SafetyNOT:
On the usage of the SafetyNet Attestation APl in Android

Muhammad Ibrahim
Purdue University
USA
ibrahi23@purdue.edu

ABSTRACT

Many apps performing security-sensitive tasks (e.g., online bank-
ing) attempt to verify the integrity of the device they are running
in and the integrity of their own code. To ease this goal, Android
provides an API, called the SafetyNet Attestation API, that can be
used to detect if the device an app is running in is in a “safe” state
(e.g., non-rooted) and if the app’s code has not been modified (using,
for instance, app repackaging). In this paper, we perform the first
large-scale systematic analysis of the usage of the SafetyNet API
Our study identifies many common mistakes that app developers
make when attempting to use this API. Specifically, we provide a
systematic categorization of the possible misusages of this APIL, and
we analyze how frequent each misuse is. Our results show that,
for instance, more than half of the analyzed apps check SafetyNet
results locally (as opposed to using a remote trusted server), ren-
dering their checks trivially bypassable. Even more surprisingly,
we found that none of the analyzed apps invoking the SafetyNet
API uses it in a fully correct way.

CCS CONCEPTS

« Security and privacy — Software reverse engineering; In-
trusion detection systems.

KEYWORDS

attestation, Android, tampering, SafetyNet, API misusage, reverse
engineering

ACM Reference Format:

Muhammad Ibrahim, Abdullah Imran, and Antonio Bianchi. 2021. Safe-
tyNOT: On the usage of the SafetyNet Attestation APIin Android. In The
19th Annual International Conference on Mobile Systems, Applications, and
Services (MobiSys "21), June 24-July 2, 2021, Virtual, WI, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3458864.3466627

1 INTRODUCTION

Because of Android’s high market share, many companies and
businesses use Android applications to provide their services but
there are characteristics of Android that can be exploited by at-
tackers to compromise Android devices and applications. These
characteristics include rooting the device, repackaging applications,

This work is licensed under a Creative Commons Attribution International 4.0 License.

MobiSys 21, June 24-July 2, 2021, Virtual, WI, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8443-8/21/07.
https://doi.org/10.1145/3458864.3466627

Abdullah Imran

Purdue University

USA

imran8@purdue.edu

150

Antonio Bianchi
Purdue University
USA
antoniob@purdue.edu

monitoring network traffic, and using unofficial OS distributions.
Rooting the device allows users to achieve superuser privileges,
change system settings, and gain access to private memory areas.
There are tools available for these exploits which make them rela-
tively easier to perform. For this reason, some applications want
to check the status of OS and their code. Specifically, they want
to check if the OS on the Android device is non-rooted, and the
application is not modified. Because by having higher privileges
(rooting) and modifying the application, an attacker has much more
feasibility to steal information, access premium features, send false
information, and compromise the application server.

There are ways of detecting root and repackaging on Android
which developers can implement in their applications [19, 46]. How-
ever, these methods are shown to be bypassable [28, 37]. Tradition-
ally apps can check for the presence of the binary su (which allows
obtaining root privileges) to verify that the device has not been
rooted. Complementarily, they can check the contents of the file in
which they are stored to verify that they have not been modified.
Performing these ad-hoc checks has 2 main limitations:

(1) These checks are complex and error-prone to implement.

(2) Since these checks are performed in the app’s code, an at-
tacker can reverse engineer the app’s code and patch it so
that it does not perform these checks anymore.

To ease this task and provide a unified, easy-to-use solution, Google
implemented a comprehensive API called SafetyNet Attestation
API [24] in Android for detecting compromised devices and tam-
pered applications. SafetyNet determines the state of the app and
the device integrity in a separate component, running outside the
app’s process. Apps can call SafetyNet to obtain the results of these
checks and send these results to a remote server, where they can
check if they are correct. SafetyNet is better than other approaches
because on the client-side it only requires calling the API and send-
ing the result to the backend server. Developers do not need to
implement their own checks that are likely to be incomplete and
bypassable. The server can decide what steps to take based on the
received information. For example, the server can send an error
message and terminate current session with a device if it failed
attestation. This helps the authors of an application to implement a
system for detecting tampering of their application and the integrity
of the devices which are running their application.

However, SafetyNet is not straightforward to use for a developer
with no security expertise. SafetyNet must be used in a secure man-
ner and verification of the result must be done on the server-side in
order to get a correct attestation. If SafetyNet is not used correctly
it can be bypassed by attackers. For example, if the verification of
the attestation result is done on the application side, an attacker
can modify the application to bypass the verification.

MobiSys "21, June 24-July 2, 2021, Virtual, WI, USA

We have analyzed 163,773 top Android applications and found
that 62 applications try to leverage SafetyNet API to defend against
tampering. We analyzed their SafetyNet usage and found that none
of the applications are doing the checks correctly. We found 21 appli-
cations that use SafetyNet to change app behavior when tampering
is detected. We bypassed SafetyNet and prevented this behavior
change in 16 (84%) of these applications.

While our analysis is not fully automated, nor fully precise, it
constitutes a first step toward automatically verifying the correct
usage of the SafetyNet API on the large scale. Future work in this
area could build upon our analysis and develop further vetting tools
targeting this API. These vetting tools could be integrated in the
market-level app approval process.

In summary, in this paper we make the following contributions:

(1) We develop a semi-automated pipeline for the analysis of
the usage of the Attestation APL

(2) We perform the first large scale study of SafetyNet Attesta-
tion in Android applications analyzing 163,773 APKs.

(3) We identify common mistakes that developers have made
that lead to SafetyNet Attestation being ineffective.

(4) We show how the SafetyNet checks can be bypassed in the
applications that misuse the APIL

2 BACKGROUND

Typically, Android applications are downloaded and installed from
the Google Play Store that is available on the Android device. Specif-
ically, on the Play Store developers must sign the APK before up-
loading and publishing their application. An APK is signed using
a key that only the developers can access. Android does not allow
installation of an unsigned APK. APKs can be disassembled into
smali code and modified. Smali is disassembled Dalvik bytecode.
Dalvik bytecode is compiled Java code of applications that runs on
Dalvik VM on Android.

2.1 Android Tampering

An application can be modified by third parties by modifying the
APK of an application. APK is modified by disassembling the APK
into smali and modifying the smali code. The modified smali can be
repackaged to an APK but needs to be signed again. If an attacker
tries to modify and repackage, they will have to sign the APK
first before it can be installed on an Android device. Repackaging
the applications changes the hash of APK. If the developers use a
different key to sign, the signing certificate of the APK will also be
changed.

An attacker can try to change application behavior by modifying
application code or by modifying OS. The OS modifications can
include rooting the device and installing custom OS or kernel. We
will define a device to be “tampered” if the attacker is able to inject
code and modify network packets of an application to change its
behavior. We will define an application to be “tampered” if it has
been repackaged and has a different signing certificate and hash
from the original application. We define this method of controlling
application behavior as tampering.

So app developers may want to check the integrity of their appli-
cations code and the state of the client device. However, developers’

151

Muhammad Ibrahim, Abdullah Imran, and Antonio Bianchi

techniques to detect tampering and attackers’ efforts to hide tamper-
ing are a cat-and-mouse race. SafetyNet Attestation API provides a
unified solution to this issue.

2.2 Android Application Obfuscation

The code of many Android applications is obfuscated. In particular,
many applications use ProGuard [25] to obfuscate their code, since
it is the default obfuscation tool for Android, available as part
of the Android compilation toolchain. ProGuard obfuscates the
application code by changing method and class names. For example,
a method named getSecretKey gets renamed to aaa.

Renaming method names makes reverse engineering of appli-
cations harder, since it complicates understanding the application
code. In addition, it complicates hooking an application’s code. In
fact, hooking is typically performed, using tools like Frida [2], by
specifying the method name to hook.

Consequently, changing method names makes hooking harder,
since obfuscation could change the name of the method that a
researcher wants to hook.

2.3 Attacker Model

In this paper we assume, an attacker can change client application
code and compromise the Android device. By changing application
code, the attacker can patch the application to remove integrity
checks. The attacker can compromise the Android device by meth-
ods such as rooting. The attacker is then able to inject code while
the client application is running and can analyze and modify the
client application’s network traffic.

However, we also assume that attacker cannot compromise Safe-
tyNet Attestation API. This means that an application using Safe-
tyNet Attestation API will get the correct information about device
integrity from SafetyNet even though the device is compromised.
Compromising SafetyNet Attestation API would mean attacker is
able to change integrity checks that are performed by SafetyNet be-
fore the client application receives them. However, we assume the
attacker can modify the application or change/spoof the SafetyNet
results after the application has received them.

This paper focuses on how SafetyNet is used and how to defeat
SafetyNet checks in apps that use it wrongly. Therefore, a root
attacker able to compromise the SafetyNet API is considered out
of scope. The issue of securing SafetyNet against root attackers is
orthogonal to the issue of using this API correctly.

Indeed, in certain scenarios (e.g., specific Android devices and
versions), root attackers could compromise the SafetyNet API itself.
However, Google is taking step toward making SafetyNet increas-
ingly resilient against root attackers [39], including using Trusted
Execution Environments (e.g., TrustZone) to verify a device’s op-
erating system integrity. Nevertheless, it is important to note that
if the SafetyNet API is not used correctly by app developers, at-
tackers can bypass its checks, even if the APT itself has not been
compromised.

3 THE SAFETYNET ATTESTATION API

Google provides the SafetyNet Attestation API [24] to attest the
integrity of an Android device and of an app. Developers can use
this API by importing the SafetyNet package in their application.

SafetyNOT:
On the usage of the SafetyNet Attestation API in Android

/ Android Device \

Client App

Application Code

attest(nonce, API_KEY)
|

attest called by
the developer

GMS—cIient_Iibrarvv

J
(" IPC from
GMS-client_lib
to GMS-process

Google Play Services
(GMS-process)
Device checks

performed by
GMS

Attestation data
sent to the
Google’s server

\J

Figure 1: SafetyNet API

The Attestation API can be called by using the attest function as
stated below:

SafetyNet.getClient(this).attest(nonce, API_KEY)

The attest function takes two arguments: a nonce and an API
Key. The nonce must be generated in the backend server of the
application and sent to the device when attestation is requested. The
API Key is generated using the Google APIs Console. Google APIs
Console is an online platform that developers can use to manage
their Google APIs. When attestation is requested, code within the
closed sourced GMS (Google Mobile Services) package is executed.
GMS code makes an IPC call to the GMS process (Google Play
Services) that is running separately on the Android device. We will
refer to this separate process as GMS-process and the code present
in developer’s application as GMS-client_library. The GMS-process
performs several checks and measurements on the device and sends
the results to Google’s backend server. This process is illustrated in
Figure 1.

Since Google has not made this code open source, exact details
of checks and measurements are not known. But researchers have
tried to reverse SafetyNet to figure out how the internals work [29].
They have identified various checks which include:

e Looking for the su binary that allows root user access. Pres-
ence of the su binary means there is a high probability that
the device is rooted.

o Checking package names of default applications. Changing
default application package names, such as for web browsers
or text apps, could mean malicious apps are trying to pretend
be those apps.

o Collecting global settings values like if non-market apps can
install and if adb [21] is enabled. Non-market apps are more
likely to have malicious code.

o Checking for proxies configured on the device and their
IPs. Suspicious proxies could mean network traffic is being
intercepted.

152

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

[Android Device \

Client App ~
|

Google Play Services ¥
(GMS-process)

Client Server

(7] veritcaion

A
T~

/

Figure 2: SafetyNet Attestation

Google Server

vl /°> 9/

-~

\

e Looks for malicious CA Certificates in the cert store.

Google’s server sends back signed attestation data to the GMS-
process on the device. Finally, the GMS-process sends the signed
attestation data to the client app via an IPC. Client app sends the
signed attestation data to its backend server for verification.

Overall, the Attestation process is composed of the following
steps which are illustrated in Figure 2:

o A nonce generated by the client server is sent to client app

e The client app requests Attestation from the GMS-client_library
by calling the attest method with the Nonce and the API Key

e The GMS-process performs checks and sends the results to
the Google Servers

o The Google Servers send SafetyNet Attestation data to the
GMS-process
The GMS-process sends the SafetyNet Attestation object to
the client app

o The client app extracts the SafetyNet JWS and sends it to
the client server
The client server performs verification of SafetyNet JWS

The client application receives a AttestationResponse object that
includes a JWS (JSON Web Signature) of SafetyNet Attestation data.
This object is received via a callback that is registered when attest
function is called. JWS can be extracted by using the getJwsResult()
method of AttestationResponse object. This JWS should be sent to
the client application’s backend server for attestation.

The format of JWS from SafetyNet Attestation looks as follow:

{

"timestampMs": 9860437986543,

"nonce": "R2Rra24fVm5xa2Mg",
"apkPackageName": "package.of.client.app",
"apkCertificateDigestSha256": ["base64
encoded, SHA-256 hash of the certificate
used to sign requesting app"],
"ctsProfileMatch": true,

"basicIntegrity": true,

MobiSys *21, June 24-July 2, 2021, Virtual, W1, USA

This JWS should be sent to the client application’s backend server
for attestation. The server should verify the SSL certificate chain
included in the JWS and use that certificate to verify the signature
of the payload. This ensures that the payload was not spoofed or
tampered with. The server should also verify the nonce to prevent
replay attacks and other values to make sure the Attestation data
was sent by the legitimate application. After that, the server canlook
at the ctsProfileMatch and basiclntegrity boolean values to assess
the integrity of client device. Based on the assessment performed
by the server, the server should send the application instructions on
whether to continue execution on the device or not. If attestation
fails, the server should stop communication for that session with
the device and instruct the application to terminate or show an
error message.

4 CATEGORIZATION OF SAFETYNET
MISUSAGES

In this section, we will discuss several ways in which SafetyNet
Attestation can be used in an insecure manner and can be bypassed
by attackers. The circled numbers refer to the step of SafetyNet
Attestation mentioned in the previous section.

The misusages discussed in this section are comprehensive and
cover all possible ways in which the SafetyNet API can be mishan-
dled when used by a developer. In Figure 1, the dotted boundary
entities represent where developer can misuse SafetyNet. Green
areas are not under control of the developer, they are either handled
by the Android OS or Google. So possible misusages can occur at
step c e e e and a We analyze each of these steps and
inspect all possible mistakes a developer can make that can render
SafetyNet Attestation ineffective.

At step G, the server is required to send a nonce that is used
in the attest function. If the nonce is not generated correctly, the
SafetyNet Attestation becomes vulnerable to replay attacks. At step
e, an API key is required to call the attest function. Mistakes
in the API key usage will always result in unsuccessful SafetyNet
Attestation. At step , attestation result is received from the
Google and not handling the results and errors correctly can make
the SafetyNet Attestation ineffective. At step G attestation result
is sent to the server. If there are mistakes in sending the result or in
step a when verifying the result at server, SafetyNet Attestation
will be useless. Our misusage categories cover all four of these steps,
so we can claim our misusages are comprehensive. We define these
categories and discuss their details in the following subsections.

4.1 Local Checks (Mis-LoCh)

As mentioned in the previous section, SafetyNet Attestation returns
a JWS object 9 which represents the device and application state.

This JWS should be sent to @ and verified at the backend server

a of the application. If the device fails SafetyNet integrity tests,
then the server should follow whatever protocol was intended for
that case.

Local checks can be defined as parsing and verifying the attesta-
tion data included in the SafetyNet JWS on the client device. If an

153

Muhammad Ibrahim, Abdullah Imran, and Antonio Bianchi

application performs local checks in the client device, then these
checks can easily be bypassed by an attacker. For instance, an at-
tacker can use APK repackaging to remove the checks or spoof the
attestation results in the application. On a tampered device, the
attacker can use function hooks to spoof the results stored in the
SafetyNet JWS. In this way the server or the application on the
client device has no way of telling if it is running on a tampered
device or the application is tampered. In later section, we show case
studies where applications are doing local checks and how they
can be bypassed.

4.2 Using Google Test Server (Mis-Test)

Google provides a verification service for SafetyNet. This is a test
server to which a client application can send a SafetyNet JWS and
the server will verify the signature and send the integrity results
back to the application. This service is only intended for testing
purposes. Using this service in production environment can ren-
der the SafetyNet Attestation useless. The Google test server only
returns the boolean values that represent the integrity results and
does not provide any signature for verification. The Google test
server returns data like basiclntegrity, apkPackageName, signature
validity of the SafetyNet JWS and ctsProfileMatch. The data sent by
the Google test server can be checked locally, thus being affected
bu the issue explained in Section 4.1. Alternatively, these results
can be sent to the application’s backend server. However, the data
sent by the Google test server is not signed. Therefore, if the de-
vice or the application is tampered, an attacker can easily change
these values so that it looks like the application is running in non-
tampered conditions. We found that some developers, possibly due
to misinterpretation of the documentation, use this test server in
production builds.

4.3 Local Nonce Generation (Mis-LoNon)

The attest function in SafetyNet API takes a nonce value as an
argument e This value is included in the JWS result returned by
the SafetyNet API The attestor (server) can match the value in the
JWS and the value passed to the function to verify that correct JWS
result is being attested to avoid replay attack.

If the nonce is generated locally in a tampered device or appli-
cation, then an attacker can use a nonce from a previous result
to perform a replay attack. This attack can be performed by first
obtaining the SafetyNet JWS in a state in which the device passes
SafetyNet checks. We will refer to this result as SnetJWS1.

Now we will look a tampered device or application in which the
attacker can inject code and consequently SafetyNet checks fail.
In this device, the attacker can hook getjwsResult() and return the
SnetJWS1 instead of the value that was originally supposed to be
returned.

Now we will consider the case where a nonce was not generated
by the server. Usually in this case, the nonce is generated within
the application on client device. This nonce is sent to the server
with the JWS. Since the device or the application is tampered, the
attacker can replace the nonce sent to the server with the nonce
present in SnetJWS1. When the result is sent to server, the server
will have no way of verifying if the result is coming from the correct
SafetyNet Attestation call or not. The server will verify values in

SafetyNOT:
On the usage of the SafetyNet Attestation APl in Android

SnetJWS1 and the spoofed nonce. The server will never know that
the device or the application is tampered.

If the nonce was generated at the server G it can send the
nonce to the client device and wait for the result. When verifying
the result, the server can match the value it generated with the
value contained in the JWS to verify if the JWS is replayed or not.

We found that in many cases, the nonce is not sent by the server
to the app in Step G In these cases, the nonce is generated locally
by the app and the server does not check its value. Therefore, we
can send a spoofed SafetyNetJWS.

4.4 Wrong Verification at Server (Mis-SerVeri)

Complete verification of SafetyNet JWS requires implementing
several checks at the server side a These checks include:

(1) Validating the SSL certificate chain and the SSL hostname.
(2) Verifying the signature of the JWS message.
(3) Matching the values in the JWS payload to the expected ones.
These values include:

(a) The nonce used for attestation

(b) The APK Package Name

(c) The hash of application’s signing certificates

(d) The timestamp representing the time when the JWS was

generated by the Google’s servers

If a server fails to perform these checks, an attacker might be
able to send a tampered SafetyNet JWS to the server and evade
detection. For example, modifying the values of attestation like
basicIntegrity will invalidate the signature of JWS. If the signature
and SSL certificate are not verified properly, the modifications will
not be detected.

4.5 Sending Partial JWS to Server
(Mis-PartJWs)

An application may send specific values extracted from the string
representation of SafetyNet JWS to their servers e Most of the
times these are boolean values of ctsProfileMatch and basicIntegrity.
Using JWS this way defeats the purpose of having certificates and
signatures for validation. In fact an attacker can easily replace these
values on a tampered device or application and the servers have no
way knowing whether they were tampered or not.

4.6 Not Handling Errors (Mis-Err)

Sometimes SafetyNet Attestation fails to execute because the GMS-
process encounters an error while performing the device integrity
checks. When this happens an object containing error information
is sent to the calling application a This object has no information
about device integrity contained in JWS that is returned when
SafetyNet Attestation call succeeds.

An application needs to handle these errors by trying SafetyNet
Attestation again or following the protocol in case SafetyNet Attes-
tation call was successful and integrity checks were not passed. If
the errors continue, the server will be unable to obtain a valid JWS.
An application that is not handling error correctly will continue to
operate without being aware that the device or the application is
tampered or not.

154

MobiSys "21, June 24-July 2, 2021, Virtual, WI, USA

An attacker can leverage this by triggering errors that result in
failure of execution of SafetyNet. For instance, by passing in bogus
API Key to the Attestation APIL.

4.7 Null/Wrong API Key (Mis-APIKey)

SafetyNet Attestation API requires an API Key that is acquired
from the Google APIs Console e If a wrong key or a Null value
is passed to the API it returns an error instead of the JWS result.
Applications using a Null/Wrong API Key and not handling the
resulting error will never get the device attestation done and the
application will continue normally in a tampered state.

4.8 Using Deprecated API (Mis-DepAPI)

SafetyNet Attestation has a deprecated API that always returns an
error when it is used. Using the deprecated API e makes SafetyNet
Attestation useless even if all other steps are followed correctly
because the application will never receive a SafetyNet JWS.

4.9 Calling SafetyNet Only at First Launch
(Mis-Launch)

SafetyNet is only useful if it is called e at appropriate time during
an application’s life cycle. For instance, when application is being
launched or when some sensitive information is being handled like
when performing transactions. Furthermore, applications need to
make sure SafetyNet Attestation is performed every time these
activities occur. If an application performs SafetyNet Attestation
only at particular instances of these activities, then the Attestation
is vulnerable to attackers. An attacker can launch the sensitive
activity when SafetyNet Attestation is done in a non-tampered
state so that SafetyNet checks pass. However, the attacker can
tamper the device or the application when application decides not
to do SafetyNet Attestation.

In practice, attackers may not have the freedom to arbitrarily
tamper/un-tamper a device or app. However, we have found ex-
amples of applications that do SafetyNet Attestation only at their
first launch. This makes it very easy for the attacker to run these
applications in tampered state. The attacker only needs to launch
the application once in a non-tampered state so that application
thinks the device is safe to run on. Attacker can then tamper the
device or the application for further execution of the application
because the application will not be doing SafetyNet Attestation
anymore.

5 ANALYSIS

In our study we analyze 163,773 Android applications for usage of
SafetyNet Attestation. This section explains the process of dataset
collection and the stages of automated analysis used to narrow
down the dataset. These steps are performed to vet the applications
in our dataset so the relevant applications can be analyzed manually.
Countering application obfuscation, mentioned in Section 2, is a
major challenge for our analysis. The steps for vetting the applica-
tions involve downloading the APK then performing static analysis
then performing dynamic analysis and finally reverse engineering
the applications manually. This process is shown in Figure 3. After
each step, the list of the APKs left to be analyzed reduces. We will

MobiSys *21, June 24-July 2, 2021, Virtual, W1, USA

refer to the different stages of the list of the APKs as a Collection.
For example, the initial list of the APKs will be Collection-1. The
remaining Collections are defined in their respective Sections and
are also illustrated in Figure 3.

5.1 APK Collection

We collect APKs from the Google Play Store and a third-party
marketplace called ApkPure [11]. In order to download APKs we
need a list of their package names. We use web crawling to scrape
package names from the Google Play Store’s website. The package
names are collected from top charts of every app category on Google
Play Store.

After getting a list of the package names, we download the APKs
from third-party websites and by using Android emulators and
physical devices to get APKs from the Google Play Store. This list
of the applications is named Collection-1 in Figure 3.

All of the collected applications are available on the Google Play
Store. However, to speed up the collection process, we also used
third-party websites [10, 12] (which “mirror” the Google Play Store
and allow direct downloading of the APK files). The usage of third
party websites also allowed us to obtain apps that are not accessible
to us on the Google Play Store due to regional restrictions.

5.2 Static Analysis

From Collection-1 we want to identify applications that potentially
perform SafetyNet Attestation. To this aim, we can search for ap-
plications that contain calls to SafetyNet API functions, such as
attest. However, due to obfuscation (as explained in Section 2.2)
this approach is not be reliable. For this reason, instead, we rely on
code features that indicate usage of SafetyNet and are resilient to
obfuscation.

To find such features, we reverse engineered the GMS-client_library
(see Figure 1), and we found that the string ‘safetynet’ is always
present in the applications that use the SafetyNet Attestation API,
even when obfuscated. This term is present as a hard-coded string
argument to an Android Bundle object’s get function to access meta
data about the application invoking SafetyNet API The reason this
feature is reliable is that being a Java string and not a class or
method name, it is not changed by the ProGuard obfuscation.

Knowing this feature, we then proceed in searching for appli-
cations that contain the term ‘safetynet.’ In fact, such applications
most likely contain the GMS-client_library code, which is used to
handle calls to the SafetyNet API

Concretely, we first decompile apps from our Collection-1 dataset
using apktool [1] to generate their smali code. Then, we perform an
initial string search, using grep [27], on the decompiled smali code
using “safetynet” as the search term. We use Docker [16] containers
and Kubernetes [15] to make the analysis parallelized and improve
its scalability. We called the resulting list of applications Collection-
2.

5.3 Dynamic Analysis

Apps in Collection-2 are then analyzed dynamically, on physical
Android devices. The objective is to identify applications that are
calling the SafetyNet Attestation API during their execution. To
detect SafetyNet invocation dynamically, we need to find a method

155

Muhammad Ibrahim, Abdullah Imran, and Antonio Bianchi

that is invoked when SafetyNet Attestation is performed so we can
hook it using Frida. Frida allows hooking of functions while the
application is running if method name and signature are provided.

As explained in the previous section, we cannot hook methods in
the GMS-client_library or inside the client application’s main code
because, in most cases, they are obfuscated. Therefore, we need to
find a method that we can reliably hook even after obfuscation.

Frida also allows hooking methods in the GMS-process (see Fig-
ure 1). Since these methods are not in an app’s code, but in a system
component, they keep the same name, regardless of the analyzed
app. More precisely, while their names are also obfuscated, their ob-
fuscated names remain the same, unless the GMS-process is modified
(this may happen, for instance, during an operating system update,
but it does not affect our analysis). In addition, since GMS-process
is always running in background, hooking GMS-process is required
only once and that hook can be used for every new application that
is analyzed.

Therefore, we decided to detect when SafetyNet is called, by
hooking methods within GMS-process that are always called when
an app invokes SafetyNet. To identify these methods, we reverse
engineered the code of the GMS-process, and we found a class called
AttestationData, whose method names were not obfuscated.

Specifically, we need to find a method that is resilient to ob-
fuscation and is invoked both at success and failure of SafetyNet
Attestation. To this aim, we use manual dynamic analysis (helped
by Frida) to identify a method that is always called when an app
invokes SafetyNet Attestation. We will refer to this function as
SnetHook (its real method name is obfuscated and changes across
different operating system updates).

Knowing that SnetHook is always invoked when the SafetyNet
Attestation API is called, we use it to identify those apps, among
the apps in Collection-2, that call the SafetyNet API at runtime.

Specifically, each application in Collection-2 is installed on a
Google Pixel 3a and tested in the following way. SnetHook is hooked
in the GMS-process using Frida. Then, after its installation, the
application is launched and we automatically interact with it for
about 10 seconds, as we will explain later. If an application tries to
perform the SafetyNet Attestation, it will bef detected by SnetHook
invocation. We name the resulting list of applications Collection-3.
Collection-3 contains applications that are dynamically confirmed
to invoke the SafetyNet Attestation API. Applications that are not
using SafetyNet are not further analyzed.

We hypothesized that most applications will perform attesta-
tion at launch time, since this is the behavior suggested by Google
guidelines [40]. We further solidified our hypothesis by manually
confirming that Attestation is performed at launch time in a subset
of applications from Collection-2. We created this subset by con-
sidering 6 applications that other researchers mentioned as apps
performing SafetyNet Attestation [31, 38].

We tested our dynamic analysis on this subset and 4 sample
SafetyNet applications [6, 7, 45, 47] and we confirmed that our
framework detected the SafetyNet invocation.

Nevertheless, to partially address applications that do not invoke
the SafetyNet Attestation API immediately after they start, we use
the adb and the Monkey [8] tools synergistically. Specifically, the
Monkey tool is used to launch open user-reachable activities within
the analyzed app, while adb is used for generating user input. The

SafetyNOT:
On the usage of the SafetyNet Attestation API in Android

PlayStore +
Third-Party
Markets

APK Collection

Download
Dataset

~

Collect App
Package
Names

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

—

Static Analysis

Collection-2

apktool

,___\
1
N - -

Running
Application

App
Interaction

SnetHook
detected by
Frida

Invoked

Manual SafetyNet

Attestation

KPen‘ormed

IPC to
GMS-process

Launch App

SnetHook

Client App APKs

Install

Android Device Dynamlc Analysis

GMS-process

=4

Hook
SnetHook

aIySIS

Figure 3: Automated Analysis Pipeline

configurations we used for this tools allow the Monkey tool to
visit each activity multiple times during the analysis, while random
clicks and swipes are performed on each activity using adb.

These design choices of our dynamic analysis are justified by the
fact that generating user input with the Monkey tool can sometimes
result in unwanted behaviors (such as the WiFi turning off, the
device shutting down, or Android switching to another application).
These unwanted behaviors can interfere with our analysis and with
the triggering of the Attestation API. Therefore, we decided to use
adb instead of Monkey for input generation.

Although effective for our goals in the majority of the analyzed
apps, we acknowledge that our dynamic analysis has limitations,
which can result in false negatives. We will discuss these limitations
in Section 8.2,

5.4 Manual Analysis

The applications in Collection-3 are further analyzed manually. The
goal of the manual analysis is to see how the applications are using
the SafetyNet Attestation results to detect tampering. By analyzing
the usage of the Safety Attestation, we are be able to see if the
applications contain any of the misusages mentioned in Section 4.

The applications are decompiled using jadx [4] to generate Java
code. We then use string search on the generated Java code to
narrow down the code we need investigate manually. String search
includes looking for terms like ‘basicIntegrity’, ‘ctsProfileMatch,
and ‘safetynet’. These terms are used because they are included in
the SafetyNet JWS object returned by the SafetyNet API, and they

156

are likely to be used in class names, method names, and log/debug
code involving SafetyNet.

In addition, we used HttpCanary [3] for network traffic analysis.
HttpCanary is an Android application that intercepts network traffic
of selected applications on an Android device. Network traffic is
analyzed using HttpCanary to see what is being communicated with
the application’s server. By analyzing network traffic, we confirm if
applications are sending the SafetyNet JWS to their backend server
and observe how the server responds.

Although some of the misuages are mutually exclusive, we formu-
lated a pipeline which allows to skip checks for certain misusages
if specific conditions are met. In Figure 4, if any of the misusages
or conditions shown in a box are met, then the misusages in the
subsequent boxes do not need to be checked. For example, if the
SafetyNet JWS is not being sent (box 2) to any server then checks for
Mis-LoNon, Mis-Test, Mis-SerVeri, and Mis-PartJWS (box 4 and 5) are
not needed. The misusages in box 4 and 5 involve server interaction
so it does not make sense to check for box 4 and 5. Likewise, find-
ing Mis-APIKey or Mis-DepAPI means no other checks are needed
because no SafetyNet JWS will be received by the application.

We name the list of applications in which the misusages were
found as Collection-4.

Figure 5 details the steps of our manual analysis.s The details of
how applications are put in misusage categories are given in the
following paragraphs.

We find Mis-LoCh by searching for the strings included in the
SafetyNet JWS, since those strings must be used to access the con-
tents of the JWS. We analyze the Java code to see if an application

MobiSys "21, June 24-July 2, 2021, Virtual, W1, USA

1 Mis-APiKey

Mis-DepAPI J
A\

2 SafetyNet

JWS not sent
__ toserver)

\ 4

3 Mis-LoCh
Mis-Err \4
Mis-Launch (4 Mis-LoNon

5
Mis-SerVeri |«

Figure 4: Misuse Analysis Pipeline

Mis-PartJWS
\ Mis-Test)

is accessing and using the JWS data only locally within the applica-
tion. Mis-LoCh is also confirmed by analyzing the network traffic
during the Attestation process to check if the SafetyNet JWS is
present in the outgoing network traffic. If the SafetyNet JWS is not
present in the outgoing network traffic and local checks are found,
then the application is put in the Mis-LoCh category.

Mis-Err is checked by injecting wrong API Key and tracing the
code using Frida. By injecting wrong API key, we cause SafetyNet
to return an error. By Frida tracing, code that handles errors is
located and analyzed. Applications are put in Mis-Err category if
they are not following the steps mentioned in Mis-Err in their error
handling code.

We search Java code for the Google’s test server’s url to locate
Mis-Test. If the SafetyNet JWS is sent to Google’s test server’s url
then the application is put in Mis-Test category.

Mis-LoNon is checked by tracing the nonce from the invocation
of attest back to its origin. If the nonce is generated on the device
and does not come from a server then the application is put in
Mis-LoNon category.

Mis-Launch is checked by hooking SnetHook in the GMS-process
and detecting invocation of SnetHook. The application is launched
multiple times and if SnetHook invocation was detected only at first
launch then the application is put in Mis-Launch category.

Mis-DepAPI is checked by hooking SnetHook in the GMS-process
and seeing if an error is returned instead of the SafetyNet JWS. If
there is always an error, the application code is reviewed manually
to find the cause of such error. If the application is found to be
using the deprecated AP], the application was put in the Mis-DepAPI
category.

Mis-SerVeri is checked by sending modified SafetyNet JWS to
the application’s backend server. The server’s response is then
captured and analyzed using HttpCanary. Only one specific field of
the SafetyNet JWS is modified at a time to infer the checks that are
being performed on the server.

To check if the server verifies the correctness of the nonce, we
send to the server a previously generated SafetyNet JWS using
Frida. By doing so, we change the nonce while keeping the JWS sig-
nature valid, effectively performing a replaying attack. The APK’s
signing certificate’s hash is modified by disassembling the APK
then recompiling and signing with a new key. If the server sends
no response or is unable to detect modification in the SafetyNet
JWS then the application is put in Mis-SerVeri category.

Mis-PartJWS is checked by manual Java code review. Specifically,
we look for applications extracting Attestation results, such as the
basicIntegrity boolean value, from SafetyNet JWS. If an application

157

Muhammad Ibrahim, Abdullah Imran, and Antonio Bianchi

is sending only the extracted values instead of the whole SafetyNet
JWS, the application is put in Mis-PartJWS category.

Mis-APIKey is checked by hooking a GMS-client_library class. Re-
call that this misusage corresponds of invoking the method attest
with a Null or wrong API key. As previously explained, we cannot
just hook the attest method, since this method may have been
obfuscated. Therefore, we decided to hook a method (which we call
attest_inner) within the GMS-client_library, which is indirectly
called by the attest method, taking, as an argument the API key.
While the method name of attest_inner can also change due to
obfuscation, we designed a way to reliably detect it. Specifically,
we noticed that this method is the constructor of a class containing
a specific hard-coded string, which is not modified by obfuscation.

Therefore, we first search for this specific string, determine in
which class it is used. The constructor of this class is attest_inner.
By hooking it and checking one of its arguments we can dynam-
ically determine the API key used to call the SafetyNet attest
method.

5.5 Bypassing SafetyNet

After finding the misusages in the applications, the next step of
our analysis is to confirm if the SafetyNet Attestation checks can
be bypassed in those applications. We consider SafetyNet checks
to be bypassed in an application if the application when running
in a tampered device behaves the same than when running in an
untampered device. To achieve this goal, we first need to find ap-
plications that stop running, show warnings, or behave differently
based on the results they get when calling the SafetyNet API. For
these applications, we study if an attacker can make them behave
normally even in a system in which SafetyNet checks fail. To find
applications that actually use SafetyNet Attestation data (i.e., ap-
plications that change their behavior based on SafetyNet results),
additional vetting of Collection-4 is required.

Specifically, we run these applications on three different Google
Pixel 3a devices (named dev0, dev1, and dev2), with different config-
urations. These devices are as similar as possible in every aspect
expect for the following properties: The device named dev0 runs an
unrooted version of Android. Therefore, in this device SafetyNet
checks succeed. Whereas, both dev1 and dev2 fail SafetyNet checks.
However, devl is a device in which the GMS-process thinks that
the device integrity is guaranteed. Therefore, when an app calls
SafetyNet the returned results will show that the device integrity
is ok. On the contrary, dev2 is a device in which the GMS-process
thinks that the device integrity is not guaranteed. Therefore, when
an app calls SafetyNet the returned results will show that the device
integrity is not ok.

To achieve these properties in devl and dev2 we use a rooting
application called Magisk [5]. By using Magisk’s hiding feature,
in devl, rooting and instrumentation tools are hidden from the
GMS-process, so that SafetyNet checks pass in dev1.

After setting up the dev0, devl, and dev2, we use them to test
each application in Collection-4. Specifically, every application is
run on these three devices to determine if it uses SafetyNet results.

In fact, an application using the SafetyNet API typically exhibits
behavioral differences if it detects tampering. For instance, it could
show error or warning messages, exit immediately after launch, or

SafetyNOT:
On the usage of the SafetyNet Attestation API in Android

MobiSys ’21, June 24-July 2, 2021, Virtual, WI, USA

Smali

Disassemble

Build and Sign
Manual Analysis

Repackaged
APK

Install and run

N

Analyzing
Server
Communication

Packet
Shiffing

Modifying
Packets

(TTT T N
1 { Runni Analyzi
ina L unning Dynamic nalyzing
| Collection-3 | APK Application Hooking Stack Traces
I\ _____ '
it Dynamic
Analyzing
Java Code Manual Code Function

String search

N

Review

Invocations

2/

Figure 5: Manual Analysis Pipeline

disable some features. We consider an application to be behaving
the same if it does not show any of the aforementioned behavioral
differences when tested on the different devices (dev0, devi, and
dev2).

Applications behaving the same in all three devices are deter-
mined as not using SafetyNet results, nor checking for device in-
tegrity in any other way. These applications are discarded from
further analysis. Applications behaving the same in dev0 and devl1,
but differently in dev0 and dev2 are, instead, applications that relay
on SafetyNet results to decide how to behave. In fact, the only differ-
ence between devI and dev2 is the fact that in the former SafetyNet
checks pass, while in the latter they do not. We put these applica-
tions in Collection-5. Therefore, Collection-5 contains applications
that actively uses SafetyNet results.

For some other applications, their behavior in dev0 and their
behavior in dev2 are different. However, in these apps also their
behaviors in dev0 and dev1 are different. We put these applications
in Collection-6. We assume that applications in Collection-6 are able
to detect that a device is rooted using a mechanism that may not be
SafetyNet (e.g., another mechanism way to detect rooting). These
mechanisms were discussed in Section 1.

We then try to bypass SafetyNet checks for applications in
Collection-5. SafetyNet checks are considered to be bypassed if
we are able to achieve the same application behavior in dev2 as
in dev0. To bypass the checks, we modify SafetyNet JWS values
and replay old SafetyNet JWS extracted from devices which pass
SafetyNet checks. The SafetyNet JWS is spoofed by hooking the
getJwsResult function using Frida and returning the modified JWS.
In addition, applications with Mis-launch misusages are bypassed
by strategically converting from dev1 state to devZ state so the ap-
plication does not perform Attestation in dev2 state. Converting
state refers to removing cloaking capabilities of Magisk so that dev1
does not pass SafetyNet checks. In some applications functions
performing local checks are hooked and bypassed using Frida.

158

We also manually analyze the applications in Collection-6 to see
if they are using both SafetyNet and other checks.

Details of the results of the manual analysis of applications in
Collection-5 and Collection-6 will be provided in Section 6 and Sec-
tion 7.

6 RESULTS

This section summarizes the results of our analysis. We analyzed
a total of 163,773 applications (Collection-1) statically by string
search and found 19,834 (12.11%) applications (Collection-2) that can
potentially have SafetyNet code. After testing 19,834 applications
dynamically, SafetyNet Attestation invocations were detected in 62
(0.31%) applications (Collection-3). The results are shown in Table 1:

Collection | Apps | Collection | Apps
Collection-1 | 163,773 | Collection-4 62
Collection-2 | 19,834 | Collection-5 19
Collection-3 62 Collection-6 14

Table 1: Automated Analysis Results

After analyzing each of the applications from Collection-3 manu-
ally, we found all of the applications have at least one type of misuse
mentioned in Section 3. There were a total of 62 applications in
Collection-4. The distribution of misusage categories is shown in
Table 2.

The applications from Collection-4 were vetted for bypassing
SafetyNet checks. After vetting, there were 19 applications (Collection-
5) that behaved differently on dev0 and dev1 but the same behavior
in dev0 and dev2. SafetyNet checks were bypassed in 16 applications
from Collection-5. The remaining 3 could not be bypassed because
they were additionally using native code and alternate methods to
do the device checks. There were 14 applications from Collection-4
that behaved differently in dev0 and dev2, and also behaved dif-
ferently in dev0 and dev1. These applications (Collection-6) were

MobiSys *21, June 24-July 2, 2021, Virtual, W1, USA

Misuage Apps Misuage Apps
Mis-LoCh 32 (51.6%) Mis-Err 20 (32.3%)
Mis-Test 1(1.6%) | Mis-APIKey | 2(3.2%)
Mis-LoNon | 11 (17.7%) | Mis-DepAPI | 0 (0.0%)
Mis-SerVeri | 11(17.7%) | Mis-Launch | 14 (22.6%)
Mis-PartJWS | 4 (6.5%)

Table 2: Manual Analysis Results

performing their own checks in addition to SafetyNet Attestation.
We were able to bypass SafetyNet and their own checks in 5 of
these applications. Out of remaining 9, 4 were using native code
and other 5 were not relying on the results of SafetyNet to detect
tampering. These results are shown in Table 3.

Collection | Total | Bypassed
Collection-5 19 16
Collection-6 14 5

Table 3: Bypassing Results

Table 4 shows the categories of applications in Collection-3.

Category No. of Apps
Travel and Navigation 8
Food and Restaurant 12
Medical and Fitness 2
Banking and Finance 6
Shopping 7
Security and Authentication 6
Communication 7
Social and Entertainment 14

Table 4: Categories of the apps in Collection-3

7 CASE STUDIES

This section takes a closer look at the applications that used Safe-
tyNet Attestation to alter their applications’ behavior. SafetyNet
checks in all of these applications were bypassed dynamically by
using Frida hooks.

7.1 Punchh Library

Ten applications were using a third-party library that handled the
SafetyNet Attestation. We will refer to the library as Punchh Library
because of the package name found in decompiled code. As an
example, we are going to look at a restaurant application called Del
Taco. The situation is similar for other 9 applications which are also
restaurant apps. Del Taco only performs local checks (Mis-LoCh)
that are present in the Punchh Library and no data is sent to the
server. The SafetyNet JWS is not used anywhere in Del Taco expect
within the Punchh Library code. The pseudo code of local checks
in Del Taco is as follows:

if (SafetyNetJWS.hasBasicIntegrity) {

continue application execution
} else {

159

Muhammad Ibrahim, Abdullah Imran, and Antonio Bianchi

show error and stop application
}

The “if” condition which checks basicIntegrity boolean was by-
passed using Frida. Besides that, Punchh Library only checks ba-
sicIntegrity boolean locally. Checking only basicIntegrity makes it
even easier for attackers to run the application in tampered state.
Because basiclntegrity is “less strict” than ctsProfileMatch and re-
mains “true” even with unlocked bootloader, custom ROMs, and
uncertified devices. Ideally an application should be checking for
both basiclntegrity and ctsProfileMatch. Also, Del Taco is generated
a nonce locally (Mis-LoNon) instead of getting it from the server.

7.2 Mis-APIKey

Two applications were passing in Null as the API Key to the attest
function. This causes GMS-process to return a NETWORK_ERROR
whenever the applications try to perform SafetyNet Attestation.
One of the applications is PayPal Mobile Cash app that has more
than 100 million downloads. Other application is DigiLocker that
has more than 10 million downloads.

7.3 TextNow

TextNow is an SMS (short message service) texting application.
TextNow’s backend server was tested by changing values in JWS
like nonce, apkCertificateDigestSha256 and ctsProfileMatch. Server
responded correctly to changes by sending errors like “Incorrect
Nonce” when nonce was changed and “Incorrect Signature” when
JWS blob was modified. One field that server did not check cor-
rectly was apkCertificateDigestSha256. apkCertificateDigestSha256
is the hash of application’s signing certificates that can be used to
verify if the application was modified and repackaged. TextNow
was repackaged and signed with a different key. This changed ap-
kCertificateDigestSha256 of the APK. We will refer to this APK as
apkNewKey.

TextNow was using API Restriction from Google Play Console to
limit usage of their SafetyNet API key only to applications signed
by their key. This was bypassed for apkNewKey by overwriting
“X-Android-Cert” HTTP Header in GMS-process with the original
apkCertificateDigestSha256. Now SafetyNet JWS for TextNow has
apkCertificateDigestSha256 of apkNewKey. This SafetyNet JWS was
sent to TextNow’s backend server which was not able to detect this
modification. Thus, this is a case of Mis-SerVeri.

TextNow also had Mis-Launch because the application only per-
formed attestation at first launch. The application was launched
one time in non-tampered state and TextNow’s backend server
received a SafetyNetJWS that showed device is not tampered. Then
the device was tampered, and application was launched again. This
time application did not perform SafetyNet Attestation, so server
was unaware that the application is running on a tampered device.

7.4 Geon

Geon is an augmented reality application. Geon allows you to earn
gift cards and vouchers by doing tasks. Geon sends only boolean
values (Mis-PartJWS) of basicIntegrity and ctsProfileMatch instead of
sending the whole JWS to its backend server. This makes spoofing
the Attestation result trivial by just changing the boolean values
sent to the server. Geon also tries to do local checks (Mis-LoCh)

SafetyNOT:
On the usage of the SafetyNet Attestation APl in Android

which can be bypassed using Frida code injection and generates
local nonce (Mis-LoNon).

8 LIMITATIONS AND FUTURE WORK
8.1 Static Analysis

Our static analysis can deal with default obfuscation provided by
ProGuard. If some other technique that obfuscates hard-coded
strings (such as the “safetynet” string) is used then our methodol-
ogy will fail. Since ProGuard is the default obfuscation provided by
Android Studio, we believe our analysis methodology can deal with
the majority of the obfuscated apps. Around 60% of the application
from Collection-2 use ProGuard to obfuscate the Attestation API,
while the rest do not obfuscate the Attestation API.

As future work, our analysis can be improved by comparing
signatures of methods involved in the API with the method sig-
natures present inside the application. Call graphs and method
signatures can be used to identify specific API usages without re-
lying on method names (which can be obfuscated). In particular,
the detection of a specific path in the call graph and the usage of
methods with specific signatures could suggest the usage of the
SafetyNet Attestation API.

The significant difference in the number of applications from
Collection-2 to Collection-3 is due to presence of the “safetynet”
keyword in contexts other than the Attestation API. The keyword
is contained in the GMS library, which is included in any application
that uses APIs from this library and there are other APIs, besides
the Attestation API (such as the Safe Browsing API [23]) which also
include this keyword. If an application uses any of the SafetyNet
APIs, it will be detected in our analysis. This results in false positives
and comparatively large number of applications in Collection-2.
However, these false positives are handled in the subsequent steps
of the analysis pipeline.

8.2 Dynamic Analysis

Our dynamic analysis relies on the application invoking SafetyNet
during our automated interaction. If the application invokes Safe-
tyNet at later phase during its execution, then the invocation will
not be detected by our automated analysis pipeline. Specifically,
if the Attestation is performed on activities that are only reached
after specific user input is entered like user name and password.
Our analysis does not generate complex user input (like typing
credentials) and relies on random clicks and swipes.

As explained in 5.3, we think the Attestation API is usually
invoked immediately after an application is launched. However,
when this property is not true, our analysis could result in false
negatives.

We acknowledge that our methodology has scaling limitations
due to the manual steps in the analysis pipeline. However, as fu-
ture work, it is possible to automate the manual parts using static
analysis. For instance, detection of Mis-APIKey could be automated
by performing data flow analysis and determining the value of the
API key given to the attest method. Similarly, Mis-LoNon and
Mis-PartJWS could be automatically detected by performing taint
analysis on the control flow graph, looking for paths between spe-
cific sources and sinks (such as methods for generating random
bytes and parsing JWS data structures).

160

MobiSys "21, June 24-July 2, 2021, Virtual, WI, USA

Likewise, Mis-Test could be detected automatically by a combi-
nation of data flow and taint analysis. Specifically, checking if the
SafetyNet JWS is being sent to a network API that is using the test
server’s address as the destination.

8.3 Bypassing SafetyNet

Seven applications from Collection-4 were using Reactive and Na-
tive code to detect tampered devices/applications. Since SafetyNet
Attestation is supposed to be used in Java code, analyzing those
applications and their detection methods is out of scope for this
paper.

Four applications from Collection-4 were using detection mecha-
nisms in addition to SafetyNet Attestation and those could not be
bypassed. Since in this paper we focus on SafetyNet, we did not
reverse engineer enough to bypass the additional checks. Their
exploits can be part of a future work.

9 RELATED WORK
9.1 Security API Misusage

Many previous works analyze API misusage and failure of follow-
ing proper security practices in Android but “to the best of our
knowledge” there is no previous work on the usage of SafetyNet
Attestation. Bianchi et al. [14] look at the how applications use the
Fingerprint API in Android. The authors identify ways in which the
API can be misused, and their findings indicate that only 1.8% of
the apps use the APl in a secure manner. Ghafari et al. [20] develop
a static analysis tool for detecting security mistakes in android apps
that are a result of bad coding practices.

Mahmud et al. [33] looks at how Android applications are han-
dling credit card information. They develop a static analysis tool,
Cardpliance, using Amandroid [48] to check PCI DSS compliance
of Android applications.

A tool for statically detecting SafetyNet misusages can be part
of a future work.

Egele et al. [17], Shuai et al. [43], and Muslukhov et al. [36] look
at misusage of cryptographic APIs in Android. Fahl et al. [18] and
Oltrogge et al. [9] analyze how misuse of SSL/TLS APIs can make
Android applications vulnerable to Man-In-The-Middle attacks.

Some of these works use static analysis, other dynamic analysis.
In our work we decided to use a combination of both because we
wanted to confirm our findings dynamically and performing static
analysis beforehand resulted in efficient automation.

9.2 Device and App Integrity

There has been research on device and application integrity checks
but there has not been a comprehensive work focusing specifically
on the SafetyNet API Kim et al. [28] look at how finance applica-
tions perform integrity checks. In their work, they analyze checks
that applications have implemented locally by themselves or by
using third-party libraries. As mentioned in Section 4.1, local checks
are not reliable for detecting tampering. These checks create the
same situation as in Mis-LoCh and can be easily bypassed. Our
key argument is that the verification of attestation results on the
server side and SafetyNet (if used correctly) allow to implement
these checks safely, otherwise the attestation will not be reliable.

MobiSys *21, June 24-July 2, 2021, Virtual, W1, USA

Li et al. [30] do a literature review of Android application repack-
aging detection tools. The authors point out the current tools for
repackage detection are not scalable and are only suitable for closed
datasets. The goal of this work is to reboot research in repackage
detection. Merlo et al. [34] leverage native code for performing app
integrity checks. Merlo et al. [35] look at current anti-repackaging
techniques and how to circumvent them.

Berlato et al. [13] look at anti-tampering techniques in Android.
In this work, the authors fingerprint various anti-tampering meth-
ods including SafetyNet Attestation and statically detect their usage
in applications. Their work focuses on finding which applications
are using these techniques. However, this work does not investi-
gate if the applications have used these techniques correctly or
not. Our work integrates their findings by also analyzing how the
applications use the SafetyNet APL

Zungur et al. [51] present a framework for dynamically investi-
gating anti-tampering mechanisms in Android applications. In their
work, the authors leverage Ul to assess the application state in dif-
ferent tampered environments (using non-tampered environment
as a baseline). Their framework reports the tampered environment
against which an application is defending rather than the defense
APIs/mechanisms themselves.

9.3 Bypassing Root Checks

Other works look deeply at rooting techniques and how they can be
evaded. Soewito et al. [44] analyze rooting checks in Android apps
and bypasses them using Frida hooking. DroidRanger [50], Google
Bouncer [32], RootExplorer [19], and Zhou et al. [49] statically
fingerprint Android applications that can possibly contain rooting
payload. PREC [26] looks at mitigating root exploits dynamically.
Sun et al. [46] look at how different Android components are
exploited to achieve rooting on a device. They look at applications
like SuperSu that automate the rooting process and analyze how
applications in the market detect rooting. They identify different
methods that applications are using to detect root which include
checking Build Tag of Android Image, various Shell Commands, run-
ning processes, installed packages, System Properties, and directory
permissions. In this work, they develop a tool named RDAnalyzer
to bypass all of these root checking mechanisms by API hooking.
Nguyen Vu et al. [37] did a similar study on root detection and
evasion, the authors identified two types of rooting: hard rooting
and soft rooting. In both works the authors suggest the usage of
kernel level root checks to mitigate evasion. Sun et al. [46] suggest
use of trusted execution environments (TEE) to perform the checks
so they cannot be bypassed on a rooted device. In line to what is
proposed by these works, SafetyNet uses system-level components
to perform integrity checks and Google suggested that it is planning
to use TrustZone-enforced checks [41] for SafetyNet Attestation.

10 DISCUSSION

Our results reveal that Mis-LoCh is the most found misusage. We
speculate that one of the reasons behind this issue is developers’
reliance on third-party libraries to verify app and device integrity.
These libraries, such as the aforementioned Punchh library (see
Section 7.1), can only provide code performing checks on the client
device the apps run into. This is because these libraries do not have

161

Muhammad Ibrahim, Abdullah Imran, and Antonio Bianchi

access to the applications’ backend servers so developers. Therefore,
apps using these libraries only rely on the checks that these libraries
perform locally.

We also found that Google and other third parties offer sample
applications [6, 7] to exemplify the usage of the SafetyNet Attes-
tation API. By analyzing these sample applications, we found that
they also only verify the SafetyNet results locally. Therefore, we
speculate that one of the reasons of the Mis-LoCh misusage is de-
velopers following the code of these sample applications.

As of now, Google only provides server-side code for verification
in two languages (C# and Java) [42]. Providing server-side veri-
fication code in additional languages will ease the correct usage
of the SafetyNet API. In addition, warnings can be shown in An-
droid Studio that alert the developers when the Attestation API is
not used correctly. Specifically, developers can be warned about
sending the SafetyNet JWS to their server and a link to the sample
verification code can be provided in the warning. This analysis
could be integrated in the existing “code inspection” feature that is
already provided by the Android Studio Lint tool [22].

11 CONCLUSION

In this paper we performed a comprehensive analysis of the usage
of the SafetyNet Attestation API in Android applications. First, we
systematically identified all the possible ways in which the Safe-
tyNet API can be misused. Then we performed a large-scale study
starting from 163,773 Android apps. Among these apps, we identi-
fied 21 applications that rely on SafetyNet to detect tampering. The
analysis of these apps reveals that none of them use the SafetyNet
API correctly. Due to these mistakes, the checks performed by these
apps can be bypassed.

ACKNOWLEDGMENTS

We are grateful to our shepherd for their support and suggestions.
This material is based upon work supported by the NSF under
Award number CNS-1949632. Any opinions, findings, and conclu-
sions or recommendations expressed in this publication are those
of the authors and do not necessarily reflect the views of the NSF.

REFERENCES

[1] Apktool. https://ibotpeaches.github.io/ Apktool/.

[2] Frida. https://frida.re/.

Httpcanary. https://github.com/MegatronKing/HttpCanary.

Jadx. https://github.com/skylot/jadx.

Magisk. https://github.com/topjohnwu/Magisk.

Safetynet helper sample. https://github.com/scottyab/safetynethelper/.
Safetynet sample. https://github.com/googlesamples/android-play-safetynet/
tree/master/client/java/SafetyNetSample.

Ui/application exerciser monkey. https://developer.android.com/studio/test/
monkey.

Why eve and mallory still love android: Revisiting TLS (in)security in android
applications. In 30th USENIX Security Symposium (USENIX Security 21), Vancouver,
B.C., 2021. USENIX Association.

APKMirror. Apkmirror. https://www.apkmirror.com/.

APKPure. Apkpure. https://apkpure.com/.

Aptoide. Aptoide. https://en.aptoide.com/.

Stefano Berlato and Mariano Ceccato. A large-scale study on the adoption of anti-
debugging and anti-tampering protections in android apps. Journal of Information
Security and Applications, 52, 06 2020.

Antonio Bianchi, Yanick Fratantonio, Aravind Machiry, Christopher Kruegel,
Giovanni Vigna, Simon Pak Ho Chung, and Wenke Lee. Broken Fingers: On the
Usage of the Fingerprint API in Android. In Proceedings of the Annual Network &
Distributed System Security Symposium (NDSS), 2018.

CNCF. Kubernetes documentation. https://kubernetes.io/docs/home/.

L= o

=
&

SafetyNOT:
On the usage of the SafetyNet Attestation APl in Android

[16]
[17]

[18]

[19]

[20]

[21]

[22

[23]

[24

[25]
[26]

[27]

[28]

[31]

[32

[33]

[34]

[35

[36]

[37

[38

[39

=
)

[41]

[42

[43]

[44]

Docker. Docker overview. https://docs.docker.com/get-started/overview/.
Manuel Egele, D. Brumley, Y. Fratantonio, and C. Kriigel. An empirical study
of cryptographic misuse in android applications. Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, 2013.

Sascha Fahl, Marian Harbach, Thomas Muders, Lars Baumgartner, Bernd
Freisleben, and Matthew Smith. Why eve and mallory love android: An analysis
of android ssl (in)security. In Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS *12, New York, NY, USA, 2012. Association
for Computing Machinery.

Toannis Gasparis, Zhiyun Qian, Chengyu Song, and Srikanth V. Krishnamurthy.
Detecting android root exploits by learning from root providers. In 26th USENIX
Security Symposium (USENIX Security 17), Vancouver, BC, August 2017. USENIX
Association.

M. Ghafari, P. Gadient, and O. Nierstrasz. Security smells in android. In 2017 IEEE
17th International Working Conference on Source Code Analysis and Manipulation
(SCAM), 2017.

Google. Android debug bridge (adb). https://developer.android.com/studio/
command-line/adb.

Google. Improve your code with lint checks. https://developer.android.com/
studio/write/lint.

Google. Safetynet safe browsing api. https://developer.android.com/training/
safetynet/safebrowsing.

Google. Safetynet attestation api.
safetynet/attestation, 2020.
Guardsquare. Guardsquare/proguard. https://github.com/Guardsquare/proguard.
Tsung-Hsuan Ho, Daniel Dean, Xiaohui Gu, and William Enck. Prec: Practical
root exploit containment for android devices. CODASPY ’14, New York, NY, USA,
2014. Association for Computing Machinery.

Michael Kerrisk. grep linux manual page. https://man7.org/linux/man-pages/
manl/grep.1.html.

Taehun Kim, Hyeonmin Ha, Seoyoon Choi, Jaeyeon Jung, and Byung-Gon Chun.
Breaking ad-hoc runtime integrity protection mechanisms in android financial
apps. 04 2017.

John Kozyrakis. Safetynet: Google’s tamper detection for android. https://koz.io/
inside-safetynet, 2015.

L. Li, T. F. Bissyande, and J. Klein. Rebooting research on detecting repackaged
android apps: Literature review and benchmark. IEEE Transactions on Software
Engineering, 2019.

Brad Linder. Some apps may stop working on rooted android phones due to
safetynet update. https://liliputing.com/2020/03/some-apps-may-stop-working-
on-rooted-android-phones-due- to-safetynet-update.html.

Hiroshi Lockheimer. Android and security. http://googlemobile.blogspot.com/
2012/02/android-and-security.html, Feb 2012.

Samin Yaseer Mahmud, Akhil Acharya, Benjamin Andow, William Enck, and
Bradley Reaves. Cardpliance: PCI DSS compliance of android applications. In
29th USENIX Security Symposium (USENIX Security 20). USENIX Association,
August 2020.

Alessio Merlo, Antonio Ruggia, Luigi Sciolla, and Luca Verderame. Armand: Anti-
repackaging through multi-pattern anti-tampering based on native detection,
2020.

Alessio Merlo, Antonio Ruggia, Luigi Sciolla, and Luca Verderame. You shall not
repackage! demystifying anti-repackaging on android. 2020.

Ildar Muslukhov, Yazan Boshmaf, and Konstantin Beznosov. Source attribution
of cryptographic api misuse in android applications. In Proceedings of the 2018 on
Asia Conference on Computer and Communications Security, ASIACCS °18, New
York, NY, USA, 2018. Association for Computing Machinery.

Long Nguyen Vu, Ngoc-Tu Chau, Seongeun Kang, and Souhwan Jung. Android
rooting: An arms race between evasion and detection. Security and Communica-
tion Networks, 2017, 10 2017.

Stephen Perkins. Completely hide root using magisk. https://android.gadgethacks.
com/how-to/completely-hide-root-using-magisk-0201243/.

Mishaal Rahman. Safetynet’s dreaded hardware attestation is rolling out, mak-
ing it much harder for magisk to hide root. https://www.xda-developers.com/
safetynet-hardware-attestation-hide-root-magisk/.

Oscar Rodriguez. 10 things you might be doing wrong when using the safetynet
attestation api. https://android-developers.googleblog.com/2017/11/10-things-
you-might-be-doing-wrong-when.html.

Google SafetyNet API Clients team. Feature preview: Safetynet attesta-
tion api evaluationtype. https://groups.google.com/g/safetynet-api-clients/c/
IpDXBNeV7Fg?pli=1.

Google Samples. android-play-safetynet. https://github.com/googlesamples/
android-play-safetynet/tree/master/server.

S. Shuai, D. Guowei, G. Tao, Y. Tianchang, and S. Chenjie. Modelling analysis
and auto-detection of cryptographic misuse in android applications. In 2014 IEEE
12th International Conference on Dependable, Autonomic and Secure Computing,
2014.

Benfano Soewito and Agung Suwandaru. Android sensitive data leakage preven-
tion with rooting detection using java function hooking. Journal of King Saud

https://developer.android.com/training/

162

[45

[46]

[47]

(48]

[49]

[50]

[51]

MobiSys "21, June 24-July 2, 2021, Virtual, WI, USA

University - Computer and Information Sciences, 2020.

SoftGuide. Safetynet check. https://play.google.com/store/apps/details?id=com.
softguide.safetynetcheck.

San-Tsai Sun, Andrea Cuadros, and Konstantin Beznosov. Android rooting:
Methods, detection, and evasion. In Proceedings of the 5th Annual ACM CCS
Workshop on Security and Privacy in Smartphones and Mobile Devices, SPSM ’15,
New York, NY, USA, 2015. Association for Computing Machinery.

Free Android Tools. Safetynet test. https://play.google.com/store/apps/details?
id=org.freeandroidtools.safetynettest.

Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. Amandroid: A precise
and general inter-component data flow analysis framework for security vetting
of android apps. 21(3), April 2018.

Y. Zhou and X. Jiang. Dissecting android malware: Characterization and evolution.
In 2012 IEEE Symposium on Security and Privacy, 2012.

Y. Zhou, Zhi Wang, W. Zhou, and X. Jiang. Hey, you, get off of my market:
Detecting malicious apps in official and alternative android markets. In NDSS,
2012.

Onur Zungur and Antonio Bianchi. Appjitsu: Investigating the resiliency of
android applications. 2021.

	Abstract
	1 Introduction
	2 Background
	2.1 Android Tampering
	2.2 Android Application Obfuscation
	2.3 Attacker Model

	3 The SafetyNet Attestation API
	4 Categorization of SafetyNet Misusages
	4.1 Local Checks (Mis-LoCh)
	4.2 Using Google Test Server (Mis-Test)
	4.3 Local Nonce Generation (Mis-LoNon)
	4.4 Wrong Verification at Server (Mis-SerVeri)
	4.5 Sending Partial JWS to Server (Mis-PartJWS)
	4.6 Not Handling Errors (Mis-Err)
	4.7 Null/Wrong API Key (Mis-APIKey)
	4.8 Using Deprecated API (Mis-DepAPI)
	4.9 Calling SafetyNet Only at First Launch (Mis-Launch)

	5 Analysis
	5.1 APK Collection
	5.2 Static Analysis
	5.3 Dynamic Analysis
	5.4 Manual Analysis
	5.5 Bypassing SafetyNet

	6 Results
	7 Case Studies
	7.1 Punchh Library
	7.2 Mis-APIKey
	7.3 TextNow
	7.4 Geon

	8 Limitations and Future Work
	8.1 Static Analysis
	8.2 Dynamic Analysis
	8.3 Bypassing SafetyNet

	9 Related Work
	9.1 Security API Misusage
	9.2 Device and App Integrity
	9.3 Bypassing Root Checks

	10 Discussion
	11 Conclusion
	Acknowledgments
	References

