
1

A Practical Approach for Dynamic Taint Tracking with
Control-Flow Relationships

KATHERINE HOUGH∗ and JONATHAN BELL∗, Northeastern University, United States

Dynamic taint tracking, a technique that traces relationships between values as a program executes, has been
used to support a variety of software engineering tasks. Some taint tracking systems only consider data �ows
and ignore control �ows. As a result, relationships between some values are not re�ected by the analysis.
Many applications of taint tracking either bene�t from or rely on these relationships being traced, but past
works have found that tracking control �ows resulted in over-tainting, dramatically reducing the precision
of the taint tracking system. In this paper, we introduce C������, alternative semantics for propagating
taint tags along control �ows. C������ aims to reduce over-tainting by decreasing the scope of control
�ows and providing a heuristic for reducing loop-related over-tainting. We created a Java implementation
of C������ and performed a case study exploring the e�ect of C������ on a concrete application of taint
tracking, automated debugging. In addition to this case study, we evaluated C������’s accuracy using a
novel benchmark consisting of popular, real-world programs. We compared C������ against existing taint
propagation policies, including a state-of-the-art approach for reducing control-�ow-related over-tainting,
�nding that C������ had the highest F1 score on 43 out of the 48 total tests.

CCS Concepts: • Software and its engineering! Dynamic analysis; • Security and privacy! Infor-
mation �ow control.

Additional Key Words and Phrases: taint tracking, control �ow analysis, dynamic information �ow

ACM Reference Format:
Katherine Hough and Jonathan Bell. 2021. A Practical Approach for Dynamic Taint Tracking with Control-Flow
Relationships. ACM Trans. Softw. Eng. Methodol. 1, 1, Article 1 (January 2021), 43 pages. https://doi.org/10.
1145/3485464

1 INTRODUCTION
Taint tracking is a technique for monitoring the �ow of information through a system. Traditionally,
it has been used in privacy analyses to prevent con�dential data from leaking into a program’s
public outputs and in security analyses to detect the �ow of untrusted values into sensitive program
locations [60, 62]. In recent years, it has also been applied to other software development tasks, for
instance, assisting automated input generation systems (fuzzers) [59], helping to identify poorly-
designed software tests [36], providing debugging guidance [7, 19], and creating performance
models for con�gurable systems [69].
Dynamic taint tracking associates labels (also referred to as taint tags) with program data and

propagates these labels through the system during the execution of a program. The set of rules
de�ning how taint tags propagate when an operation executes forms the tainting tracking system’s
∗Part of this work was completed while both authors were at George Mason University

Authors’ address: Katherine Hough, hough.k@northeastern.edu; Jonathan Bell, j.bell@northeastern.edu, Northeastern
University, 360 Huntington Ave, Boston, Massachusetts, 02115-5005, United States.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the
full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1049-331X/2021/1-ART1 $15.00
https://doi.org/10.1145/3485464

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3485464
https://doi.org/10.1145/3485464
https://doi.org/10.1145/3485464


1:2 Katherine Hough and Jonathan Bell

propagation policy. This policy e�ectively describes what it means for information to “�ow” through
a program. Most taint tracking systems focus on tracing the �ow of data through assignment,
arithmetic, and logical operations which directly pass information from their operands to their
result. This direct passage of information is referred to as an explicit or data �ow [60]. In a data
�ow, the value of the �ow’s target, the operation’s result, is derived from the value of �ow’s source,
the operands of the operation. For instance, in line three of Listing 1 there is a data �ow from x and
y to z. Thus, the labels of x and y should propagate to z.

1 int x = taint(4, �X�);
2 int y = taint(8, �Y�);
3 int z = x + y;
4 int q = 0;
5 if(y == 8) {
6 q = 1;
7 }

Listing 1. A basic taint tracking example.

However, tracking only these explicit �ows can provide an incomplete picture of the �ow of
information through the system. For example, one might expect q to be tainted after the code
in Listing 1 executes, since it is clear that q’s value reveals y’s value. This indirect passage of
information between values can occur as a result of conditional branches, array operations, and
pointer dereferencing and is referred to as an implicit �ow [45]. Unlike a data �ow, the value of an
implicit �ow’s target is not related to the value of its source through some computation. Instead,
the value of the implicit �ow’s source is used to “select” the value of the implicit �ow’s target. For
example, if a tainted index is used to access an element of an array, then the retrieved element’s
value is not directly derived from the value of the tainted index. However, the retrieved element is
selected from the collection of elements in the array as a result of the value of the tainted index. The
lack of direct computational relationship between the target of an implicit �ow and its source can
mean that little to no information is passed along the �ow. For example, consider a situation where
a tainted index is used to access an element of an array containing the same item at every position.
If the tainted index’s value is guaranteed to be within the bounds of the array, then the value of
the accessed element is not in�uenced by the value of the tainted index. In this case, propagating
labels from the tainted index to the accessed element falsely conveys a relationship between the
two values. This is typically referred to as over-tainting.
Implicit �ows resulting from conditional branches are speci�cally referred to as control �ows

since information is passed via the control structure of the program. The source of a control �ow
is a tainted branch condition that guards the execution of an assignment statement. The branch
condition’s value impacts whether the assignment statement executes and therefore selects whether
a new value is assigned to the statement’s destination storage location. Like other implicit �ows,
not propagating along control �ows can result in critical data relationships being lost, which is
referred to as under-tainting. For instance, when looking up the value associated with a tainted key
in an associative-array data structure, there is likely a control �ow, but not a data �ow between the
key and the value. Thus, many existing taint tracking systems support the propagation of taint
tags through control �ows [10–12, 18].
The standard semantics for propagating control �ows propagates the taint tag of a branch’s

predicate to every value written by an assignment statement whose execution is controlled by
that branch. However, prior works have found that using the standard control �ow propagation
semantics resulted in severe over-tainting making it impractical for their applications [7, 8, 19, 66].

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



A Practical Approach for Dynamic Taint Tracking with Control-Flow Relationships 1:3

For example, in their tool for debugging con�guration errors, Attariyan and Flinn [7] reported
that “a strict de�nition of causal dependencies [control �ows] led to our tool outputting almost
all con�guration values as the root cause of the problem.” Clause and Orso [19] discovered that
using control �ow tracking in Penumbra, a tool for identifying inputs that are relevant to a failure,
resulted in larger failure-relevant input sets and in the case of one application resulted in almost
all of the program’s roughly 15 million inputs being marked as failure-relevant. We performed a
case study of Penumbra (detailed in Section 6.5) and observed a similar result: propagating along
control �ows resulted in impractically large failure-relevant input sets. We also found that this
over-tainting could be reduced by using alternative control �ow propagation semantics. However,
due to the over-tainting that occurs when using the standard control �ow propagation semantics,
existing software engineering tools that use taint analysis typically ignore control �ows, favoring
precision over recall. This over-tainting is not caused by a bug in the taint tracking system, but
by a mismatch between the standard control �ow propagation semantics and the expectations
of downstream analyses. In particular, the standard control �ow propagation semantics tend to
overreport relationships between values. Downstream analyses expect information �ows to be
indicative of strong, causal relationships between values. If a single, speci�c condition results in a
particular value being assigned to a particular location, then there is a strong relationship between
that condition and that assignment. However, if that same assignment can be triggered by many
di�erent conditions, then the relationship between those conditions and that assignment is weaker.

Prior work has considered re�nements to the standard control �ow propagation policy to address
control-�ow-related over-tainting. For instance, Bao et al. [8] proposed a re�nement to control
�ow tracking that only considered control �ows resulting from strict equality checks rather than
control �ows resulting from all comparison operators. Kang et al. [41] used symbolic execution to
identify and propagate along control �ow paths that can only be reached by a single input value.
Approaches like these, which reduce over-tainting by considering only a subset of control �ows,
cannot fully address under-tainting without also causing over-tainting. That is, even if it were
possible to determine and propagate along the optimal, minimal subset of control �ows necessary
to prevent under-tainting, over-tainting could still occur.
What constitutes over-tainting is ill-de�ned; the types of relationships that need to be tracked

varies between applications. Generally, within the context of an application of taint tracking, if a
label assigned to a piece of data conveys a relationship between that data and the source of the
label that is not useful in that application, then that data is said to be over-tainted. For example,
a privacy analysis expects data labeled as con�dential to contain enough information from the
original private source that if that data were leaked publicly, it would violate some expectation of
secrecy or con�dentiality. Although this is still ill-de�ned, it has likely motivated prior work on
reducing control-�ow-related over-tainting to consider the root cause of the over-tainting to be the
amount of information that is transferred across a control �ow. However, not all low-information
�ows result in over-tainting. Consider the data �ow from x to y in the statement y = x % 2. This
�ow transfers very little information about the value of x to y. Half of all possible values for x map
to 0 and the other half to 1; so it is clearly not a one-to-one mapping. Regardless, the value of y is
what it is because of the value of x, and taint tracking tools are generally expected to report such a
�ow. Propagating along these sorts of low information data �ows does not seem to cause the same
over-tainting issues as propagating along control �ows. It is our position that control-�ow-related
over-tainting stems from a mismatch between the nature of control and data �ows.

In particular, taint tags propagated at runtime along data �ows only contain information about
what has actually happened during a particular execution. Code that has not executed does not
impact data �ows; they are determined by what has happened and not what could have happened.
Dynamic taint tracking only provides insights into observed executions; unlike a static taint

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:4 Katherine Hough and Jonathan Bell

analysis it cannot prove things. This is often presented as a disadvantage of dynamic taint tracking
over static taint tracking. However, many software engineering tools rely upon this behavior. For
example, OraclePolish [36] used dynamic tainting tracking to evaluate the quality of a test suite
and was therefore only interested in code that was actually executed by the test suite. Additionally,
ConfAid [7], a system for identifying the root cause of con�guration errors, used dynamic taint
tracking because the system sought to identify the cause of the speci�c failure that actually occurred.
In contrast to data �ows, control �ows contain information about execution paths that did not

happen; they are impacted by code that did not execute. A control �ow is produced by a conditional
branch splitting the �ow of control into two or more paths. Some statements execute on only
some and not all of those paths. These statements are therefore considered to be dependent on the
branch’s outcome. Thus, control �ows are inherently concerned with execution paths that were
not taken.

Recent applications of dynamic tainting tracking that need or bene�t from precise, �ne-grained
tainting tracking such as OraclePolish [36], VUzzer [59], ConfAid [7], and Rivulet [35] underscore
the potential bene�ts of bridging the gap between the existing semantics for data and control �ow
tracking. To that end, this paper makes the following contributions:

• Alternative control �ow scope semantics for reducing the amount of over-tainting
• A heuristic that considers both dynamic and static information to reduce control-�ow-related
over-tainting

• A benchmark for evaluating a control �ow propagation policies’ ability to precisely capture
control �ows in real-world Java programs

2 BACKGROUND ANDMOTIVATION
Prior works on taint tracking, information �ow control, slicing, and other related topics have used
a variety of terms to describe the same or similar concepts to ones discussed in this paper. Thus,
for the sake of clarity, the terminology used in this work is de�ned below:

Data �ow. A data �ow (also known as an explicit �ow) occurs due to an assignment, arith-
metic, or logical operation that directly passes information from its operands to its re-
sult [12, 18, 27, 45, 60]. In a data �ow, the value of the �ow’s target (the operation’s result) is
derived from the value of �ow’s source (the operands of the operation).
Implicit�ow.An implicit �ow is the indirect passage of information between values typically
as a result of conditional branches, array operations, or pointer dereferencing [45]. In an
implicit �ow, the value of the �ow’s source is used to “select” the value of the �ow’s target.
This de�nition of implicit �ows is broader than the one used by Chandra and Franz [12],
Sabelfeld and Myers [60], and Enck et al. [27] which includes only the indirect passage of
information as a result of control structures.
Control �ow. A control �ow is an implicit �ow resulting from a conditional branch [18, 27].
Dominance. Let ⌧ = [+ , ⇢] be a control �ow graph with designated entry and exit nodes
denoted by E4=CA~ 2 + and E4G8C 2 + . A node E8 2 + dominates a node E 9 2 + if all paths in⌧
from E4=CA~ to E 9 contain E8 .
Post-dominance. Let ⌧ = [+ , ⇢] be a control �ow graph with designated entry and exit
nodes denoted by E4=CA~ 2 + and E4G8C 2 + . A node E8 2 + post-dominates a node E 9 2 + if all
paths in⌧ from E 9 to E4G8C contain E8 . Note that by this de�nition every node post-dominates
itself and the designated exit node post-dominates every node.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



A Practical Approach for Dynamic Taint Tracking with Control-Flow Relationships 1:5

Immediate post-dominance. Let⌧ = [+ , ⇢] be a control �ow graph with designated entry
and exit nodes denoted by E4=CA~ 2 + and E4G8C 2 + . A node E8 2 + is the immediate post-
dominator of a node E 9 2 + if E8 < E 9 ; E8 post-dominates E 9 ; and there does not exist some
E: 2 + such that E: < E8 , E: < E 9 , E: post-dominates E 9 , and E: does not post-dominate E8 .
Scope of in�uence of a branch. The scope of in�uence of the execution of a conditional
branching statement is the set of statements that execute after that execution of the conditional
branching statement but before the next execution of the �rst statement in the immediate
post-dominator of the basic block containing the branching statement. This de�nition is
equivalent to the range of in�uence of a branch used byWeiser [71] and Denning and Denning
[26].
Control �ow scope. The scope of a control �ow is the dynamic set of instruction executions
during which any taint tags associated with the source of the �ow propagate to written
values.
Standard control �ow scope.We use the term standard control �ow scope to refer to the
typical de�nition for the scope of a control �ow which is de�ned with respect to the post-
dominance relation. In particular, the standard scope of a control �ow introduced by some
conditional branch is de�ned as the set of instructions that execute after the �ow of control
splits at the branch but before the �ow of control rejoins at the immediate post-dominator of
the basic block containing that branch [26].
Over-tainting. Over-tainting is when a taint tag assigned to a value falsely conveys a
relationship between that value and the source of the taint tag. While conceptually, over-
tainting can be caused by an imprecision in the underlying program analysis, this paper
focuses on over-tainting caused by a mismatch between a taint tracking system’s propagation
rules and the expectations of analyses built on top of that taint tracking system. This type of
over-tainting behavior was described by Clause and Orso [19], Staicu et al. [66], and Attariyan
and Flinn [7].
Under-tainting. Under-tainting is when a value has not been assigned a particular taint tag
falsely conveying a lack of relationship between the value and the source of the taint tag.
Propagation policy. A tainting tracking system’s propagation policy is the set of rules
de�ning how taint tags should propagate when an operation executes.

The typical approach to control �ow tracking considers there to be a control �ow from the
predicate of a conditional branch to any values written within the control �ow’s “scope”. Many
dynamic taint analysis systems track these scopes using a stack [10–12, 18]. The taint tag of a
branch’s predicate is pushed onto this stack at the start of a control �ow’s scope and popped
at the end of its scope. Traditionally, this scope is de�ned with respect to the post-dominance
relation. Speci�cally, the standard de�nition used for the scope of a control �ow introduced by
some conditional branch is de�ned as the set of instructions that execute after the �ow of control
splits at that branch but before the �ow of control rejoins at the immediate post-dominator of the
basic block containing that branch [26].

Bao et al. [8] and Kang et al. [41] propose propagating taint tags along a subset of control �ows
based on the “syntax of [the] comparison expression” using the standard, post-dominator-based
de�nition for control �ows’ scopes. Additionally, Kang et al. [41] attempt to identify “culprit” �ows,
control �ows along which taint tags need be propagated in order to avoid under-tainting. However,
even if propagation occurs only along the optimal, minimal subset of control �ows necessary to
prevent under-tainting (i.e., culprit �ows), the standard control �ow scope de�nition can cause
over-tainting. Consider the code in Figure 1a. If taint tags are not propagated along control �ows,
under-tainting can occur because the relationship between a plus sign in the input and a space in the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:6 Katherine Hough and Jonathan Bell

output is missed. The minimal subset of control �ows needed to correct this under-tainting contains
only the �ow introduced by the branch from the switch statement’s case on line 8. Figure 1d shows
the labels expected to propagate to the output produced by spaceDecode when presented with an
input array with each of its characters tainted with its position in the array (as shown in Figure 1c).
However, the control �ow graph for spaceDecode (depicted in Figure 1b) shows that the immediate
post-dominator of the basic block that contains switch(input[i]) is the exit node. Thus, once the
branch associated with the case on line 8 is traversed, the label for the predicate of that branch will
be pushed onto the taint stack and impact all subsequent instructions until the method is exited.
This causes the output of spaceDecode to be over-tainted as described in Figure 1d.

1 static char[] spaceDecode(char[] input) {
2 char[] result = new char[input.length ];
3 for(int i = 0; i < input.length; i++) {
4 switch(input[i]) {
5 case � �:
6 throw new RuntimeException ();
7 case �+�:
8 result[i] = � �;
9 break;
10 default:
11 result[i] = input[i];
12 }
13 }
14 return result;
15 }

(a) A simple Java method for decoding spaces
encoded as plus signs.

ENTRY

char[] result = new char[input.length ];
int i = 0;

if(i < input.length)

true

switch(input[i])

case �+�

result[i] = � �;

i++;

result[i] = input[i];

default

case � �

false return result;

EXIT

throw new
RuntimeException ();

(b) Control flow graph for the spaceDecode method
(Figure 1a).

Input Value H e l l o + W o r l d

Applied Tags 0 1 2 3 4 5 6 7 8 9 10

(c) Sample tainted input for the spaceDecode
method (Figure 1a). Each input character is
tainted with its position in the input array
(e.g., the first input character, “H”, is tainted

with the tag “0” ).

Output Value H e l l o W o r l d

Expected Tags 0 1 2 3 4 5 6 7 8 9 10

Propagated Tags 0 1 2 3 4 5 5, 6 5, 7 5, 8 5, 9 5, 10

(d) Expected tainted output from the spaceDecode
method (Figure 1a) when presented with the sample

input from Figure 1c compared with the actual
tainted output when propagating along the minimal

subset of control flows necessary to prevent
under-tainting using the standard scope definition.

Fig. 1. An example of a program in which using the standard control flow propagation semantics results
in over-tainting. The method spaceDecode in Figure 1a takes a sequence of characters that are not

spaces. When a plus sign is encountered, a space is added to the output. Every other input character is
copied to the output. When spaceDecode is executed with the tainted input displayed in Figure 1c, the

taint tag of every input plus sign (“+”) is expected to flow to the output with the produced space
character. Additionally, the taint tag of every other input character is expected to flow to the output with

the character. However, as shown in Figure 1d, the standard control flow propagation semantics
over-taint the output.

This over-tainting can be �xed by reducing the scope of the control �ow to include only the basic
block that contains the instructions on lines 9 and 10. However, even if control �ow propagation
occurs only along the minimal subset of control �ows necessary to prevent under-tainting with

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



A Practical Approach for Dynamic Taint Tracking with Control-Flow Relationships 1:7

the minimal, basic-block level scopes necessary to prevent under-tainting for each control �ow,
over-tainting can still occur. Consider the code in Figure 2a. If taint tags are not propagated along
control �ows, under-tainting can occur because the relationship between a percent sign in the input
and a decoded character in the output would be missed. The minimal subset of control �ows needed
to correct this under-tainting contains only the branch on line 5. As shown in the control �ow
graph for percentDecode depicted in Figure 2b, the minimal scope for that control �ow includes
only the basic block that contains the instructions on lines 6 and 7. Figure 2d shows the labels
expected to propagate to the output produced by percentDecode when presented with an input
array with each of its characters tainted with its position in the array (as shown in Figure 2c). When
a percent sign is encountered in the input and the branch on line 5 evaluates to true, the label for
that input is pushed onto the taint stack. That label then correctly propagates to the element of the
result array that is assigned a value on line 6. But, it also incorrectly propagates to the variable
size and the looping variable i when their values are incremented on lines 6 and 7. The end of the
control �ow’s scope is then hit and its label is popped from the taint stack. On subsequent iterations
of the loop, when i is used to access elements of the input array, i’s taint tag propagates to the
accessed element. Additionally, when size is used to select where in the output array to store a
value, size’s taint tag propagates to the stored value. This causes the output of percentDecode to
be over-tainted as described in Figure 2d.

3 APPROACH
Our approach, C������, aims to precisely propagate taint tags through information-preserving
transformations in programs. C������ leverages novel heuristics to identify control �ows that are
likely to correspond to information-preserving transformations and ignore taint tag propagation
from others. Like Bao et al. [8]’s approach, C������ considers only a subset of control �ows for
propagation based on the comparative operator of the control �ow’s branch. Speci�cally, C������
includes only control �ows introduced by equality checks. However, even when considering only
control �ows introduced by equality checks, signi�cant over-tainting can still occur. As discussed
in Section 2, the standard, post-dominator based de�nition for the scope of a control �ow is overly
conservative. Thus, C������ does not use the standard scope de�nition and instead introduces the
notion of a “binding” scope which includes a subset of the basic blocks contained in the control
�ows’ standard scope. However, this alone is not su�cient to produce the expected tainted output
in Figure 2a, since the loop index i will still become tainted with the taint tag of input[i] on line
5. To address this and similar over-tainting, C������ introduces a dynamic heuristic, “loop-relative
stability”, which reasons about the strength of the relationship between a conditional branch and
an assignment statement by considering the impact of executing loops on program semantics.

3.1 Binding Scope
Overall, C������ aims to identify conditional branch executions that are not strictly information
preserving and avoid propagating along the resulting control �ows. To achieve this, C������ uses
an alternative control �ow scope de�nition that distinguishes between statements that can execute
only as a result of a single, speci�c condition and statements that can execute under multiple
conditions. The traditional de�nition for control �ows’ scopes is highly conservative; it considers
every basic block between a branch in the �ow of control and where that branch rejoins to be
within the scope of the branch. Unlike traditional control �ow scopes, which are de�ned with
respect to nodes in the control �ow graph, “binding” scopes are de�ned with respect to edges.
In particular, binding scopes are de�ned with respect to the edges which are traversed when a
conditional branching statement is “taken” or “not taken” (or for switch statements the edges
associated with the cases of the switch). The binding scope of a branch edge includes instructions

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:8 Katherine Hough and Jonathan Bell

1 static char[] percentDecode(char[] input) {
2 char[] result = new char[input.length - 2

* count(input , �%�)];
3 int size = 0;
4 for(int i = 0; i < input.length; i++) {
5 if(input[i] == �%�) {
6 result[size ++] = hexToChar(input[i +

1], input[i + 2]);
7 i += 2;
8 } else {
9 result[size ++] = input[i];
10 }
11 }
12 return result;
13 }

(a) A simple Java method for decoding
percent-encoded values.

ENTRY

char[] result = new char[
input.length - 2 * count(input ,�%�)];

int size = 0;
int i = 0;

if(i < input.length)

true

if(input[i] == �%�)

false

result[size ++] =
input[i];

i++;

result[size ++] = hexToChar(
input[i + 1], input[i + 2]);

i += 2;

true

false return result;

EXIT

(b) Control flow graph for the percentDecode method
(Figure 2a).

Input Value % 4 8 % 6 9 % 2 1

Applied Label 0 1 2 3 4 5 6 7 8

(c) Sample tainted input for the
percentDecode method (Figure 2a). Each

input character is tainted with its position in
the input array (e.g., the first input character,

“%”, is tainted with the tag “0” ).

Output Value H i !

Expected Labels {0, 1, 2} {3, 4, 5} {6, 7, 8}
Propagated Labels {0, 1, 2} {0, 3, 4, 5} {0, 3, 6, 7, 8}

(d) Expected tainted output from the percentDecode
method (Figure 2a) when presented with the sample
input from Figure 2c compared with the actual tainted
output when propagating along the minimal subset of

control flows with the minimal, basic-block level
scopes necessary to prevent under-tainting.

Fig. 2. An example of a program in which using the standard control flow propagation semantics results
in over-tainting. The method percentDecode in Figure 2a takes a sequence of characters and

percent-encoded octets. Each input character that is not part of a percent-encoded octet is copied to the
output. Each input percent-encoded octet is decoded into a character and that character is copied to the
output. When percentDecode is executed with the tainted input displayed in Figure 2c, the taint tag of
an input character that is not part of a percent-encoded octet is expected to flow to the output with the
character. Additionally, the union of the taint tags of an input percent-encoded octet is expected to flow
to the output with the character decoded from the octet. However, as shown in Figure 2d, the standard

control flow propagation semantics over-taint the output.

which only execute if the edge is traversed, i.e., an instruction is included if every path from the
distinguished entry node of the control �ow graph to that instruction contains the branch edge.
Since C������ only considers branch edges corresponding to equality checks (e.g., the branch
taken side of an equality check or the branch not taken side of an inequality check), the execution
of an instruction within the scope of a branch edge occurs only if some value was equal or “bound”
to another value.
Binding scopes can be calculated for the branch edges in a method by constructing its control

�ow graph, ⌧ = [+ , ⇢], with designated entry and exit nodes denoted by E4=CA~ 2 + and E4G8C 2 +
respectively. Each node in + other than E4=CA~ and E4G8C represents a basic block and consists of a

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



A Practical Approach for Dynamic Taint Tracking with Control-Flow Relationships 1:9

sequence of instructions. The successors of a node D 2 + is de�ned as BD22 (D) = {E | (D, E) 2 ⇢}. A
node E 2 + is said to be a branch node if it has more than one successor. The last instruction of a
branch node is its conditional branch instruction. We refer to the set of outgoing edges of a branch
node as its branch edges. Each branch edge is associated with a set of conditions under which the
edge is traversed. For example, an if statement will have two branch edges: one edge corresponding
to the branch being taken with a singleton condition set corresponding to the statement’s predicate
evaluating to true and one edge corresponding to the branch not being taken with a singleton
condition set corresponding to the statement’s predicate evaluating to false. Whereas, a switch
statement’s branch edges’ condition sets will partition the cases of the switch statement.

An instruction 8 is within the binding scope of a branch edge 4 if 8 can only execute if 4 has been
traversed. By de�nition [2], all of the instructions within a basic block execute if and only if the
�rst instruction in the basic block executes. Therefore, we can de�ne binding scopes with respect
to basic blocks instead of individual instructions. Thus, the binding scope of a branch edge 4 is the
set of all basic blocks E such that all paths in ⌧ from E4=CA~ to E contain 4 .

To calculate the binding scope of branch edges we �rst construct a modi�ed control �ow graph,
⌧ 0, from ⌧ by replacing each branch edge (D, E) 2 ⇢ with a new node 1D,E and a pair of edges
(D,1D,E) and (1D,E, E). Given this construction, the binding scope of a branch edge 4 is the set of all
E 2 + such that 14 dominates E in ⌧ 0. Proof of the correctness of this calculation is as follows:

P���������� 1. Given a branch edge 4 2 ⇢ and 14 , its node replacement in⌧ 0, 14 dominates a node
E 2 ⌧ 0 if and only if all paths in ⌧ from E4=CA~ to E contain 4 .

P����. Suppose that14 dominates E in⌧ 0. Assume that there exists a path, % = [E4=CA~, E0, . . . , E=, E],
in ⌧ that does not contain 4 . Since 14 dominates E in ⌧ 0, every path in ⌧ 0 from E4=CA~ to E must
go through 14 . Given that 14 8 + and therefore 14 8 % , % must contain at least one edge, (E8 , E8+1),
that is not in ⇢ 0 such that all paths from E8 to E8+1 in ⌧ 0 contain 14 . Furthermore, (E8 , E8+1) 2 ⇢ and
(E8 , E8+1) 8 ⇢ 0 implies that (E8 , E8+1) was a branch edge that was replaced during the construction
of ⌧ 0. Thus, 1E8 ,E8+1 2 + 0, (E8 ,1E8 ,E8+1 ) 2 ⇢ 0, and (1E8 ,E8+1 , E8+1) 2 ⇢ 0. As a result, there is a path
[E8 ,1E8 ,E8+1 , E8+1] in ⌧ 0. This path must contain 14 , therefore 1E8 ,E8+1 = 14 . Therefore, given the con-
struction process of ⌧ 0, (E8 , E8+1) = 4 . This contradicts the assumption % does not contain 4 . Thus,
14 dominates E in ⌧ 0 implies that all paths in ⌧ from E4=CA~ to E contain 4 .

Now suppose that all paths in ⌧ from E4=CA~ to E contain a branch edge 4 . Assume that 14 does
not dominate E in ⌧ 0 because there exists some path, % = [E4=CA~, E0, . . . , E=, E] in ⌧ 0 that does not
contain 14 . Given a sequential pair of nodes E8 and E8+1, in P, the edge (E8 , E8+1) is either present
in ⇢ or it was added when a branch edge in ⇢ was replaced. If (E8 , E8+1) 8 ⇢, then either E8 8 +
or E8+1 8 + This is a consequence of the construction procedure for ⌧ 0, since each edge added to
⌧ 0 is between an element of the original set of nodes and a node not in the original set of nodes.
Furthermore, as a result of this, every edge in ⌧ 0 uses at least one node that is an element of + .
Since % begins at a node in + , if E8 8 + , there must be a node, E8�1 2 + immediately before E8 in % .
Since % ends at a node in + , if E8+1 8 + , there must be a node, E8+2 2 + immediately after E8+1 in % .
Thus, % can be broken into a sequence of sub-paths either of the form [E8 , E8+1] where (E8 , E8+1) 2 ⇢
or the form [E8 , E8+1, E8+2] where E8 2 + , E8+1 8 + , and E8+2 2 + . For each such sub-path, there is an
edge in ⇢ that does not equal 4 that connects the start of the sub-path directly to the end. Proof is
as follows for each of two cases:

C��� 1. [E8 , E8+1] where (E8 , E8+1) 2 ⇢
Since 4 8 ⇢ 0, % contains (E8 , E8+1), and % is a path in ⌧ 0, (E8 , E8+1) < 4 .

C��� 2. [E8 , E8+1, E8+2] where E8 2 + , E8+1 8 + , and E8+2 2 +
The edges (E8 , E8+1) and (E8+1, E8+2) must have been added to ⇢ 0 when the node E8+1 was added to + 0

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:10 Katherine Hough and Jonathan Bell

as a replacement for the edge (E8 , E8+2). Since 14 is not in % and E8+1 is in % , E8+1 < 14 . Therefore,
(E8 , E8+2) 2 ⇢ and (E8 , E8+2) < 4 .

These edges form a path in ⌧ from E4=CA~ to E not containing 4 contradicting the assumption
that all paths in ⌧ from E4=CA~ to E contain the branch edge 4 . Thus, if all paths in ⌧ from E4=CA~ to
E contain a branch edge 4 , 14 dominates E in ⌧ 0. ⇤

The binding scope of a branch edge is “scope-like”; all nodes within the scope lie on paths
between the edge and its dominance frontier. Thus, the taint tag of a branch’s predicate need only
be pushed onto a taint stack once at the start of the branch edge’s scope and can be safely popped
at the ends of its scope. Another desirable property of binding scopes is that the set of basic blocks
within a branch edge’s binding scope is a subset of the basic blocks within its branch’s standard
(post-dominator based) scope. The immediate post-dominator of a branch node is reachable from
all of its branch edges and therefore either part of or beyond the dominance frontier of its node
replacement in the modi�ed graph.
We can now apply the binding scope de�nition to the spaceDecode method in Figure 1a using

its control �ow graph shown in Figure 1b. There are two branch edges corresponding to equality
checks: the one associated with case �+� and the one associated with case � �. The case �+�’s
edge’s binding scope contains only the basic block with the instruction result[i] = � �. The
case � �’s edge’s binding scope contains only the basic block with the instruction throw new
RuntimeException(). In this case, using binding scopes allows the relationship between a plus
sign in the input and a space in the output to be re�ected without introducing over-tainting.

3.2 Loop-Relative Stability Heuristic
When propagating along control �ows, taint tags often accumulate on program data during the
execution of a loop leading to an “explosion” of taint tags. For example, regardless of whether taint
tags are applied in standard control �ow scopes or only in binding scopes, during the execution
of the loop in the percentDecode method (Figure 2a), taint tags build up on the looping variable,
i, resulting in progressively larger label sets for each successive output. C������ mitigates this
accumulation of taint tags bymaking special considerationswhen determiningwhether to propagate
taint tags between the branch of a control �ow and a statement within the control �ow’s scope.
This process is guided by the novel “loop-relative stability” heuristic.

The underlying idea for loop-relative stability is that loops introduce alternative paths to state-
ments within the scope of a control �ow. For instance, within a single call to the percentDecode
method (Figure 2a), the instruction on line 7, i += 2, can execute even if the branch on line 5 is not
taken on a particular iteration of the loop. That is, on subsequent iterations of the loop, the branch
on line 5 could evaluate to true, causing the statement i += 2 to execute, thereby producing the
same e�ect that would have happened had the branch been taken on the earlier iteration. This
weakens the relationship between the value of i and the element of the input array that caused
the branch on line 5 to be taken. However, when a value is stored to result[size++] on line 6, the
storage location to which that value is stored is di�erent on each iteration of loop. Like before, on
subsequent iterations of the loop, the branch on line 5 could evaluate to true causing the statement
on line 6 to execute. However, unlike the statement on line 7 which updates the same local variable
i on di�erent iterations, the statement on line 6 updates a di�erent element in the result array on
di�erent iterations. This produces a stronger relationship between the value of input[i] on line
5 and the value written on line 6 to result[size++] than the relationship between the value of
input[i] on line 5 and the value written on line 7 to i.
The loop-relative stability heuristic aims to identify these cases in which a loop introduces

multiple conditions under which the same location could be assigned the same value. In order

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



A Practical Approach for Dynamic Taint Tracking with Control-Flow Relationships 1:11

for this to occur, there must be a conditional branching statement that is contained within a loop
and an assignment statement within the scope of that branch’s control �ow. If the values used
by the branch change on di�erent iterations of the loop but the values used by the assignment
statement stay the same, then on each iteration of the loop a di�erent condition could cause the
same e�ect. Since the conditional branching statement might occur in a di�erent method than
the loop and assignment statement, the loop-relative stability heuristic is de�ned in terms of the
dynamic execution of statements. To capture these ideas, we de�ne an execution of a program
statement as being “stable” relative to an executing loop if the values used by that statement are
the same on every iteration of that loop. The loop-relative stability heuristic determines whether
to propagate along a particular control �ow based on the stabilities of statement executions. More
speci�cally, let 1 be an execution of conditional branching statement and 0 be an execution of
an assignment statement that is within the scope of 1’s control �ow. The loop-relative stability
heuristic propagates along the control �ow from 1 to 0 only if 1 is stable relative to every loop to
which 0 is relatively stable.

The loop-relative stability heuristic considers only “natural” loops as de�ned by [2]. In particular,
a natural loop is a single-point-of-entry cycle in the control �ow graph de�ned with respect to a
back edge, i.e., an edge whose target dominates its source. The natural loop of some back edge (D, E)
consists of all nodes G such that E dominates G and there exists a path from G to D not containing E .
The node E is said to be the header of the natural loop de�ned by the back edge (D, E). Any two
natural loops with the same header are combined and treated as a single loop. This de�nition of
loops ensures that any two loops are either disjoint or nested, i.e., one loop is fully contained within
the other. The use of arbitrary GOTO statements may in some cases produce control �ow graphs that
contain cycles that do not correspond to natural loops. However, most structured programming
languages do not allow programmers to produce control �ow graphs that contain cycles that do
not correspond to natural loops. Thus, we feel that it is appropriate for the loop-relative stability
heuristic to only consider natural loops.

3.2.1 Instability Levels. Conceptually, the loop-relative stability heuristic could be expressed in
terms of “stability sets”; a stability set is the set of loops with respect to which a statement execution
is relatively stable. Let (1 be the stability set of an execution of conditional branching statement
1 and (0 be the stability set of an execution of an assignment statement within the scope of 1’s
control �ow. The loop-relative stability heuristic propagates along the control �ow from 1 to 0 only
if (1 is a superset of (0 . However, instead of tracking these stability sets, it is possible to express
the same concept using a single number, an “instability level”. An instability level is a numeric
value between zero and the number of loops containing the statement currently executing. This
number represents the “depth” of the innermost loop relative to which a statement is not stable. The
loop-relative stability heuristic propagates along the control �ow from an execution of a conditional
branching statement 1 to an execution of an assignment statement 0 within the scope of 1’s control
�ow only if 1’s instability level is less than or equal to 0’s instability level. An explanation of why
this simpli�cation is possible is provided below.
Given a statement execution contained within two nested loops, if the values used by the

statement change over the duration of the inner loop then they must also change over the duration
of the outer loop, since the inner loop is fully contained within the outer loop. Thus, the stability
set of a statement execution is de�ned by the innermost loop relative to which it is not stable. If an
execution of a program statement occurs outside of a loop, that execution must be stable relative to
that loop, since it is not possible for the values used by the statement to change over the duration
of the loop. As a result, when calculating the loop-relative stability for the statement currently
executing, only the set of loops containing that statement need to be considered in the calculation.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:12 Katherine Hough and Jonathan Bell

However, this does not by itself guarantee that all comparisons for the loop-relative stability
heuristic made at runtime only need to consider the set of loops containing the statement currently
executing. The stability set of the execution of a conditional branching statement needs to be
used before the execution of any assignment statement within the scope of the branch’s control
�ow. This means that the stability set of an execution of a conditional branching statement may
be considered by the loop-relative stability heuristic after the innermost loop relative to which
the execution was not stable was exited. However, once the innermost loop relative to which an
execution of a conditional branching statement is not stable is exited all subsequent statements
will execute outside of that loop and therefore be stable relative to it. Since these executions are
stable relative to a loop that the branch execution was not, the loop-relative stability heuristic will
prevent the branch’s predicate from propagating to these statements as a result of the control �ow.
Thus, C������ stops all propagation along the control �ow from the execution of a conditional
branching statement as soon as the innermost loop relative to which that branch execution is not
stable is exited. As a result, all comparisons for the loop-relative stability heuristic made at runtime
only need to consider the set of loops containing the statement currently executing. Given this and
the fact that the stability set of a statement execution can be de�ned by the innermost loop relative
to which it is not stable, loop-relative stabilities can be speci�ed at runtime as a single number,
an instability level, between zero and the number of loops containing the statement currently
executing.
These instability levels are calculated at runtime as a function of both static information, the

stability “classi�er” of a statement (Section 3.2.2), and dynamic information, the context of the
statement’s execution (Section 3.2.3). A purely dynamic approach could only consider instructions
that have already executed. This is problematic because it’s possible for the predicate of a conditional
branching statement to be the same on all but the last iteration of a loop. By the time that last
iteration occurs the loop-relative stability heuristic may have already been applied causing C������
to incorrectly propagate along a control �ow from that branch. Furthermore, the loop-relative
stability is concerned with the presence of alternative conditions that could have produced the
same outcome. It does not matter whether those conditions were met on a particular execution.
For example, consider the any method on line 3 of Listing 2. The for-loop on lines 4–8 introduces
multiple conditions under which the value of x is set to true, speci�cally if any of the elements
of the array z is true. If any is passed an array new boolean[]{false, false, false, true},
then there happened to be one condition, z[3] == true that was satis�ed and caused x to be
assigned the value true. However, there were still possible alternative conditions under which
that assignment could have occurred. Therefore, propagation should not occur from the branch
on line 5 to the assignment statement on line 6 according to the loop-relative stability heuristic.
To handle this, C������ uses static information to reason about possible executions and assign
stability classi�ers to program elements.

C������ also relies upon dynamic information about calling contexts. Consider the any_method
on line 15 of Listing 2. The any_ method is functionally equivalent to the any method on line 3
of Listing 2, but this functionality is split across two methods, any_ and setX. Because any_ is
functionally equivalent to any, taint tag propagation for the two methods should ideally be the
same, meaning that propagation should not occur during the execution of the assignment statement
on line 12 of the setXmethod. However, setX is also called by the method checkFirst on line 25 of
Listing 2. The conditional branching statement on line 24 of checkFirst does not necessarily occur
within a loop. Therefore, propagation may need to occur during the execution of the assignment
statement on line 12 of the setX method when called from the checkFirst method. Thus, it is not
possible to determine whether propagation should occur during the execution of the assignment
statement on line 12 without considering the dynamic execution context of the call to setX. Thus,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



A Practical Approach for Dynamic Taint Tracking with Control-Flow Relationships 1:13

1 static boolean x = false;
2
3 static void any(boolean [] z) {
4 for (int i = 0; i < z.length; i++) {
5 if (z[i]) {
6 x = true;
7 }
8 }
9 }
10
11 static void setX(boolean value) {
12 x = value;
13 }
14
15 static void any_(boolean [] z) {
16 for (int i = 0; i < z.length; i++) {
17 if (z[i]) {
18 setX(true);
19 }
20 }
21 }
22
23 static void checkFirst(boolean [] z) {
24 if (z[0]) {
25 setX(true);
26 }
27 }

Listing 2. Java methods to demonstrate why both static and dynamic information is used to calculate
loop-relative stabilities.

C������ constructs and passes between methods information about execution contexts at runtime.
These execution contexts are used to calculate instability levels.

3.2.2 Stability Classifiers. C������ statically assigns stability classi�ers to program elements;
these classi�ers encode information about possible program executions. There are three types of
stability classi�ers: stable, dependent, and unstable. The stable classi�er type indicates that all
executions of a program element are stable relative to all loops regardless of the dynamic execution
context. We use S����� to denote a stable-type classi�er. The dependent classi�er type indicates
that the instability level of an execution of a program element depends on the instability level
of one or more arguments passed to the method call that contains the execution. We refer to the
set of parameters corresponding to these arguments as the dependency set of the classi�er. We
use D��������h3i to denote a dependent-type classi�er with a dependency set 3 . In addition to
dependencies on arguments, a dependent-type classi�er can also indicate a dependency on the
execution context’s return value location. We use U to denote a dependency on the execution
context’s return value location.
The unstable classi�er type indicates that the instability level of an execution of a program

element depends on the loops that contain the method call that contains the execution. In this
case, the element is not stable with respect to all loops containing the method call and possibly
additional loops within the method. We use U�������h;i to denote an unstable-type classi�er for a
program element that is not stable relative to the elements of ; , a set of loops within the method.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:14 Katherine Hough and Jonathan Bell

At runtime, C������ determines instability levels based on stability classi�ers and execution
contexts. The instability level of a stable-type classi�er is always zero. The instability level of a
dependent-type classi�er is dynamically calculated as the maximum instability level of the argu-
ments corresponding to the parameters in the program element’s dependency set. The instability
level of an unstable-type classi�er, U�������h;i, is dynamically calculated as the number of loops
containing the method call plus |; |. We describe this more precisely in Section 3.2.4 below.
To calculate stability classi�ers for a method, C������ �rst converts the method into an in-

termediate representation in static single assignment (SSA) form. By converting the method into
SSA form, C������ can easily identify reaching de�nitions since there will be exactly one def-
inition reaching each use. Next, C������ creates a control �ow graph for the method and uses
this graph to identify which natural loops within the method contain each instruction. We use
loops(8) to denote the set of natural loops containing an instruction 8 . Finally, C������ calculates
the stability classi�er of each conditional branching statement, assignment statement, non-void
return statement, method call receiver, method call argument, and method call return value location.
The stability classi�ers of conditional branching statements, assignment statements, and non-void
return statements (which C������ treats like interprocedural assignment statements) are directly
used to determine whether to propagate along a control �ow in accordance with the loop-relative
stability heuristic. In order to construct an execution context for a method call, C������ uses the
stability classi�er of the method call’s receiver, arguments, and return value location. We discuss
this in detail in Section 3.2.3.

For the sake of computing stability classi�ers, we de�ne a function merge(21, 22) in Algorithm 1
for combining two classi�ers, 21 and 22 to produce a classi�er 23 such that for any possible execution
context the instability level of 23 will be greater than or equal to the the instability level for 21 and
22. Using this merge function, C������ can then calculate stability classi�ers for value expressions
(program entities that are evaluated to produce a value) and storage locations (program entities
that represent a place for storing a value, i.e., the left-hand-side of an assignment statement) as
described in Algorithms 2 and 3, respectively.

Algorithm 1 Function for combining two stability classi�ers 21 and 22.
1: function �����(21, 22)
2: if 21 = S����� then
3: return 22
4: else if 22 = S����� then
5: return 21
6: else if 21 = D��������h31i and 22 = D��������h32i then
7: return D��������h31 [ 32i
8: else if 21 = U�������h;1i and 22 = U�������h;2i then
9: return U�������h;1 [ ;2i
10: else if 21 = U�������h;1i then
11: return 21
12: else
13: return 22
14: end if
15: end function

C������ directly uses the valueClassifier function (Algorithm 2) to calculate stability classi-
�ers for method call receivers and arguments since these program elements are value expressions.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



A Practical Approach for Dynamic Taint Tracking with Control-Flow Relationships 1:15

Algorithm 2 Function for calculating the stability classi�er of a value expression 4 that appears in
an instruction 8 .
1: function �����C���������(4, 8)
2: 5  loops(8)
3: if 4 is a constant or literal then
4: return S�����
5: else if 4 is a storage allocation (e.g., an array de�nition) then
6: return U�������hfi
7: else if 4 loads a value from an array or �eld then
8: return U�������hfi
9: else if 4 is a method invocation then
10: return U�������hfi
11: else if 4 is a local variable G then
12: E  the value expression assigned to G in the reaching de�nition of G
13: 2E  �����C���������(E, 9 )
14: if 2E = U�������h6i then
15: return U�������h6 \ 5 i
16: else
17: return 2E
18: end if
19: else if 4 is of the form ⇧D0 (where ⇧D is a unary operator) then
20: return �����C���������(0, 8)
21: else if 4 is of the form 0 ⇧1 1 (where ⇧1 is a binary operator) then
22: 20  �����C���������(0, 8)
23: 21  �����C���������(1, 8)
24: return �����(20, 21 )
25: else if 4 is a parameter or method receiver G then
26: return D��������h{x}i
27: else if 4 is a caught exception G then
28: return U�������h5 i
29: else if 4 is a � function then
30: return U�������h5 i
31: end if
32: end function

The valueClassifier function (Algorithm 2) is also used to calculate the stability classi�er of
each conditional branching statement by applying the function to the predicate expression of the
branching statement. To calculate the stability classi�er of a non-void return statement, C������
�rst calculates the stability classi�er of the expression returned by the statement and then combines
this classi�er with a dependent-type classi�er with a single dependency on the execution context’s
return value location, More formally, the stability classi�er of a non-void return statement is
merge(D��������h{U}i, cv), where 2E is the stability classi�er of the expression returned by the
statement. The stability classi�er of a method call return value location is determined by applying
the locationClassifier (Algorithm 3) function to the storage location assigned the value of the
result of the method call. If the return value of a method call is unused, then the stability classi�er
of the return value location for that method call is S�����.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:16 Katherine Hough and Jonathan Bell

Algorithm 3 Function for calculating the stability classi�er of a storage location G that appears in
an instruction 8 .
1: function ��������C���������(G, 8)
2: 5  loops(8)
3: if G is a local variable then
4: if G is directly used in an invoke expression on the right-hand-side of an assignment

statement then
5: return U�������hfi
6: end if
7: 2  S�����
8: � the set of assignment statements that directly use the value at G
9: for 0 2 � do
10: ~  the left-hand-side of 0 (i.e., destination storage location)
11: if ~ is not a local variable then
12: 2~  ��������C���������(~)
13: 2  �����(2, 2~)
14: end if
15: end for
16: if the value at G is directly used in a return statement then
17: 2  �����(2,D��������hUi)
18: end if
19: return 2
20: else if G is an instance �eld of the form 0. �eld then
21: return �����C���������(0, 8)
22: else if G is a class �eld or global variable then
23: return S�����
24: else if G is an array element of the form 0[1] then
25: 20  �����C���������(0, 8)
26: 21  �����C���������(1, 8)
27: return �����(20, 21 )
28: end if
29: return S�����
30: end function

C������ uses both the valueClassifier and locationClassifier functions to calculate the
stability classi�er of an assignment statement. However, C������ makes a special consideration
when calculating the stability classi�ers of assignment statements in order to address situations in
which the value to be stored by an assignment was produced from an expression containing a term
matching the current value at the destination storage location of the assignment statement. We
refer to this as an “update” assignment and exclude any update terms, terms that match the current
value at the storage location, from the stability calculation for the value. Thus, before C������
can determine the stability classi�er of an assignment statement, it must identify any portions
of the right-hand-side of the assignment statement that correspond to excluded update terms. If
the destination storage location of the assignment statement is a local variable, any uses of that
de�nition of that local variable that reach the assignment statement are considered to be update
terms. If the destination storage location is an array, C������ considers any values that are loaded
from the same array at the same position to be candidate update terms. These values may represent

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



A Practical Approach for Dynamic Taint Tracking with Control-Flow Relationships 1:17

update terms, but it is also possible that the value at that storage location was written between
the instruction that loaded the candidate update term and the assignment statement. C������
ignores the potential for concurrent writes to that storage location and accepts a candidate as
being a true update term if there does not exist an execution path containing an array store or a
method call between the instruction that loaded the candidate and the assignment statement. In
practice, checking all possible paths between the two instructions may be impractical. Thus, for
small control �ow graphs (those containing less than 10 basic blocks), C������ checks all possible
paths between the two instructions. For larger control �ow graphs, C������ assumes that such a
path exists if the two instructions are not in the same basic block. If the destination storage location
of the assignment statement is a �eld, C������ considers any values loaded from the same �eld
and, for instance �elds, from the same instance to be candidate update terms. Once again, C������
checks all paths between the instruction that loads the candidate update term and the assignment
statement. However, in this case, the paths are checked for method calls and �eld stores.
Once C������ has identi�ed any portions of the right-hand-side of the assignment statement

that are considered to be excluded update terms, it calculates the stability classi�er of the assignment
statement based on the remaining portions of the right-hand-side of the assignment statement and
the left-hand-side of the assignment statement (i.e., its destination storage location). Algorithm 4
shows how C������ performs this calculation.

Algorithm 4 Function for calculating the stability classi�er of an assignment statement that
appears in an instruction 8 and assigns a value expression E to a storage location G .
1: function ����������C���������(G, E, 8)
2: ,  set containing the portions of E that are not excluded update terms
3: 2  ��������C���������(G, 8)
4: forF 2, do
5: 2F  �����C���������(F , 8)
6: 2  �����(2, 2F)
7: end for
8: return 2
9: end function

3.2.3 Execution Contexts. The loop-relative stability of a statement can vary between executions
depending upon the dynamic execution context in which the call to the method that contains the
statement was made. For example, if a call is made to a method from within a loop, then statements
within the method may vary with respect to that loop. Additionally, whether a statement within the
callee method is stable with respect to a loop may depend on the arguments passed to that method.
As a result, the loop-relative stability of the execution of a statement cannot be fully determined
through purely static analysis. Instead, it must be calculated at runtime within a speci�c execution
context. To address this, at runtime C������ records information about execution contexts and
passes this information between methods.
The execution context for a particular method call consists of two components: a depth and a

level map. The depth of a method call is the number of loops that contain the call to that method.
We use 34?C⌘(4) to denote the depth of an execution context 4 . The level map of a method call
speci�es the instability levels of the arguments passed to the method call, the method call’s receiver
(if the method is an instance method), and the storage location for the return value of the method
call (if the method is non-void). We use level(4,0) to denote the instability level of an argument,
method receiver, or return value location 0 speci�ed by some execution context 4 .

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:18 Katherine Hough and Jonathan Bell

Before a method call is made from some caller method,<, C������ constructs an execution
context for the call, 4 0. This execution context is created using the calling method’s execution
context and the stability classi�ers that were determined for the method call’s arguments, receiver,
and return value location as described in Section 3.2.2. C������ de�nes 34?C⌘(4 0) to be the sum
of 34?C⌘(4) and the number of loops within < that contain the method call about to be made.
C������ calculates the instability level of each of the arguments passed to the method call using
4 and the stability classi�er for the argument; this value is then recorded in 4 0’s level map. If the
callee method is an instance method, C������ calculates and records the instability level of the
method call’s receiver using 4 and the stability classi�er for the receiver. If the callee method is a
non-void method, C������ calculates and records the instability level of the method call’s return
value location using 4 and the stability classi�er of the return value location. Finally, C������
passes 4 0 to the callee method.

At the program entry point, C������ creates an initial execution context for the initial method
call, since this call does not have a caller from which it would receives an execution context. Thus,
C������ uses an initial execution context 4 such that 34?C⌘(4) = 0 and level(4,0) = 0 for all
method elements 0.

Algorithm 5 Function for calculating an instability level based on a stability classi�er 2 and an
execution context 4 .
1: function �����������L����(2, 4)
2: if 2 = S����� then
3: return 0
4: else if 2 = D��������hdi then
5: return max023 level(4,0)
6: else2 = U�������h;i
7: return depth(4) + |; |
8: end if
9: end function

3.2.4 Applying the Loop-relative Stability Heuristic. At runtime, C������ combines the static
stability classi�er (Section 3.2.2) and the dynamic execution context (Section 3.2.3) of an executing
program element in order to compute its instability level. This computation is detailed in Algorithm 5.
Computed instability levels are used to construct execution contexts as discussed in Section 3.2.3
and, ultimately, to apply the loop-relative stability heuristic. In particular, let 1 be an execution of a
conditional branching statement and 0 be an execution of an assignment statement that is within
the scope of 1’s control �ow. The loop-relative stability heuristic propagates along the control �ow
from 1 to 0 only if 1’s instability level is less than or equal to 0’s instability level.
For example, consider the programs shown in Listings 3 and 4 in Figure 3. These programs are

nearly identical; they di�er only in the names of methods and the value passed to the call to the
method set on line 13. However, this slight, semantic di�erence is enough to the impact instability
levels in a way that produces di�erent taint tag propagation.

Consider two program executions: one starting from the main method in Listing 3 and the other
starting from the main method in Listing 4. Both executions proceed as follows. The main method
calls an intermediate method, indexOf in one case and contains in the other. This intermediate
method contains one natural loop ! (the for-loop on lines 9–15). In both executions, there are two
iterations of this loop. On the �rst iteration, when i is 0, the predicate of the branch on line 12
evaluates to true causing a call to be made to the set method. The set method assigns the value 0

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



A Practical Approach for Dynamic Taint Tracking with Control-Flow Relationships 1:19

Variables
Value Tags

x �1 ú
y 0 ú

Execution Context
depth: 1
level(y): 1

set: line 4

Variables
Value Tags

a[0] ‘h’ {0}
a[1] ‘i’ ú

i 0 ú
Execution Context

depth: 0
level(a): 0

indexOf: line 13

Variables
Value Tags

a[0] ‘h’ {0}
a[1] ‘i’ ú
Execution Context

depth: 0
level(args): 0

main: line 23

(a)

S����� D��������h{~}i U�������húi U�������h{!}i

1 static int x = -1;
2
3 static void set(int y) {
4 x = y;
5 }
6
7 static void indexOf(char[]

a) {
8 // Loop !
9 for (int i = 0;
10 i < a.length;
11 i++) {
12 if (a[i] == �h�) {
13 set(i);
14 }
15 }
16 }
17
18 public static void main(

String [] args) {
19 char[] a = new char[] {
20 taint(�h�, 0),
21 �i�
22 };
23 indexOf(a);
24 }

1 static int x = -1;
2
3 static void set(int y) {
4 x = y;
5 }
6
7 static void contains(char[]

a) {
8 // Loop !
9 for (int i = 0;
10 i < a.length;
11 i++) {
12 if (a[i] == �h�) {
13 set(0);
14 }
15 }
16 }
17
18 public static void main(

String [] args) {
19 char[] a = new char[] {
20 taint(�h�, 0),
21 �i�
22 };
23 contains(a);
24 }

Listing 3. A simple Java
program containing a single
natural loop ! (the for-loop

on lines 9–15).

Listing 4. A simple Java
program that is identical

Listing 3 except for method
names and line 13.

Variables
Value Tags

x �1 ú
y �2 ú

Execution Context
depth: 1
level(y): 0

set: line 4

Variables
Value Tags

a[0] ‘h’ {0}
a[1] ‘i’ ú

i 0 ú
Execution Context

depth: 0
level(a): 0

contains: line 13

Variables
Value Tags

a[0] ‘h’ {0}
a[1] ‘i’ ú
Execution Context

depth: 0
level(args): 0

main: line 23

(b)
Fig. 3. Listings 3 and 4 depict Java methods with programs elements colored green, yellow, orange, or red to
indicate a stability classifier of S�����, D��������h{~}i, U�������húi, or U�������h{!}i, respectively.

Figure 3a shows the stack trace for an execution of the program in Listing 3 just before the instruction on line
4 of the set method in Listing 3 is executed for a program execution starting from the main method in

Listing 3. Figure 3b shows the stack trace just before the instruction on line 4 of the set method in Listing 4
is executed for a program execution starting from the main method in Listing 4. Both of these stack traces
(Figures 3a and 3b) consist of three frames. For each frame, we show the value (Value) and associated taint

tags (Tags) of each local variable within the scope of the frame. We also show the execution context
(Execution Context) calculated by C������ for each frame.

to a static �eld x and then returns. On the second iteration of !, the predicate of the branch on line
12 evaluates to false, and no call is made to the set method. After the loop ! ends, the intermediate
method returns. Then, �nally, the method main returns.

In both executions, when the branch on line 12 of the intermediate method was taken, the value
of the operand a[0] of the predicate of that branch was tainted (as depicted in the middle frame of
Figures 3a and 3b). Thus, when the assignment statement on line 4 of set executed, it wrote a value
within the scope of a control �ow introduced by a tainted predicate. Figure 3a shows the stack trace
for the moment just before the assignment statement on line 4 of the set method executed for
the execution of the program in Listing 3. Similarly, Figure 3b shows the stack trace for the same
moment for the execution of the program in Listing 4. In order to determine whether to propagate
along these control �ows, C������ must know the static stability classi�ers for the methods called
in these two executions and the dynamic execution contexts of the calls made at runtime to these
methods.
We annotated Listings 3 and 4 to indicate the stability classi�ers of program elements. These

stability classi�ers are statically determined by applying the rules described in Section 3.2.2. The
assignment statement x = y on line 4 of both programs has a stability classi�er ofD��������h{~}i.
The storage location x always refers to the same location regardless of the context in which it

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:20 Katherine Hough and Jonathan Bell

executes. However, whether the value represented by the expression y changes over the iterations of
some theoretical loop containing a call to set depends on whether the argument y changes over the
iterations of that loop. Thus, this assignment statement has a stability classi�er ofD��������h{~}i.
The assignment statement i = 0 on line 9 of both programs has a stability classi�er of S�����
because, regardless of the context in which it executes, it always assigns the same value, 0, to the
same location, the local variable i. The statement i++ on line 11 of both programs is an augmented
assignment equivalent to i = i + 1. The term i in the assignment i = i + 1 is an excluded
update term, and the remaining term 1 is constant. Therefore, the statement i++ on line 11 of both
programs has a stability classi�ers of S�����. The stability classi�ers of the branch on line 10 of
both programs (i < a.length) and the branch on line 12 of both programs (a[i] == �h�) are
both U�������h{!}i because both statements use the value of i which changes over the iterations
of !. The argument i passed to the call to set on line 13 of Listing 3 has a stability classi�er of
U�������h{!}i because the value of i changes over the iterations of !. By contrast, the argument
0 passed to the call to set on line 13 of Listing 4 has a stability classi�er of S����� because it is a
literal. The assignment statement on lines 19–22 of both programs contains a storage allocation,
thus its stability classi�er is U�������húi. The argument a passed to the method call on line 23 of
both programs has a stability classi�er U�������húi because the value of the reaching de�nition
of a from lines 19–22 contains a storage allocation.
In addition to these stability classi�ers, C������ must also calculate the dynamic execution

contexts of method calls according to the rules described in Section 3.2.3. Let 4<08= , 48=34G$5 , and
4B4C denote the execution contexts for the calls made to main, indexOf, and set, respectively, in
the program execution for Listing 3. Let 4<08=0 , 42>=C08=B , and 4B4C 0 denote the execution contexts for
the calls made to main, contains, and set, respectively, in the program execution for Listing 4.
Since main is the program entry point, 4<08= and 4<08=0 are initial execution contexts. Thus,

depth(4<08=) and depth(4<08=0) are 0, and level(4<08=, args) and level(4<08=0, args) are also 0.
The bottom frame of Figure 3a (labeled “main: line 23”) depicts 4<08= , and the bottom frame of
Figure 3b (labeled “main: line 23”) depicts 4<08=0 .
C������ constructs 48=34G$5 using 4<08= and 42>=C08=B using 4<08=0 . Since there are no natural

loops inside main that contain the call to indexOf, depth(48=34G$5 ) is depth(4<08=) +0 = 0. The
argument passed to the call to indexOf has a stability classi�er ofU�������húi, thus level(48=34G$5 ,
a) is depth(4<08=) +|ú| = 0. The middle frame of Figure 3a (labeled “indexOf: line 13”) depicts
48=34G$5 . Since the main methods for the two programs are identical and 4<08= = 4<08=0 , 42>=C08=B is
identical to 48=34G$5 . The middle frame of Figure 3b (labeled “contains: line 13”) depicts 42>=C08=B .

Next, C������ constructs 4B4C using 48=34G$5 and 4B4C 0 using 42>=C08=B . Since the loop ! contains
the call to set in indexOf, depth(4B4C ) is depth(48=34G$5 ) +1 = 1. For the same reason, depth(4B4C 0)
is depth(42>=C08=B ) +1 = 1 The argument passed to the call to set in indexOf has a stability classi�er
of U�������h{!}i. Therefore, level(4B4C , y) is depth(48=34G$5 ) +|{!}| = 1. However, the argument
passed to the call to set in contains has a stability classi�er of S�����. Therefore, level(4B4C 0, y) is
0. The top frame of Figure 3a (labeled “set: line 4”) depicts 4B4C . The top frame of Figure 3b (labeled
“set: line 4”) depicts 4B4C 0 .

Finally, these execution contexts and stability classi�ers can be used to calculate instability
levels for the execution of the program in Listing 3. The stability classi�er of the branch on line
12 of indexOf is U�������h{!}i, and the execution of this branch occurred within the runtime
execution context 48=34G$5 . Therefore, the instability level of the execution of the conditional
branching statement is depth(48=34G$5 ) +|{!}| = 1. The stability classi�er of the assignment
statement on line 4 of set isD��������h{~}i. The execution of the assignment statement occurred
within the runtime execution context 4B4C . Therefore, the instability level of the execution of the
assignment statement ismax02{~ } level(4B4C ,0) = 1. Overall, the instability level of the execution of

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



A Practical Approach for Dynamic Taint Tracking with Control-Flow Relationships 1:21

the conditional branching statement was less than or equal to that of the execution of the assignment
statement. Thus, following the loop-relative stability heuristic, C������ would propagate along
the control �ow between the two statement executions.
As was done for the execution of the program in Listing 3, the execution contexts and stability

classi�ers can be used to calculate instability levels for the execution of the program in Listing 4.
The stability classi�er of the branch on line 12 of contains is U�������h{!}i, and the execution
of this branch occurred within the runtime execution context 42>=C08=B . Therefore, the instability
level of the execution of the conditional branching statement is depth(42>=C08=B ) +|{!}| = 1. The
stability classi�er of the assignment statement on line 4 of set is D��������h{~}i. The execution
of the assignment statement occurred within the runtime execution context 4B4C 0 . So, the instability
level of the execution of the assignment statement is max02{~ } level(4B4C 0,0) = 0. In this case, the
instability level of the execution of the conditional branching statement was greater than that of
the execution of the assignment statement. Therefore, unlike in the other execution, C������
would not propagate along the control �ow between the two statement executions.

4 IMPLEMENTATION
Although our overall approach is language-agnostic and suitable to many languages, we chose
Java as a target language, implementing C������ as an extension to P������� [9, 10], a Java taint
tracking framework which propagates taint tags by rewriting Java bytecode using the ASM bytecode
instrumentation and analysis framework [55]. P������� is a state-of-the-art taint tracking tool
upon which several software engineering tools have already been built [13, 35, 38, 64, 68, 69].
Implementing C������ as an extension to P������� allows C������ to be easily integrated with
these tools and any future tools built on top of P�������. Furthermore, this choice allows C������
to support any existing features supported by P�������, such as P�������’s “auto-tainting mode”
which allows developers to specify “source” methods at which taint tags are automatically applied
and “sink” methods at which taint tags are automatically checked [11]. P������� creates a shadow
variable for each local variable, object �eld, and method argument to store taint information.
It propagates control �ows by adding a parameter of the type ControlFlowStack to methods’
signatures. This allows P������� to use ControlFlowStack instances to track the scopes of control
�ows between method boundaries by passing a ControlFlowStack instance from the caller method
to callee method as an argument. In a similar fashion, C������ uses ControlFlowStack instances
to pass loop-relative stability information and execution contexts between methods.

We modi�ed P������� to support custom control �ow propagation policies by allowing users to
extend P�������’s default behavior at three phases: annotation, instrumentation, and runtime; we
then used these extension points to implement C������. During the annotation phase, the system
is provided with a list containing a method’s instructions and may insert annotations, special
notes used to inform the instrumentation process, into this list. In the instrumentation phase,
P������� traverses the instructions of a method forwarding any annotations it encounters to the
extending system, informing the extending system when certain structures within the method are
encountered, and allowing the extending system to add instructions to the method in response.
Phosphor allows a system to modify behavior during the runtime phase by specifying a custom
subclass of ControlFlowStack for use at runtime.

4.1 Annotation
Before a method is instrumented, C������ statically annotates its instructions with control �ow
information. These annotations mark static features of the method (e.g., the scopes of control �ows)
as well as properties of those features (e.g., stability classi�ers). When the method is instrumented,
these features and properties are used to determine what code to generate.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:22 Katherine Hough and Jonathan Bell

C������ starts by adding annotations to delineate the binding scopes of control �ows. The
control �ow graph of the method being annotated is created to identify branch edges that introduce
control �ows. Each branch edge that performs an equality check is marked as introducing a control
�ow that should be propagated at runtime. A branch edge is considered to perform an equality
check if one of the following is true:

• it is the edge between a branching instruction conditioned on a non-null equality check and
its branch target

• it is the edge between a branching instruction conditioned on a non-null inequality check
and the instruction following it

• it is the edge between a switch instruction and the branch target associated with one of its
non-default cases and no other case for that switch instruction has the same branch target

• it is either of the edges out of a branching instruction conditioned on a boolean comparison

The last condition, which deals with boolean comparisons, is a special case. Since there are only
two possible values for a boolean, both edges out of the branch are traversed for only a single
value. Thus, both edges correspond to equality checks. The Java Virtual Machine does not provide
dedicated boolean instructions and instead uses instructions that operate on integer values [44]. As
a result, C������will mark both edges of an integer conditional branch instruction for propagation
if it statically determines that the instruction likely performs a boolean comparison.

Once branch edges have been marked for propagation, C������ annotates the start of the scope
of the control �ow associated with each of the edges. Then, it constructs the modi�ed control �ow
graph described in Section 3.1, and uses Cooper et al. [23]’s algorithm to calculate the dominance
frontier of each replacement node (14 ) associated with each marked branch edge (4). An annotation
is added at the beginning of each basic block in the dominance frontier of a replacement node to
indicate the end of the scope of the control �ow associated with the node.
Next, C������ annotates program elements with their the stability classi�ers. The method

being annotated is converted from Java bytecode into a register-based intermediate representation
and then placed into SSA form using Cytron et al. [25]’s algorithm. C������ maintains a direct
correspondence between this intermediate representation and the original Java bytecode so that
properties calculated on the intermediate representation can be used to annotate instructions in
the original bytecode without having to convert out of the intermediate form. This intermediate
representation is used to calculate the stability classi�ers of program elements in the method being
analyzed (as described in Section 3.2.2). C������ labels each conditional branching statement,
assignment statement, non-void return statement, method call receiver, method call argument, and
method call return value location with its calculated stability classi�er.
Finally, C������ uses the control �ow graph for the method to record loop information. Each

method call is annotated with the number of natural loops that contains it within the method being
annotated. Additionally, C������ records the exit points (i.e., the �rst instruction of a basic block
not contained within a particular loop whose predecessor is contained within that loop) of any
loops within the method. These features of the method are used at runtime to calculate execution
contexts and instability levels.

4.2 Instrumentation and Runtime
During the instrumentation of the method, the annotations added by C������ are used to generate
method calls to the ControlFlowStack, the structure P������� uses to store the taint tags of
branches and propagate control �ows [11]. P�������’s default behavior adds method calls to push
the taint tag associated with each control �ow’s predicate at the start of its scope and pop any

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



A Practical Approach for Dynamic Taint Tracking with Control-Flow Relationships 1:23

taint tags pushed for each control �ow at the end of its scope as described in Section 2. C������
modi�es this behavior to support the loop-relative stability heuristic.

Before making a method call, the ControlFlowStack prepares an execution context for the call.
The instability levels of the receiver, arguments, and return value location of the method call are
calculated based on their stability classi�ers and the current method call’s execution context. These
instability levels are recorded by the ControlFlowStack. ControlFlowStack also calculates the
number of loops containing the method call based on the number of loops within the current
method containing the method call and the current method call’s execution context.

At the start of the callee method, the ControlFlowStack initializes an execution context based on
the values prepared by the caller method. Then, the ControlFlowStack pushes this new execution
context onto a stack of execution contexts. Before a method exits, the current method call’s
execution context is popped from this stack. When the start of a control �ow’s scope is hit, the
ControlFlowStack calculates the instability level of the control �ow based on the conditional
branching statement’s stability classi�er and the current method call’s execution context. Then, the
ControlFlowStack records the taint tag of the predicate of the branch with the �ow’s instability
level. At the end of the scope of a control �ow, any taint tags recorded for the �ow are cleared.
As discussed in Section 3.2.1, in order to use instability levels, all control �ows from a branch’s
predicate must be terminated as soon as the innermost loop relative to which that branch is not
stable is exited. Thus, at the exit point of a loop any taint tags recorded at the instability level
associated with that loop are removed from the ControlFlowStack.
When a non-void return statement or assignment statement executes, the ControlFlowStack

calculates its instability level based on its stability classi�er and the current method call’s execution
context. The taint tags of any control �ow recorded at an instability level less than or equal the
instability level of the statement propagate to the program data being assigned a value by the
statement.
At instrumentation boundaries, such as native code calls, the callee method will not receive a

prepared execution context from the caller. In these cases, C������ assumes that no loops contain
the method call. If there are no loops that contain the method call, there are no loops with respect
to which the method call’s receiver, arguments, and return value location could be non-stable. Thus,
C������ uses an execution context 4 such that 34?C⌘(4) = 0 and level(4,0) = 0 for all method
elements 0.

5 LIMITATIONS
Like priorwork fromBao et al. [8] and Kang et al. [41],C������ uses a heuristic approach tomitigate
control-�ow-related over-tainting. Therefore, malicious programs, those intentionally designed to
circumvent analyses, are outside the scope of this work. Some applications of dynamic taint tracking,
such as con�dentially enforcement, may be interested in analyzing malicious programs. However,
many applications of dynamic taint tracking primarily consider non-malicious programs [7, 19, 33,
35, 36].

Additionally, since C������ relies on a heuristic rather than a sound or complete �ow analysis it
is di�cult to determine how appropriate it is for a particular application. Furthermore, the heuristic
we use relies on conservative assumptions about values loaded from arrays and �elds, and it only
takes into account direct uses of a local variable when determining its storage location stability.
The loop-relative stability heuristic does not consider cycles introduced via recursion which could
potentially impact its applicability to languages that favor recursion over loops. Nonetheless, in
our evaluation of real-world Java programs, we found our approach to be quite e�ective.
C������ does not address all sources of control-�ow-related over-tainting. For example, if an

element conditionally added to a resizable array triggers an array resize, then all of the elements

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:24 Katherine Hough and Jonathan Bell

copied from the original array to the new, larger array will be tainted with the label associated with
the branch that triggered the element to be added to the resizable array. However, mature Java code
typically uses System.arraycopy to copy elements from the original array to the new, larger array.
System.arraycopy is a native method, and therefore not instrumented by P�������. P�������
uses prede�ned propagation logic for many native methods (regardless of the propagation policy).
If this were not the case, there would likely be over-tainting in System.arraycopy. However, code
performing this sort of array resizing is often contained within a single method. Therefore, it could
be identi�ed statically and handled specially by a taint tracking system.
Finally, C������ does not aim to address over-tainting from sources other than control-�ow

propagation, e.g., bit-packing and caches. This is an interesting topic for future work.

6 EVALUATION
We performed an evaluation of C������ to answer the following research questions:

RQ1: How accurately does C������ propagate taint tags?
RQ2: How does C������’s performance vary with input sizes?
RQ3: How does C������ impact a concrete application of taint tracking?

RQ1 and RQ2 examine the utility of C������. For these questions we report metrics, like F1
score, which quantify the accuracy of C������ by comparing taint tags propagated by C������
against a ground truth. F1 score is calculated as TP

TP+0.5⇤(FP+FN ) where TP is the number of true
positives, FP is the number of false positives, and FN is the number of false negatives. However,
it is di�cult to know for an arbitrary, real-world program which taint tags should propagate to
which values and, therefore, challenging to specify a ground truth.

Past works have explored automated approaches for determining ground truth taint tag sets.
For example, Bao et al. [8] and Jee [37] used automated approaches to determine ground truth
taint tag sets in their evaluations of taint tracking systems. These automated approaches run the
same program multiple times with di�erent inputs and compare the outputs. Jee [37] interpreted
di�erences in the outputs for di�erent input values as indicating that taint tags from the input
should have propagated to the output. Bao et al. [8] assume that if di�erent input values lead
to the same output, the input’s tag should not propagate to the output. However, it is infeasible
to exhaustively explore any non-trivial input space. Thus, these approaches can only consider a
sample of possible input values and their e�cacy is tied to the quality of that sampling. This is
problematic because automatically generating diverse samples from an input space is a challenging
problem in its own right.
Furthermore, in ordered output, like text, di�erent inputs may cause outputs to shift positions

without impacting their actual values. This makes it challenging to determine which outputs were
impacted by a particular change to the input. For example, consider a simple program that receives
an HTTP request containing a “message” query parameter and returns an HTML document that
contains that parameter. The inputs used in the execution in Figure 4a and Figure 4b di�er only
in a single character. However, the outputs di�er in every character after “hello”. An automated
approach may misinterpret this change and expect the taint tag of the changed input character to
propagate to every output character following “hello”.

Due to these issues, we chose to not use an automated approach for determining expected taint
tag sets and, instead, manually determined expected taint tag sets. Manually determining expected
taint tag sets for arbitrary, real-world programs is error-prone and subjective. However, it is possible
to leverage known properties of a program to determine a ground truth. This approach was used
by McCamant and Ernst [45] to evaluate Flowcheck, their system for measuring the amount of
information that �ows from secret program inputs to public outputs. One of the experiments

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



A Practical Approach for Dynamic Taint Tracking with Control-Flow Relationships 1:25

GET /greet?message=hello%2C%20world

<!DOCTYPE html>
<html>
<body>
<p>hello , world</p>

</body>
</html>

(a)

GET /greet?message=helloZ2C%20world

<!DOCTYPE html>
<html>
<body>
<p>hello Z2C world</p>

</body>
</html>

(b)

Fig. 4. Two sample executions of a program that receives an HTTP request and replies with an HTML
document. In each execution, the value of the “message” query parameter of the input HTTP request is
inserted into the output HTML document. Yellow is used to highlight di�erences between the executions.

conducted by McCamant and Ernst [45] used bzip2, a lossless compression tool, as an evaluation
subject. For their purposes, bzip2 was an appealing subject because the expected �ow size for a
valid input could easily be determined due to the nature of the tool. Speci�cally, when presented
with a compressible, secret input, all of bzip2’s output (except a small amount of input-independent
output like headers) will leak secret information because bzip2’s compression algorithm is lossless.

Like McCamant and Ernst [45], we chose to leverage program properties to construct a ground
truth for programs included in our benchmark for evaluating RQ1 and RQ2. Unfortunately, this
limited the types of programs that could be included in the benchmark to those that met certain
criteria. These criteria are discussed in detail in Section 6.2. However, the subjects used to evaluate
RQ3 were not impacted by this limitation because we do not report quantitative metrics for RQ3
and, therefore, do not require a known ground truth.
RQ3 explores the practical impacts of C������ on an application of taint tracking. For this

purpose, we chose to examine Clause and Orso [19]’s approach for identifying failure-relevant
inputs. The primary assessment originally performed by Clause and Orso [19] was qualitative.
Therefore, we decided to also provide a qualitative assessment in our case study instead of a
quantitative one. This choice allowed us to be less constrained in our selection of subject applications
for the case study since we no longer needed to determine a ground truth.

6.1 Experimental Setup
We evaluated C������ in comparison to three other propagation policies: ���������, ������
�������, and SCD, an implementation of the control �ow semantics presented by Bao et al. [8].
Each of these policies was implemented using P�������. All four of the policies propagate taint
tags along data �ows in a similar fashion to what was described by Bell and Kaiser [10]. Additionally,
all of the policies propagate taint tags from an index used to access an element of an array to the
element accessed; this applies to both read and write accesses. Only the ��������� and ������
������� policies propagate taint tags through INSTANCEOF operations as that instruction does
not match the semantics targeted by C������ and SCD. C������, �������������, and SCD all
propagate taint tags through pointer dereferencing. Each of the policies uses di�erent semantics
for propagating control �ows. ��������� does not propagate along control �ows. �������������
propagates along all control �ows using the standard scoping semantics described in Section 2. SCD
uses the standard scoping semantics, but only propagates along edges corresponding to equality
checks. These edges are determined using the same rules described in Section 4.1.

All of our experiments were conducted on OpenJDK version 1.8.0_222. Tests for each propagation
policy were run in a JVM that was instrumented according to the policy. Before a test started any

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:26 Katherine Hough and Jonathan Bell

taint tags on values in the JVM were cleared to ensure that taint tags from one test could not impact
the results of another test.

6.2 Benchmark
The benchmark we created to answer RQ1 and RQ2 consists of methods for encoding and decoding
text drawn from the OpenJDK Java Class Library (version 1.8.0_222) [54] and seven di�erent
real-world Java projects:

• Apache Commons Text (version 1.8) [4]
• Apache Commons Codec (version 1.14) [3]
• Bouncy Castle Provider (version 1.46) [43]
• Guava (version 28.2-jre) [29]
• jsoup (version 1.11.3) [39]
• Spring Web (version 5.2.5) [57]
• Tomcat Embed Core (version 9.0.19) [5]

To the best of our knowledge, DroidBench [6] is the only existing Java taint tracking benchmark
that contains tests that consider control �ows. However, DroidBench only contains four tests
involving control �ows and was designed for evaluating static analyzers. Thus, we choose not to
use it in our evaluation.
The programs featured in our benchmark for encoding and decoding text are all information

preserving. Each of these programs transforms one representation of a sequence of abstract entities
into another representation of the same sequence of abstract entities. An abstract entity is an atomic
unit of information. For example, when escaping text for inclusion in HTML, the character <, the
character entity reference &lt;, and the numeric character reference &#60; all represent the same
abstract entity. The information-preserving nature of the programs included in our benchmark
provides a clear ground truth: the expected set of taint tags for a program output contains the taint
tags of the program inputs that represent the same abstract entity that the output represents. For
example, a program might perform percent encoding on the string :@ resulting in the output string
%3A%40. The �rst percent-encoded octet, %3A, represents the same abstract entity represented by
the input character :. The second percent-encoded octet, %40, represents the same abstract entity
represented by the input character @. Thus, the expected label set for each of the characters in the
�rst octet would contain the unique label assigned to :, and the expected label set for each of the
characters in the second octet would contain the unique label assigned to @.

Each method selected for the benchmark we created had to meet several criteria. First, the method
had to be deterministic. For valid input, the output of the method had to represent the same sequence
of abstract entities as the input. A taint tracking policy that does not propagate control �ows should
not produce false positives when tracking taint tags through the method. Likewise, a taint tracking
policy that propagates along every control �ow using the standard semantics described in Section 2
should not produce false negatives when tracking taint tags through the method. This limits the
scope of the benchmark to situations in which observed under-tainting or over-tainting is likely
related to control �ow propagation, as opposed to other sources of imprecision such as caches and
bit-packing.
Every test in the benchmark uses one of the selected methods and follows the same general

format. The test starts by creating an input representing a sequence of abstract entities appropriate
for the method. Each character (or byte in the case of hex encoding) in the input is assigned a
unique taint label. The test then transforms the tainted input using the target test method. The taint
label set that is propagated to each character (or byte in the case of hex decoding) of the method’s
output is compared to the set of labels expected for that element. Labels in both the propagated and

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



A Practical Approach for Dynamic Taint Tracking with Control-Flow Relationships 1:27

expected sets are counted as true positives. Labels in the expected set, but not the propagated set
are counted as false negatives. Labels in the propagated set, but not the expected set are counted as
false positives.

In some cases, a single method is used inmultiple tests (e.g., themethod PercentCodec.encode()
from Apache Commons Codec is used in tests in the groups unicode-percent-decode and reserved-
percent-decode). In these instances, we choose to separate di�erent transformations performed by a
single method into multiple tests so that their results could be more directly compared to a di�erent
implementation of the same transformation.

6.3 RQ1: Accuracy
In order to compare the accuracy of ���������, �������������, SCD, and C������, we applied
each of the propagation policies to the tests in our benchmarks. For each test we created an input
sequence of 8 abstract entities (RQ2 considers di�erent length inputs). We recorded the number of
false negatives, false positives, and true positives that were reported by each propagation policy on
each test.
Table 1 presents our �ndings for the di�erent propagation polices on the benchmarks. Overall,

C������ had the highest F1 score on a majority of the tests, 43 out of the 48 total tests. �����
���� had the highest F1 score on 23 tests. SCD had the highest F1 score on 21 tests. And �nally,
������������� had the highest F1 score on only 3 tests.
Due to the selection criteria for the methods used in the benchmark, ��������� reports no

false positives and ������������� reports no false negatives. In some of the tests, ��������� fails
to propagate any tags to the output because there are no data �ows between the input and the
output. For example, in the html-escape test using jsoup’s Entities class, input values �ow into a
switch statement which selects a constant string to append to the output; all of the information
that �ows between the input and the output is transferred through the switch statement. In other
tests, ��������� does report some or all of the possible true positives because data �ows are able to
fully or partially capture the relationship between the input and the output. For instance, for tests
in the reserved-percent-encode group, ��������� reports two true positives for every false negative.
This occurs because tests in this group take a sequence of URI reserved characters and encode them
using percent-encoded octets (e.g., the character @ would end up encoded as %40). There is a data
�ow between the value of the input character and the two hex digits in the octet, but there is only
a control �ow between the input character and the percent sign. Thus, ��������� correctly tracks
the relationship between an input character and the two hex digits of the output octet. However, it
misses the relationship between an input character and the percent sign of the output octet. By
contrast, ������������� never missed a relationship between an input and an output, but reported
a relatively large number of false positives on all but three tests. In many cases, �������������
marked all of the inputs as being related to all of the outputs.
SCD reported relatively few false negatives, and 102 out of the 132 of these false negatives

occurred in tests from the unicode-percent-encode group. Tests in the unicode-percent-encode group
take a sequence of non-ASCII characters and transform them into UTF-8, percent-encoded octets.
Typical implementations of this transformation determine whether an input character needs to
be encoded either by checking if it falls into some value range, is outside some value range, or is
not present in some set of values that do not need to be encoded. These checks are generally not
equality checks, so SCD does not propagate along the branches associated with them resulting in
under-tainting. C������ also under-taints in these tests for the same reason.
C������ only reported false positives in two tests, as opposed to the 28 tests in which SCD

reported false positives and the 45 tests in which ������������� reported false positives. Both
of these two tests have the same problematic �ow. A simpli�ed version of this �ow is shown in

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:28 Katherine Hough and Jonathan Bell

Table 1. Comparison of ���������, �������������, SCD, and C������ on our benchmark. Each row
reports results for a single test. Tests are grouped by the type of transformation they perform. For each of the
propagation policies, we report the number false negatives (FN), the number of false positives (FP), the

number of true positives (TP), and the F1 score (F1) recorded for each test. The highest F1 score or scores for
each test are colored purple.

Test Group Project Implementation ��������� ������������� SCD C������

F1 FN FP TP F1 FN FP TP F1 FN FP TP F1 FN FP TP

Apache Commons Codec Hex 1.00 0 0 16 0.22 0 112 16 1.00 0 0 16 1.00 0 0 16
Bouncy Castle Provider Hex 1.00 0 0 16 1.00 0 0 16 1.00 0 0 16 1.00 0 0 16
Java Class Library DatatypeConverter 1.00 0 0 16 0.22 0 112 16 1.00 0 0 16 1.00 0 0 16hex-decode

Tomcat Embed Core HexUtils 1.00 0 0 16 0.22 0 112 16 1.00 0 0 16 1.00 0 0 16
Apache Commons Codec Hex 1.00 0 0 16 0.22 0 112 16 1.00 0 0 16 1.00 0 0 16
Bouncy Castle Provider Hex 1.00 0 0 16 0.22 0 112 16 1.00 0 0 16 1.00 0 0 16
Java Class Library DatatypeConverter 1.00 0 0 16 1.00 0 0 16 1.00 0 0 16 1.00 0 0 16hex-encode

Tomcat Embed Core HexUtils 1.00 0 0 16 1.00 0 0 16 1.00 0 0 16 1.00 0 0 16
Apache Commons Text StringEscapeUtils 0.00 36 0 0 0.22 0 252 36 1.00 0 0 36 1.00 0 0 36
Guava HtmlEscapers 0.00 36 0 0 0.22 0 252 36 1.00 0 0 36 1.00 0 0 36
Spring Web HtmlUtils-ISO-8859-1 0.00 36 0 0 0.22 0 252 36 1.00 0 0 36 1.00 0 0 36
Spring Web HtmlUtils-UTF-8 0.00 36 0 0 0.22 0 252 36 1.00 0 0 36 0.00 36 0 0

html-escape

jsoup Entities 0.00 36 0 0 0.22 0 252 36 0.54 0 62 36 1.00 0 0 36
Apache Commons Text StringEscapeUtils 0.00 36 0 0 0.22 0 252 36 1.00 0 0 36 1.00 0 0 36html-unescape Spring Web HtmlUtils 0.71 16 0 20 0.22 0 252 36 0.56 0 56 36 0.71 16 0 20
Apache Commons Text StringEscapeUtils 0.50 16 0 8 0.22 0 168 24 0.54 4 30 20 0.91 4 0 20javascript-escape Spring Web JavaScriptUtils 0.00 24 0 0 0.22 0 168 24 0.62 0 30 24 1.00 0 0 24

javascript-unescape Apache Commons Text StringEscapeUtils 0.59 14 0 10 0.30 0 112 24 0.65 0 26 24 0.96 2 0 22
quoted-printable-decode Apache Commons Codec QuotedPrintableCodec 0.80 14 0 28 0.22 0 294 42 0.48 0 90 42 1.00 0 0 42
quoted-printable-encode Apache Commons Codec QuotedPrintableCodec 0.80 14 0 28 0.22 0 294 42 0.28 10 156 32 0.80 14 0 28

Apache Commons Codec PercentCodec 0.80 8 0 16 0.22 0 168 24 0.63 0 28 24 1.00 0 0 24
Apache Commons Codec URLCodec 0.80 8 0 16 0.22 0 168 24 0.46 0 56 24 1.00 0 0 24
Java Class Library URLDecoder 0.80 8 0 16 0.22 0 168 24 0.46 0 56 24 0.63 0 28 24
Spring Web UriUtils 0.80 8 0 16 0.22 0 168 24 0.46 0 56 24 1.00 0 0 24

reserved-percent-decode

Tomcat Embed Core UDecoder 0.80 8 0 16 0.22 0 168 24 0.63 0 28 24 1.00 0 0 24
Apache Commons Codec PercentCodec 0.80 8 0 16 0.22 0 168 24 0.80 8 0 16 0.80 8 0 16
Apache Commons Codec URLCodec 0.80 8 0 16 0.22 0 168 24 0.22 0 168 24 0.80 8 0 16
Guava UrlEscapers 0.80 8 0 16 0.22 0 168 24 0.70 0 21 24 0.80 8 0 16
Java Class Library URLEncoder 0.80 8 0 16 0.22 0 168 24 0.22 0 168 24 0.80 8 0 16
Spring Web UriUtils 0.80 8 0 16 0.22 0 168 24 0.80 8 0 16 0.80 8 0 16

reserved-percent-encode

Tomcat Embed Core UEncoder 0.80 8 0 16 0.22 0 168 24 0.36 0 84 24 0.80 8 0 16
Apache Commons Codec PercentCodec 0.00 8 0 0 0.22 0 56 8 0.36 0 28 8 1.00 0 0 8
Apache Commons Codec URLCodec 0.00 8 0 0 0.22 0 56 8 0.22 0 56 8 1.00 0 0 8
Java Class Library URLDecoder 0.00 8 0 0 0.22 0 56 8 0.22 0 56 8 1.00 0 0 8spaces-url-decode

Tomcat Embed Core UDecoder 0.00 8 0 0 0.22 0 56 8 0.36 0 28 8 1.00 0 0 8
Apache Commons Codec PercentCodec 0.00 8 0 0 0.22 0 56 8 0.36 0 28 8 1.00 0 0 8
Apache Commons Codec URLCodec 0.00 8 0 0 0.22 0 56 8 1.00 0 0 8 0.00 8 0 0
Guava UrlEscapers 0.00 8 0 0 0.22 0 56 8 0.70 0 7 8 1.00 0 0 8spaces-url-encode

Java Class Library URLEncoder 0.00 8 0 0 0.22 0 56 8 0.70 0 7 8 0.00 8 0 0
Apache Commons Codec PercentCodec 0.80 20 0 40 0.22 0 420 60 0.37 0 204 60 1.00 0 0 60
Apache Commons Codec URLCodec 0.80 20 0 40 0.22 0 420 60 0.37 0 204 60 1.00 0 0 60
Java Class Library URLDecoder 0.80 20 0 40 0.22 0 420 60 0.30 0 276 60 0.64 0 68 60unicode-percent-decode

Spring Web UriUtils 0.80 20 0 40 0.22 0 420 60 0.30 0 276 60 1.00 0 0 60
Apache Commons Codec PercentCodec 0.80 20 0 40 0.22 0 420 60 0.80 20 0 40 0.80 20 0 40
Apache Commons Codec URLCodec 0.80 20 0 40 0.22 0 420 60 0.80 20 0 40 0.80 20 0 40
Guava UrlEscapers 0.75 24 0 36 0.22 0 420 60 0.50 22 54 38 0.75 24 0 36
Java Class Library URLEncoder 0.80 20 0 40 0.22 0 420 60 0.80 20 0 40 0.80 20 0 40

unicode-percent-encode

Spring Web UriUtils 0.80 20 0 40 0.22 0 420 60 0.80 20 0 40 0.80 20 0 40

Listing 5. C������ marks both the branch on line 6 and the statement on line 12 as unstable with
respect to all loops that contain them. Thus, C������ propagates taint tags from the predicate of
the branch on line 6 to the assigned value on line 12, c, resulting in over-tainting. In this case, the
loop header (c == �%�) is the source of the �ow, rather than the �ow occurring within the body of
the loop. Had the loop header instead been written as input[inputPosition] == �%�, then the
load would have been considered as outside of the binding scope of the loop header, and C������
would not have over-tainted.

6.4 RQ2: Accuracy Versus Input Size
Taint tags often accumulate on program data over loop iterations leading to progressively more
over-tainting on each iteration. Many common applications of taint tracking (e.g., fuzzing guidance)
tend to use relatively large inputs which often trigger a large number of loop iterations. In these

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



A Practical Approach for Dynamic Taint Tracking with Control-Flow Relationships 1:29

1 public static String decode(char[] input) {
2 char[] output = new char[input.length / 3];
3 int outputPosition = 0;
4 int inputPosition = 0;
5 char c = input [0];
6 while(c == �%�) { // source of problematic flow
7 output[outputPosition ++] = hexToChar(input[inputPosition + 1],

input[inputPosition + 2]);
8 inputPosition += 3;
9 if(inputPosition + 2 >= input.length) {
10 break;
11 }
12 c = input[inputPosition ]; // target of problematic statement
13 }
14 return new String(output);
15 }

Listing 5. Simplified code for the tests where C������ reports false positives.

cases, it may be impractical to use the standard semantics for control �ow propagation due to the
“explosion” of taint tags resulting from their accumulation in loops. To evaluate whether C������
could be used to address this issue, we applied the propagation policies (���������, �������������,
SCD, and C������) to our benchmark with inputs of various lengths (8, 16, 32, 64, 128, 256, 512,
and 1024 abstract entities). We then recorded the F1 score for each policy on each test for each
of the lengths and produced a series of plots. We examined these plots to determine how the F1
score for each policy changed as the size of the input scaled. Figure 5 shows four of these plots that
represent common cases seen across many of the plots.
In all of the tests the F1 score for ��������� was constant as the size of the input increased.

The behavior of the F1 scores for the other three policies either stayed constant, decreased to
some non-zero value, or decreased to zero as the size of the input increased. We divided tests into
categories based on how the F1 score reported for the di�erent policies changed as the size of the
input increased.
There were 3 tests where the F1 scores for all of the policies remained constant as the input

size increased. In 17 tests, the F1 scores for ���������, SCD, and C������ remained constant,
but the F1 scores for ������������� decreased to zero. A plot for one of these tests is depicted in
Figure 5a. In 6 tests, the F1 scores for ��������� and C������ remained constant, the F1 scores for
������������� decreased to zero, and the F1 scores for SCD decreased to some non-zero value. A
plot for one of these tests is depicted in Figure 5b. In 20 of the tests, the F1 scores for ��������� and
C������ remained constant, but the F1 scores for ������������� and SCD decreased to zero. A
plot for one of these tests is depicted in Figure 5c. There were only 2 tests in which the F1 scores for
��������� remained constant, and the F1 scores for �������������, SCD, and C������ decreased
to zero. A plot for one of these tests is depicted in Figure 5d.

Overall, C������’s F1 score stayed constant in all but 2 tests, similar to ���������. By contrast,
the F1 score of ������������� and SCD typically degraded as input sizes scaled. In this respect,
C������’s control �ow tracking behaved more similarly to data �ow tracking than the control
�ow tracking performed by ������������� and SCD.

6.5 RQ3: Impact on a Concrete Application of Taint Tracking
To examine the e�ect of C������ on a practical application of taint tracking, we implemented
a prototype of Clause and Orso [19]’s approach for identifying which failure-inducing inputs

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:30 Katherine Hough and Jonathan Bell

(i.e., inputs that produce a failure) are failure-relevant (i.e., useful for analyzing the failure). We used
this prototype to perform a case study exploring the impact of C������ on Clause and Orso [19]’s
approach. We conducted an experiment similar to the one originally performed by Clause and
Orso [19]. In this experiment, we provide a qualitative assessment of the failure-inducing inputs
that were marked as relevant by the di�erent propagation policies, ���������, �������������,
SCD, and C������, on �ve failures from popular, open-source Java projects. Our assessment is
limited to the impact of the propagation policies on the values marked as failure-relevant; it does
not examine the usefulness of Clause and Orso [19]’s approach in general since that was explored
in the original work.
Table 2 details the �ve failures that we included in our case study. Each of the these failures

was chosen from an issue reported in a project’s issue tracker that described a system failure.
Only issues in which the system accepted a human-interpretable input or inputs were considered
since it would otherwise be di�cult to apply Clause and Orso [19]’s approach. For the sake of

��������� ������������� SCD C������

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

1

Number of Abstract Entities

F1
Sc
or
e

(a) Results for the html-escape test using Guava’s
HtmlEscapers class.

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

1

Number of Abstract Entities

F1
Sc
or
e

(b) Results for the javascript-escape test using Spring
Web’s JavaScriptUtils class.

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

1

Number of Abstract Entities

F1
Sc
or
e

(c) Results for the spaces-url-decode test using
Apache Commons Codec’s PercentCodec class.

0 200 400 600 800 1,000

0

0.2

0.4

0.6

0.8

1

Number of Abstract Entities

F1
Sc
or
e

(d) Results for the reserved-percent-decode test using
the Java Class Library’s UrlDecoder class.

Fig. 5. Comparison of ���������, �������������, SCD, and C������ on selected tests from our benchmark
for varying input lengths.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



A Practical Approach for Dynamic Taint Tracking with Control-Flow Relationships 1:31

simplicity, we only selected issues in which the described failure could be consistently reproduced.
Furthermore, we only selected issues that had already been �xed in a single, associated commit
in order to facilitate analysis of the failure. A similar criterion was used by Just et al. [40] in the
selection of bugs for Defects4J, a widely-used database of real Java defects. We used these �xing
commits along with the issues �led in the issue trackers to construct appropriate failure-inducing
inputs for each failure.
Additionally, for each of the failures, we identi�ed developer comments made in either the

�xing commit or the issue that discussed the conditions that produced the failure. These comments
re�ect the developers’ understanding of the failure and the conditions under which the failure
manifests. However, mapping these conditions to speci�c portions of the input is subjective, and
the developers’ understanding of the failure may be �awed. Thus, these developer-identi�ed failure
conditions cannot be used as a ground truth for the failure-relevant portions of an input. For each
of the failures, we also created a simpli�ed, failure-inducing input using a combination of random
trials of reduced inputs and Zeller and Hildebrandt [73]’s ddmin algorithm. The ddmin algorithm
produces a failure-inducing input that is guaranteed to be “1-minimal”, i.e., removing any single
element would cause the input to no longer induce the failure; however, the simpli�ed input is
not guaranteed to be minimal [73]. Even though a simpli�ed, failure-inducing input can be useful
in understanding a failure, it does not necessarily correspond to the the failure-relevant portions
of the original, failure-inducing input. For example, even a minimized, failure-inducing input can
contain portions of the input that are necessary to pass a validation step, but not necessarily useful
for investigating the failure. While neither developer-identi�ed failure conditions nor simpli�ed
failure-inducing inputs can be used as a ground truth for the failure-relevant portions of an input,
they both provide valuable insights into the nature of a failure. Therefore, we used these insights
to guide our qualitative assessment of the failure-inducing inputs that were marked as relevant by
the di�erent propagation policies.

Table 2. Evaluation subjects used in the RQ3 case study. For each subject, we list the name and version
of the project (Project), the issue in which the failure was reported (Issue), and the commit in which the bug

that produced the failure was corrected (Fix).

Project Issue Fix

Checkstyle (version 8.37) [16] #8934 [15] 70c7ae0 [14]
Google Closure Compiler (version v20140814) [22] #652 [21] aac5d11 [20]
Mozilla Rhino (version 1.7.11) [48] #539 [47] 0c0bb39 [46]
OpenRe�ne (version 3.4-SNAPSHOT) [53] #2584 [52] 825e687 [51]
H2 Database Engine (version 1.4.200) [32] #2550 [31] 6c564e6 [30]

Our prototype implementation applies a unique taint tag to each character input presented to the
applications. These taint tags are propagated in accordance with a particular propagation policy as
described in Section 6.1. In addition to this policy-based propagation, our prototype employs special
propagation logic for exceptions. If a Java exception is thrown by the execution of an instruction
(as detailed in the Java Virtual Machine Speci�cation [44]), then our prototype propagates the
taint tags of the operands of that instruction to the exception. Any input values associated with
taint tags that propagate to the exception that produces the studied system failure are marked as
failure-relevant.
For each of the bugs that we analyzed, we display the entire program input with annotations

that specify which portions of the input were marked as failure-relevant by each policy. These
visualizations demonstrate the impact of propagation policies on a concrete software engineering

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:32 Katherine Hough and Jonathan Bell

application of taint tracking. Across all �ve examples, ��������� marks only a single character of
input as failure-relevant, demonstrating the need to propagate taint tags along control �ows in this
application. Meanwhile, ������������� marks almost every input character as failure-relevant,
underscoring the consequences of control-�ow-related over-tainting. We discuss in detail the input
values marked as failure-relevant by each policy for each of the studied failures below.

1 throw

Listing 6. The simplified,
failure-inducing JavaScript input
for the Closure failure reported
in issue #652 [21] created as
described in Section 6.5.

1
2 2

Listing 7. The simplified,
failure-inducing CSV input for
the OpenRefine failure reported
in issue #2584 [52] created as
described in Section 6.5. The
empty first line is required to

induce the failure.

1 {
2 �guessCellValueTypes�:

true,
3 �trimStrings�: true
4 }

Listing 8. The simplified,
failure-inducing JSON input for
the OpenRefine failure reported
in issue #2584 [52] created as

described in Section 6.5.
Whitespace characters have
been added to improve the
readability of the input.

1 function() {
2 try {
3 } finally {
4 v
5 }
6 yield
7 }

Listing 9. The simplified,
failure-inducing JavaScript input
for the Rhino failure reported in

issue #539 [47] created as
described in Section 6.5.

Whitespace characters have
been added to improve the
readability of the input.

1 CREATE TABLE t;
2 MERGE INTO t
3 USING (SELECT 1)
4 ON ()
5 WHEN NOT MATCHED AND b

THEN INSERT VALUES()

Listing 10. The simplified,
failure-inducing SQL input for
the H2 failure reported in issue
#2550 [31] created as described

in Section 6.5. Whitespace
characters have been added to
improve the readability of the

input.

1 class E {
2 d t = (switch(a) {
3 case 0 -> 1;
4 case 2 -> n;
5 })
6 }

Listing 11. The simplified,
failure-inducing Java input for
the Checkstyle failure reported
in issue #8634 [15] created as

described in Section 6.5.
Whitespace characters have
been added to improve the
readability of the input.

Checkstyle. Checkstyle is a static analysis tool that �nds and reports violations of coding
standards in Java code [16]. We studied the failure reported in Checkstyle issue #8934 [15]. A
Checkstyle developer described this failure by saying, “FinalLocalVariable throws a NPE on Switch
expression in assignment” [15]. However, in the �xing commit for the failure, a di�erent Checkstyle
developer noted that, “assigning to [the] switch is not the problem . . .wrapping [the] switch
inside a function foo() makes the problem disappear” [14]. These developer comments indicate
that the failure reported in Checkstyle issue #8934 occurs when the “FinalLocalVariable” rule is
applied to a Java source code class containing a switch expression that is not contained within a
method-level or block-level scope [14, 15].
The failure-inducing input that we used to reproduce the failure reported in Checkstyle issue

#8934 was a Java source code class based on the Java source code class included in issue #8934 [15].
Figure 6 shows the input Java source code class in its entirety along with the portions of the input
identi�ed as failure-relevant by each propagation policy. Listing 11 depicts the simpli�ed, failure-
inducing input produced for the failure-inducing input in Figure 6. This simpli�ed, failure-inducing
input consists of a Java class declaration containing a �eld declaration that initializes the �eld to be

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



A Practical Approach for Dynamic Taint Tracking with Control-Flow Relationships 1:33

��������� ������������� SCD C������

0.0 1.0 0.4 0.3

0.0 1.0 0.7 0.4

0.0 1.0 0.8 0.1

0.0 1.0 0.7 0.3

0.0 1.0 0.9 0.3

0.0 1.0 0.9 0.3

0.0 1.0 1.0 0.2

0.0 1.0 1.0 0.3

0.0 1.0 0.9 0.0

0.0 1.0 0.9 0.0

0.0 1.0 1.0 0.4

0.0 1.0 0.9 0.1

0.0 1.0 0.8 0.0

0.0 1.0 1.0 0.0

0.0 1.0 0.5 0.3

0.0 1.0 1.0 0.4

0.0 1.0 0.7 0.3

0.0 1.0 1.0 0.3

0.0 1.0 1.0 0.3

0.0 1.0 0.9 0.0

0.0 1.0 1.0 0.4

0.0 1.0 0.9 0.2

0.0 1.0 0.9 0.0

0.0 1.0 0.8 0.0

0.0 1.0 1.0 0.0

0.0 1.0 0.5 0.1

1 public class ExpressionSwitchBugs {

2 private void testNested() {

3 int i = 0;

4 check(42, id(switch (42) {

5 case 42: if (i == 0) {

6 yield 41 + switch (0) {

7 case 0 -> 1;

8 default -> -1;

9 };

10 }

11 default: i++; yield 43;

12 }));

13 }

14

15 private void testAnonymousClasses() {

16 for (int i : new int[] {1, 2}) {

17 check(3, id((switch (i) {

18 case 1 -> new I() {

19 public int g() { return 3; }

20 };

21 default -> (I) () -> { return 3; };

22 }).g()));

23 }

24 }

25

26 private final int value = 2;

27 private final int field = id(switch(value) { 0.0 1.0 0.5 0.2

0.0 1.0 1.0 0.4

0.0 1.0 0.9 0.3

0.0 1.0 0.7 0.1

0.0 1.0 0.8 0.1

0.0 1.0 0.8 0.2

0.0 1.0 0.9 0.0

0.0 1.0 0.5 0.1

0.0 1.0 0.9 0.0

0.0 1.0 1.0 0.0

0.0 1.0 0.5 0.1

0.0 1.0 0.9 0.3

0.0 1.0 0.8 0.0

0.0 1.0 1.0 0.0

0.0 1.0 0.5 0.1

0.0 1.0 0.9 0.4

0.0 1.0 0.8 0.0

0.0 1.0 1.0 0.0

0.0 1.0 0.4 0.1

0.0 1.0 0.6 0.1

0.0 1.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 1.0 0.0 0.0

28 case 0 -> -1;

29 case 2 -> {

30 int temp = 0;

31 temp += 3;

32 yield temp;

33 }

34 default -> throw new IllegalStateException();

35 });

36

37 private int id(int i) {

38 return i;

39 }

40

41 private int id(Object o) {

42 return -1;

43 }

44

45 private static void check(int a, int e) {

46 if (a != e) {

47 throw new AssertionError();

48 }

49 }

50

51 public interface I {

52 public int g();

53 }

54 } 0.0 0.0 0.0 0.0

Fig. 6. Java input used to reproduce the Checkstyle failure reported in issue #8634 [15]. Failure-relevant
input regions identified by ���������, �������������, SCD, and C������ are underlined in gray, orange,
teal, and magenta respectively. To the right of each line of input, the ratio between the total number of
characters on that line and the number of characters on that line marked as failure-relevant by ���������,
�������������, SCD, and C������ is displayed in gray, orange, teal, and magenta respectively. This ratio

includes newline characters.

the value of a switch expression. Both the developer-identi�ed failure conditions and the simpli�ed,
failure-inducing input suggest that the switch expression that appears on lines 27 through 35 of
Figure 6 is the cause of the failure.

As shown in Figure 6, ��������� did not mark any portions of the input as failure-relevant. By
contrast, ������������� reported the entire input text except the �nal closing bracket as failure-
relevant. Both SCD and C������ report large portions of the switch expression that triggered the
failure including the switch keyword. However, both of these policies also report other regions

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:34 Katherine Hough and Jonathan Bell

of the input that are not likely to be helpful to developers trying to debug the failure. C������
reports fewer of these regions than SCD.

Google Closure Compiler. The Google Closure Compiler is a tool for compiling and optimizing
JavaScript code [22]. The failure we selected from the Google Closure Compiler was reported in
issue #652 [21]. In the �x for this failure, a Closure developer noted that Closure should “report a
parse error if there is a throw followed by a semicolon or newline” [20]. This developer continued
by noting that according to grammar for JavaScript, “‘throw;’ or ‘throw
n expr;’ are illegal” [20]. These developer comments indicate that the failure manifests when Closure
compiles code containing a malformed throw statement where the throw keyword is followed by a
semicolon or newline and not an expression.
We reproduced the failure reported in issue #652 using JavaScript source code based on the

JavaScript source code provided in the original issue. Figure 7a shows the input JavaScript source
code in its entirety along with the portions of the input identi�ed as failure-relevant by each
propagation policy. Listing 6 depicts the simpli�ed, failure-inducing input produced for the failure-
inducing input in Figure 7a. The simpli�ed, failure-inducing input consists of just the keyword
throw. Both the developer-identi�ed failure conditions and the simpli�ed, failure-inducing input
indicate that the failure described in issue #652 is triggered by the malformed throw statement on
line 9 of Figure 7a.

As in the Checkstyle failure, ��������� did not mark any portions of the input as failure-relevant.
�������������, SCD, and C������ all marked the malformed throw statement as failure-relevant.
However, ������������� also marked almost every other input character as failure-relevant. SCD
and C������ report some additional regions of the input that may obfuscate the cause of the
failure. Once again, C������ reports fewer of these regions than SCD.

Mozilla Rhino.Mozilla Rhino is an implementation of JavaScript written in Java [48]. Rhino
includes a compiler for translating JavaScript source code into Java class �les. Issue #539 [47]
describes the failure that we examined. In the �x for this failure, a Rhino developer noted that the
failure “cropped up when generators were used in a function that had a try..catch..�nally block and
a yield after the �nally” [46]. This comment indicates that the failure manifests when Rhino tries
to compile JavaScript source code that contains a generator function or legacy generator function
in which a yield expression is present after a finally block.

We reproduced the failure reported in issue #539 using JavaScript source code based on a test case
that was added in the commit that �xed the failure. Figure 7c shows the input JavaScript source code
in its entirety along with the portions of the input identi�ed as failure-relevant by each propagation
policy. Listing 9 depicts the simpli�ed, failure-inducing input produced for the failure-inducing
input in Figure 7c. The simpli�ed, failure-inducing input contains a legacy generator function
with a yield expression following a try-finally statement. Both the developer-identi�ed failure
conditions and the simpli�ed, failure-inducing input indicate that the failure described in issue
#539 is related to the finally on line 6 and the yield on line 11 of Figure 7c.
As shown in Figure 6, ��������� did not mark any portions of the input as failure-relevant

and ������������� marked almost every input character as failure-relevant. Unexpectedly, SCD
and C������ often marked only part of a keyword as failure relevant, for example, both policies
marked only the “i” in finally as failure relevant. This was due to the structure of the code that
Rhino uses for lexing, converting characters sequences into tokens, JavaScript inputs [48]. Part of
this code is displayed in Listing 12. In the case of the keyword finally, there is not control �ow
from all of the characters of the input string “�nally” to the token produced from it; there is only a
�ow from the character “i”.

OpenRe�ne. OpenRe�ne is a tool for manipulating, managing, and visualizing data [53]. We
studied the OpenRe�ne failure reported in issue #2584 [52]. A developer for OpenRe�ne described

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



A Practical Approach for Dynamic Taint Tracking with Control-Flow Relationships 1:35

��������� ������������� SCD C������

0.0 1.0 0.1 0.1

0.0 1.0 0.0 0.0

0.0 1.0 0.2 0.1

0.0 1.0 0.0 0.0

0.0 0.9 0.2 0.2

0.0 0.9 0.4 0.4

0.0 0.9 0.2 0.1

0.0 1.0 0.1 0.0

0.0 1.0 0.4 0.4

0.0 0.8 0.0 0.0

0.0 1.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 0.8 0.0 0.0

0.0 0.8 0.0 0.0

0.0 1.0 0.0 0.0

0.0 0.8 0.0 0.0

0.0 1.0 0.0 0.0

1 goog.provide(�fs.observe�);

2

3 goog.require(�fs.debug�);

4

5 fs.observe.listen = function(obj, listener) {

6 try {

7 if (obj.observe === undefined) {

8 // TODO

9 throw;

10 }

11 obj.observe(listener);

12 return true;

13 }

14 catch (e) {

15 fs.debug.print(�fs.observe failed with exception � + e);

16 }

17 return false;

18 }; 0.0 0.5 0.0 0.0

(a) JavaScript input used to reproduce the Closure failure
reported in issue #652 [21].

0.0 1.0 0.2 0.0

0.2 1.0 0.8 0.5

0.0 0.0 0.0 0.0

1 a,b

2 1,2

3 2018-09-01T01:02:03Z,f

4 true,23.2 0.0 0.0 0.0 0.0

(b) CSV input used to reproduce the OpenRefine failure
reported in issue #2584 [52].

0.0 1.0 0.3 0.2

0.0 1.0 0.6 0.2

0.0 1.0 1.0 0.5

0.0 1.0 0.8 0.2

0.0 1.0 0.5 0.1

0.0 1.0 0.6 0.1

0.0 1.0 0.8 0.0

0.0 1.0 0.5 0.0

0.0 1.0 1.0 0.0

0.0 1.0 0.8 0.0

0.0 1.0 0.2 0.0

1 function tfGenerator() {

2 var gv = 0;

3 try {

4 gv = 1;

5 yield gv;

6 } finally {

7 gv = 2;

8 yield gv;

9 }

10 gv = 90;

11 yield gv;

12 } 0.0 0.0 0.0 0.0

(c) JavaScript input used to reproduce the
Rhino failure reported in issue #539 [47].

0.0 1.0 0.5 0.5

0.0 1.0 0.8 0.3

0.0 1.0 0.7 0.2

0.0 1.0 0.8 0.7

0.0 1.0 0.8 0.1

0.0 1.0 0.9 0.8

0.0 1.0 0.7 0.7

0.0 1.0 0.0 0.0

0.0 1.0 0.0 0.0

1 {

2 �separator�: �,�,

3 �limit�: -1,

4 �skipDataLines�: 0,

5 �ignoreLines�: 0,

6 �guessCellValueTypes�: true,

7 �trimStrings�: true,

8 �processQuotes�: true,

9 �headerLines�: 0

10 } 0.0 0.0 0.0 0.0

(d) JSON input used to reproduce the
OpenRefine failure reported in issue

#2584 [52].

0.0 1.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 1.0 0.8 0.1

0.0 1.0 0.7 0.2

0.0 1.0 0.5 0.4

0.0 1.0 0.7 0.1

1 DROP TABLE IF EXISTS t;

2 CREATE TABLE t (a int, b int);

3

4 MERGE INTO t

5 USING (SELECT 1 a) s

6 ON (a = 1)

7 WHEN NOT MATCHED AND s.a = 1 THEN INSERT (a, b) VALUES (1, 1)

8 WHEN NOT MATCHED AND s.b = 2 THEN INSERT (a, b) VALUES (2, 2); 0.0 1.0 0.7 0.0

(e) SQL input used to reproduce the H2 failure reported in issue #2550 [31].

Fig. 7. Failure-relevant input regions identified by ���������, �������������, SCD, and C������ are
underlined in gray, orange, teal, and magenta respectively. To the right of each line of input, the ratio

between the total number of characters on that line and the number of characters on that line marked as
failure-relevant by ���������, �������������, SCD, and C������ is displayed in gray, orange, teal, and

magenta respectively. This ratio includes newline characters.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:36 Katherine Hough and Jonathan Bell

1 L: switch (s.length ()) {
2 case 2: c=s.charAt (1);
3 if (c==�f�) { if (s.charAt (0)==�i�) {id=Id_if; break L0;} }
4 else if (c==�n�) { if (s.charAt (0)==�i�) {id=Id_in; break L0;} }
5 else if (c==�o�) { if (s.charAt (0)==�d�) {id=Id_do; break L0;} }
6 break L;
7 case 7: switch (s.charAt (1)) {
8 case �a�: X=�package�;id=Id_package; break L;
9 case �e�: X=�default�;id=Id_default; break L;
10 case �i�: X=�finally�;id=Id_finally; break L;
11 case �o�: X=�boolean�;id=Id_boolean; break L;
12 case �r�: X=�private�;id=Id_private; break L;
13 case �x�: X=�extends�;id=Id_extends; break L;
14 } break L;

Listing 12. Part of the Java code used by Mozilla Rhino for lexing JavaScript source code [48].

this failure as occurring “when both trim and autodetect are enabled in tabular parser” [51]. In this
and other comments, the developer notes that if both the “trimStrings” and “guessCellValueTypes”
con�guration options are enabled, OpenRe�ne will crash when importing a numeric value using
an importer that subclasses TabularImportingParserBase [51, 52].

Two separate inputs were needed to reproduce the failure reported in issue #2584 [52] The �rst
input was a comma separated values (CSV) �le containing input data to be imported that was
provided in issue #2584 [52]. The other input was a JavaScript object notation (JSON) con�guration
�le that was based on a test case that was added in the commit that �xed that the failure. Figure 7b
shows the CSV input in its entirety and Figure 7d shows the JSON input in its entirety. Both �gures
show which portions of the input were identi�ed as failure-relevant by each propagation policy.
Listing 7 depicts the simpli�ed, failure-inducing input produced for the failure-inducing, CSV input
in Figure 7b. The simpli�ed, failure-inducing input contains two rows: an empty header row and
a row containing a single numeric value. Listing 8 depicts the simpli�ed, failure-inducing input
produced for the failure-inducing, JSON input in Figure 7d. This input is a JSON object with two
properties: “guessCellValueTypes” and “trimStrings”. The value of both of these properties is the
boolean true. Both the developer-identi�ed failure conditions and the simpli�ed, failure-inducing
input suggest that the JSON properties “guessCellValueTypes” and “trimStrings”, and their values
are relevant to the failure. Additionally, both the developer-identi�ed failure conditions and the
simpli�ed, failure-inducing input indicate that a numeric value in the CSV input is relevant to the
failure. The �xing commit suggests that �rst numeric value in the CSV input that is not in a header
row (the number “1” on line 2 of Figure 7b) triggers the failure [51].
As depicted in Figure 7b, all of the propagation policies, even ���������, marked the numeric

value that triggered the failure (the number “1” on line 2 of Figure 7b) as failure-relevant. This
is the only input value ever marked as failure-relevant by ��������� in any of the failures we
examined. ������������� marked additional portions of the CSV input as failure-relevant likely
obfuscating the true cause of the failure. For the JSON input depicted in Figure 7d, ��������� did not
mark any portions of the input as failure-relevant and ������������� marked almost every input
character as failure-relevant. SCD and C������ reported the properties “guessCellValueTypes” and
“trimStrings”, and their values as failure-relevant. However, they both reported additional regions of
the JSON input that are unlikely to be helpful to a developer trying to debug the failure. C������
reports fewer of these regions than SCD.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



A Practical Approach for Dynamic Taint Tracking with Control-Flow Relationships 1:37

H2 Database Engine. H2 is a Relational Database Management System (RDBMS) implemented
in Java that supports a subset of Structured Query Language (SQL) [32]. H2 issue #2550 [31] details
the failure that we selected. In the �xing commit for this failure, an H2 developer described the
failure as a “NullPointerException with MERGE containing unknown column in AND condition
of WHEN” [30]. This comment indicates that the failure occurs when H2 tries to execute a MERGE
statement containing a WHEN NOT MATCHED clause with an AND expression that refers to an unknown
column [30, 31].
We reproduced the failure reported in issue #2550 using the SQL statements provided in issue

#2550 [31]. Figure 7e shows the input SQL statements in their entirety along with the portions of
the input identi�ed as failure-relevant by each propagation policy. Listing 10 depicts the simpli�ed,
failure-inducing input produced for the failure-inducing input in Figure 7e. The simpli�ed, failure-
inducing input contains a CREATE TABLE statement and a MERGE statement. Both the developer-
identi�ed failure conditions and the simpli�ed, failure-inducing input indicate that the command
MERGE, the clause WHEN NOT MATCHED, the keyword AND, and the unknown reference, “s.b”, that
appears on line 8 of Figure 7e are relevant to the failure.
As depicted in Figure 7e, ��������� did not mark any portions of the input as failure-relevant.

Conversely, ������������� reported the entire input as failure-relevant. SCD and C������ only
marked portions of the MERGE statement as failure-relevant. SCD marked almost the entire MERGE
statement as failure-relevant. C������ only marked small portions of the MERGE statement as
relevant; it is unclear whether these smaller portions better illuminate the cause of the failure.

Summary.When considering the input values marked as failure-relevant by each propagation
policy, it is clear that ��������� and ������������� are unlikely to be useful to a developer
attempting to debug a failure. This underscores the need for alternative taint tag propagation
semantics. The portions of each input marked as failure-relevant by SCD and C������ appear to
be more useful for analyzing the failures. SCD tended to mark more characters as failure-relevant
than C������ and, in some cases, marked most of the input as failure-relevant.

6.6 Threats to Validity
One threat to the validity of our experiments stems from our selection of evaluation subjects for
the benchmark. Our benchmark tests a limited number of methods from only a handful of projects.
As discussed in Section 6, it is challenging to determine which taint tags should propagate to which
values for an arbitrary, real-world program. Thus, only methods that met certain criteria (detailed
in Section 6.2) could be included in the benchmark. As a result, the benchmark is not necessarily
representative of all Java programs. However, we selected these methods based on a search for
popular Java libraries.
Additionally, the ground truth expected label sets we used for the benchmark may not be

appropriate for every application of taint tracking. For example, in some applications it could be
desirable for propagated labels to re�ect looser or stronger relationships than those re�ected in
our ground truth. Nonetheless, we feel that our ground truth selection follows best practices of
state-of-the-art taint tracking evaluations [45, 56].

Unlike the benchmark, the case study evaluation that we performed did not require a manually
speci�ed ground truth. However, the case study evaluation was limited to a single application
of taint tracking and examined a limited number of subjects and failures. Therefore, it may not
generalize to other applications of taint tracking or other subjects.

7 RELATEDWORK
Control �ow tracking approaches. Several existing taint tracking systems do not o�er support
for control �ow tracking [17, 50, 58]. However, some systems support the standard semantics

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:38 Katherine Hough and Jonathan Bell

discussed in Section 2 [11, 12, 18]. Several of these systems attempt to address control-�ow-related
over-tainting. Bao et al. [8] propose propagating control �ows only along branches that correspond
to equivalence checks. Kang et al. [41] put forward a similar approach, but instead target branches
related to information-preserving transformations. These branches are determined by analyzing
execution traces to �nd control �ow paths that can only be reached by a single input value. Attariyan
and Flinn [7] mitigate over-tainting from control �ows by reducing the weight of a taint tag when
it is propagated via a control �ow. Cox et al. [24] address control-�ow-related over-tainting in their
approach for preventing Android applications from leaking users’ passwords by quantifying the
amount of information revealed by control �ows. This quantity is then used to decide whether to
propagate taint tags along a control �ow. Unlike these approaches, C������ uses an alternative
de�nition for control �ow scopes and propagates to a subset of statements within control �ows’
scopes.

Applications of control �ow tracking. Both static and dynamic information �ow analyses
have been applied to a variety of applications in which control �ows could signi�cantly impact
results. Sabelfeld and Myers [60] explore approaches to security-type systems and semantics-
based security models for enforcing information-�ow con�dentiality policies. They focus on a
noninterference policy for con�dentiality which is highly conservative and must therefore take
implicit �ows, such as control �ows, into account. McCamant and Ernst [45] propose measuring
the maximum �ow of secret information with a network �ow capacity model instead of using a
taint tracking approach to con�dentiality enforcement. This quantitative approach may support
di�erent techniques for addressing control �ows than traditional taint tracking. Halfond et al.
[33] provide an automated technique for detecting and preventing SQL injection attacks using
“positive-tainting”. Positive-tainting tracks the �ow of trusted values opposed to the more common
approach of “negative” tainting which tracks untrusted values. However, control �ows can result
in malicious values being built from trusted ones; this issue is not addressed by Halfond et al. [33].
Clause and Orso [19] present Penumbra, a tool for identifying the subset of a failure-inducing
inputs that are failure-relevant in order to assist with program debugging. They found that for
some programs propagating taint tags along control �ows resulted in a prohibitively large number
of program inputs being marks as failure-relevant. Huo and Clause [36] use dynamic taint analysis
to identify test cases that check too much of the program state making them di�cult to maintain
and test cases that check too little of the program state reducing their ability to detect bugs.
Their approach requires both data and control �ows to be tracked. Various existing fuzzing tools
leverage taint tracking to generate “interesting” inputs capable of �nding bugs deep in a program’s
execution [28, 59, 70]. To the best of our knowledge, none of these tools propagate taint tags along
control �ows. However, we believe that these tools could likely bene�t from applying C������’s
control �ow propagation semantics.

Evaluating taint tracking systems. An assortment of techniques have been used to evaluate
the accuracy of taint tracking systems. Jee [37]’s tool, TaintMark, looks at system outputs when
given di�erent input values to determine if taint tags should propagate from the inputs to the
outputs. Di�erences in the outputs for di�erent input values are interpreted as meaning that taint
tags from the input should have propagated to the output. By contrast, ReproDroid, Pauck et al.
[56]’s framework for comparing Android taint analysis tools, requires the ground truth for test
cases to be manually classi�ed. Pauck et al. [56] note that this manual determination of the ground
truth is necessary because, “tools that could potentially be used to derive the ground truth are at
the same time the tools we want to evaluate.” Inspired by Pauck et al. [56], our evaluation does
not use an automatically-determined ground truth. Other evaluations have also used application
speci�c techniques [7, 35, 36, 59].

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



A Practical Approach for Dynamic Taint Tracking with Control-Flow Relationships 1:39

Various studies have considered the impact of propagating implicit and control �ows on taint
tracking results. Staicu et al. [66] investigate the prevalence of implicit �ows and the criticality of
detecting implicit �ows when using dynamic taint tracking to enforce security and privacy policies
in JavaScript applications. They conclude that it is su�cient to consider only data �ows in order to
detect security-related source-to-sink �ows, but in order to discover privacy-related source-to-sink
�ows, implicit �ows also needed to be considered. King et al. [42] examine explicit and implicit
�ows that are reported by a security-typed language enforcing noninterference. They found that
implicit �ows caused the majority of true positives reported, but also caused a large number of
the false positives. Additionally, they found that the vast majority of exception-induced �ows due
to unchecked exceptions were false alarms that could not occur at runtime. Exception-induced
information �ows are beyond the scope of this work. Clause et al. [18] explore the relationship
between di�erent taint propagation approaches and the amount of memory tainted �nding that
propagating control �ows resulted in signi�cantly more tainted memory. However, they did not
evaluate the accuracy of di�erent propagation policies.

Dynamic slicing. One related technique to taint tracking is dynamic slicing [67, 71]. Dynamic
slicing computes the subset of program statements that a�ected values at a particular program
point for a particular program execution or executions, referred to as a “slice”. Like taint tracking,
slicing aims to reason about relationships in programs. However, slicing relates values to statements
whereas, taint tracking relates values to other values.

Early work on dynamic slicing examined imprecision related to inaccurate dynamic dependence
calculations. These errors were caused by analyses that did not distinguish between di�erent
executions of the same instruction. Dynamic taint tracking systems typically track control �ows
using the stack-based approach described in Section 2. This stack-based approach accurately
calculates dynamic dependences and is not subject to the inaccuracy of early dynamic slicers [72].
Agrawal and Horgan [1] introduces the notion of the “Dynamic Dependence Graph” (DDG) which
contains a node for each instruction execution and edges between instruction executions that are
dynamically dependent. They propose a technique for calculating precise dynamic slices by using
DDGs and more e�cient technique that uses a compacted version of the DDG. Zhang et al. [76]
improve upon the work of Agrawal and Horgan [1] by using novel data structures that reduce the
computational cost of constructing the DDG and leveraging an on-demand construction of DDGs
to reduce memory usage. Zhang and Gupta [75] explore the space and time performance bene�ts
of leveraging a novel, highly compact representation of the DDG. Unlike works on precise dynamic
slicing, inaccurate dynamic dependence computations are not the source of the control-�ow-related
imprecision addressed in this work. Instead, C������ aims to avoid propagating along control
�ows arising from dynamic dependences that are not likely to be information preserving despite
being genuine dynamic dependences.
Although not identical to the control-�ow-related over-tainting problem that C������ aims

to address, prior work on slicing has proposed techniques for reducing the size of slices to better
support automated debugging and program understanding tasks. Zhang et al. [74] use a heuristic
approach based on the correctness of outputs computed using a statement to identify and remove
statements that are unlikely to be related to a fault from computed slices. In contrast to Zhang et al.
[74]’s approach, C������’s heuristic is suitable for applications other than fault analysis and does
not require an oracle for determining the correctness of outputs. A related technique, thin slicing,
was proposed by Sridharan et al. [65]. Thin slicing only includes statements which are part of some
sequence of assignments that compute and copy a value to a target location in the slice for the
target location [65]. Whereas C������ uses binding scopes and the loop-relative stability heuristic
to identify control �ow relationships that are unlikely to be information preserving, thin slicing

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.



1:40 Katherine Hough and Jonathan Bell

simply excludes all control dependences in its slice construction. An interesting topic for future
work might be to apply C������’s notion of binding scopes and loop-relative stability to slicing.

8 CONCLUSION
Techniques that require high-precision, dynamic taint tracking are highly prevalent in software
engineering research [7, 27, 28, 35, 36, 49, 59, 61, 63, 70]. Many of these techniques would greatly
bene�t from accurately propagated control �ow relationships. However, the standard control �ow
propagation semantics are mismatched with the standard data �ow semantics. This mismatch often
results in severe over-tainting making the standard control �ow propagation semantics impractical
for most applications. Prior approaches to mitigate this over-tainting fail to address many of its
fundamental sources. C������, our alternative control �ow propagation semantics, decreases the
scope of control �ows and leverages a novel heuristic, loop-relative stability, to determine whether
a control �ow’s taint tags should propagate to a particular statement. We compared C������ to
three other control �ow propagation policies on a benchmark containing 48 tests consisting of
programs for encoding and decoding text. C������ had the highest F1 score on 43 out of the 48
total tests when using test inputs of a �xed size. Additionally, when the size of test inputs scaled,
C������’s F1 score remained constant on all but 2 of the 48 tests indicating that C������ helped
to mitigate taint explosions associated with large inputs. We also examined the impact of C������
of a concrete application of taint tracking, automated debugging. C������ and the experiments
described in this paper are publicly available under the BSD 3-Clause License [34].

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valuable feedback. This work was
funded in part by NSF CCF-2100037, NSF CNS-2100015, and the NSA under contract number
H98230-18-D-008.

REFERENCES
[1] Hiralal Agrawal and Joseph R. Horgan. 1990. Dynamic Program Slicing. SIGPLAN Not. 25, 6 (June 1990), 246–256.

https://doi.org/10.1145/93548.93576
[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Je�rey D. Ullman. 2006. Compilers: Principles, Techniques, and Tools (2nd

Edition). Addison-Wesley Longman Publishing Co., Inc., USA.
[3] Apache Software Foundation. 2019. Apache Commons Codec (version 1.14). http://commons.apache.org/proper/

commons-codec/.
[4] Apache Software Foundation. 2019. Apache Commons Text (version 1.8). https://commons.apache.org/proper/

commons-text/.
[5] Apache Software Foundation. 2019. Apache Tomcat (version 9.0.19). https://tomcat.apache.org.
[6] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien

Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-Sensitive and Lifecycle-Aware
Taint Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Edinburgh, United Kingdom) (PLDI ’14). Association for Computing Machinery, New York,
NY, USA, 259–269. https://doi.org/10.1145/2594291.2594299

[7] Mona Attariyan and Jason Flinn. 2010. Automating Con�guration Troubleshooting with Dynamic Information Flow
Analysis. In Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation (Vancouver, BC,
Canada) (OSDI ’10). USENIX Association, USA, 237–250.

[8] Tao Bao, Yunhui Zheng, Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. 2010. Strict Control Dependence and Its
E�ect on Dynamic Information Flow Analyses. In Proceedings of the 19th International Symposium on Software Testing
and Analysis (Trento, Italy) (ISSTA ’10). ACM, New York, NY, USA, 13–24. https://doi.org/10.1145/1831708.1831711

[9] Jonathan Bell and Gail Kaiser. 2014. Phosphor. https://github.com/gmu-swe/phosphor.
[10] Jonathan Bell and Gail Kaiser. 2014. Phosphor: Illuminating Dynamic Data Flow in Commodity Jvms. In Proceedings of

the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications (Portland,
Oregon, USA) (OOPSLA ’14). ACM, New York, NY, USA, 83–101. https://doi.org/10.1145/2660193.2660212

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/93548.93576
http://commons.apache.org/proper/commons-codec/
http://commons.apache.org/proper/commons-codec/
https://commons.apache.org/proper/commons-text/
https://commons.apache.org/proper/commons-text/
https://tomcat.apache.org
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/1831708.1831711
https://github.com/gmu-swe/phosphor
https://doi.org/10.1145/2660193.2660212


A Practical Approach for Dynamic Taint Tracking with Control-Flow Relationships 1:41

[11] Jonathan Bell and Gail Kaiser. 2015. Dynamic Taint Tracking for Java with Phosphor (Demo). In Proceedings of the
2015 International Symposium on Software Testing and Analysis (Baltimore, MD, USA) (ISSTA 2015). Association for
Computing Machinery, New York, NY, USA, 409–413. https://doi.org/10.1145/2771783.2784768

[12] D. Chandra and M. Franz. 2007. Fine-Grained Information Flow Analysis and Enforcement in a Java Virtual Machine.
In Twenty-Third Annual Computer Security Applications Conference (ACSAC 2007). IEEE Computer Society, 463–475.
https://doi.org/10.1109/ACSAC.2007.37

[13] Chia che Tsai, Jeongseok Son, Bhushan Jain, John McAvey, Raluca Ada Popa, and Donald E. Porter. 2020. Civet: An
E�cient Java Partitioning Framework for Hardware Enclaves. In 29th USENIX Security Symposium (USENIX Security
20). USENIX Association, 505–522. https://www.usenix.org/conference/usenixsecurity20/presentation/tsai

[14] Checkstyle Contributors. 2020. Checkstyle Commit 70c7ae0. https://github.com/checkstyle/checkstyle/commit/
70c7ae0e1866074530a49c983d015936a0c2c10f.

[15] Checkstyle Contributors. 2020. Checkstyle Issue #8934. https://github.com/checkstyle/checkstyle/issues/8934.
[16] Checkstyle Contributors. 2020. Checkstyle (version 8.37). https://github.com/checkstyle/checkstyle.
[17] Erika Chin and David Wagner. 2009. E�cient Character-Level Taint Tracking for Java. In Proceedings of the 2009 ACM

Workshop on Secure Web Services (Chicago, Illinois, USA) (SWS ’09). Association for Computing Machinery, New York,
NY, USA, 3–12. https://doi.org/10.1145/1655121.1655125

[18] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: A Generic Dynamic Taint Analysis Framework. In
Proceedings of the 2007 International Symposium on Software Testing and Analysis (London, United Kingdom) (ISSTA
’07). ACM, New York, NY, USA, 196–206. https://doi.org/10.1145/1273463.1273490

[19] James Clause and Alessandro Orso. 2009. Penumbra: Automatically Identifying Failure-relevant Inputs Using Dynamic
Tainting. In Proceedings of the Eighteenth International Symposium on Software Testing and Analysis (Chicago, IL, USA)
(ISSTA ’09). ACM, New York, NY, USA, 249–260. https://doi.org/10.1145/1572272.1572301

[20] Closure Compiler Authors. 2014. Google Closure Compiler Commit aac5d11. https://github.com/google/closure-
compiler/commit/aac5d11480a0ed3f37919c23a5d3cc210e534bd5.

[21] Closure Compiler Authors. 2014. Google Closure Compiler Issue #652. https://github.com/google/closure-compiler/
issues/652.

[22] Closure Compiler Authors. 2014. Google Closure Compiler (version v20140814). https://github.com/google/closure-
compiler.

[23] Keith Cooper, Timothy Harvey, and Ken Kennedy. 2006. A Simple, Fast Dominance Algorithm. Rice University, CS
Technical Report 06-33870. Rice University.

[24] Landon P. Cox, Peter Gilbert, Geo�rey Lawler, Valentin Pistol, Ali Razeen, Bi Wu, and Sai Cheemalapati. 2014. SpanDex:
Secure Password Tracking for Android. In 23rd USENIX Security Symposium (USENIX Security 14). USENIX Association,
San Diego, CA, 481–494. https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/cox

[25] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. 1991. E�ciently Computing
Static Single Assignment Form and the Control Dependence Graph. ACM Trans. Program. Lang. Syst. 13, 4 (Oct. 1991),
451–490. https://doi.org/10.1145/115372.115320

[26] Dorothy E. Denning and Peter J. Denning. 1977. Certi�cation of Programs for Secure Information Flow. Commun.
ACM 20, 7 (July 1977), 504–513. https://doi.org/10.1145/359636.359712

[27] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N. Sheth.
2010. TaintDroid: An Information-Flow Tracking System for Realtime Privacy Monitoring on Smartphones. In
9th USENIX Symposium on Operating Systems Design and Implementation (OSDI 10). USENIX Association, Vancou-
ver, BC. https://www.usenix.org/conference/osdi10/taintdroid-information-�ow-tracking-system-realtime-privacy-
monitoring

[28] V. Ganesh, T. Leek, and M. Rinard. 2009. Taint-based directed whitebox fuzzing. In 2009 IEEE 31st International
Conference on Software Engineering. 474–484.

[29] Google LLC. 2020. Guava (version 28.2-jre). https://github.com/google/guava.
[30] H2 Contributors. 2020. H2 Commit 6c564e6. https://github.com/h2database/h2database/commit/

6c564e63eb6a3c819eaab19f4aece3298db2ab5f.
[31] H2 Contributors. 2020. H2 Issue #2550. https://github.com/h2database/h2database/issues/2550.
[32] H2 Contributors. 2020. H2 (version 1.4.200). https://github.com/h2database/h2database/.
[33] William G. J. Halfond, Alessandro Orso, and Panagiotis Manolios. 2006. Using Positive Tainting and Syntax-aware

Evaluation to Counter SQL Injection Attacks. In Proceedings of the 14th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (Portland, Oregon, USA) (SIGSOFT ’06/FSE-14). ACM, New York, NY, USA, 175–185.
https://doi.org/10.1145/1181775.1181797

[34] Katherine Hough and Jonathan Bell. 2021. A Practical Approach for Dynamic Taint Tracking with Control-Flow
Relationships (Artifact). https://doi.org/10.6084/m9.�gshare.16611424.v1.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/2771783.2784768
https://doi.org/10.1109/ACSAC.2007.37
https://www.usenix.org/conference/usenixsecurity20/presentation/tsai
https://github.com/checkstyle/checkstyle/commit/70c7ae0e1866074530a49c983d015936a0c2c10f
https://github.com/checkstyle/checkstyle/commit/70c7ae0e1866074530a49c983d015936a0c2c10f
https://github.com/checkstyle/checkstyle/issues/8934
https://github.com/checkstyle/checkstyle
https://doi.org/10.1145/1655121.1655125
https://doi.org/10.1145/1273463.1273490
https://doi.org/10.1145/1572272.1572301
https://github.com/google/closure-compiler/commit/aac5d11480a0ed3f37919c23a5d3cc210e534bd5
https://github.com/google/closure-compiler/commit/aac5d11480a0ed3f37919c23a5d3cc210e534bd5
https://github.com/google/closure-compiler/issues/652
https://github.com/google/closure-compiler/issues/652
https://github.com/google/closure-compiler
https://github.com/google/closure-compiler
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/cox
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/359636.359712
https://www.usenix.org/conference/osdi10/taintdroid-information-flow-tracking-system-realtime-privacy-monitoring
https://www.usenix.org/conference/osdi10/taintdroid-information-flow-tracking-system-realtime-privacy-monitoring
https://github.com/google/guava
https://github.com/h2database/h2database/commit/6c564e63eb6a3c819eaab19f4aece3298db2ab5f
https://github.com/h2database/h2database/commit/6c564e63eb6a3c819eaab19f4aece3298db2ab5f
https://github.com/h2database/h2database/issues/2550
https://github.com/h2database/h2database/
https://doi.org/10.1145/1181775.1181797
https://doi.org/10.6084/m9.figshare.16611424.v1


1:42 Katherine Hough and Jonathan Bell

[35] Katherine Hough, Gebrehiwet Welearegai, Christian Hammer, and Jonathan Bell. 2020. Revealing Injection Vul-
nerabilities by Leveraging Existing Tests. In Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering (Seoul, South Korea) (ICSE ’20). Association for Computing Machinery, New York, NY, USA, 284–296.
https://doi.org/10.1145/3377811.3380326

[36] Chen Huo and James Clause. 2014. Improving Oracle Quality by Detecting Brittle Assertions and Unused Inputs in
Tests. In Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering (Hong
Kong, China) (FSE 2014). ACM, New York, NY, USA, 621–631. https://doi.org/10.1145/2635868.2635917

[37] Kangkook Jee. 2015. On E�ciency and Accuracy of Data Flow Tracking Systems. Ph.D. Dissertation. Columbia University.
https://doi.org/10.7916/D8MG7P9D

[38] Jianyu Jiang, Shixiong Zhao, Danish Alsayed, Yuexuan Wang, Heming Cui, Feng Liang, and Zhaoquan Gu. 2017.
Kakute: A Precise, Uni�ed Information Flow Analysis System for Big-Data Security. In Proceedings of the 33rd Annual
Computer Security Applications Conference (Orlando, FL, USA) (ACSAC 2017). Association for Computing Machinery,
New York, NY, USA, 79–90. https://doi.org/10.1145/3134600.3134607

[39] Jonathan Hedley. 2018. jsoup: Java HTML Parser (version 1.11.3). https://jsoup.org/.
[40] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A Database of Existing Faults to Enable Controlled

Testing Studies for Java Programs. In Proceedings of the 2014 International Symposium on Software Testing and Analysis
(San Jose, CA, USA) (ISSTA 2014). Association for Computing Machinery, New York, NY, USA, 437–440. https:
//doi.org/10.1145/2610384.2628055

[41] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Xiaodong Song. 2011. DTA++: Dynamic Taint
Analysis with Targeted Control-Flow Propagation. In NDSS.

[42] Dave King, Boniface Hicks, Michael Hicks, and Trent Jaeger. 2008. Implicit Flows: Can’t Live with ‘Em, Can’t Live
Without ‘Em. In Proceedings of the 4th International Conference on Information Systems Security (Hyderabad, India)
(ICISS ’08). Springer-Verlag, Berlin, Heidelberg, 56–70. https://doi.org/10.1007/978-3-540-89862-7_4

[43] Legion of the Bouncy Castle Inc. 2011. Bouncy Castle Provider (version 1.46). http://bouncycastle.org/.
[44] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. 2014. The Java Virtual Machine Speci�cation, Java SE 8

Edition (1st ed.). Addison-Wesley Professional.
[45] Stephen McCamant and Michael D. Ernst. 2008. Quantitative Information Flow As Network Flow Capacity. In

Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and Implementation (Tucson, AZ,
USA) (PLDI ’08). ACM, New York, NY, USA, 193–205. https://doi.org/10.1145/1375581.1375606

[46] MDN Contributors. 2019. Mozilla Rhino Commit 0c0bb39. https://github.com/mozilla/rhino/commit/
0c0bb391647600ec706b1ec66f71831893a6f564.

[47] MDN Contributors. 2019. Mozilla Rhino Issue #539. https://github.com/mozilla/rhino/issues/539.
[48] MDN Contributors. 2019. Mozilla Rhino (version 1.7.11). https://github.com/mozilla/rhino.
[49] Michaël Mera. 2019. Mining Constraints for Grammar Fuzzing. In Proceedings of the 28th ACM SIGSOFT International

Symposium on Software Testing and Analysis (Beijing, China) (ISSTA 2019). Association for Computing Machinery, New
York, NY, USA, 415–418. https://doi.org/10.1145/3293882.3338983

[50] James Newsome and Dawn Song. 2005. Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature
Generation of Exploits on Commodity Software.

[51] OpenRe�ne Contributors. 2020. OpenRe�ne Commit 825e687. https://github.com/OpenRe�ne/OpenRe�ne/commit/
825e687b0b676fd1be1fa0a9d00be22de0e57060.

[52] OpenRe�ne Contributors. 2020. OpenRe�ne Issue #2584. https://github.com/OpenRe�ne/OpenRe�ne/issues/2584.
[53] OpenRe�ne contributors. 2020. OpenRe�ne (version 3.4-SNAPSHOT). https://github.com/OpenRe�ne/OpenRe�ne.
[54] Oracle Corporation. 2019. OpenJDK Java Class Library (version 1.8.0_222). https://openjdk.java.net/.
[55] OW2 Consortium. 2019. ASM (version 7.1). https://asm.ow2.io/.
[56] Felix Pauck, Eric Bodden, and Heike Wehrheim. 2018. Do Android Taint Analysis Tools Keep Their Promises?. In

Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). ACM, New York, NY, USA, 331–341.
https://doi.org/10.1145/3236024.3236029

[57] Pivotal Software. 2020. Spring Framework (version 5.2.5). https://spring.io/projects/spring-framework.
[58] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou, and Youfeng Wu. 2006. LIFT: A Low-Overhead

Practical Information Flow Tracking System for Detecting Security Attacks. In Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 39). IEEE Computer Society, USA, 135–148. https://doi.org/10.
1109/MICRO.2006.29

[59] Sanjay Rawat, Vivek Jain, Ashish Jith Sreejith Kumar, Lucian Cojocar, Cristiano Giu�rida, and Herbert Bos. 2017.
VUzzer: Application-aware Evolutionary Fuzzing. In NDSS.

[60] A. Sabelfeld and A. C. Myers. 2006. Language-based Information-�ow Security. IEEE J.Sel. A. Commun. 21, 1 (Sept.
2006), 5–19. https://doi.org/10.1109/JSAC.2002.806121

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3377811.3380326
https://doi.org/10.1145/2635868.2635917
https://doi.org/10.7916/D8MG7P9D
https://doi.org/10.1145/3134600.3134607
https://jsoup.org/
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1007/978-3-540-89862-7_4
http://bouncycastle.org/
https://doi.org/10.1145/1375581.1375606
https://github.com/mozilla/rhino/commit/0c0bb391647600ec706b1ec66f71831893a6f564
https://github.com/mozilla/rhino/commit/0c0bb391647600ec706b1ec66f71831893a6f564
https://github.com/mozilla/rhino/issues/539
https://github.com/mozilla/rhino
https://doi.org/10.1145/3293882.3338983
https://github.com/OpenRefine/OpenRefine/commit/825e687b0b676fd1be1fa0a9d00be22de0e57060
https://github.com/OpenRefine/OpenRefine/commit/825e687b0b676fd1be1fa0a9d00be22de0e57060
https://github.com/OpenRefine/OpenRefine/issues/2584
https://github.com/OpenRefine/OpenRefine
https://openjdk.java.net/
https://asm.ow2.io/
https://doi.org/10.1145/3236024.3236029
https://spring.io/projects/spring-framework
https://doi.org/10.1109/MICRO.2006.29
https://doi.org/10.1109/MICRO.2006.29
https://doi.org/10.1109/JSAC.2002.806121


A Practical Approach for Dynamic Taint Tracking with Control-Flow Relationships 1:43

[61] Tejas Saoji, Thomas H. Austin, and Cormac Flanagan. 2017. Using Precise Taint Tracking for Auto-sanitization. In
Proceedings of the 2017 Workshop on Programming Languages and Analysis for Security (Dallas, Texas, USA) (PLAS ’17).
ACM, New York, NY, USA, 15–24. https://doi.org/10.1145/3139337.3139341

[62] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You Ever Wanted to Know about Dynamic
Taint Analysis and Forward Symbolic Execution (but Might Have Been Afraid to Ask). In Proceedings of the 2010 IEEE
Symposium on Security and Privacy (SP ’10). IEEE Computer Society, USA, 317–331. https://doi.org/10.1109/SP.2010.26

[63] Haichen Shen, Aruna Balasubramanian, Anthony LaMarca, and David Wetherall. 2015. Enhancing Mobile Apps to Use
Sensor Hubs without Programmer E�ort. In Proceedings of the 2015 ACM International Joint Conference on Pervasive
and Ubiquitous Computing (Osaka, Japan) (UbiComp ’15). Association for Computing Machinery, New York, NY, USA,
227–238. https://doi.org/10.1145/2750858.2804260

[64] John Singleton. 2018. Advancing Practical Speci�cation Techniques for Modern Software Systems. Ph.D. Dissertation.
University of Central Florida. http://purl.fcla.edu/fcla/etd/CFE0007099

[65] Manu Sridharan, Stephen J. Fink, and Rastislav Bodík. 2007. Thin slicing. In Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’07). Association for Computing Machinery,
New York, NY, USA, 112–122. https://doi.org/10.1145/1250734.1250748

[66] Cristian-Alexandru Staicu, Daniel Schoepe, Musard Balliu, Michael Pradel, and Andrei Sabelfeld. 2019. An Empirical
Study of Information Flows in Real-World JavaScript. In Proceedings of the 14th Workshop on Programming Languages
and Analysis for Security (London, United Kingdom) (PLAS ’19). ACM, New York, NY, USA, 15. https://doi.org/10.1145/
3338504.3357339

[67] Frank Tip. 1995. A Survey of Program Slicing Techniques. Journal of Programming Languages 3 (1995), 121–189.
[68] John Toman and Dan Grossman. 2016. Staccato: A Bug Finder for Dynamic Con�guration Updates. In 30th European

Conference on Object-Oriented Programming (ECOOP 2016) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 56), Shriram Krishnamurthi and Benjamin S. Lerner (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 24:1–24:25. https://doi.org/10.4230/LIPIcs.ECOOP.2016.24

[69] Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, Sven Apel, and Christian Kästner. 2021. White-Box Analysis over
Machine Learning: Modeling Performance of Con�gurable Systems. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). 1072–1084. https://doi.org/10.1109/ICSE43902.2021.00100

[70] T. Wang, T. Wei, G. Gu, and W. Zou. 2010. TaintScope: A Checksum-Aware Directed Fuzzing Tool for Automatic
Software Vulnerability Detection. In 2010 IEEE Symposium on Security and Privacy. 497–512.

[71] M. Weiser. 1984. Program Slicing. IEEE Transactions on Software Engineering SE-10, 4 (1984), 352–357. https:
//doi.org/10.1109/TSE.1984.5010248

[72] Bin Xin and Xiangyu Zhang. 2007. E�cient Online Detection of Dynamic Control Dependence. In Proceedings of the
2007 International Symposium on Software Testing and Analysis (London, United Kingdom) (ISSTA ’07). Association for
Computing Machinery, New York, NY, USA, 185–195. https://doi.org/10.1145/1273463.1273489

[73] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-Inducing Input. 28, 2 (Feb. 2002), 183–200.
https://doi.org/10.1109/32.988498

[74] Xiangyu Zhang, Neelam Gupta, and Rajeev Gupta. 2006. Pruning dynamic slices with con�dence. In Proceedings of
the 27th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’06). Association for
Computing Machinery, New York, NY, USA, 169–180. https://doi.org/10.1145/1133981.1134002

[75] Xiangyu Zhang and Rajiv Gupta. 2004. Cost E�ective Dynamic Program Slicing. SIGPLAN Not. 39, 6 (June 2004),
94–106. https://doi.org/10.1145/996893.996855

[76] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. 2003. Precise Dynamic Slicing Algorithms. In Proceedings of the 25th
International Conference on Software Engineering (Portland, Oregon) (ICSE ’03). IEEE Computer Society, USA, 319–329.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3139337.3139341
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1145/2750858.2804260
http://purl.fcla.edu/fcla/etd/CFE0007099
https://doi.org/10.1145/1250734.1250748
https://doi.org/10.1145/3338504.3357339
https://doi.org/10.1145/3338504.3357339
https://doi.org/10.4230/LIPIcs.ECOOP.2016.24
https://doi.org/10.1109/ICSE43902.2021.00100
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1109/TSE.1984.5010248
https://doi.org/10.1145/1273463.1273489
https://doi.org/10.1109/32.988498
https://doi.org/10.1145/1133981.1134002
https://doi.org/10.1145/996893.996855

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Approach
	3.1 Binding Scope
	3.2 Loop-Relative Stability Heuristic

	4 Implementation
	4.1 Annotation
	4.2 Instrumentation and Runtime

	5 Limitations
	6 Evaluation
	6.1 Experimental Setup
	6.2 Benchmark
	6.3 RQ1: Accuracy
	6.4 RQ2: Accuracy Versus Input Size
	6.5 RQ3: Impact on a Concrete Application of Taint Tracking
	6.6 Threats to Validity

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

