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Abstract

Extreme heat events can lead to increased risk of heat-related deaths. Furthermore, urban areas are often hotter than their
rural surroundings, exacerbating heat waves. Unfortunately, validation is difficult; to our knowledge, most validations,
even if they control for temperatures, really only validate a social vulnerability index instead of a heat vulnerability index.
Here we investigate how to construct and validate a heat vulnerability index given uncertainty ranges in data for the city
of Rio de Janeiro. First, we compare excess deaths of certain types of circulatory diseases during heat waves. Second, we
use demographic and environmental data and factor analysis to construct a set of unobserved factors and respective
weightings related to heat vulnerability, including a Monte Carlo analysis to represent the uncertainty ranges assigned
to the input data. Finally, we use distance to hospital and clinics and their health record data as an instrumental variable
to validate our factors. We find that we can validate the Rio de Janeiro heat vulnerability index against excess deaths
during heat waves; specifically, we use three types of regressions coupled with difference in difference calculations to
show this is indeed a heat vulnerability index as opposed to a social vulnerability index. The factor analysis identifies
two factors that contribute to >70% of the variability in the data; one socio-economic factor and one urban form factor.
This suggests it is necessary to add a step to existing methods for validation of heat vulnerability indices, that of the
difference-in-difference calculation.
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1 Introduction

Extreme heat events can have major impacts on people’s
lives. Brazil, with its predominantly tropical monsoon cli-
mate [2], is one of the world’s hottest countries [40] and
historically has had significant increases in heat wave fre-
quency [26]. The types of heat waves that Brazil experi-
ences can lead to increased risk of heat-related deaths [4,
12, 24, 29], and numbers of deaths are more likely due to
climate change [7, 46].

Furthermore, the urban heat island effect (where urban
areas are hotter than surrounding rural areas) exacerbates
heat waves [64, 65], especially in very densely populated
areas [45]. Unfortunately for researchers, there are rela-
tively few populated areas with hyperlocal areas spanning
extreme socioeconomic disparity. This can make it difficult
to understand whether extreme heat deaths are due to
changes in local temperature or changes in urban form
(and population living there). We are aware of one study
in the United States, which shows that the types of charac-
teristics leading to increased vulnerability differ between
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urban and rural areas; however, this study actually showed
lower deaths during hotter heat waves (see [43] which
used temperature and humidity to define the apparent
temperature) suggesting that more work needs to be done
to understand the differences between rural and urban
areas. While regression techniques exist to address these
problems, it can sometimes ease the calculation burden to
focus on hyperlocal areas. Perhaps unique to Brazil is the
presence of favelas (slums), where the richest individuals
in Brazil live a couple of meters away from the population
living in these conditions (Leblon—the richest neighbor-
hood in Rio—and is less than 3 km away from Rocinha—
the largest favela in Latin America) [35]. To our knowledge,
few studies have been done to understand how Brazil’s
unique characteristics, such as favelas, might contribute
to our understanding heat vulnerability.

Intertwined with weather and the environment is heat
vulnerability. An individual’s heat vulnerability is known to
increase with a number of factors, such as age [1], income
[38], or ethnicity [55]. Generally speaking, two approaches
exist to assess heat distress and deaths caused by heat
exposure: regression and factor analysis [3]. In the first
method, a researcher obtains data on deaths and regresses
out the characteristics leading to increased vulnerability
(e.g., [42, 62]). In the second method, a research attempts
to develop heat vulnerability measures using factor analy-
sis or equal weights with generalized models, and then
validate those models [53]. Unfortunately, due to limita-
tions on personally identifiable information and the need
to aggregate and anonymize, in many countries it can be
difficult to obtain fine resolution health record data to vali-
date these models. Conversely, in Brazil, health record data
are publicly available. Furthermore, since in Brazil health
emergency calls and health care are both free and univer-
sal (and do not require enrollment), often patients experi-
encing any heat-related symptom or condition are taken
to the nearest hospital or clinic for urgent care. Thus, since
the data are unclouded with differences in hospitalization
choices, it is likely that hospitals closer to high heat vulner-
ability neighborhoods would have higher rates of heat-
related illnesses (e.g., cardiovascular disease, myocardial
infarction, and chronic pulmonary disease hospitalization
and deaths) during heatwaves.

Furthermore, consider the studies that have attempted
a validation. Bao et al. [3] conduct a literature review of
heat vulnerability index construction and validation.
They find that the temperature level is the most well-doc-
umented contributor to heat-related deaths, and that it
is difficult to validate a heat vulnerability index. This sug-
gests that it is difficult to determine whether the indices
are a general social vulnerability index (which measures
vulnerability) or a heat vulnerability index (which has
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nonuniformly more deaths as temperatures rise). Indeed,
this is the conclusion reached by multiple authors (e.g.,
[16, 53]).

Given this, our study considers three research questions
in Brazil. First, what are the health effects of heat waves in
Rio de Janeiro? Second, will a vulnerability index built over
socio-economic and urban form variables retain urban
form characteristics? Third, are we able to validate the
proposed heat vulnerability index against health record
data during heat waves? We use three types of regressions
coupled with difference in difference calculations to test
whether our index is indeed a heat vulnerability index as
opposed to a social vulnerability index. Furthermore, we
test our finding across multiple uncertainties, including
that of the heat wave definition and that of the input data
to the heat vulnerability index.

2 Methods
2.1 Heat-related deaths

We compared heat wave data and data characterizing
deaths over the period February 2007 to February 2016.
First, consider the heat wave definition and data. Within
the literature, the definition of heat wave events (and thus
heat wave intensity) varies widely as a certain temperature
threshold [20, 22, 27], a function of extreme percentiles of
temperatures [14, 25, 51], or a particular heat index [47,
61]. In this study, we used temperature and relative humid-
ity data from Instituto Nacional de Meteorologia [36] to
calculate the incidence of heat waves in Rio de Janeiro. We
conducted our analysis for two published definitions for
heat waves. First, following Rothfusz, we use the tempera-
ture and relative humidity to calculate the heat index [54].
We considered heat hazard days with heat index higher
than 32°C (90 °F), which is defined by the National Weather
Service (NWS) to be in the “Extreme Caution” range for
likelihood of heat disorders with prolonged exposure or
strenuous activity [33]. Second, and considering that a pol-
icy-maker might wish for a simpler data collection method,
following [42], we considered a temperature-only defini-
tion of an extreme heat wave event being a period of two
or more consecutive days with lower temperatures over
25°C (77 °F) and higher temperatures over 35°C (95 °F).
For each definition, we included two additional days at
the end of each extreme heat days, to account for health
effects occurring after the event.’

! Future work could conduct additional sensitivity analyses; since
the results are similar (insensitive) to the definitions of heat waves
used, we explore other sensitivities in this paper.
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Table 1 Socio-economic and urban form descriptive statistics for Rio de Janeiro

Variable

Population of Household
Average Individual Income (RS)
Total Population

Variable

Age >60years

Age<5years

Literate in Portuguese

Branco (White)

Preto (Black)

Amarelo (Yellow)

Pardo (Mixed)

Indigena (Native)

Per capita income <1/8 minimum wage
Per capita income equal to zero
No access to water network

No access to sewage network
No garbage service

Presence of garbage in the street
No access to energy service

No access to energy

No streetlight

No sidewalk

No pavement

No trees

Variable

Normalized Difference Vegetation Index (NDVI)

Count within census block group: mean (standard deviation)
2.94 (0.46)

1381 (1378)

617 (296)

Fraction within census block group: mean (standard deviation)
0.002 (0.021)

0.843 (0.084
0.181 (0.088
0.095 (0.059
0.527(0.213
0.155(0.107
0.028 (0.045
0.369 (0.168
0.020 (0.050
0.023 (0.049
0.974 (0.118
0.003 (0.021
0.019 (0.106
0.117 (0.168
0.026 (0.118
0.981 (0.105
0.019 (0.105
0.037 (0.144)

0.037 (0.147)

0.044 (0.162)

Normalized to 0 to 1: mean (standard deviation)
0.109 (0.267)

RSN IR > NS B NN A

Now consider deaths. Due to the vast epidemiologic
evidence (e.g., [5, 6, 601]), researchers suggest that heat
waves increase the probability of death from certain cir-
culatory system diseases including specific cardiovascu-
lar diseases of heart disease, congestive heart failure, and
myocardial infarction. For example, in Brazil, 115 excess
deaths per year have been shown to occur due to the
link between acute myocardial infarction (heart attack)
and increased temperatures [23]. In this paper, we use
data from the Brazilian healthcare database called DATA-
SUS [48] to assess socio-economic determinants of heat-
related deaths. Within these data, from 2007 to 2016, 449
clinics have reported a total of approximately 168,000
deaths in Rio de Janeiro by diseases of the circulatory
system (ranging from 1180 in February 2015 to 1650 in
February 2008).

2.2 Heat vulnerability index
We created a heat vulnerability index including the urban

form characteristics of Brazil's favelas. Literature has
demonstrated in Brazil [8] and elsewhere [10] that there

are socioeconomic characteristics that are indicative of
increased deaths in heat wave events. We used a type of
scaling called factor analysis to develop a predictive index
for social vulnerability. The objective was twofold: (1) to
construct a latent variable, or an index (or a scale), to spa-
tially measure social vulnerability of a population; (2) to
identify the underlying dimensions of the index to support
public policy.

Based on literature, we hypothesized a number of vari-
ables that affect heat vulnerability (Table 1). All variables
were coded so that higher values indicated higher vulner-
ability. We collected most socio-economic and urban form
data from the 2010 Censo [35], a Brazilian decennial survey
of all households in country (where setor censitdrio means
“census tract’, and has a size similar to a United States
census block group?). A full description of the variables,

2 There are a total of 10,233 setores censitdrio in Rio de Janiero. In
our study, the number of people in a setor censitdrio is on average
617 people (see Table 2). Figure 2, which shows part of our results,
depicts within the choropleth map the individual setores censitdrio.
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including both the reason for inclusion and characteristics
within our dataset, is given in the Electronic Supplemen-
tary Information.

Next, following existing literature [10, 31, 32, 50, 52],
we then combined the variables to create factors. First, we
tested for multicollinearity of the variables, and dropped
variables with Pearson coefficient higher than 0.75 (see
Electronic Supplementary Material, Table S.1). Second,
we conducted a factor analysis [49] with varimax rotation,
retaining the factors following the Kaiser rule (eigenvalue
higher than one). Finally, we calculated the index from
the factor scores. For ease of interpretation, we converted
results into seven groups of one standard deviation (Min-
imum: < —2.55D from the mean; Very Low: —2.5 to —1.5
SD from the mean; Low: —1.5 to —0.5 SD from the mean;
Medium: —0.5 to 0.5 SD from the mean; High: 0.5 to 1.5 SD
from the mean; Very High: 1.5 to 2.5 SD from the mean;
Maximum: >2.5 ST from the mean).

While spatial clustering analyses have existed for many
years (e.g., see summary texts on spatial autocorrelation
such as [18, 19]), there is a recent interest in the literature
on examining the vulnerabilities for spatial correlation. For
example, a recent paper calculates a Moran’s | analysis on
the Center for Disease Control’s social vulnerability index,
heat-related emergency room visits, and heat mortality at
the county level in the state of Georgia, U.S., finding signifi-
cant levels of high clustering [41]. Conversely to this paper,
our analysis is conducted at the setor censitdrio level, which
is roughly equivalent to a U.S. census tract, and only within
the urban area. Thus, while we do not expect to see spatial
clustering from urban and rural differences (as these are
not in our data set), we calculate a univariate Moran’s |
to determine whether there is clustering in the city itself.

Finally, we checked the sensitivity of the heat vulner-
ability index performing a 10,000 simulation to check the
robustness of the results to measurement error in the vari-
ables (up to 1.96 standard deviation).

2.3 Validating heat vulnerability against excess
deaths during heat wave

We tested whether the index is a good predictor of health
effects in the population during a heat wave. Our hypoth-
esis is that more vulnerable regions in the city may expe-
rience higher health effect due to heat events. That is,
we should observe more deaths in regions with higher
vulnerability.

Existing research has considered over-dispersed gen-
eralized linear modeling, finding that there is a relation
between deaths and temperature in San Paolo, Brazil [57].
Here, since we consider both distance to hospitals and
socio-economic vulnerability, we specified two parts of
a model to validate our index: (1) a model to determine
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whether the vulnerability index is statistically signifi-
cant, and (2) a logistic model predicting whether zero
deaths observed is a certain zero. For each of these model
approaches, we specified explanatory variables and an
outcome variable, and then tested a linear regression,
zero-inflated Poisson, and zero-inflated negative binomial
(allowing for tests of overdispersion and excess of zero in
the data).

In each of the models, we use three of the same explan-
atory variables. First, the number of heat waves takes the
part of a “treatment” that we are aiming to measure the
health impacts, and second the duration of heat waves is
the intensity of the “treatment”, or the dosage effect. These
two variables allow us to make inferences about possible
diminishing effects for longer heat waves or periods with
more than one heat wave. The third explanatory variable,
the heat vulnerability index, is the construct we are aim-
ing to validate.

Following the literature (e.g., [13, 21, 37]), we use the
relative distance from setor censitdrio to the nearest hospi-
tal (following the road network using GIS network analyst
tools) as an instrument to patient hospital/clinic choice
and, eventually, their death location. Distance from their
residence to the nearest hospital as an instrument to
patient choice for healthcare is reasonable for two rea-
sons. First, the emergency medical services in Brazil direct
patients to the nearest hospital for urgent issues [9]. Sec-
ond, Brazil has a free and universal healthcare system (not
even an opt-in is required) and even individuals enrolled in
private health insurance are directed to the public system
during emergencies [30]. The matching process provided
the response variable (number of deaths in the nearby
hospital) and one control variable (the population served
by each hospital—that is, the sum of the populations of all
setores censitdrio from each hospital). We also calculated
the death rate using these two variables that would be an
explanatory model for a second model specification.

Then for the three hybrid models, we specified explana-
tory variables as the heat wave variables, the vulnerability
index, and the population count, where the outcome vari-
able is the number of observed deaths. Also, given known
effects of seasonal variations in certain types of deaths
(e.g., [44]), we included in our model time fixed effects to
account for seasonality in the death data. Note, the geo-
graphic unit, the setor censitdrio, is on average 617 people
(see Table 1), and so excess deaths of 2-3 people per setor
censitdrio is approximately 0.5% of the population.

An important caveat is to ensure that the index meas-
ures heat vulnerability and not a general socio-economic
vulnerability. Thus, for the models, we clean our coeffi-
cients performing a simple differences-in-differences cal-
culation between high and low vulnerable regions with
and without occurrence of heat wave. The conclusion and
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discussion will use this parameter rather than the coef-
ficients of the estimation models.

Finally, in addition to using multiple definitions and
model specifications to test the robustness of our result,
we used two other methods to check the robustness of
our results. First, we checked the sensibility of our results
using a Monte Carlo Simulation. We ran 1000 simulations
to check the sensibility of the results to measurement
error. We adopted the following steps: (1) we created
new variables with the standard normal deviation of each
socio-economic and physical characteristic; (2) we gener-
ated a random number based on a beta distribution and
performed the appropriate transformations to have values
between —1 and 1; (3) we multiplied the values in (1) and
(2) with the value of each observation; (4) we performed
the factor analysis and the validation count model for the
data with this measurement error shock; (5) we repeated
the first three procedures 1000 times. We recorded the
resulting coefficients only for the two predictors of inter-
est: heat vulnerability index and length of the heat wave.

3 Results
3.1 Heat-related deaths

We find that, regardless of heat wave definition chosen,
Rio de Janeiro has had excess deaths due to extreme heat.
First, consider a heat wave definition that includes both
temperature and humidity (per [54]), or defined as three
or more consecutive days with heat index over 32°C /90 °F.
Our data show that Rio de Janeiro had 60 such events
during the period of analysis (February/2007 to February
/2016). Moreover, heat index exceeded 103 °F in 2 events,
totaling 8 days. Figure 1 shows the distribution of the
occurrence and duration of heat waves in Rio de Janeiro
by month. Most heat waves occur between late spring
and early autumn, with at least one heat wave occurring
in each January and in each February. Heat wave dura-
tion spans 0-29 days, with an average duration of 8 days
in December, 17 days in January, and 14 days in February.

Considering the heat waves and the two subsequent
days after each event, we find that the number of deaths
increases with number and duration. The coefficient for
the variable heat wave duration is 0.003677 and statisti-
cally significant at 1% level, meaning that a heat event
would increase the count of deaths by 0.4% (or a fac-
tor of exp.[0.003677]). That is, the marginal effect of
each additional day in the length of a heat wave would
lead to an increase in the order of 0.0301 in the death
count. These results indicate that the number of deaths
in each setor censitdrio (which, on average, consists of
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Fig. 1 The distribution of the occurrence and duration of heat
waves in Rio de Janeiro by month. The box represents the inter-
quartile range (25th to 75th percentile), the whiskers represent an
additional 1.5 times the interquartile range, and the outliers are
represented by dots

617 people) increases from 2.59 to 2.89 during a 10-day
heat wave, holding all other variables constant at the
mean. We find that a 25 day long heat wave would lead
to a death count of 3.40 in each setor censitdrio. This is
approximately 0.5% of the population, which since Rio
de Janiero is home to approximately six million people,
means approximately an excess 30,000 deaths.

Next, consider a definition that might be easier for a
policy-maker to obtain: a temperature-only definition.
Here, consider minimum temperatures higher than
25°C/77 °F and maximum temperatures higher than
35°C/ 95 °F (per a combination of [17, 47]). Given this, Rio
de Janeiro experienced 46 heat waves, totaling 319 days.
We find that the number of deaths increases with num-
ber and duration. The coefficient for the variable heat
wave duration is .003681 and statistically significant at
1% level, meaning that a heat event would increase the
count of deaths by 0.4% (or a factor of exp.[0.003681]).
That is, the marginal effect of each additional day in the
length of a heat wave would lead to an increase in the
order of 0.0230 in the death count. These results indi-
cate that the number of deaths in each setor censitario
increases from 2.66 to 2.85 during a 10-day heat wave,
holding all other variables constant at the mean. We find
that a 25 day long heat wave would lead to a death count
of 3.15 in each setor censitario.

These results are qualitatively similar. We also checked
the same model specification with multiple definitions
of heat wave (e.g., [20, 22, 27, 28, 56]), and found that the
results do not change for a simplified definition using
only temperature or considering only more extreme
events.
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Fig.2 Heat vulnerability map for Rio de Janeiro and the hospitals
that reported deaths due to cardiovascular diseases. Legend items
are as follows: Minimum: < —2.5SD from the mean; Very Low: —2.5
to —1.5 SD from the mean; Low: —1.5 to —0.5 SD from the mean;

3.2 Heat vulnerability index

We collected multiple socio-economic and urban form
characteristics shown to be predictive of heat vulnerability.
First, we performed multi-correlation tests with the socio-
economic and environmental characteristics to determine
relative unique contributions of variables. We found that
only having children younger than 5years old was highly
correlated with being able to read and write in Portuguese
(Pearson coefficient of 0.81), and so dropped the first one
since it describes a characteristic with less amplitude.
Then, we performed factor analysis and the results
revealed that two underlying factors capture 94.74% of
the data variance in explaining vulnerability across pop-
ulations in Rio de Janeiro (see Electronic Supplementary
Material, Table S.2, Fig. S.1). The first dimension (factor
1) is a construct of socio-economic characteristics such
as age, race, and alphabetization. The second dimension
(factor 2) is a construct of urban form, including arboriza-
tion, public lights, and presence of sidewalks and paved
streets. Figure 2 shows the heat vulnerability map for Rio
de Janeiro and the hospitals that reported deaths due to
cardiovascular diseases. We see that favelas and slums
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Medium: —0.5 to 0.5 SD from the mean; High: 0.5 to 1.5 SD from the
mean; Very High: 1.5 to 2.5 SD from the mean; Maximum: >2.5 ST
from the mean

neighborhoods have higher vulnerability given the high
weight of urban form in the factor analysis. This is an
expected finding given the importance for the composi-
tion of the index in the factor analysis of variables such
as paved roads, presence of sidewalk, streetlight, trees
and sewage. Favelas and slums in Brazil lack this kind of
public infrastructure.

Other high vulnerability regions include traditionally
poor and non-white neighborhoods, such as Guaratiba,
Sepetiba and Santa Cruz. These suburb regions have more
public infrastructure than the favelas and slums but may
have more profound socio-economic disparities from the
main regions in the city such as unemployment and less
education.

We conducted a univariate Moran’s | test on the heat
vulnerability index at the setor censitdrio, and find across
the city a statistical significance of 0.11 at p <0.0001. Since
Moran’s | runs from —1 to 1 with 0 indicating no correla-
tion and one indicating perfect correlation, our data show
a small amount of autocorrelation. This suggests that we
may proceed with using the heat vulnerability index; in our
discussion, we describe how future research could exam-
ine the spatial autocorrelation.
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Fig. 3 Probability distribution function of Monte Carlo analysis of
the coefficient for heat wave duration. Note the difference between
the mean of the Monte Carlo results (solid line, 0.003673) and the
initial result (dashed line, 0.003677)

To understand the sensitivity of our results to meas-
urement error in the Brazilian census data, we performed
1000 simulations using the margin of error of Brazilian
census data (and 1.96 standard deviation from the mean
for the other variables). We found that our results did not
change significantly due to uncertainty in the census data.
As shown in Fig. 3, the simulation’s mean is 0.003673 for
the variable of length of heat waves while our main result
is 0.003677. That is, the difference between the mean in
less than 107>

3.3 Validating heat vulnerability against excess
deaths during heat wave

Finally, we use distance to hospital and clinics and their
health record data (both diseases knowingly related and
unrelated to heat waves) to validate the heat vulnerability
index against excess deaths during heat waves.

In the first part of the model, we find statistically sig-
nificant coefficients for heat vulnerability and heat wave
variables (see Table 2). A zero-inflated model indicates that
the vulnerability index is statistically significant at 99.9%
level and one increase in the vulnerability index is associ-
ated with an increase of a factor of 1.05 (exp[0.049]). The
effect is diminishing since the coefficient for squared heat
vulnerability index is negative. The expected number of
deaths increases a factor of 1.004 (exp[0.0037]) during the
first heat event. The zero-binomial specification shows
similar results than our main model, showing that stand-
ard deviations may not be biased and the statistical signifi-
cance of the results is reliable. Our results also corroborate
with findings that deaths due to cardiovascular diseases

have seasonal variation with higher incidence during the
winter than in the summer [58]).

The second part of the model, a logistic model pre-
dicting whether or not zero deaths observed is a certain
zero, also corroborates the literature. Consider: longer the
distance to hospital [15], less vulnerable populations [63],
and absence of heat events [11] would decrease the prob-
ability of deaths (from cardiovascular diseases) within in
a setor censitdrio. Figure 4 shows the first derivative of the
response with respect of the length of heat waves for dif-
ferent levels of vulnerability levels. Low vulnerable setores
censitdrio also face an increase in deaths during heat
wave, but with lower magnitude. The number of deaths
increases from 2.527 to 2.828 during a 10-day heat wave
and to 2.483 during a 20-day heat wave. The graph also
shows us the count of deaths by cardiovascular disease for
setores censitdrio with different levels of vulnerability. For
instance, very highly vulnerable census tracts experience
0.587 counts more than the medium vulnerability while
low vulnerable census experience 0.253 less counts during
a 5-day heat wave.

Combining these two results, we perform a difference-
in-difference analysis to isolate the impact of vulner-
ability during the longest heat wave experienced in Rio
de Janeiro (that lasted 25 days), as shown in Table 3. The
first difference (the estimated count of deaths for a low
vulnerable setor censitdrio and a highly vulnerable setor
censitdrio when no event has occurred) is approximately
0.795.The second difference separately considers the sub-
set of setores censitdrio within each vulnerability level. For
each group, we find that the number of deaths increases
as the length of the heat wave event increases (from no
days to a 25 day length event). These two characteristics
indicate that, at a minimum, the developed index is indica-
tive of vulnerability to all types of events. To determine
whether the index is indicative specifically of heat vulner-
ability, one would need to see that there is an even higher
increase in the most vulnerable setores censitdrio than in
the least vulnerable setores censitdrio when moving from
zero events to a 25 day long event. We see that the dif-
ference in deaths across high and low heat vulnerability
becomes 1.043 during the 25 day heat wave, which is an
increase of 0.248 over the non-heat wave event. This indi-
cates that the developed index is also representative of
heat vulnerability.

4 Discussion

We show three findings in Rio de Janeiro. First, as shown in
the literature [23], we find that heat waves are correlated
with excess deaths of certain types of circulatory diseases.
The factor analysis identifies two factors that contribute to
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Table 2 Heat vulnerability index validation results showing estimation of number of deaths in Rio de Janeiro’s setores censitdrio

Variable Model 1:
Linear regression; B (se)

Model 2:

Zero-inflated Poisson B (se)

Model 3:
Zero-inflated
negative binomial
B (se)

Heat vulnerability index 0.086 (0.082)
Heat vulnerability index, squared —0.059 (0.047)
Distance to closest clinic —0.000***(0.000)
Population (log) 0.137 (0.086)
Population (log) squared —0.000 (0.000)
Length of Heat Events 0.004*** (0.001)
January 0.118*** (0.014)
February —0.283*** (0.014)
March —0.133*** (0.014)
April —0.129%** (0.014)
May 0.184*** (0.014)
June 0.229%** (0.014)
July 0.357***(0.014)
August 0.283*** (0.014)
September 0.140%** (0.014)
October 0.099%** (0.014)
November —-0.077 (0.014)
Constant 1.677* (0.864)
Inflate

Distance to closest clinic -

z-scored HVI

# of Heat Events -

Length of Heat Events -

Constant -

Model statistics

R-squared 0.0046

log likelihood of null model —3,737,891

log likelihood of full model —3,735,360

AlC 7,470,755

BIC 7,470,970

df 17

0.049*** (0.003) 0.039*** (0.004)
—0.030%*** (0.002) —0.026*** (0.002)
—0.000*** (0.000) —0.000*** (0.000)
0.008** (0.003) 0.046*** (0.004)
0.000*** (0.000) 0.000 (0.000)
0.004*** (0.000) 0.003*** (0.001)
0.018(0.012) 0.051*** (0.013)
—0.090*** (0.011) —0.098*** (0,013)
0.002 (0.011) —0.019(0.012)
0.002 (0.012) —0.016 (0.013)
0.100*** (0.011 0.096*** (0.013

)
0.130%** (0.012)
0.139***(0.012)
( )
( )
)

0.121***(0.013

)

( )
0.152***(0.013)
( )

( )

)

0.134***(0.011 0.133***(0.013
0.081***(0.011 0.076*** (0.013
0.071***(0.012 0.061*** (0.013
—-0.015(0.011) —0.010(0.013)

1.889*** (0.031)

1.049%** (0.040)

0.000*** (0.000) 0.000*** (0.000)
—0.018*** (0.002) —0.009%** (0.004)
0.108*** (0.005) 0.169*** (0.009)
—0.012 ***(0.001) —0.020%** (0.001)
0.288*** (0.003) —0.712%** (0.012)
n/a n/a

—-3,098,517 -1,890,717
—3,089,081 -1,889,815
6,178,205 3,779,677
6,178,467 3,779,951

22 23

B standardized estimate, se standard error, 8 unstandardized estimate
*p <0.05, **p <0.01, ***p <0.001

94.74% of the variability in the data; one socio-economic
factor and one urban form factor. This indicates, as sug-
gested in the literature (e.g., [43]), that there are differ-
ences between rural and urban vulnerability indices; in our
index unregulated urbanization (within favelas and other
slum-like neighborhoods,) is an important as socio-eco-
nomic characteristics to determine vulnerability. Finally,
we find that we can validate the Rio de Janeiro heat vul-
nerability index against excess deaths during heat waves;
specifically, we use three types of regressions coupled with
difference in difference calculations to show this is indeed
a heat vulnerability index as opposed to a social vulner-
ability index. This suggests it is necessary to add a step to
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existing methods for validation of heat vulnerability indi-
ces, that of the difference-in-difference calculation.
These findings may have an important impact in policy
for developing countries. While socio-economic risk may
change only with long term policies, urban form may
change more rapidly with re-urbanization policies. There-
fore, reducing heat vulnerability might add up to the many
benefits of urbanizing favelas and slum areas. In devel-
oping countries, urbanization is likely more effective and
responsive in the short term. For example, urbanization
policies such as paving streets, building proper sanitary
sewer and arborizing favelas will reduce the vulnerabil-
ity of the population living there. It may even be that, as
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Fig.4 The first derivative of the response (number of cardiovascu-
lar deaths) with respect of the length of heat waves for different
levels of vulnerability levels

Table 3 Difference in difference model estimates for a 25-day heat
wave between low and very highly vulnerable setores censitdrio

Heat wave length Low HVI Very high HVI Difference
(days)

0 235 3.14 0.79

25 3.08 412 1.04
Difference 0.73 0.98 0.25

shown in a flood study in the United States [39], that the
order of these policies does not matter; rather the environ-
mental justice disparities might be sufficiently high that
any action will be helpful.

Given that our findings suggest there may be some
reason to, within a city, separate favelas from other areas,
this suggests research into improved understanding of
the spatial autocorrelation within the city and how it may
be affecting heat vulnerability and deaths. For instance,
although the factor analysis takes into account similari-
ties between regions, other methods exist to investigate
similarities between regions (e.g., see summary texts on
spatial autocorrelation such as [18, 19]). A recent report
has found evidence of spatial clustering at the county level
(which reflects urban and rural areas, [41]); other reports
suggest there may be spatial clustering in Latin American
cities (e.g., [34]). Thompson et al. [59] describe other meth-
ods to calculate vulnerability, and find that if one is limited
to county level data, that a hierarchical generalized linear
regression model with multiscalar indicators and spatial
components performs better than methods that lack con-
sideration of spatial dynamics. While our study did not face
the limitation of aggregating to the county level (recall the
setores censitdrio is of similar size to a census tract in the
United States), due to the stark differences between very

closely neighboring areas, it may be of interest to explore
other vulnerability method calculations to determine
whether a model that performs even better can be found.

Alternatively, consider that our distance metric (the way
to get from here to there) was distance along roads as cal-
culated using GIS network analyst tools. This may be an
appropriate metric when driving or taking public transit
to a local hospital. However, recall our findings regarding
favelas; people living in favelas might travel to the hospi-
tal might in a qualitatively manner different from those
living in more wealthy communities. Alternative methods
to calculate distance might be able to more closely model
actual behavior in favelas, and thus improve model fidelity.

5 Conclusion

In this paper, we investigated how to construct and vali-
date a heat vulnerability index given uncertainty ranges in
data for the city of Rio de Janeiro. First, we compare excess
deaths of certain types of circulatory diseases during heat
waves. Second, we use demographic and environmental
data and factor analysis to construct a set of unobserved
factors and respective weightings related to heat vulner-
ability, including a Monte Carlo analysis to represent the
uncertainty ranges assigned to the input data. Finally, we
use distance to hospital and clinics and their health record
data as an instrumental variable to validate our factors.
We find that we can validate the Rio de Janeiro heat vul-
nerability index against excess deaths during heat waves;
specifically, we use three types of regressions coupled with
difference in difference calculations to show this is indeed
a heat vulnerability index as opposed to a social vulner-
ability index. The factor analysis identifies two factors that
contribute to >70% of the variability in the data; one socio-
economic factor and one urban form factor. This suggests
itis necessary to add a step to existing methods for valida-
tion of heat vulnerability indices, that of the difference-in-
difference calculation.
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