other approaches

because on the client-side it only requires calling the API and send-

ing the result to the backend server. Developers do not need to

implement their own checks that are likely to be incomplete and

bypassable. The server can decide what steps to take based on the

received information. For example, the server can send an error

message and terminate current session with a device if it failed

attestation. This helps the authors of an application to implement a

system for detecting tampering of their application and the integrity

of the devices which are running their application.

However, SafetyNet is not straightforward to use for a developer

with no security expertise. SafetyNet must be used in a secure man-

ner and verification of the result must be done on the server-side in

order to get a correct attestation. If SafetyNet is not used correctly

it can be bypassed by attackers. For example, if the verification of

the attestation result is done on the application side, an attacker

can modify the application to bypass the verification.
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We have analyzed 163,773 top Android applications and found

that 62 applications try to leverage SafetyNet API to defend against

tampering. We analyzed their SafetyNet usage and found that none

of the applications are doing the checks correctly.We found 21 appli-

cations that use SafetyNet to change app behavior when tampering

is detected. We bypassed SafetyNet and prevented this behavior

change in 16 (84%) of these applications.

While our analysis is not fully automated, nor fully precise, it

constitutes a first step toward automatically verifying the correct

usage of the SafetyNet API on the large scale. Future work in this

area could build upon our analysis and develop further vetting tools

targeting this API. These vetting tools could be integrated in the

market-level app approval process.

In summary, in this paper we make the following contributions:

(1) We develop a semi-automated pipeline for the analysis of

the usage of the Attestation API.

(2) We perform the first large scale study of SafetyNet Attesta-

tion in Android applications analyzing 163,773 APKs.

(3) We identify common mistakes that developers have made

that lead to SafetyNet Attestation being ineffective.

(4) We show how the SafetyNet checks can be bypassed in the

applications that misuse the API.

2 BACKGROUND

Typically, Android applications are downloaded and installed from

the Google Play Store that is available on the Android device. Specif-

ically, on the Play Store developers must sign the APK before up-

loading and publishing their application. An APK is signed using

a key that only the developers can access. Android does not allow

installation of an unsigned APK. APKs can be disassembled into

smali code and modified. Smali is disassembled Dalvik bytecode.

Dalvik bytecode is compiled Java code of applications that runs on

Dalvik VM on Android.

2.1 Android Tampering

An application can be modified by third parties by modifying the

APK of an application. APK is modified by disassembling the APK

into smali and modifying the smali code. The modified smali can be

repackaged to an APK but needs to be signed again. If an attacker

tries to modify and repackage, they will have to sign the APK

first before it can be installed on an Android device. Repackaging

the applications changes the hash of APK. If the developers use a

different key to sign, the signing certificate of the APK will also be

changed.

An attacker can try to change application behavior by modifying

application code or by modifying OS. The OS modifications can

include rooting the device and installing custom OS or kernel. We

will define a device to be łtamperedž if the attacker is able to inject

code and modify network packets of an application to change its

behavior. We will define an application to be łtamperedž if it has

been repackaged and has a different signing certificate and hash

from the original application. We define this method of controlling

application behavior as tampering.

So app developers may want to check the integrity of their appli-

cations code and the state of the client device. However, developers’

techniques to detect tampering and attackers’ efforts to hide tamper-

ing are a cat-and-mouse race. SafetyNet Attestation API provides a

unified solution to this issue.

2.2 Android Application Obfuscation

The code of many Android applications is obfuscated. In particular,

many applications use ProGuard [25] to obfuscate their code, since

it is the default obfuscation tool for Android, available as part

of the Android compilation toolchain. ProGuard obfuscates the

application code by changing method and class names. For example,

a method named getSecretKey gets renamed to aaa.

Renaming method names makes reverse engineering of appli-

cations harder, since it complicates understanding the application

code. In addition, it complicates hooking an application’s code. In

fact, hooking is typically performed, using tools like Frida [2], by

specifying the method name to hook.

Consequently, changing method names makes hooking harder,

since obfuscation could change the name of the method that a

researcher wants to hook.

2.3 Attacker Model

In this paper we assume, an attacker can change client application

code and compromise the Android device. By changing application

code, the attacker can patch the application to remove integrity

checks. The attacker can compromise the Android device by meth-

ods such as rooting. The attacker is then able to inject code while

the client application is running and can analyze and modify the

client application’s network traffic.

However, we also assume that attacker cannot compromise Safe-

tyNet Attestation API. This means that an application using Safe-

tyNet Attestation API will get the correct information about device

integrity from SafetyNet even though the device is compromised.

Compromising SafetyNet Attestation API would mean attacker is

able to change integrity checks that are performed by SafetyNet be-

fore the client application receives them. However, we assume the

attacker can modify the application or change/spoof the SafetyNet

results after the application has received them.

This paper focuses on how SafetyNet is used and how to defeat

SafetyNet checks in apps that use it wrongly. Therefore, a root

attacker able to compromise the SafetyNet API is considered out

of scope. The issue of securing SafetyNet against root attackers is

orthogonal to the issue of using this API correctly.

Indeed, in certain scenarios (e.g., specific Android devices and

versions), root attackers could compromise the SafetyNet API itself.

However, Google is taking step toward making SafetyNet increas-

ingly resilient against root attackers [39], including using Trusted

Execution Environments (e.g., TrustZone) to verify a device’s op-

erating system integrity. Nevertheless, it is important to note that

if the SafetyNet API is not used correctly by app developers, at-

tackers can bypass its checks, even if the API itself has not been

compromised.

3 THE SAFETYNET ATTESTATION API

Google provides the SafetyNet Attestation API [24] to attest the

integrity of an Android device and of an app. Developers can use

this API by importing the SafetyNet package in their application.
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}

This JWS should be sent to the client application’s backend server

for attestation. The server should verify the SSL certificate chain

included in the JWS and use that certificate to verify the signature

of the payload. This ensures that the payload was not spoofed or

tampered with. The server should also verify the nonce to prevent

replay attacks and other values to make sure the Attestation data

was sent by the legitimate application. After that, the server can look

at the ctsProfileMatch and basicIntegrity boolean values to assess

the integrity of client device. Based on the assessment performed

by the server, the server should send the application instructions on

whether to continue execution on the device or not. If attestation

fails, the server should stop communication for that session with

the device and instruct the application to terminate or show an

error message.

4 CATEGORIZATION OF SAFETYNET
MISUSAGES

In this section, we will discuss several ways in which SafetyNet

Attestation can be used in an insecure manner and can be bypassed

by attackers. The circled numbers refer to the step of SafetyNet

Attestation mentioned in the previous section.

The misusages discussed in this section are comprehensive and

cover all possible ways in which the SafetyNet API can be mishan-

dled when used by a developer. In Figure 1, the dotted boundary

entities represent where developer can misuse SafetyNet. Green

areas are not under control of the developer, they are either handled

by the Android OS or Google. So possible misusages can occur at

step 1 , 2 , 5 , 6 , and 7 . We analyze each of these steps and

inspect all possible mistakes a developer can make that can render

SafetyNet Attestation ineffective.

At step 1 , the server is required to send a nonce that is used

in the attest function. If the nonce is not generated correctly, the

SafetyNet Attestation becomes vulnerable to replay attacks. At step

2 , an API key is required to call the attest function. Mistakes

in the API key usage will always result in unsuccessful SafetyNet

Attestation. At step 5 , attestation result is received from the

Google and not handling the results and errors correctly can make

the SafetyNet Attestation ineffective. At step 6 , attestation result

is sent to the server. If there are mistakes in sending the result or in

step 7 when verifying the result at server, SafetyNet Attestation

will be useless. Our misusage categories cover all four of these steps,

so we can claim our misusages are comprehensive. We define these

categories and discuss their details in the following subsections.

4.1 Local Checks (Mis-LoCh)

As mentioned in the previous section, SafetyNet Attestation returns

a JWS object 5 which represents the device and application state.

This JWS should be sent to 6 and verified at the backend server

7 of the application. If the device fails SafetyNet integrity tests,

then the server should follow whatever protocol was intended for

that case.

Local checks can be defined as parsing and verifying the attesta-

tion data included in the SafetyNet JWS on the client device. If an

application performs local checks in the client device, then these

checks can easily be bypassed by an attacker. For instance, an at-

tacker can use APK repackaging to remove the checks or spoof the

attestation results in the application. On a tampered device, the

attacker can use function hooks to spoof the results stored in the

SafetyNet JWS. In this way the server or the application on the

client device has no way of telling if it is running on a tampered

device or the application is tampered. In later section, we show case

studies where applications are doing local checks and how they

can be bypassed.

4.2 Using Google Test Server (Mis-Test)

Google provides a verification service for SafetyNet. This is a test

server to which a client application can send a SafetyNet JWS and

the server will verify the signature and send the integrity results

back to the application. This service is only intended for testing

purposes. Using this service in production environment can ren-

der the SafetyNet Attestation useless. The Google test server only

returns the boolean values that represent the integrity results and

does not provide any signature for verification. The Google test

server returns data like basicIntegrity, apkPackageName, signature

validity of the SafetyNet JWS and ctsProfileMatch. The data sent by

the Google test server can be checked locally, thus being affected

bu the issue explained in Section 4.1. Alternatively, these results

can be sent to the application’s backend server. However, the data

sent by the Google test server is not signed. Therefore, if the de-

vice or the application is tampered, an attacker can easily change

these values so that it looks like the application is running in non-

tampered conditions. We found that some developers, possibly due

to misinterpretation of the documentation, use this test server in

production builds.

4.3 Local Nonce Generation (Mis-LoNon)

The attest function in SafetyNet API takes a nonce value as an

argument 2 . This value is included in the JWS result returned by

the SafetyNet API. The attestor (server) can match the value in the

JWS and the value passed to the function to verify that correct JWS

result is being attested to avoid replay attack.

If the nonce is generated locally in a tampered device or appli-

cation, then an attacker can use a nonce from a previous result

to perform a replay attack. This attack can be performed by first

obtaining the SafetyNet JWS in a state in which the device passes

SafetyNet checks. We will refer to this result as SnetJWS1.

Now we will look a tampered device or application in which the

attacker can inject code and consequently SafetyNet checks fail.

In this device, the attacker can hook getJwsResult() and return the

SnetJWS1 instead of the value that was originally supposed to be

returned.

Now we will consider the case where a nonce was not generated

by the server. Usually in this case, the nonce is generated within

the application on client device. This nonce is sent to the server

with the JWS. Since the device or the application is tampered, the

attacker can replace the nonce sent to the server with the nonce

present in SnetJWS1. When the result is sent to server, the server

will have no way of verifying if the result is coming from the correct

SafetyNet Attestation call or not. The server will verify values in
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SnetJWS1 and the spoofed nonce. The server will never know that

the device or the application is tampered.

If the nonce was generated at the server 1 , it can send the

nonce to the client device and wait for the result. When verifying

the result, the server can match the value it generated with the

value contained in the JWS to verify if the JWS is replayed or not.

We found that in many cases, the nonce is not sent by the server

to the app in Step 1 . In these cases, the nonce is generated locally

by the app and the server does not check its value. Therefore, we

can send a spoofed SafetyNetJWS.

4.4 Wrong Verification at Server (Mis-SerVeri)

Complete verification of SafetyNet JWS requires implementing

several checks at the server side 7 . These checks include:

(1) Validating the SSL certificate chain and the SSL hostname.

(2) Verifying the signature of the JWS message.

(3) Matching the values in the JWS payload to the expected ones.

These values include:

(a) The nonce used for attestation

(b) The APK Package Name

(c) The hash of application’s signing certificates

(d) The timestamp representing the time when the JWS was

generated by the Google’s servers

If a server fails to perform these checks, an attacker might be

able to send a tampered SafetyNet JWS to the server and evade

detection. For example, modifying the values of attestation like

basicIntegrity will invalidate the signature of JWS. If the signature

and SSL certificate are not verified properly, the modifications will

not be detected.

4.5 Sending Partial JWS to Server
(Mis-PartJWS)

An application may send specific values extracted from the string

representation of SafetyNet JWS to their servers 6 . Most of the

times these are boolean values of ctsProfileMatch and basicIntegrity.

Using JWS this way defeats the purpose of having certificates and

signatures for validation. In fact an attacker can easily replace these

values on a tampered device or application and the servers have no

way knowing whether they were tampered or not.

4.6 Not Handling Errors (Mis-Err)

Sometimes SafetyNet Attestation fails to execute because the GMS-

process encounters an error while performing the device integrity

checks. When this happens an object containing error information

is sent to the calling application 5 . This object has no information

about device integrity contained in JWS that is returned when

SafetyNet Attestation call succeeds.

An application needs to handle these errors by trying SafetyNet

Attestation again or following the protocol in case SafetyNet Attes-

tation call was successful and integrity checks were not passed. If

the errors continue, the server will be unable to obtain a valid JWS.

An application that is not handling error correctly will continue to

operate without being aware that the device or the application is

tampered or not.

An attacker can leverage this by triggering errors that result in

failure of execution of SafetyNet. For instance, by passing in bogus

API Key to the Attestation API.

4.7 Null/Wrong API Key (Mis-APIKey)

SafetyNet Attestation API requires an API Key that is acquired

from the Google APIs Console 2 . If a wrong key or a Null value

is passed to the API it returns an error instead of the JWS result.

Applications using a Null/Wrong API Key and not handling the

resulting error will never get the device attestation done and the

application will continue normally in a tampered state.

4.8 Using Deprecated API (Mis-DepAPI )

SafetyNet Attestation has a deprecated API that always returns an

error when it is used. Using the deprecated API 2 makes SafetyNet

Attestation useless even if all other steps are followed correctly

because the application will never receive a SafetyNet JWS.

4.9 Calling SafetyNet Only at First Launch
(Mis-Launch)

SafetyNet is only useful if it is called 2 at appropriate time during

an application’s life cycle. For instance, when application is being

launched or when some sensitive information is being handled like

when performing transactions. Furthermore, applications need to

make sure SafetyNet Attestation is performed every time these

activities occur. If an application performs SafetyNet Attestation

only at particular instances of these activities, then the Attestation

is vulnerable to attackers. An attacker can launch the sensitive

activity when SafetyNet Attestation is done in a non-tampered

state so that SafetyNet checks pass. However, the attacker can

tamper the device or the application when application decides not

to do SafetyNet Attestation.

In practice, attackers may not have the freedom to arbitrarily

tamper/un-tamper a device or app. However, we have found ex-

amples of applications that do SafetyNet Attestation only at their

first launch. This makes it very easy for the attacker to run these

applications in tampered state. The attacker only needs to launch

the application once in a non-tampered state so that application

thinks the device is safe to run on. Attacker can then tamper the

device or the application for further execution of the application

because the application will not be doing SafetyNet Attestation

anymore.

5 ANALYSIS

In our study we analyze 163,773 Android applications for usage of

SafetyNet Attestation. This section explains the process of dataset

collection and the stages of automated analysis used to narrow

down the dataset. These steps are performed to vet the applications

in our dataset so the relevant applications can be analyzed manually.

Countering application obfuscation, mentioned in Section 2, is a

major challenge for our analysis. The steps for vetting the applica-

tions involve downloading the APK then performing static analysis

then performing dynamic analysis and finally reverse engineering

the applications manually. This process is shown in Figure 3. After

each step, the list of the APKs left to be analyzed reduces. We will
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refer to the different stages of the list of the APKs as a Collection.

For example, the initial list of the APKs will be Collection-1. The

remaining Collections are defined in their respective Sections and

are also illustrated in Figure 3.

5.1 APK Collection

We collect APKs from the Google Play Store and a third-party

marketplace called ApkPure [11]. In order to download APKs we

need a list of their package names. We use web crawling to scrape

package names from the Google Play Store’s website. The package

names are collected from top charts of every app category onGoogle

Play Store.

After getting a list of the package names, we download the APKs

from third-party websites and by using Android emulators and

physical devices to get APKs from the Google Play Store. This list

of the applications is named Collection-1 in Figure 3.

All of the collected applications are available on the Google Play

Store. However, to speed up the collection process, we also used

third-party websites [10, 12] (which łmirrorž the Google Play Store

and allow direct downloading of the APK files). The usage of third

party websites also allowed us to obtain apps that are not accessible

to us on the Google Play Store due to regional restrictions.

5.2 Static Analysis

From Collection-1 we want to identify applications that potentially

perform SafetyNet Attestation. To this aim, we can search for ap-

plications that contain calls to SafetyNet API functions, such as

attest. However, due to obfuscation (as explained in Section 2.2)

this approach is not be reliable. For this reason, instead, we rely on

code features that indicate usage of SafetyNet and are resilient to

obfuscation.

To find such features, we reverse engineered theGMS-client_library

(see Figure 1), and we found that the string ‘safetynet’ is always

present in the applications that use the SafetyNet Attestation API,

even when obfuscated. This term is present as a hard-coded string

argument to an Android Bundle object’s get function to access meta

data about the application invoking SafetyNet API. The reason this

feature is reliable is that being a Java string and not a class or

method name, it is not changed by the ProGuard obfuscation.

Knowing this feature, we then proceed in searching for appli-

cations that contain the term ‘safetynet.’ In fact, such applications

most likely contain the GMS-client_library code, which is used to

handle calls to the SafetyNet API.

Concretely, we first decompile apps from our Collection-1 dataset

using apktool [1] to generate their smali code. Then, we perform an

initial string search, using grep [27], on the decompiled smali code

using łsafetynetž as the search term. We use Docker [16] containers

and Kubernetes [15] to make the analysis parallelized and improve

its scalability. We called the resulting list of applications Collection-

2.

5.3 Dynamic Analysis

Apps in Collection-2 are then analyzed dynamically, on physical

Android devices. The objective is to identify applications that are

calling the SafetyNet Attestation API during their execution. To

detect SafetyNet invocation dynamically, we need to find a method

that is invoked when SafetyNet Attestation is performed so we can

hook it using Frida. Frida allows hooking of functions while the

application is running if method name and signature are provided.

As explained in the previous section, we cannot hook methods in

the GMS-client_library or inside the client application’s main code

because, in most cases, they are obfuscated. Therefore, we need to

find a method that we can reliably hook even after obfuscation.

Frida also allows hooking methods in the GMS-process (see Fig-

ure 1). Since these methods are not in an app’s code, but in a system

component, they keep the same name, regardless of the analyzed

app. More precisely, while their names are also obfuscated, their ob-

fuscated names remain the same, unless theGMS-process is modified

(this may happen, for instance, during an operating system update,

but it does not affect our analysis). In addition, since GMS-process

is always running in background, hooking GMS-process is required

only once and that hook can be used for every new application that

is analyzed.

Therefore, we decided to detect when SafetyNet is called, by

hooking methods within GMS-process that are always called when

an app invokes SafetyNet. To identify these methods, we reverse

engineered the code of the GMS-process, and we found a class called

AttestationData, whose method names were not obfuscated.

Specifically, we need to find a method that is resilient to ob-

fuscation and is invoked both at success and failure of SafetyNet

Attestation. To this aim, we use manual dynamic analysis (helped

by Frida) to identify a method that is always called when an app

invokes SafetyNet Attestation. We will refer to this function as

SnetHook (its real method name is obfuscated and changes across

different operating system updates).

Knowing that SnetHook is always invoked when the SafetyNet

Attestation API is called, we use it to identify those apps, among

the apps in Collection-2, that call the SafetyNet API at runtime.

Specifically, each application in Collection-2 is installed on a

Google Pixel 3a and tested in the following way. SnetHook is hooked

in the GMS-process using Frida. Then, after its installation, the

application is launched and we automatically interact with it for

about 10 seconds, as we will explain later. If an application tries to

perform the SafetyNet Attestation, it will bef detected by SnetHook

invocation. We name the resulting list of applications Collection-3.

Collection-3 contains applications that are dynamically confirmed

to invoke the SafetyNet Attestation API. Applications that are not

using SafetyNet are not further analyzed.

We hypothesized that most applications will perform attesta-

tion at launch time, since this is the behavior suggested by Google

guidelines [40]. We further solidified our hypothesis by manually

confirming that Attestation is performed at launch time in a subset

of applications from Collection-2. We created this subset by con-

sidering 6 applications that other researchers mentioned as apps

performing SafetyNet Attestation [31, 38].

We tested our dynamic analysis on this subset and 4 sample

SafetyNet applications [6, 7, 45, 47] and we confirmed that our

framework detected the SafetyNet invocation.

Nevertheless, to partially address applications that do not invoke

the SafetyNet Attestation API immediately after they start, we use

the adb and the Monkey [8] tools synergistically. Specifically, the

Monkey tool is used to launch open user-reachable activities within

the analyzed app, while adb is used for generating user input. The
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Misuage Apps Misuage Apps

Mis-LoCh 32 (51.6%) Mis-Err 20 (32.3%)

Mis-Test 1 (1.6%) Mis-APIKey 2 (3.2%)

Mis-LoNon 11 (17.7%) Mis-DepAPI 0 (0.0%)

Mis-SerVeri 11 (17.7%) Mis-Launch 14 (22.6%)

Mis-PartJWS 4 (6.5%)

Table 2: Manual Analysis Results

performing their own checks in addition to SafetyNet Attestation.

We were able to bypass SafetyNet and their own checks in 5 of

these applications. Out of remaining 9, 4 were using native code

and other 5 were not relying on the results of SafetyNet to detect

tampering. These results are shown in Table 3.

Collection Total Bypassed

Collection-5 19 16

Collection-6 14 5

Table 3: Bypassing Results

Table 4 shows the categories of applications in Collection-3.

Category No. of Apps

Travel and Navigation 8

Food and Restaurant 12

Medical and Fitness 2

Banking and Finance 6

Shopping 7

Security and Authentication 6

Communication 7

Social and Entertainment 14

Table 4: Categories of the apps in Collection-3

7 CASE STUDIES

This section takes a closer look at the applications that used Safe-

tyNet Attestation to alter their applications’ behavior. SafetyNet

checks in all of these applications were bypassed dynamically by

using Frida hooks.

7.1 Punchh Library

Ten applications were using a third-party library that handled the

SafetyNet Attestation.Wewill refer to the library as Punchh Library

because of the package name found in decompiled code. As an

example, we are going to look at a restaurant application called Del

Taco. The situation is similar for other 9 applications which are also

restaurant apps. Del Taco only performs local checks (Mis-LoCh)

that are present in the Punchh Library and no data is sent to the

server. The SafetyNet JWS is not used anywhere in Del Taco expect

within the Punchh Library code. The pseudo code of local checks

in Del Taco is as follows:

if (SafetyNetJWS.hasBasicIntegrity) {

continue application execution

} else {

show error and stop application

}

The łifž condition which checks basicIntegrity boolean was by-

passed using Frida. Besides that, Punchh Library only checks ba-

sicIntegrity boolean locally. Checking only basicIntegrity makes it

even easier for attackers to run the application in tampered state.

Because basicIntegrity is łless strictž than ctsProfileMatch and re-

mains łtruež even with unlocked bootloader, custom ROMs, and

uncertified devices. Ideally an application should be checking for

both basicIntegrity and ctsProfileMatch. Also, Del Taco is generated

a nonce locally (Mis-LoNon) instead of getting it from the server.

7.2 Mis-APIKey

Two applications were passing in Null as the API Key to the attest

function. This causes GMS-process to return a NETWORK_ERROR

whenever the applications try to perform SafetyNet Attestation.

One of the applications is PayPal Mobile Cash app that has more

than 100 million downloads. Other application is DigiLocker that

has more than 10 million downloads.

7.3 TextNow

TextNow is an SMS (short message service) texting application.

TextNow’s backend server was tested by changing values in JWS

like nonce, apkCertificateDigestSha256 and ctsProfileMatch. Server

responded correctly to changes by sending errors like łIncorrect

Noncež when nonce was changed and łIncorrect Signaturež when

JWS blob was modified. One field that server did not check cor-

rectly was apkCertificateDigestSha256. apkCertificateDigestSha256

is the hash of application’s signing certificates that can be used to

verify if the application was modified and repackaged. TextNow

was repackaged and signed with a different key. This changed ap-

kCertificateDigestSha256 of the APK. We will refer to this APK as

apkNewKey.

TextNow was using API Restriction from Google Play Console to

limit usage of their SafetyNet API key only to applications signed

by their key. This was bypassed for apkNewKey by overwriting

łX-Android-Certž HTTP Header in GMS-process with the original

apkCertificateDigestSha256. Now SafetyNet JWS for TextNow has

apkCertificateDigestSha256 of apkNewKey. This SafetyNet JWS was

sent to TextNow’s backend server which was not able to detect this

modification. Thus, this is a case of Mis-SerVeri.

TextNow also had Mis-Launch because the application only per-

formed attestation at first launch. The application was launched

one time in non-tampered state and TextNow’s backend server

received a SafetyNetJWS that showed device is not tampered. Then

the device was tampered, and application was launched again. This

time application did not perform SafetyNet Attestation, so server

was unaware that the application is running on a tampered device.

7.4 Geon

Geon is an augmented reality application. Geon allows you to earn

gift cards and vouchers by doing tasks. Geon sends only boolean

values (Mis-PartJWS) of basicIntegrity and ctsProfileMatch instead of

sending the whole JWS to its backend server. This makes spoofing

the Attestation result trivial by just changing the boolean values

sent to the server. Geon also tries to do local checks (Mis-LoCh)
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which can be bypassed using Frida code injection and generates

local nonce (Mis-LoNon).

8 LIMITATIONS AND FUTURE WORK

8.1 Static Analysis

Our static analysis can deal with default obfuscation provided by

ProGuard. If some other technique that obfuscates hard-coded

strings (such as the łsafetynetž string) is used then our methodol-

ogy will fail. Since ProGuard is the default obfuscation provided by

Android Studio, we believe our analysis methodology can deal with

the majority of the obfuscated apps. Around 60% of the application

from Collection-2 use ProGuard to obfuscate the Attestation API,

while the rest do not obfuscate the Attestation API.

As future work, our analysis can be improved by comparing

signatures of methods involved in the API with the method sig-

natures present inside the application. Call graphs and method

signatures can be used to identify specific API usages without re-

lying on method names (which can be obfuscated). In particular,

the detection of a specific path in the call graph and the usage of

methods with specific signatures could suggest the usage of the

SafetyNet Attestation API.

The significant difference in the number of applications from

Collection-2 to Collection-3 is due to presence of the łsafetynetž

keyword in contexts other than the Attestation API. The keyword

is contained in the GMS library, which is included in any application

that uses APIs from this library and there are other APIs, besides

the Attestation API (such as the Safe Browsing API [23]) which also

include this keyword. If an application uses any of the SafetyNet

APIs, it will be detected in our analysis. This results in false positives

and comparatively large number of applications in Collection-2.

However, these false positives are handled in the subsequent steps

of the analysis pipeline.

8.2 Dynamic Analysis

Our dynamic analysis relies on the application invoking SafetyNet

during our automated interaction. If the application invokes Safe-

tyNet at later phase during its execution, then the invocation will

not be detected by our automated analysis pipeline. Specifically,

if the Attestation is performed on activities that are only reached

after specific user input is entered like user name and password.

Our analysis does not generate complex user input (like typing

credentials) and relies on random clicks and swipes.

As explained in 5.3, we think the Attestation API is usually

invoked immediately after an application is launched. However,

when this property is not true, our analysis could result in false

negatives.

We acknowledge that our methodology has scaling limitations

due to the manual steps in the analysis pipeline. However, as fu-

ture work, it is possible to automate the manual parts using static

analysis. For instance, detection of Mis-APIKey could be automated

by performing data flow analysis and determining the value of the

API key given to the attest method. Similarly, Mis-LoNon and

Mis-PartJWS could be automatically detected by performing taint

analysis on the control flow graph, looking for paths between spe-

cific sources and sinks (such as methods for generating random

bytes and parsing JWS data structures).

Likewise, Mis-Test could be detected automatically by a combi-

nation of data flow and taint analysis. Specifically, checking if the

SafetyNet JWS is being sent to a network API that is using the test

server’s address as the destination.

8.3 Bypassing SafetyNet

Seven applications from Collection-4 were using Reactive and Na-

tive code to detect tampered devices/applications. Since SafetyNet

Attestation is supposed to be used in Java code, analyzing those

applications and their detection methods is out of scope for this

paper.

Four applications from Collection-4 were using detection mecha-

nisms in addition to SafetyNet Attestation and those could not be

bypassed. Since in this paper we focus on SafetyNet, we did not

reverse engineer enough to bypass the additional checks. Their

exploits can be part of a future work.

9 RELATEDWORK

9.1 Security API Misusage

Many previous works analyze API misusage and failure of follow-

ing proper security practices in Android but łto the best of our

knowledgež there is no previous work on the usage of SafetyNet

Attestation. Bianchi et al. [14] look at the how applications use the

Fingerprint API in Android. The authors identify ways in which the

API can be misused, and their findings indicate that only 1.8% of

the apps use the API in a secure manner. Ghafari et al. [20] develop

a static analysis tool for detecting security mistakes in android apps

that are a result of bad coding practices.

Mahmud et al. [33] looks at how Android applications are han-

dling credit card information. They develop a static analysis tool,

Cardpliance, using Amandroid [48] to check PCI DSS compliance

of Android applications.

A tool for statically detecting SafetyNet misusages can be part

of a future work.

Egele et al. [17], Shuai et al. [43], and Muslukhov et al. [36] look

at misusage of cryptographic APIs in Android. Fahl et al. [18] and

Oltrogge et al. [9] analyze how misuse of SSL/TLS APIs can make

Android applications vulnerable to Man-In-The-Middle attacks.

Some of these works use static analysis, other dynamic analysis.

In our work we decided to use a combination of both because we

wanted to confirm our findings dynamically and performing static

analysis beforehand resulted in efficient automation.

9.2 Device and App Integrity

There has been research on device and application integrity checks

but there has not been a comprehensive work focusing specifically

on the SafetyNet API. Kim et al. [28] look at how finance applica-

tions perform integrity checks. In their work, they analyze checks

that applications have implemented locally by themselves or by

using third-party libraries. As mentioned in Section 4.1, local checks

are not reliable for detecting tampering. These checks create the

same situation as in Mis-LoCh and can be easily bypassed. Our

key argument is that the verification of attestation results on the

server side and SafetyNet (if used correctly) allow to implement

these checks safely, otherwise the attestation will not be reliable.
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Li et al. [30] do a literature review of Android application repack-

aging detection tools. The authors point out the current tools for

repackage detection are not scalable and are only suitable for closed

datasets. The goal of this work is to reboot research in repackage

detection. Merlo et al. [34] leverage native code for performing app

integrity checks. Merlo et al. [35] look at current anti-repackaging

techniques and how to circumvent them.

Berlato et al. [13] look at anti-tampering techniques in Android.

In this work, the authors fingerprint various anti-tampering meth-

ods including SafetyNet Attestation and statically detect their usage

in applications. Their work focuses on finding which applications

are using these techniques. However, this work does not investi-

gate if the applications have used these techniques correctly or

not. Our work integrates their findings by also analyzing how the

applications use the SafetyNet API.

Zungur et al. [51] present a framework for dynamically investi-

gating anti-tampering mechanisms in Android applications. In their

work, the authors leverage UI to assess the application state in dif-

ferent tampered environments (using non-tampered environment

as a baseline). Their framework reports the tampered environment

against which an application is defending rather than the defense

APIs/mechanisms themselves.

9.3 Bypassing Root Checks

Other works look deeply at rooting techniques and how they can be

evaded. Soewito et al. [44] analyze rooting checks in Android apps

and bypasses them using Frida hooking. DroidRanger [50], Google

Bouncer [32], RootExplorer [19], and Zhou et al. [49] statically

fingerprint Android applications that can possibly contain rooting

payload. PREC [26] looks at mitigating root exploits dynamically.

Sun et al. [46] look at how different Android components are

exploited to achieve rooting on a device. They look at applications

like SuperSu that automate the rooting process and analyze how

applications in the market detect rooting. They identify different

methods that applications are using to detect root which include

checking Build Tag of Android Image, various Shell Commands, run-

ning processes, installed packages, System Properties, and directory

permissions. In this work, they develop a tool named RDAnalyzer

to bypass all of these root checking mechanisms by API hooking.

Nguyen Vu et al. [37] did a similar study on root detection and

evasion, the authors identified two types of rooting: hard rooting

and soft rooting. In both works the authors suggest the usage of

kernel level root checks to mitigate evasion. Sun et al. [46] suggest

use of trusted execution environments (TEE) to perform the checks

so they cannot be bypassed on a rooted device. In line to what is

proposed by these works, SafetyNet uses system-level components

to perform integrity checks and Google suggested that it is planning

to use TrustZone-enforced checks [41] for SafetyNet Attestation.

10 DISCUSSION

Our results reveal that Mis-LoCh is the most found misusage. We

speculate that one of the reasons behind this issue is developers’

reliance on third-party libraries to verify app and device integrity.

These libraries, such as the aforementioned Punchh library (see

Section 7.1), can only provide code performing checks on the client

device the apps run into. This is because these libraries do not have

access to the applications’ backend servers so developers. Therefore,

apps using these libraries only rely on the checks that these libraries

perform locally.

We also found that Google and other third parties offer sample

applications [6, 7] to exemplify the usage of the SafetyNet Attes-

tation API. By analyzing these sample applications, we found that

they also only verify the SafetyNet results locally. Therefore, we

speculate that one of the reasons of the Mis-LoCh misusage is de-

velopers following the code of these sample applications.

As of now, Google only provides server-side code for verification

in two languages (C# and Java) [42]. Providing server-side veri-

fication code in additional languages will ease the correct usage

of the SafetyNet API. In addition, warnings can be shown in An-

droid Studio that alert the developers when the Attestation API is

not used correctly. Specifically, developers can be warned about

sending the SafetyNet JWS to their server and a link to the sample

verification code can be provided in the warning. This analysis

could be integrated in the existing łcode inspectionž feature that is

already provided by the Android Studio Lint tool [22].

11 CONCLUSION

In this paper we performed a comprehensive analysis of the usage

of the SafetyNet Attestation API in Android applications. First, we

systematically identified all the possible ways in which the Safe-

tyNet API can be misused. Then we performed a large-scale study

starting from 163,773 Android apps. Among these apps, we identi-

fied 21 applications that rely on SafetyNet to detect tampering. The

analysis of these apps reveals that none of them use the SafetyNet

API correctly. Due to these mistakes, the checks performed by these

apps can be bypassed.

ACKNOWLEDGMENTS

We are grateful to our shepherd for their support and suggestions.

This material is based upon work supported by the NSF under

Award number CNS-1949632. Any opinions, findings, and conclu-

sions or recommendations expressed in this publication are those

of the authors and do not necessarily reflect the views of the NSF.

REFERENCES
[1] Apktool. https://ibotpeaches.github.io/Apktool/.
[2] Frida. https://frida.re/.
[3] Httpcanary. https://github.com/MegatronKing/HttpCanary.
[4] Jadx. https://github.com/skylot/jadx.
[5] Magisk. https://github.com/topjohnwu/Magisk.
[6] Safetynet helper sample. https://github.com/scottyab/safetynethelper/.
[7] Safetynet sample. https://github.com/googlesamples/android-play-safetynet/

tree/master/client/java/SafetyNetSample.
[8] Ui/application exerciser monkey. https://developer.android.com/studio/test/

monkey.
[9] Why eve and mallory still love android: Revisiting TLS (in)security in android

applications. In 30th USENIX Security Symposium (USENIX Security 21), Vancouver,
B.C., 2021. USENIX Association.

[10] APKMirror. Apkmirror. https://www.apkmirror.com/.
[11] APKPure. Apkpure. https://apkpure.com/.
[12] Aptoide. Aptoide. https://en.aptoide.com/.
[13] Stefano Berlato and Mariano Ceccato. A large-scale study on the adoption of anti-

debugging and anti-tampering protections in android apps. Journal of Information
Security and Applications, 52, 06 2020.

[14] Antonio Bianchi, Yanick Fratantonio, Aravind Machiry, Christopher Kruegel,
Giovanni Vigna, Simon Pak Ho Chung, and Wenke Lee. Broken Fingers: On the
Usage of the Fingerprint API in Android. In Proceedings of the Annual Network &
Distributed System Security Symposium (NDSS), 2018.

[15] CNCF. Kubernetes documentation. https://kubernetes.io/docs/home/.

161



SafetyNOT:

On the usage of the SafetyNet Attestation API in Android MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

[16] Docker. Docker overview. https://docs.docker.com/get-started/overview/.
[17] Manuel Egele, D. Brumley, Y. Fratantonio, and C. Krügel. An empirical study

of cryptographic misuse in android applications. Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, 2013.

[18] Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgärtner, Bernd
Freisleben, and Matthew Smith. Why eve and mallory love android: An analysis
of android ssl (in)security. In Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS ’12, New York, NY, USA, 2012. Association
for Computing Machinery.

[19] Ioannis Gasparis, Zhiyun Qian, Chengyu Song, and Srikanth V. Krishnamurthy.
Detecting android root exploits by learning from root providers. In 26th USENIX
Security Symposium (USENIX Security 17), Vancouver, BC, August 2017. USENIX
Association.

[20] M. Ghafari, P. Gadient, and O. Nierstrasz. Security smells in android. In 2017 IEEE
17th International Working Conference on Source Code Analysis and Manipulation
(SCAM), 2017.

[21] Google. Android debug bridge (adb). https://developer.android.com/studio/
command-line/adb.

[22] Google. Improve your code with lint checks. https://developer.android.com/
studio/write/lint.

[23] Google. Safetynet safe browsing api. https://developer.android.com/training/
safetynet/safebrowsing.

[24] Google. Safetynet attestation api. https://developer.android.com/training/
safetynet/attestation, 2020.

[25] Guardsquare. Guardsquare/proguard. https://github.com/Guardsquare/proguard.
[26] Tsung-Hsuan Ho, Daniel Dean, Xiaohui Gu, and William Enck. Prec: Practical

root exploit containment for android devices. CODASPY ’14, New York, NY, USA,
2014. Association for Computing Machinery.

[27] Michael Kerrisk. grep linux manual page. https://man7.org/linux/man-pages/
man1/grep.1.html.

[28] Taehun Kim, Hyeonmin Ha, Seoyoon Choi, Jaeyeon Jung, and Byung-Gon Chun.
Breaking ad-hoc runtime integrity protection mechanisms in android financial
apps. 04 2017.

[29] John Kozyrakis. Safetynet: Google’s tamper detection for android. https://koz.io/
inside-safetynet, 2015.

[30] L. Li, T. F. Bissyande, and J. Klein. Rebooting research on detecting repackaged
android apps: Literature review and benchmark. IEEE Transactions on Software
Engineering, 2019.

[31] Brad Linder. Some apps may stop working on rooted android phones due to
safetynet update. https://liliputing.com/2020/03/some-apps-may-stop-working-
on-rooted-android-phones-due-to-safetynet-update.html.

[32] Hiroshi Lockheimer. Android and security. http://googlemobile.blogspot.com/
2012/02/android-and-security.html, Feb 2012.

[33] Samin Yaseer Mahmud, Akhil Acharya, Benjamin Andow, William Enck, and
Bradley Reaves. Cardpliance: PCI DSS compliance of android applications. In
29th USENIX Security Symposium (USENIX Security 20). USENIX Association,
August 2020.

[34] Alessio Merlo, Antonio Ruggia, Luigi Sciolla, and Luca Verderame. Armand: Anti-
repackaging through multi-pattern anti-tampering based on native detection,
2020.

[35] Alessio Merlo, Antonio Ruggia, Luigi Sciolla, and Luca Verderame. You shall not
repackage! demystifying anti-repackaging on android. 2020.

[36] Ildar Muslukhov, Yazan Boshmaf, and Konstantin Beznosov. Source attribution
of cryptographic api misuse in android applications. In Proceedings of the 2018 on
Asia Conference on Computer and Communications Security, ASIACCS ’18, New
York, NY, USA, 2018. Association for Computing Machinery.

[37] Long Nguyen Vu, Ngoc-Tu Chau, Seongeun Kang, and Souhwan Jung. Android
rooting: An arms race between evasion and detection. Security and Communica-
tion Networks, 2017, 10 2017.

[38] Stephen Perkins. Completely hide root usingmagisk. https://android.gadgethacks.
com/how-to/completely-hide-root-using-magisk-0201243/.

[39] Mishaal Rahman. Safetynet’s dreaded hardware attestation is rolling out, mak-
ing it much harder for magisk to hide root. https://www.xda-developers.com/
safetynet-hardware-attestation-hide-root-magisk/.

[40] Oscar Rodriguez. 10 things you might be doing wrong when using the safetynet
attestation api. https://android-developers.googleblog.com/2017/11/10-things-
you-might-be-doing-wrong-when.html.

[41] Google SafetyNet API Clients team. Feature preview: Safetynet attesta-
tion api evaluationtype. https://groups.google.com/g/safetynet-api-clients/c/
lpDXBNeV7Fg?pli=1.

[42] Google Samples. android-play-safetynet. https://github.com/googlesamples/
android-play-safetynet/tree/master/server.

[43] S. Shuai, D. Guowei, G. Tao, Y. Tianchang, and S. Chenjie. Modelling analysis
and auto-detection of cryptographic misuse in android applications. In 2014 IEEE
12th International Conference on Dependable, Autonomic and Secure Computing,
2014.

[44] Benfano Soewito and Agung Suwandaru. Android sensitive data leakage preven-
tion with rooting detection using java function hooking. Journal of King Saud

University - Computer and Information Sciences, 2020.
[45] SoftGuide. Safetynet check. https://play.google.com/store/apps/details?id=com.

softguide.safetynetcheck.
[46] San-Tsai Sun, Andrea Cuadros, and Konstantin Beznosov. Android rooting:

Methods, detection, and evasion. In Proceedings of the 5th Annual ACM CCS
Workshop on Security and Privacy in Smartphones and Mobile Devices, SPSM ’15,
New York, NY, USA, 2015. Association for Computing Machinery.

[47] Free Android Tools. Safetynet test. https://play.google.com/store/apps/details?
id=org.freeandroidtools.safetynettest.

[48] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Amandroid: A precise
and general inter-component data flow analysis framework for security vetting
of android apps. 21(3), April 2018.

[49] Y. Zhou and X. Jiang. Dissecting androidmalware: Characterization and evolution.
In 2012 IEEE Symposium on Security and Privacy, 2012.

[50] Y. Zhou, Zhi Wang, W. Zhou, and X. Jiang. Hey, you, get off of my market:
Detecting malicious apps in official and alternative android markets. In NDSS,
2012.

[51] Onur Zungur and Antonio Bianchi. Appjitsu: Investigating the resiliency of
android applications. 2021.

162


	Abstract
	1 Introduction
	2 Background
	2.1 Android Tampering
	2.2 Android Application Obfuscation
	2.3 Attacker Model

	3 The SafetyNet Attestation API
	4 Categorization of SafetyNet Misusages
	4.1 Local Checks (Mis-LoCh)
	4.2 Using Google Test Server (Mis-Test)
	4.3 Local Nonce Generation (Mis-LoNon)
	4.4 Wrong Verification at Server (Mis-SerVeri)
	4.5 Sending Partial JWS to Server (Mis-PartJWS)
	4.6 Not Handling Errors (Mis-Err)
	4.7 Null/Wrong API Key (Mis-APIKey)
	4.8 Using Deprecated API (Mis-DepAPI)
	4.9 Calling SafetyNet Only at First Launch (Mis-Launch)

	5 Analysis
	5.1 APK Collection
	5.2 Static Analysis
	5.3 Dynamic Analysis
	5.4 Manual Analysis
	5.5 Bypassing SafetyNet

	6 Results
	7 Case Studies
	7.1 Punchh Library
	7.2 Mis-APIKey
	7.3 TextNow
	7.4 Geon

	8 Limitations and Future Work
	8.1 Static Analysis
	8.2 Dynamic Analysis
	8.3 Bypassing SafetyNet

	9 Related Work
	9.1 Security API Misusage
	9.2 Device and App Integrity
	9.3 Bypassing Root Checks

	10 Discussion
	11 Conclusion
	Acknowledgments
	References

