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Variational based solvation models of biomolecules with smooth interface have drawn attentions in the past 
decade since they have been developed as an efficient and reliable representation of solute-solvent interfaces 
in the framework of implicit solvent models. This work aims at providing solid mathematical supports for 
a promising geometric flow based computational solvation model with smooth interface (GFBSS) and its 
involved computational treatments. For this purpose, we improve the GFBSS model by explicitly including two 
physical constraints: (1) a novel experimental based domain decomposition, and (2) a two-sided obstacle for 
the characteristic function describing the optimal diffuse solute-solvent boundary. It is shown that the resulting 
constrained model is mathematically well-posed. Further, to overcome the challenges arising from including 
these constraints, we propose a family of generalized constrained energy functionals whose variations satisfy 
a 𝑞-Laplacian type equation for nonpolar molecules. The solvation free energies predicted by the generalized 
models converge to that of the proposed constrained one. Most importantly, the numerical difference between 
the generalized models and the previous unconstrained GFBSS model is negligible. It implies that the newly 
proposed constrained solvation model and the previous unconstrained one are equivalent to each other in terms 
of the solvation free energy calculation and prediction. Our model validation, its numerical implementation, and 
solvation energy convergence have been demonstrated using several common biomolecular modeling tasks.
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1. Introduction

Solute-solvent interactions are typically described by solvation en-
ergies (or closely related quantities): the free energy of transferring the 
solute from a vacuum to the solvent environment of interest (e.g., water 
at a certain ionic strength). Solvation free energies can be calculated by 
a variety of computational methods ranging from very time-consuming 
quantum mechanical approaches to simple phenomenological modifica-
tions of Coulomb’s law. Implicit solvent methods have become popular 
for many applications in molecular simulation [2,5,20]. A variety of im-
plicit solvent models [2,14,27,40,42,46] are available to describe polar 
solvation; currently one of the most widely-used methods is the Poisson-
Boltzmann (PB) [2,21,24,29]. The separation of the discrete and the 
continuum domains in implicit solvent models requires an interface to 
indicate the separation of solute atoms from the surrounding solvent. 
Many solvation quantities, including surface areas, cavitation volumes, 
and electrostatic free energies, are sensitive to the interface definition. 
There are a number of different surface definitions, which include the 
van der Waals (vdW) surface, the solvent excluded surface (SES) and 
the solvent accessible surface (SAS), available for implicit solvent ap-
plications. These surface models do have much success in biomolecular 
modeling tasks such as protein folding, protein-protein interactions, and 
macromolecular docking. However, they are ad hoc partitions and may 
create geometric singularities. In addition, it has been observed that 
these surface definitions either non-negligibly overestimate or underes-
timate the solvation free energies [44].

In the framework of PB based implicit solvent approach, variational 
models of solvation have recently received attention [7,17,45,47,48,
50]. Among them, geometric flow based solvation model with smooth 
interface (GFBSS) [7] stands out as one of pioneering work. It not 
only incorporates descriptions of solvent-solute interactions and polar-
nonpolar coupling but also generates optimal diffuse interface between 
solute and solvent by the minimization of proposed energy functional. 
In particular, it aims at a physically realistic smooth solvent-solute 
boundary. The usage of smooth interface (related to inhomogeneous di-
electric profile) can be justified physically and biologically. First of all, 
there should be a smooth transition region, in which atoms of solute 
and solvent are mixed, between the SES surface and SAS surface. From 
a quantum mechanical point of view, biomolecules interact with solvent 
molecules and/or other biomolecules, and their wave functions and 
their electron density distributions overlap spatially. In addition, when 
considering the structures of water and ions around the biomolecules 
or close to the charged surface in PB equations, an effective position-
dependent dielectric function is needed to describe the smoothly vary-
ing dielectric property in the solvent domain [1,4,28].

The main idea of GFBSS model is to introduce a characteristic func-
tion 𝑢 to describe the distribution of solute throughout the domain (𝑢 = 1
for pure solute and 𝑢 = 0 for pure solvent) [7]. Then the minimization 
of a proposed total energy functional leads to an optimal profile of the 
characteristic function, which is defined as the smooth solvent-solute 
boundary between the atomic solute domain and continuum solvent 
domain. Specifically, the following total solvation free energy was pro-
posed in terms of 𝑢:

𝐼 =∫
Ω

𝛾|∇𝑢(𝐫)|𝑑𝐫 + ∫
Ω

𝑃ℎ𝑢(𝐫)𝑑𝐫 + ∫
Ω

𝜌𝑠(1 − 𝑢(𝐫))𝑈vdW(𝐫)𝑑𝐫

+ ∫
Ω

{
𝑢

[
𝜌𝑚(𝐫)𝜓(𝐫) −

1
2
𝜖𝑚|∇𝜓(𝐫)|2]

+(1 − 𝑢)

[
−1
2
𝜖𝑠|∇𝜓(𝐫)|2 − 𝛽−1 𝑁𝑐∑

𝑗=1
𝑐∞
𝑗
(𝑒−𝛽𝑞𝑗𝜓(𝐫) − 1)

]}
𝑑𝐫, (1)
18
Here ∫Ω 𝛾|∇𝑢(𝐫)|𝑑𝐫 is used to describe the surface energy of the macro-
molecule. It measures the disruption of intermolecular and/or in-
tramolecular bonds that occurs when a surface is created. ∫Ω 𝑃ℎ𝑢 𝑑𝐫 is 
the mechanical work of creating the biomolecular size vacuum in the 
solvent. 𝜌𝑠 is the solvent bulk density, and 𝑈vdW(𝐫) is the attractive por-
tion of the van der Waals potential at point 𝐫. It represents the attractive 
dispersion effects near the solvent-solute interface and has been shown 
by Wagoner and Baker [44] to play a crucial role in accurate nonpolar 
solvation analysis. In the second and third lines of (1), 𝜓 is the electro-
static potential; 𝜌𝑚 is the density of molecular charges; 𝜖𝑚 and 𝜖𝑠 are the 
dielectric constants of the molecule and the solvent, respectively. Usu-
ally, 𝜖𝑚 ≈ 1 for the protein and 𝜖𝑠 ≈ 80 for the water. 𝑞𝑗 is the charge of 
ion species 𝑗 = 1, 2, ⋯ , 𝑁𝑐 ; 𝑘𝐵 is the Boltzmann constant; 𝑇 is the abso-
lute temperature; 𝑐∞

𝑗
is the bulk concentration of the 𝑗-th ionic species; 

and 𝛽 = 1∕𝑘𝐵𝑇 . For notational brevity throughout this paper, we put

𝐵(𝑠) = 𝛽−1
[
𝑁𝑐∑
𝑗=1

𝑐∞
𝑗

(
𝑒−𝛽𝑠𝑞𝑗 − 1

)]
.

The first three terms of (1) are usually termed the nonpolar portion of 
the solvation energy. The remaining terms are called the polar portion 
of the solvation energy.

With improved parameterization and solution schemes, GFBSS mod-
els have been developed as an efficient and reliable representation of 
solute-solvent interfaces by accounting for varying dielectric constants 
near the molecules in a natural means [7,13,43,45,49]. In spite of its 
success in solvation prediction and model applications, there are several 
mathematical questions that need to be pursued and investigated for 
its further model development, analysis and applications. One is about 
the existence of a non-trivial physically meaningful global minimizer 
of the proposed energy functional. For instance, regarding nonpolar 
molecules, one only needs to consider the first three terms of equation 
(1). Consequently, 𝑢 = 0 throughout the domain may become a trivial 
global minimizer. That leads to zero or negative nonpolar free energy 
which is supposed to be positive based on biological measurement. To 
avoid this type of nonphysical outcome, a biological fact has been taken 
into consideration in previous numerical implementations (the first nu-
merical constraint): there is no solute atom outside a boundary (such as 
SAS surface) and there should exist continuous pure solute region with-
out solvent atoms inside it. As a result, 𝑢 was fixed to be 1 for the pure 
solute region and 0 in the pure solvent area. Then the targeted optimal 
𝑢 profile is only to be determined in the transition area [7] between the 
pure solute and the pure solvent regions.

The second theoretical consideration of the previous GFBSS model 
stems from the following question: how can one assure that the global 
minimizer 0 ≤ 𝑢∗ ≤ 1 as designed for a solute density function? Numeri-
cally, a simple cut-off strategy together with relaxing schemes has been 
applied to the solution process to guarantee 𝑢 ∈ [0, 1] [7] (the second nu-
merical constraint): 𝑢 is set to be zero when a computed value is below 
zero and 1 when it is above 1.

This work aims at providing rigorous theoretical supports for the 
previous unconstrained GFBSS model [7] and its associated numerical 
strategies. To the end, we improve the previous unconstrained GFBSS 
model by explicitly incorporating the two aforementioned numerical 
constraints: (1) a novel experimental based domain decomposition, 
and (2) a two-sided obstacle for the characteristic function describing 
the optimal diffuse solute-solvent boundary. The proposed constrained 
model is proved to be mathematically well-posed.

However, including the two numerical constraints in equation (1)
generates an essential difficulty in determining its first variation. This 
makes the numerical computations of the solvation energy, i.e. the mini-
mum energy predicted by equation (1), a challenging task. To overcome 
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this difficulty, we further propose a family of 𝑞-energy type functionals 
with the same constraints. It is proved that their minimum energies 
and minimizers converge to those of equation (1) with constraints. 
Such constrained 𝑞-energy functionals are known to lead to variational 
inequalities. For nonpolar molecules, we are able to transform these 
inequalities into 𝑞-Laplacian type equations. Based on these analyses, 
numerical implementation and validation of the generalized solvation 
models are given as well as its numerical comparison with the previous 
GFBSS model.

The rest of this paper is organized as follows. We first describe in 
details our new constrained total solvation energy functional and the 
corresponding 𝑞-energy type functionals in Section 2.1. Then the ex-
istence and uniqueness of global minimizers of these functionals are 
studied in Section 2.2 and 2.3. The convergence of the energies pre-
dicted by the constrained 𝑞-energy functionals is proved in Section 2.4. 
It is followed by a variational process to derive the interface models 
for surface generation in Section 2.5. Finally, numerical validation and 
complementary simulation of constrained variational model are demon-
strated in Section 3. Section 4 is the concluding remark.

1.1. List of notations

In this article, we use 𝐫 = (𝑥, 𝑦, 𝑧) to denote the coordinates in ℝ3. 
Given two vectors 𝑢, 𝑣 ∈ℝ3, 𝑢 ⋅𝑣 is their inner product. 3 and 2 always 
stand for the Lebesgue measure in ℝ3 and the 2-dimensional Hausdorff 
measure, respectively.

Given 𝑈 ⊆ℝ3, 𝑈 stands for the closure of 𝑈 . The topological bound-
ary of 𝑈 is denoted by 𝜕𝑈 .

Suppose that 𝑋 is a Banach space. Given a sequence {𝑢𝑘}∞𝑘=1 =
(𝑢1, 𝑢2, ⋯) in 𝑋, 𝑢𝑘 ⇀ 𝑢 in 𝑋 means that 𝑢𝑘 converge weakly to some 
𝑢 ∈𝑋.

Given 1 ≤ 𝑝 <∞, 𝐿𝑝(𝑈 ) denotes the set of all 𝑝-integrable (Lebesgue) 
measurable functions defined on 𝑈 ⊂ℝ3; and when 𝑝 =∞, 𝐿𝑝(𝑈 ) stands 
for the space of all essentially bounded measurable functions. We de-
note their norms by ‖ ⋅ ‖𝑝. 𝑊 𝑘,𝑝(𝑈 ) is the Sobolev space consisting of 
functions whose weak derivatives up to 𝑘-th power belong to 𝐿𝑝(𝑈 ); 
𝐻1(𝑈 ) =𝑊 1,2(𝑈 ); 𝐵𝑉 (𝑈 ) consists of all functions 𝑓 ∈ 𝐿1(Ω) that are 
of bounded variation in 𝑈 , whose total variation in 𝑈 is denoted by ‖𝐷𝑓‖(𝑈 ). Their norms are denoted by ‖ ⋅ ‖𝑊 1,𝑞 , ‖ ⋅ ‖𝐻1 and ‖ ⋅ ‖𝐵𝑉 , re-
spectively. 𝑊 𝑘,𝑝

0 (𝑈 ) and 𝐻1
0 (𝑈 ) mean the closure of 𝐶∞

0 (𝑈 ) in 𝑊 𝑘,𝑝(𝑈 )
and 𝐻1(𝑈 ), respectively.

2. Mathematical model and its analysis

2.1. The total energy functional

Experimentally, it has been known that beyond a boundary (such as 
solvent excluded surface), which encloses the immersed molecules, sol-
vent atoms are not present. Moreover, as described in the introduction, 
the wave functions of the solute and solvent overlap spatially as well 
as their electron density distributions. Therefore, there must be a mix-
ing region of the solvent and solute. Based on these considerations, we 
explicitly introduce a novel domain decomposition for the whole com-
putational domain as follows.
Let Ω ⊆ℝ3 be a bounded and connected Lipschitz domain composed of 
three disjoint subdomains with Lipschitz boundaries:

• Ω𝑚: solute (molecular) region;
• Ω𝑠: solvent region;
• Ω𝑏: solute-solvent mixing region.

All three subdomains are predefined. We further assume that 𝜕Ω ⊂ 𝜕Ω𝑠
and 𝜕Ω𝑚 ⊂ 𝜕Ω𝑏. Let

Σ1 = 𝜕Ω𝑚

be the solvent excluded surface enclosing the pure solute region and
19
Fig. 1. Illustration of model domain definition and decomposition: Ω𝑚 : solute 
(molecular) region; Ω𝑠 : solvent region; Ω𝑏 : solute-solvent mixing region.

Σ0 = 𝜕Ω𝑠 ⧵ 𝜕Ω,

be the solvent accessible surface outside of which is the pure solvent 
domain. Suppose that Σ1 ∩ Σ0 = ∅ and Ω𝑚, Ω𝑠 are non-empty. A picture 
illustration of the domain definition and decomposition can be found in 
Fig. 1. We further assume that the solute region Ω𝑚 contains 𝑁𝑚 solute 
atoms located at 𝐫1, ⋯ , 𝐫𝑁𝑚 ; and there are 𝑁𝑐 ion species outside Ω𝑚.

Moreover, we revise the previous definition of 𝑢 and the energy func-
tional based on the domain decomposition shown in Fig. 1. We define 
𝑢 ∶ Ω →ℝ in such a way that 𝑢(𝐫) represents the solute volume ratio at 
position 𝐫 ∈Ω. As such, the physical constraints

𝑢(𝐫) ∈ [0,1] for a.a. 𝐫 ∈Ω (2)

and

𝑢 = 1 a.e. in Ω𝑚 and 𝑢 = 0 a.e. in Ω𝑠 (3)

need to be imposed. Constrain (2) makes the potential minimizer 𝑢 of 
the solvation energy functional meaningful as a volume ratio function; 
Constrain (3), together with the domain decomposition, guarantees that 
Ω𝑚 and Ω𝑠 are purely occupied by the molecule and the aquatic solvent, 
respectively. These two conditions ensure that the potential minimizer 
𝑢 is physical.

Furthermore, to overcome the challenges arising from incorporating 
Constraints (2) and (3) as mentioned in the introduction, we extend the 
definition of the nonpolar portion of solvation free energy by consider-
ing

𝐼𝑛𝑝,𝑞(𝑢) = ∫
Ω

[
𝛾|∇𝑢(𝐫)|𝑞 + 𝑃ℎ𝑢(𝐫) + 𝜌𝑠(1 − 𝑢(𝐫))𝑈vdW(𝐫)

]
𝑑𝐫

with 𝑞 ∈ [1, 2]. Note that we generalize the surface energy term by ex-
tending specific 𝑞 = 1 to the general case 1 ≤ 𝑞 ≤ 2. When 𝑞 = 1, the term 
∫Ω |∇𝑢| 𝑑𝐫 = ‖𝐷𝑢‖(Ω) stands for the total variation of 𝑢 in Ω, which is 
adopted in the original formulation in [7]. Note that 𝑈vdW(𝐫) can be for-
mulated by ∑𝑖 𝑈

att
𝑖

(𝐫) in which 𝑈 att
𝑖

(𝐫) represents the attractive part of 
Lennard-Jones potential [7,44]. To this end, the L-J potential can be di-
vided into attractive 𝑈 att

𝑖
and repulsive 𝑈 rep

𝑖
in different ways. Here we 

take a Weeks-Chandler-Andersen (WCA) decomposition based on the 
original WCA theory [31]:

𝑈
att,WCA
𝑖

(𝐫) =
{

−𝜖𝑖𝑠(𝐫) 0 < ‖𝐫 − 𝐫𝑖‖ < 21∕6𝜎𝑖𝑠
𝑈LJ
𝑖
(𝐫) ‖𝐫 − 𝐫𝑖‖ ≥ 21∕6𝜎𝑖𝑠,

𝑈
rep,WCA
𝑖

(𝐫) =
{
𝑈LJ
𝑖
(𝐫) + 𝜖𝑖𝑠(𝐫) 0 < ‖𝐫 − 𝐫𝑖‖ < 21∕6𝜎𝑖𝑠

0 ‖𝐫 − 𝐫𝑖‖ ≥ 21∕6𝜎𝑖𝑠,

where

𝑈LJ
𝑖
(𝑟) = 4𝜖𝑖𝑠

[(𝜎𝑖𝑠
𝑟

)12
−
(𝜎𝑖𝑠
𝑟

)6
]

with 𝜎𝑖𝑠 of length and well depth parameters 𝜖𝑖𝑠 of energy depending 
on the atom type.

Similarly, the PB theory based polar energy can be defined as

𝐼𝑝(𝑢,𝜓) = ∫
Ω

[
𝜌𝑚𝜓 − 1

2
𝜖(𝑢)|∇𝜓|2 − (1 − 𝑢)𝐵(𝜓)

]
𝑑𝐫,
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where 𝜖(𝑢) = 𝑢𝜖𝑚 + (1 − 𝑢)𝜖𝑠 is the dielectric constant. In addition, we 
assume the neutral condition
𝑁𝑐∑
𝑗=1

𝑐∞
𝑗
𝑞𝑗 = 0. (4)

Physically, 𝑢 and thus the profile of the solvent-solute boundary, 
must be determined by the energy minimization principle. Therefore, 
our task is to identify the energy functional to be optimized, and to 
evaluate the desired solvent-solute properties depending on 𝑢.

With all these preparations, we are now in a position to state the 
minimization problem of the total energy functional

𝐾𝑞(𝑢,𝜓) = 𝐼𝑛𝑝,𝑞(𝑢) + 𝐼𝑝(𝑢,𝜓). (5)

In (5), 𝜓 satisfies the boundary value problem of the generalized 
Poisson-Boltzmann equation (GPBE){

div(𝜖(𝑢)∇𝜓) + (1 − 𝑢)𝐵′(𝜓) = −𝜌𝑚 in Ω;

𝜓 = 𝜓∞ on 𝜕Ω,
(6)

where 𝜓∞ ∈𝑊 1,∞(Ω) is a predefined boundary value. Therefore given 
a measurable 𝑢 satisfying (2) and (3), 𝜓 = 𝜓(𝑢) is determined via (6).

Based on (6), the minimization problem (5) can be stated as to min-
imize

𝐼𝑞(𝑢) =∫
Ω

[
𝛾|∇𝑢|𝑞 + 𝑃ℎ𝑢+ 𝜌𝑠(1 − 𝑢)𝑈vdW]

𝑑𝐫

+ ∫
Ω

[
𝜌𝑚𝜓 − 1

2
𝜖(𝑢)|∇𝜓|2 − (1 − 𝑢)𝐵(𝜓)

]
𝑑𝐫, (7)

in the admissible space

𝑞 = {𝑢 ∈𝑊 1,𝑞(Ω) ∶ 𝑢 satisfies Constraints (2) and (3)},

when 𝑞 > 1, and

1 = {𝑢 ∈𝐵𝑉 (Ω) ∶ 𝑢 satisfies Constraints (2) and (3)},

when 𝑞 = 1; 𝜓 is determined via (6) in the space

 = {𝑣 ∈𝐻1(Ω) ∶ 𝑣|𝜕Ω = 𝜓∞}.

A couple of comments on the energy functional (7) for the case 𝑞 ∈
(1, 2] are as follows.

Remarks 2.1.

(i) In the case 1 < 𝑞 ≤ 2, the functional (7) is strictly convex in 𝑢. Based 
on this fact, we will show in Theorem 2.4 that the minimizer of (7)
is unique in 𝑞 .

(ii) It is known that a constrain like (2) generates a two-sided obstacle 
problem, whose variation results in an variational inequality. In 
the case of 𝑞 ∈ (1, 2], the knowledge of the porosity of free bound-
aries of 𝑞-Laplacian equations can be adopted to transform the 
variational inequality into a PDE. Such knowledge, however, is un-
known in the case 𝑞 = 1.

Note that the first variation of ∫Ω |∇𝑢|𝑞 𝑑𝐫, as will be shown in 
Section 2.5, produces a term of the form Δ𝑞𝑢 ∶= div(|∇𝑢|𝑞−2∇𝑢). 
This is called the 𝑞-Laplacian operator, which is also termed the 
𝑝-Laplacian operator in lots of literature. In our manuscript, we 
adopt the letter “𝑞” instead of “𝑝” to distinguish the notation 𝐼𝑝 of 
the polar energy from the notation of the total energy 𝐼𝑞 in (7). 
The subscript 𝑞 in the latter is to indicate its dependence on 𝑞.

(iii) It is also known that the minimizer of a total variation model, 
which corresponds to the case 𝑞 = 1, with constraints like (3) usu-
ally suffers from jump discontinuity along Σ𝑖. This may lead to 
additional computational errors.
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(iv) Most importantly, in Section 2.4, we will show that, as 𝑞 → 1+, 
the minimizers 𝑢𝑞 of 𝐼𝑞(⋅) and the corresponding solvation energies 
converge to their counterparts in the case 𝑞 = 1.

We would like to point out that this result does not follow from 
the standard convergence results of the solutions of 𝑞-Laplacian 
equations Δ𝑞𝑢 = 𝑓 to that of the 1-Laplacian equation. Indeed, such 
convergence only holds when 𝑓 satisfies some restrictive condi-
tions in certain function spaces. See [11,15,26,34–36] for some 
related work.

2.2. The generalized Poisson-Boltzmann equation

Following the ideas in [12,32,33], for any 𝑢 ∈ 𝑞 , we set
𝐸𝑢[𝜓] = −𝐼𝑝(𝑢,𝜓) = ∫

Ω

[1
2
𝜖(𝑢)|∇𝜓|2 − 𝜌𝑚𝜓 + (1 − 𝑢)𝐵(𝜓)

]
𝑑𝐫.

Proposition 2.2. Given any 𝑢 ∈ 1, there exists a unique 𝜓𝑢 ∈ such that

𝐸𝑢[𝜓𝑢] = min
𝜓∈𝐸𝑢[𝜓] <∞.

Moreover, 𝜓𝑢 is the unique weak solution to the boundary value problem 
(6). Finally, 𝜓𝑢 satisfies

‖𝜓𝑢‖𝐻1 + ‖𝜓𝑢‖∞ ≤ 𝐶0.

Particularly, the constant 𝐶0 depends only on 𝜓∞ and can be chosen inde-
pendent of 𝑢.

Proof. (i) First observe that 𝜖(𝑢) ∈ 𝐿∞(Ω) with 1 = 𝜖𝑚 ≤ 𝜖(𝑢) ≤ 𝜖𝑠 = 80. 
By the standard elliptic theory, cf. [23, Theorems 8.3 and 8.16], the 
boundary value problem{

div(𝜖(𝑢)∇𝜓) + 𝜌𝑚 = 0 in Ω;

𝜓 = 𝜓∞ on 𝜕Ω

has a unique weak solution 𝜓̂𝑢, i.e.

∫
Ω

𝜖(𝑢)∇𝜓̂𝑢 ⋅∇𝜂 𝑑𝐫 = ∫
Ω

𝜌𝑚𝜂 𝑑𝐫, ∀𝜂 ∈𝐻1
0 (Ω), (8)

satisfying

‖𝜓̂𝑢‖𝐻1 + ‖𝜓̂𝑢‖∞ ≤𝑀. (9)

The constant 𝑀 depends only on 𝜓∞ and thus is independent of 𝑢.
(ii) Observe that 𝐵(0) = 0; and (4) implies that 𝐵′(0) = 0 and 

𝐵′(±∞) = ±∞. In addition, 𝐵′′(𝑠) > 0. We thus conclude that 𝐵(0) =
min
𝑠∈ℝ

𝐵(𝑠) and 𝐵 is strictly convex. We define 𝐸̃𝑢 ∶ 𝐻1
0 (Ω) → ℝ ∪ {+∞}

by

𝐸̃𝑢[𝜓] = ∫
Ω

[1
2
𝜖(𝑢)|∇𝜓|2 + (1 − 𝑢)𝐵(𝜓 + 𝜓̂𝑢)

]
𝑑𝐫.

By the direct method of calculus of variation, there exists a global mini-
mizer 𝜓̄𝑢 ∈𝐻1

0 (Ω) of 𝐸̃𝑢, i.e. 𝐸̃𝑢[𝜓̄𝑢] = min
𝜓∈𝐻1

0 (Ω)
𝐸̃𝑢[𝜓]. Moreover, the strict 

convexity of the functional 𝐸̃𝑢 implies that 𝜓̄𝑢 is the unique global min-
imizer. Note that by (8)

𝐸𝑢[𝜓] = 𝐸̃𝑢[𝜓 − 𝜓̂𝑢] + ∫
Ω

[ 1
2
𝜖(𝑢)|∇𝜓̂𝑢|2 − 𝜌𝑚𝜓̂𝑢] 𝑑𝐫.

Let 𝜓𝑢 = 𝜓̂𝑢 + 𝜓̄𝑢. From the above equality, we learn that

𝐸𝑢[𝜓𝑢] = min
𝜓∈𝐸𝑢[𝜓].

(iii) By the properties of 𝐵(⋅) and (9), there exists some 𝜆 > 0 such 
that
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𝐵′(𝜆+ 𝜓̂𝑢) > 1 and 𝐵′(−𝜆+ 𝜓̂𝑢) < −1.

Recall 3 is the Lebesgue measure in ℝ3. If 3({|𝜓̄𝑢| > 𝜆}) > 0, we define

𝜓̃ =
⎧⎪⎨⎪⎩
𝜆 on {𝜓̄𝑢 > 𝜆}
𝜓̄𝑢 on {−𝜆 ≤ 𝜓̄𝑢 ≤ 𝜆}
−𝜆 on {𝜓̄𝑢 < −𝜆}.

Then 𝜓̃ ∈𝐻1
0 (Ω), cf. [16, Proposition 20.2], and 𝐸̃𝑢[𝜓̃] ≤ 𝐸̃𝑢[𝜓̄𝑢]. This 

contradicts the uniqueness of global minimizer of 𝐸̃𝑢 and thus |𝜓̄𝑢| ≤ 𝜆
a.e.. As a direct consequence, we obtain

‖𝜓𝑢‖∞ ≤ 𝐶1

for some 𝐶1 depending only on 𝜓∞.
(iv) The dominated convergence theorem implies that 𝜓̄𝑢 ∈𝐻1

0 (Ω)
satisfies

∫
Ω

[𝜖(𝑢)∇𝜓̄𝑢 ⋅∇𝜂 + (1 − 𝑢)𝐵′(𝜓𝑢)𝜂]𝑑𝐫 = 0 (10)

for all 𝜂 ∈𝐻1
0 (Ω) ∩𝐿

∞(Ω). By a standard approximation argument, it is 
not hard to see that (10) also holds true for all 𝜂 ∈𝐻1

0 (Ω). Taking 𝜂 = 𝜓̄𝑢
in (10) yields

∫
Ω

[𝜖(𝑢)|∇𝜓̄𝑢|2 + (1 − 𝑢)𝐵′(𝜓𝑢)𝜓̄𝑢]𝑑𝐫 = 0.

Since |𝜓̄𝑢| ≤ 𝜆 a.e. and |𝐵′(𝜓𝑢)| ≤ 𝐶 for some 𝐶 depending only on 𝜓∞, 
we conclude that

‖𝜓𝑢‖𝐻1 ≤ 𝐶2.

Again the constant 𝐶2 depends only on 𝜓∞. In sum, we can take 𝐶0 =
𝐶1 +𝐶2. □

Proposition 2.3. Let 𝑢𝑘, 𝑢 ∈ 1 be such that 𝑢𝑘 → 𝑢 in 𝐿1(Ω) as 𝑘 →∞. 
Let 𝜓𝑘, 𝜓 ∈ be the corresponding electrostatic potentials, i.e.,

𝐸𝑢𝑘 [𝜓𝑘] = min
𝑤∈𝐸𝑢𝑘 [𝑤] and 𝐸𝑢[𝜓] = min

𝑤∈𝐸𝑢[𝑤].

Then lim
𝑘→∞

𝐸𝑢𝑘 [𝜓𝑘] =𝐸𝑢[𝜓].

Proof. The proof is essentially the same as that of [12, Theorem 
3.2]. □

2.3. Minimizing the total energy functional

Theorem 2.4. For every 𝑞 ∈ [1, 2], there exists some 𝑢𝑞 ∈ 𝑞 such that 
𝐼𝑞(𝑢𝑞) = min

𝑢∈𝑞𝐼𝑞(𝑢) with 𝐼𝑞(𝑢𝑞) finite. When 𝑞 ∈ (1, 2], the minimizer is unique 

in 𝑞 .
Proof. The existence of a solution can be proved by using a standard 
argument in Calculus of Variation. See for example [18, Theorem 8.2.2]. 
For the reader’s convenience, we will present a brief proof. Because 
several estimates in this proof will be used later in Section 2.4. Given 
any 𝑢 ∈𝑞 , recall from Proposition 2.2 that

𝐸𝑢[𝜓𝑢] <𝐸𝑢[𝜓∞] ≤ 𝜖𝑠

2
‖𝜓∞‖2

𝐻1 +𝐶
[‖𝜓∞‖∞ +𝐵(‖𝜓∞‖∞)

] ≤ 𝐶3

for some 𝐶3 independent of 𝑢 and 𝑞. Therefore, for any 𝑢 ∈ 𝑞
𝐼𝑞(𝑢) =𝐼𝑛𝑝,𝑞(𝑢) −𝐸𝑢(𝜓𝑢) > 𝐼𝑛𝑝,𝑞(𝑢) −𝐸𝑢(𝜓∞)

≥𝛾‖∇𝑢‖𝑞
𝑞
+ 𝑃ℎ‖𝑢‖𝑞𝑞 −𝐶4 −𝐶3 (11)

with 𝐶4 = −𝜌𝑠 ∫Ω⧵Ω𝑚 𝑈vdW 𝑑𝐫, which implies 𝑀𝑞 ∶= inf
𝑢∈𝑞 𝐼𝑞(𝑢) is finite. 

Now we can find a minimizing sequence {𝑤𝑘}∞ ⊂ 𝑞 such that 

𝑘=1

21
lim
𝑘→∞

𝐼𝑞(𝑤𝑘) =𝑀𝑞 . (11) implies that {𝑤𝑘}∞𝑘=1 are uniformly bounded in 
𝑞 . As a direct consequence, when 𝑞 > 1, there exists some 𝑢𝑞 ∈ 𝑞 such 
that

𝑤𝑘 ⇀ 𝑢𝑞 in 𝑊 1,𝑞(Ω) and 𝑤𝑘 → 𝑢𝑞 in 𝐿𝑞(Ω) as 𝑘→∞;

or when 𝑞 = 1, we apply [19, Theorem 5.2.3.4] to obtain some 𝑢1 ∈ 1
such that 𝑤𝑘 → 𝑢1 in 𝐿1(Ω) as 𝑘 →∞.

Finally, the lower semi-continuity of 𝐼𝑛𝑝,𝑞(⋅), cf. [18, Section 8.2.2]
and [19, Theorem 5.2.1.1], Proposition 2.3 and the dominated conver-
gence theorem imply that

𝑀𝑞 = 𝐼𝑞(𝑢𝑞) ≤ lim inf
𝑘→∞

𝐼𝑞(𝑤𝑘),

and thus 𝑢𝑞 is a global minimizer of 𝐼𝑞(⋅) with 𝐼𝑞(𝑢𝑞) finite.
When 𝑞 > 1, the uniqueness of a global minimizer is a direct con-

sequence of the strict convexity of 𝐼𝑞(⋅). Indeed, let 𝑢𝑡 = 𝑡𝑢0 + (1 − 𝑡)𝑢1
for 𝑡 ∈ [0, 1] and 𝑢0, 𝑢1 ∈ 𝑞 with 𝑢0 ≠ 𝑢1. Then it follows from Proposi-
tion 2.2 that

𝐼𝑞(𝑢𝑡) =𝐼𝑛𝑝,𝑞(𝑢𝑡) + 𝐼𝑝,𝑞(𝑢𝑡,𝜓𝑢𝑡 )

<𝑡

[
𝐼𝑛𝑝,𝑞(𝑢0) + 𝐼𝑝,𝑞(𝑢0, 𝜓𝑢𝑡 )

]
+ (1 − 𝑡)

[
𝐼𝑛𝑝,𝑞(𝑢1) + 𝐼𝑝,𝑞(𝑢1, 𝜓𝑢𝑡 )

]
≤𝑡 [𝐼𝑛𝑝,𝑞(𝑢0) + 𝐼𝑝,𝑞(𝑢0, 𝜓𝑢0 )]+ (1 − 𝑡)

[
𝐼𝑛𝑝,𝑞(𝑢1) + 𝐼𝑝,𝑞(𝑢1, 𝜓𝑢1 )

]
=𝑡𝐼𝑞(𝑢0) + (1 − 𝑡)𝐼𝑞(𝑢1),

as 𝐼𝑛𝑝,𝑞 is strictly convex when 𝑞 > 1. □

Remark 2.5. Lacking the strict convexity of 𝐼1(⋅), in general, the mini-
mizer of 𝐼1(⋅) does not need to be unique.

2.4. Asymptotic behavior of 𝐼𝑞(⋅) as 𝑞→ 1+

Let 𝑢𝑞 minimize 𝐼𝑞(⋅). In this section, we will show that, when Σ𝑖 ∈
𝐶2 with 𝑖 ∈ {0, 1}, 𝑢𝑞 converges to a minimizer of 𝐼1(⋅) as 𝑞→ 1+.

We will first prove two lemmas. To prepare for the necessary nota-
tions, define

Ω𝑗,𝑘 ∶= {𝐫 ∈Ω ∶ dis(𝐫,Ω𝑗 ) < 1∕𝑘} with 𝑗 ∈ {𝑚, 𝑠}

and

𝑘 ∶= {𝑢 ∈1 ∶ 𝑢 ≡ 1 in Ω𝑚,𝑘 and 𝑢 ≡ 0 in Ω𝑠,𝑘}, 𝑘 ∈ℕ.

Lemma 2.6. For every 𝑓 ∈ 𝑘, there exists a sequence {𝑓𝑛}∞𝑛=1 ⊂ 𝐶∞(Ω)
satisfying Constraints (2) and (3) such that

(i) 𝑓𝑛 → 𝑓 in 𝐿1(Ω), and
(ii) ‖𝐷𝑓𝑛‖(Ω) → ‖𝐷𝑓‖(Ω) as 𝑛 →∞.

Proof. For any 𝛿 > 0, let 𝜂𝛿 be the Friedrichs mollifying kernel. For any 
𝑛 ∈ℕ, we choose 𝜖𝑛 > 0 so small that

(a) 𝑓𝑛 ∶= 𝜂𝜖𝑛 ∗ 𝑓 satisfies Constrain (3) and
(b) ‖𝑓𝑛 − 𝑓‖1 ≤ 1∕𝑛.

Constrain (2) is obviously fulfilled by 𝑓𝑛. Then, it holds lim
𝑛→∞

‖𝑓𝑛 −𝑓‖1 =
0.

It remains to show (ii). [19, Theorem 5.2.1.1] implies that

‖𝐷𝑓‖(Ω) ≤ lim inf
𝑛→∞

‖𝐷𝑓𝑛‖(Ω).
Extending 𝑓 to be identically zero outside Ω, we can consider 𝑓 as an 
element in 𝐵𝑉 (ℝ3). For any 𝜙 ∈ 𝐶1(Ω) with ‖𝜙‖∞ ≤ 1, we have
0
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∫
Ω

𝑓𝑛div𝜙𝑑𝐫 =∫
Ω

(
𝜂𝜖𝑛 ∗ 𝑓

)
div𝜙𝑑𝐫 = ∫

Ω

𝑓div
(
𝜂𝜖𝑛 ∗ 𝜙

)
𝑑𝐫

=∫
ℝ3

𝑓div
(
𝜂𝜖𝑛 ∗ 𝜙

)
𝑑𝐫 ≤ ‖𝐷𝑓‖(ℝ3) = ‖𝐷𝑓‖(Ω).

The inequality follows from the definition of 𝐵𝑉 -functions. Taking 
supremum over all such 𝜙, we derive that

‖𝐷𝑓𝑛‖(Ω) ≤ ‖𝐷𝑓‖(Ω),
which implies that

limsup
𝑛→∞

‖𝐷𝑓𝑛‖(Ω) ≤ ‖𝐷𝑓‖(Ω).
This completes the proof. □

Lemma 2.7. For every 𝑓 ∈1, we define {𝑓𝑘}∞𝑘=1 ⊂ 𝐵𝑉 (Ω) by

𝑓𝑘(𝑥) =
⎧⎪⎨⎪⎩
1, 𝑥 ∈Ω𝑚,𝑘
0, 𝑥 ∈Ω𝑠,𝑘
𝑓 (𝑥), elsewhere.

If Σ𝑖 ∈ 𝐶2 with 𝑖 ∈ {0, 1}, then

(i) 𝑓𝑘 → 𝑓 in 𝐿1(Ω) and
(ii) ‖𝐷𝑓𝑘‖(Ω) → ‖𝐷𝑓‖(Ω) as 𝑘 →∞.

Proof. The proof for (i) is straightforward. So we will only show (ii). In 
the following proof, it is always assumed that 𝑖 ∈ {0, 1}. Since Σ𝑖 are 𝐶2, 
there exists some 𝔞 > 0 such that Σ𝑖 has a tubular neighborhood 𝐵𝔞(Σ𝑖)
of width 𝔞 > 0, cf. [23, Exercise 2.11] and [30, Remark 3.1]. Denote 
by 𝜈𝑖 the outward pointing (into Ω𝑏) unit normal of Σ𝑖. Then the map 
defined by

Λ𝑖 ∶ Σ𝑖 × (−𝔞,𝔞)→ℝ3 ∶ (𝑥, 𝑟)↦ 𝑥+ 𝑟𝜈𝑖(𝑥)

is a 𝐶1-diffeomorphism; and Σ𝑖,𝑟 ∶= Λ𝑖(Σ𝑖, 𝑟) is a 𝐶1-hypersurface, whose 
outward unit normal is denoted by 𝜈𝑖,𝑟. In particular, 𝜈𝑖,0 = 𝜈𝑖. By the 
inverse function theorem, there exist two maps 𝑃𝑖 ∈ 𝐶1(𝐵𝔞(Σ𝑖), Σ𝑖) and 
𝑑𝑖 ∈ 𝐶1(𝐵𝔞(Σ𝑖), (−𝔞, 𝔞)), where 𝑃𝑖 is the nearest point projection onto Σ𝑖
and 𝑑𝑖 is the signed distance to Σ𝑖 with 𝑑𝑖(𝑥) > 0 for 𝑥 ∈ 𝐵𝔞(Σ𝑖) ∩Ω𝑏. Note 
that 𝑑𝑖 is indeed 𝐶2, see [37] for example. We can define two 𝐶1-vector 
fields 𝑉𝑖 ∶𝐵𝔞(Σ𝑖) →ℝ3 by

𝑉𝑖(𝑥) = 𝜈𝑖,𝑑𝑖(𝑥)(𝑥).

For any 𝑟 ∈ (0, 𝔞), put 𝑈𝑖,𝑟 ∶= 𝐵𝑟(Σ𝑖) ∩ Ω𝑏. Due to the trace theorem of 
𝐵𝑉 -functions, cf. [19, Theorem 5.3.1], we have

∫
𝑈𝑖,𝑟

𝑓div𝑉𝑖 𝑑𝐫 + ∫
𝑈𝑖,𝑟

𝑉𝑖 ⋅ 𝑑[𝐷𝑓 ] = ∫
Σ𝑖,𝑟

𝑇𝑟𝑓 𝑑2 − ∫
Σ𝑖

𝑇𝑟𝑓 𝑑2

for all 𝑓 ∈ 1 with 2 being the two-dimensional Hausdorff measure. 
Here 𝑇𝑟𝑓 is the trace of 𝑓 |𝑈𝑖,𝑟 on 𝜕𝑈𝑖,𝑟; and [𝐷𝑓 ] is the vector-valued 
measure for the gradient of 𝑓 .

Pushing 𝑟 → 0+ above yields that

lim
𝑟→0− ∫

Σ𝑖,𝑟

𝑇𝑟𝑓 𝑑2 = ∫
Σ𝑖

𝑇𝑟𝑓 𝑑2. (12)

[19, Theorem 5.2.1.1] implies that

‖𝐷𝑓‖(Ω) ≤ lim inf
𝑘→∞

‖𝐷𝑓𝑘‖(Ω).
Observe that 𝜕Ω𝑚,𝑘 = Σ1,1∕𝑘 and 𝜕Ω𝑠,𝑘 ⧵ 𝜕Ω = Σ0,1∕𝑘 for sufficiently large 
𝑘. Denote by 𝑇̃𝑟𝑓 the trace of 𝑓 |Ω𝑏⧵(𝑈0,𝑟∪𝑈1,𝑟

) on 𝜕 [Ω𝑏 ⧵ (
𝑈0,𝑟 ∪𝑈1,𝑟

)]
. 

Direct computations show
22
‖𝐷𝑓𝑘‖(Ω) − ‖𝐷𝑓‖(Ω)
=

2∑
𝑖=1

⎡⎢⎢⎢⎣ ∫
Σ𝑖,1∕𝑘

(1 − 𝑇̃1∕𝑘𝑓 )𝑑2 − ∫
Σ𝑖

(1 − 𝑇1∕𝑘𝑓 )𝑑2 − ‖𝐷𝑓‖(𝑈𝑖,1∕𝑘)⎤⎥⎥⎥⎦
−

2∑
𝑖=1

⎛⎜⎜⎜⎝ ∫
Σ𝑖,1∕𝑘

|||𝑇1∕𝑘𝑓 − 𝑇̃1∕𝑘𝑓
||| 𝑑2

⎞⎟⎟⎟⎠
≤

2∑
𝑖=1

⎡⎢⎢⎢⎣ ∫
Σ𝑖,1∕𝑘

(1 − 𝑇1∕𝑘𝑓 )𝑑2 − ∫
Σ𝑖

(1 − 𝑇1∕𝑘𝑓 )𝑑2 − ‖𝐷𝑓‖(𝑈𝑖,1∕𝑘)⎤⎥⎥⎥⎦ .
From (12), we infer that

lim
𝑘→∞

⎡⎢⎢⎢⎣ ∫
Σ𝑖,1∕𝑘

(1 − 𝑇1∕𝑘𝑓 )𝑑2 − ∫
Σ𝑖

(1 − 𝑇1∕𝑘𝑓 )𝑑2 − ‖𝐷𝑓‖(𝑈𝑖,1∕𝑘)⎤⎥⎥⎥⎦ = 0.

This implies that

limsup
𝑘→∞

‖𝐷𝑓𝑘‖(Ω) ≤ ‖𝐷𝑓‖(Ω).
This completes the proof. □

Theorem 2.8. Assume that Σ𝑖 ∈ 𝐶2 with 𝑖 ∈ {0, 1}. As 𝑞→ 1+, 𝑢𝑞 converges 
to a minimizer 𝑢 of 𝐼1(⋅) in 𝐿𝑝(Ω) for any 1 ≤ 𝑝 <∞. Moreover,

lim
𝑞→1+

𝐼𝑞(𝑢𝑞) = 𝐼1(𝑢).

Proof. Fix 𝑣 ∈𝑊 1,𝑞(Ω) satisfying Constraints (2) and (3). Then

𝐼𝑞(𝑣) ≤ 𝛾 ∫
Ω

|∇𝑣|𝑞 𝑑𝐫 + 𝑃ℎVol(Ω ⧵Ω𝑚) + ∫
Ω𝑠

𝜌𝑠𝑈
vdW 𝑑𝐫 +𝐶0‖𝜌𝑚‖∞Vol(Ω𝑚)

≤ 𝐶5,

where 𝐶0 is the constant in Proposition 2.2 and 𝐶5 is independent of 𝑞. 
This yields that

𝐶5 ≥𝐼𝑞(𝑢𝑞) ≥ 𝛾 ∫
Ω

|∇𝑢𝑞|𝑞 𝑑𝐫 + 𝑃ℎ‖𝑢‖𝑞𝑞 −𝐶3 −𝐶4

≥ [
𝛾‖∇𝑢𝑞‖𝑞1 + 𝑃ℎ‖𝑢‖𝑞1] (Vol(Ω))1−𝑞 −𝐶3 −𝐶4, (13)

where 𝐶3 and 𝐶4 are the constants in the proof of Theorem 2.4. We thus 
infer from (13) that

‖𝑢𝑞‖𝑊 1,1 ≤ 𝐶6

for some 𝐶6 independent of 𝑞. [19, Theorem 5.2.3.4] implies that, 
given any sequence 𝑞𝑛 → 1+, there exists a subsequence of {𝑢𝑞𝑛}

∞
𝑛=1, not 

relabeled, converging to some 𝑢 ∈ 1 in 𝐿1(Ω). The Riesz-Thorin inter-
polation theorem then implies that 𝑢𝑞𝑛 → 𝑢 in 𝐿𝑝(Ω) for all 𝑝 ∈ [1, ∞) as 
𝑛 →∞. Note that

∫
Ω

|∇𝑢𝑞|𝑞 𝑑𝐫 ≥ ‖∇𝑢𝑞‖𝑞1 (Vol(Ω))1−𝑞 .
Then it follows from [19, Theorem 5.2.1.1] and Proposition 2.3 that

𝐼1(𝑢) ≤ lim inf
𝑛→∞

𝐼𝑞𝑛 (𝑢𝑞𝑛 ).

On the other hand, we define

𝑤𝑘(𝑥) =
⎧⎪⎨⎪⎩
1, 𝑥 ∈Ω𝑚,𝑘
0, 𝑥 ∈Ω𝑠,𝑘
𝑢(𝑥), elsewhere.

We will show that



Y. Shao, E. Hawkins, K. Wang et al. Computers and Mathematics with Applications 107 (2022) 17–28
limsup
𝑛→∞

𝐼𝑞𝑛 (𝑢𝑞𝑛 ) ≤ 𝐼1(𝑤𝑘). (14)

Lemma 2.6 implies that we can find a sequence {𝑤𝑘,𝑖}∞𝑖=1 such that 
𝑤𝑘,𝑖 ∈ 𝐶∞(Ω) ∩𝑞 for all 𝑞 and
𝑤𝑘,𝑖 →𝑤𝑘 in 𝐿1(Ω) and ‖𝐷𝑤𝑘,𝑖‖(Ω)→ ‖𝐷𝑤𝑘‖(Ω) as 𝑖→∞.

Since 𝑢𝑞 minimizes 𝐼𝑞(⋅) in 𝑞 , we have
𝐼𝑞𝑛 (𝑢𝑞𝑛 ) ≤ 𝐼𝑞𝑛 (𝑤𝑘,𝑖).
Pushing 𝑛 →∞, the dominated convergence theorem implies that

limsup
𝑛→∞

𝐼𝑞𝑛 (𝑢𝑞𝑛 ) ≤ 𝐼1(𝑤𝑘,𝑖).
Then Lemma 2.6 and Proposition 2.3 immediately yield (14). Now 
Lemma 2.7 and Proposition 2.3 imply that

limsup
𝑛→∞

𝐼𝑞𝑛 (𝑢𝑞𝑛 ) ≤ 𝐼1(𝑢). □

2.5. Variations and surface models

To prepare the theoretic basis for the numerical simulations, we will 
derive the first variation of the energy functional in the case 𝑞 ∈ (1, 2]. 
Because of the presence of the constrained admissible space, the re-
sulted surface model is expected to be different from previous uncon-
strained smooth surface models. For simplicity, we will confine our 
attention to the minimization problem of the nonpolar energy which 
includes the surface energy term. By doing so, modeling uncertainties 
can be minimized by considering a relatively isolated situation in which 
electrostatic interactions between the solvent and solute are negligible. 
This is because different types of energies may contribute to uncertain-
ties for the model comparision.

Because of Constrain (3), the nonpolar energy can be reduced to

𝐼𝑛𝑝,𝑞(𝑢) = 𝐼𝑛𝑝,𝑞(𝑢) +𝑀0 (15)

where 𝑀0 = 𝑃ℎVol(Ω𝑚) + 𝜌𝑠 ∫Ω𝑠 𝑈vdW 𝑑𝐫 is independent of 𝑢 and

𝐼𝑛𝑝,𝑞(𝑢) = ∫
Ω𝑏

[
𝛾|∇𝑢|𝑞 + 𝑃ℎ𝑢+ 𝜌𝑠(1 − 𝑢)𝑈vdW]

𝑑𝐫 (16)

is the nonpolar energy contained in Ω𝑏.

Proposition 2.9. (16) has a unique global minimizer 𝑢𝑞 in the admissible 
space

𝒳𝑞 = {𝑢 ∈𝑊 1,𝑞(Ω𝑏) ∶ 𝑢 = 𝑖 on Σ𝑖 with 𝑖 = 0,1 and 0 ≤ 𝑢 a.e. in Ω}.

Moreover, 𝑢𝑞 ∈ 𝑞 . Here it is understood that a function 𝑣 ∈𝒳𝑞 is automat-
ically extended to be one in 𝑞 by

𝑣(𝐫) =
⎧⎪⎨⎪⎩
1 when 𝐫 ∈Ω𝑚
𝑣(𝐫) when 𝐫 ∈Ω𝑏
0 when 𝐫 ∈Ω𝑠.

Proof. The existence and uniqueness of a global minimizer in 𝒳𝑞 fol-
lows from the strict convexity of 𝐼𝑛𝑝,𝑞 (⋅) and the direct method of Cal-
culus of Variation. If 3({𝑢𝑞 > 1}) ≠ 0, we put

𝑢̄𝑞(𝐫) =
{

1 if 𝑢𝑞(𝐫) > 1;
𝑢𝑞(𝐫) otherwise.

[16, Proposition 20.2] again implies that 𝑢̄𝑞 ∈𝒳𝑞 and a direct computa-
tion shows that

𝐼𝑛𝑝,𝑞(𝑢̄𝑞) < 𝐼𝑛𝑝,𝑞(𝑢𝑞).

A contradiction. Therefore, 𝑢𝑞 ∈𝑞 . □
23
Remarks 2.10.

(i) The reason to enlarge the admissible space 𝑞 to 𝒳𝑞 is due to the 
following consideration. The first variation of (16) yields an ob-
stacle problem of 𝑞-Laplacian equation. To study the variational 
formula, in the following, we will use the porosity of the free 
boundary of 𝑞-Laplacian with one-sided obstacle [25], which corre-
sponds to the one-sided bound 0 ≤ 𝑢 in the definition of 𝒳𝑞 . Such a 
result, nevertheless, is unknown for the two-sided bound 0 ≤ 𝑢 ≤ 1.

(ii) Following the proof of Theorem 2.8, one can show that, consider-
ing 𝑢𝑞 as an element in 𝑞 , 𝑢𝑞 → 𝑢 in 𝐿1(Ω) for some minimizer 𝑢
of 𝐼𝑛𝑝,1(⋅) in 1. Moreover,

lim
𝑞→1+

𝐼𝑛𝑝,𝑞(𝑢𝑞) = 𝐼𝑛𝑝,1(𝑢).

Pick any 𝜙 ∈𝒳𝑞 and let

𝛾(𝜏) = (1 − 𝜏)𝑢𝑞 + 𝜏𝜙 = 𝑢𝑞 + 𝜏(𝜙− 𝑢𝑞), 𝜏 ∈ [0,1].

Since 𝒳𝑞 is convex, we conclude that 𝛾(𝜏) ∈𝒳𝑞 . Set 𝐿(𝜏) = 𝐼𝑛𝑝,𝑞(𝛾(𝜏)). 
Then

0 ≤𝐿′(0) = lim
𝜏→0+

𝐿(𝜏) −𝐿(0)
𝜏

=∫
Ω𝑏

[
𝛾𝑞|∇𝑢𝑞|𝑞−2∇𝑢𝑞 ⋅∇(𝜙− 𝑢𝑞) + (𝑃ℎ − 𝜌𝑠𝑈vdW)(𝜙− 𝑢𝑞)

]
𝑑𝐫.

Let 𝑎 ∶𝒳𝑞 ×𝑊
1,𝑞
0 (Ω𝑏) →ℝ be defined by

𝑎(𝑢, 𝑣) = ∫
Ω𝑏

[
𝛾𝑞|∇𝑢|𝑞−2∇𝑢 ⋅∇𝑣+ (𝑃ℎ − 𝜌𝑠𝑈vdW)𝑣

]
𝑑𝐫.

We will show that there is a unique solution to the following variational 
inequality in 𝒳𝑞

𝑎(𝑢,𝜙− 𝑢) ≥ 0 for all 𝜙 ∈𝒳𝑞 . (17)

A crucial step of the proof is the following estimate.

Lemma 2.11. There exist two positive constants 𝑐 and 𝐶 such that

𝑐(‖𝑢‖𝑊 1,𝑞 +‖𝑣‖𝑊 1,𝑞 )𝑞−2‖𝑢−𝑣‖2
𝑊 1,𝑞 ≤ 𝑎(𝑢, 𝑢−𝑣)−𝑎(𝑣, 𝑢−𝑣) ≤ 𝐶‖𝑢−𝑣‖𝑞

𝑊 1,𝑞

for all 𝑢, 𝑣 ∈𝒴𝑞 , where 𝒴𝑞 ∶= {𝑤 ∈𝑊 1,𝑞(Ω𝑏) ∶𝑤 = 𝑖 on Σ𝑖 with 𝑖 = 0, 1}.

Proof. Due to [41], it holds for all 𝜉, 𝜁 ∈ℝ3 and 1 < 𝑞 ≤ 2 that

||||𝜉|𝑞−2𝜉 − |𝜁 |𝑞−2𝜁 ||| ≤ 𝐶̃|𝜉 − 𝜁 |𝑞−1 (18)

and|𝜉 − 𝜁 |2
(|𝜉|+ |𝜁 |)2−𝑞 ≤ 𝑐(|𝜉|𝑞−2𝜉 − |𝜁 |𝑞−2𝜁 ) ⋅ (𝜉 − 𝜁 ). (19)

The inequality 𝑎(𝑢, 𝑢 − 𝑣) − 𝑎(𝑣, 𝑢 − 𝑣) ≤ 𝐶‖𝑢 − 𝑣‖𝑞
𝑊 1,𝑞 is immediate from 

(18). It follows from (19) that

𝑎(𝑢, 𝑢− 𝑣) − 𝑎(𝑣, 𝑢− 𝑣) =𝛾𝑞 ∫
Ω𝑏

(|∇𝑢|𝑞−2∇𝑢− |∇𝑣|𝑞−2∇𝑣) ⋅∇(𝑢− 𝑣)𝑑𝐫

≥𝛾𝑞 ∫
Ω𝑏

|∇(𝑢− 𝑣)|2(|∇𝑢|+ |∇𝑣|)𝑞−2 𝑑𝐫
≥𝛾𝑞‖∇(𝑢− 𝑣)‖2

𝑞
‖|∇𝑢|+ |∇𝑣|‖𝑞−2

𝑞
(20)

≥𝑐(‖𝑢‖𝑊 1,𝑞 + ‖𝑣‖𝑊 1,𝑞 )𝑞−2‖∇(𝑢− 𝑣)‖2𝑞 . (21)

In the above, (20) follows from the reverse Hölder inequality and (21)
is a consequence of the Minkowski and Poincaré’s inequalities. □
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Proposition 2.12. There is a unique solution to the variational inequal-
ity (17) in 𝒳𝑞 .

Proof. We already know that 𝑢𝑞 is a solution to (17). It remains to show 
the uniqueness part. Assume to the contrary that (17) has two solutions 
𝑢, 𝑣 ∈𝒳𝑞 . (17) states that

0 ≤ 𝑎(𝑢, 𝑣− 𝑢) + 𝑎(𝑣, 𝑢− 𝑣).
On the other hand, the above lemma implies that

0 ≥ 𝑎(𝑢, 𝑢− 𝑣) − 𝑎(𝑣, 𝑢− 𝑣) ≥ 𝑐(‖𝑢‖𝑊 1,𝑞 + ‖𝑣‖𝑊 1,𝑞 )𝑞−2‖𝑢− 𝑣‖2
𝑊 1,𝑞 ,

which yields ‖𝑢 − 𝑣‖𝑊 1,𝑞 = 0 and thus 𝑢 = 𝑣 a.e. in Ω𝑏. □

We decompose Ω𝑏 into

Ω𝑏 =Ω+
𝑏
⊔Ω0

𝑏
, where Ω+

𝑏
= {𝐫 ∈Ω𝑏 ∶ 𝑢𝑞(𝐫) > 0}.

Proposition 2.13. 𝑢 ∈𝒳𝑞 solves (17) iff 𝑢 solves

⎧⎪⎨⎪⎩
Δ𝑞𝑢 =

𝑃ℎ − 𝜌𝑠𝑈vdW

𝛾𝑞
𝐻(𝑢) in Ω𝑏;

𝑢 = 𝑖 on Σ𝑖

(22)

in 𝒴𝑞 , where Δ𝑞𝑢 = div(|∇𝑢|𝑞−2∇𝑢) is the 𝑞-Laplacian operator and
𝐻(𝑡) =

{
1, 𝑡 > 0
0, 𝑡 ≤ 0.

Proof. (⟹): In Proposition 2.12, we have shown that 𝑢𝑞 is the unique 
solution to (17). It follows from [10, Theorem 1] that 𝑢𝑞 ∈ 𝐶(Ω𝑏). Then, 
it is a well-known result that 𝑢𝑞 solves

𝑞𝛾Δ𝑞𝑢 = 𝑃ℎ − 𝜌𝑠𝑈vdW

in Ω+
𝑏
, cf. [18, Section 8.4.2]. [25, Lemma 1.1] shows that

𝑞𝛾Δ𝑞𝑢 = (𝑃ℎ − 𝜌𝑠𝑈vdW)𝜒Ω+
𝑏
− 𝜇 in Ω𝑏

for some nonnegative Radon measure 𝜇 supported in 𝜕Ω+
𝑏
. Meanwhile, 

[25, Theorem 1.3] implies that 3(𝜕Ω+
𝑏
) = 0. In this case, it is known 

that 𝑢𝑞 solves (22). See also [39, Theorem 1.3] for a related problem.
(⟸): We already know that 𝑢𝑞 is a solution to (22). If 𝑢 and 𝑣 solve 

(22) in 𝒴𝑞 , then

𝛾𝑞 ∫
Ω𝑏

[|∇𝑢|𝑞−2∇𝑢− |∇𝑣|𝑞−2∇𝑣] ⋅∇(𝑢− 𝑣)𝑑𝐫
+∫
Ω𝑏

(𝑃ℎ − 𝜌𝑠𝑈vdW) [𝐻(𝑢)(𝑢− 𝑣) +𝐻(𝑣)(𝑣− 𝑢)] 𝑑𝐫 = 0.

Direct computations show 𝐻(𝑢)(𝑢 − 𝑣) +𝐻(𝑣)(𝑣 − 𝑢) ≥ 0. It follows from 
Lemma 2.11 that

0 =𝛾𝑞 ∫
Ω𝑏

(|∇𝑢|𝑞−2∇𝑢− |∇𝑣|𝑞−2∇𝑣) ⋅∇(𝑢− 𝑣)𝑑𝐫
+ ∫
Ω𝑏

(𝑃ℎ − 𝜌𝑠𝑈vdW) [𝐻(𝑢)(𝑢− 𝑣) +𝐻(𝑣)(𝑣− 𝑢)] 𝑑𝐫

≥𝑐(‖𝑢‖𝑊 1,𝑞 + ‖𝑣‖𝑊 1,𝑞 )𝑞−2‖𝑢− 𝑣‖2
𝑊 1,𝑞 .

This implies that 𝑢 = 𝑣 a.e. in Ω𝑏. Therefore, 𝑢𝑞 is the unique solution to 
(22) in 𝒴𝑞 . □
24
3. Computational schemes and simulation results

3.1. Numerical implementation

The nonpolar free energy functional of solvation for biomolecules at 
equilibrium is given by

𝐼𝑛𝑝,𝑞 = ∫
Ω

[
𝛾|∇𝑢(𝐫)|𝑞 + 𝑃ℎ𝑢(𝐫) + 𝜌𝑠(1 − 𝑢(𝐫))𝑈vdW(𝐫)

]
𝑑𝐫. (23)

To obtain the optimal function 𝑢, we rewrite the equation (22) into{
−𝛾𝑞Δ𝑞𝑢+ (𝑃ℎ − 𝜌𝑠𝑈vdW)𝐻(𝑢) = 0 in Ω𝑏;

𝑢 = 𝑖 on Σ𝑖,
(24)

where Δ𝑞𝑢 is the 𝑞-Laplacian operator. 𝛾 is a parameter constant. The 
solution 𝑢 of (24) is regarded as our “diffuse solvent-solute boundary” to 
calculate the solvation free energy based on (23). Actually, the solution 
of the above PDE can be attained via a parabolic PDE as discussed in 
earlier work [3,7].

𝜕𝑢

𝜕𝑡
= |∇𝑢|2−𝑞 [div(𝛾𝑞 ∇𝑢|∇𝑢|2−𝑞

)
+ 𝑉

]
, (25)

where the generalized “potential” 𝑉 is defined as

𝑉 = (−𝑃ℎ + 𝜌𝑠𝑈vdW)𝐻(𝑢). (26)

Finally, in (25), as 𝑡 →∞, the initial profile of 𝑢 evolves into a steady 
state solution, which solves the original (24).

Numerically, the equation (25) can be rewritten in the form [3].

𝜕𝑢

𝜕𝑡
= 𝛾𝑞

(𝑢2
𝑥
+ 𝑢2

𝑦
+ (𝑞 − 1)𝑢2

𝑧
)𝑢𝑧𝑧 + (𝑢2

𝑥
+ (𝑞 − 1)𝑢2

𝑦
+ 𝑢2

𝑧
)𝑢𝑦𝑦 + ((𝑞 − 1)𝑢2

𝑥
+ 𝑢2

𝑦
+ 𝑢2

𝑧
)𝑢𝑥𝑥

𝑢2
𝑥
+ 𝑢2

𝑦
+ 𝑢2

𝑧

− 𝛾(2 − 𝑞)𝑞
2𝑢𝑥𝑢𝑦𝑢𝑥𝑦 + 2𝑢𝑥𝑢𝑧𝑢𝑥𝑧 + 2𝑢𝑧𝑢𝑦𝑢𝑦𝑧

𝑢2
𝑥
+ 𝑢2

𝑦
+ 𝑢2

𝑧

+ (
√
𝑢2
𝑥
+ 𝑢2

𝑦
+ 𝑢2

𝑧
)2−𝑞𝑉 .

(27)

The explicit scheme is applied to the time-dependent derivative. Finite 
difference schemes are used for the first and second order derivatives 
with respect to space coordinates as we did previously [7]. To imple-
ment the domain decomposition in (3), 𝑢 is fixed to be one in the pure 
solute area Ω𝑚 enclosed by van der Waals surface (vdW). 𝑢 is fixed to 
be zero in the pure solvent domain Ω𝑠 outside solvent accessible sur-
face (SAS). In practice, a few smoothing steps are applied to make Σ0
and Σ1 to be 𝐶2. In addition, a simple relaxing scheme is applied to the 
solution process of interface equation (25) to guarantee its convergence 
as follows:

𝑢 = 𝛼𝑢𝑛𝑒𝑤 + (1 − 𝛼)𝑢𝑜𝑙𝑑 . (28)

𝑢𝑛𝑒𝑤 and 𝑢𝑜𝑙𝑑 denote the new and old 𝑢 values from the current and 
previous time steps, respectively. We set 𝛼 = 0.5 for the simulation here. 
Finally, a simple cutoff strategy is conducted to apply Constraint (2)
and to avoid possible numerical errors:

𝑢 =
⎧⎪⎨⎪⎩
𝑢(𝑥) 𝑢 ∈ [0,1]
0 𝑢 < 0
1 𝑢 > 1.

(29)

The cutoff checkup is carried out every time step or several steps during 
the solution of equation (27). Finally, a very small number, such as 10−6, 
is added to the denominator to avoid possible zeros in the denominator 
[7].

Regarding the parameterization, we adopt a previous simple strat-
egy [8]. We fix the solvent density 𝜌𝑠 to be 0.0334 1/Å3 [8,44], the 
solvent radius 𝜎𝑠 =0.65 Å, and the carbon atom radius 𝜎𝑐 =1.87 Å. 
Meanwhile, 𝛾 , 𝑃ℎ, 𝜖ℎ𝑠 and 𝜖𝑐𝑠 are considered as fitting parameters. Note 
that 𝜖ℎ𝑠 and 𝜖𝑐𝑠 are well depth parameters of the hydrogen and carbon, 
respectively. Eventually, an iterative procedure is designed as follows:
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Table 1

Different optimized parameters and RMS errors from various 𝑞 values.
𝑞 value 𝛾 (kcal/(molÅ2)) 𝑃ℎ (kcal/(molÅ3)) 𝜖𝑐𝑠 (kcal/mol) RMS (kcal/mol)

1.5 0.0017 0.000 0.461 0.187
1.3 0.0072 0.000 0.412 0.280
1.1 0.032 0.019 0. 50 0.108
1.05 0.0493 0.013 0.492 0.108
1.01 0.0687 0.010 0.488 0.109
1.001 0.0740 0.009 0.486 0.109
1.00001 0.0746 0.009 0.486 0.109

Step 0: We choose an initial set of fitting parameters and a trial set 
of molecules with existing atomic coordinates, radii, and experimental 
data of solvation free energies.

Step 1: For the 𝑗-th molecule, (25) is solved to find the solution of 
𝑢𝑗 with current parameter values, 𝑗 = 1, ⋯ , 𝑁𝑚. Here 𝑁𝑚 represents the 
total number of molecules in the trial set.

Step 2: All non-negative parameters 𝑃ℎ, 𝛾 , and 𝜖𝑖𝑠 are determined 
and updated by a non-negative least squares algorithm via minimizing 
a target function

𝑇 = min
(𝑝,𝛾,𝜖𝑖𝑠)

𝑁𝑚∑
𝑗=1

(
𝐼𝑗
𝑛𝑝,𝑞

− 𝐼𝑗,exp𝑛𝑝,𝑞

)2
,

where 𝐼𝑗,exp𝑛𝑝,𝑞 is known experimental data of solvation free energies for 
the 𝑗-th molecule.

Step 3: The iterative loop step 1 and step 2 continue until all fitting 
parameters converge within a pre-set tolerance.

3.2. Simulation results

In this subsection, for the purpose of numerical simulation and 
convergence demonstration, a set of 11 alkanes is chosen as a calibra-
tion set which includes linear, branched, and cyclic apolar compounds. 
Meanwhile, it serves as the trial set of molecules for the above parame-
terization process. In the present work, nonpolar solvation free energy 
is calculated by (23) containing terms related to surface area, volume, 
and Lennard-Jones (LJ) solvent-solute interactions. The repulsive and 
attractive parts of solvation free energy can be calculated separately in 
the present model. Specifically, first two terms of (23) count for the re-
pulsive part of solvation free energy. This allows a detailed comparison 
of our variational model with different 𝑞 values and with other compu-
tational methods [22].

3.2.1. Model validation
The parameter constant 𝑞 in the surface energy term of (23) needs 

to be determined for model validation and solvation energy calcu-
lation and prediction. For an arbitrary 𝑞 between 1 and 2, optimal 
fitting parameters can be found and then corresponding diffuse inter-
face and solvation free energy will be computed. For example, for the 
set of 11 alkane compounds with 𝑞 = 1.1, optimized fitting parame-
ters are obtained: surface tension 𝛾 = 0.032 kcal/(mol Å2), solvent pres-
sure 𝑃ℎ = 0.0186 kcal/(mol Å3), LJ parameters 𝜖𝑐𝑠 = 0.50 kcal/mol, and 
𝜖ℎ𝑠 = 0.00 kcal/mol. The root mean square (RMS) error is obtained to be 
0.108 kcal/mol. It turns out that different 𝑞 values lead to different op-
timized parameter set. 𝑞 is not close enough to 1 (greater than or equal 
to 1.3), the numerical result may become non-physical. For instance, 
one may obtain zero for the optimized solvent pressure 𝑃ℎ through the 
non-negative least squares algorithm. Zero pressure is non-physical re-
garding the solvation process. In contrast, when 𝑞 is close enough to 
1, it is evident that our model accurately catches subtle differences be-
tween linear, branched, and cyclic apolar compounds by reproducing 
the total solvation free energies of 11 alkanes. Different optimized pa-
rameters and RMS errors from various 𝑞 values are shown in Table 1.

Note that, when 𝑞 ∈ (1, 2], the solution 𝑢 of the PDE system (24) can 
never be identically 1 or 0 in the transition region of Ω𝑏. For otherwise, 
25
Table 2

Computed total solvation free energies of the trial set of 11 alkane compounds 
and their repulsive and attractive decomposition when 𝑞 = 1.00001. 𝛾 = 0.0746
kcal/(mol Å2), 𝑃ℎ = 0.0090 kcal/(molÅ3) and 𝜖𝑐𝑠 = 0.486 kcal/mol, and 𝜖ℎ𝑠 = 0.00
kcal/mol.

Compound Rep. part Att. part Numerical Experimental [6]

(kcal/mol)

methane 4.21 -2.21 2.00 2.00
ethane 5.90 -3.95 1.95 1.83
propane 9.00 -6.89 2.12 1.96
butane 7.45 -5.42 2.03 2.08
pentane 10.58 -8.28 2.30 2.33
hexane 12.13 -9.75 2.38 2.49
isobutane 8.90 -6.64 2.26 2.52
2-methylbutane 10.20 -7.80 2.40 2.38
neopentane 10.21 -7.61 2.60 2.50
cyclopentane 9.21 -8.04 1.17 1.20
cyclohexane 10.45 -9.08 1.37 1.23
RMS of calibration set 0.109

Table 3

Computed total solvation free energies of 11 alkene compounds and their re-
pulsive and attractive decomposition when 𝑞 = 1.00001. The fitting parame-
ters are taken from the above trial set: 𝛾 = 0.0746 kcal/(mol Å2), 𝑃ℎ = 0.0090
kcal/(mol Å3), 𝜖𝑐𝑠 = 0.496 kcal/mol, and 𝜖ℎ𝑠 = 0.00 kcal/mol.

Compound Rep. part Att. part Numerical Experimental [38]

(kcal/mol)

3-methyl-1-butene 10.15 -8.32 1.84 1.82
1-butene 8.68 -7.04 1.64 1.38
ethene 5.51 -4.12 1.49 1.27
1-heptene 13.42 -11.58 1.84 1.66
1-hexene 11.83 -10.05 1.78 1.68
1-nonene 16.64 -14.59 1.95 2.06
2-methyl-2-butene 10.08 -8.33 1.74 1.31
1-octene 14.99 -13.01 1.98 2.17
1-pentene 10.22 -8.58 1.65 1.66
1-propene 7.12 -5.59 1.53 1.27
trans-2-heptene 13.45 -11.62 1.83 1.66
RMS of prediction set 0.21

it will violate the fact that 𝑢 ∈𝑊 1,𝑝(Ω). Some numerical evidence can 
be found in Figure (2) in which a smooth transition region can be easily 
observed in-between two atoms even for a simple two-atom system.

Moreover, as 𝑞→ 1+, the corresponding solvation energies converge 
as described in Remark 2.10 (ii) and proved in Theorem 2.8. Therefore, 
when 𝑞 is very close to 1, the numerical results of solvation free en-
ergy calculated by the generalized constrained solvation model can be 
considered as counterpart results of the proposed constrained solvation 
model when 𝑞 = 1. Because of that, we choose 𝑞 = 1.00001 to validate 
our constrained solvation model. With the above set of 11 alkanes, new 
optimized fitting parameters are obtained for 𝑞 = 1.00001: 𝛾 = 0.0746
kcal/(mol Å2), 𝑃ℎ = 0.0090 kcal/(mol Å3) and 𝜖𝑐𝑠 = 0.486 kcal/mol, and 
𝜖ℎ𝑠 = 0.00 kcal/mol. It also reproduces the total solvation free energies 
of 11 alkanes very well (see Table 2). The root mean square (RMS) error 
is 0.109 kcal/mol.

Moreover, with 𝑞 = 1.00001 we conduct a predictive study for a set 
of previously-used 11 alkene compounds [8,9,38]. The above-obtained 
optimized parameters of 𝑞 = 1.00001 are utilized assuming the same 
solvent behavior. Solvation free energies of 11 alkene compounds are 
shown in Table 3, as well as their repulsive and attractive decomposi-
tion. Our numerical predictions match the experimental data, and their 
correlation is illustrated in Fig. 3 together with the comparisons for 11 
alkanes. The RMS error of 11 alkenes is 0.21 kcal/mol.

3.2.2. Minimized energy converges when 𝑞→ 1+
In view of Theorem 2.8, as 𝑞→ 1+, the corresponding solvation ener-

gies converge to that with 𝑞 = 1. Therefore, it is meaningful to verify the 
convergence numerically when 𝑞→ 1+. We let the value of 𝑞 go to 1 by 
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Fig. 2. A cross-section view of 𝑢 profile for a two-ball system (1.4, 0, 0) and (−3, 0, 0) with radus 2 Å. Here those fitting parameters are obtained for 𝑞 = 1.00001: 
𝛾 = 0.0746 kcal/(mol Å2), 𝑃ℎ = 0.0090 kcal/(mol Å3) and 𝜖𝑐𝑠 = 0.486 kcal/mol. It is shown that a smooth transition region can be observed around and in-between two 
atoms even for a simple two-atom system. Note that when 𝑞 ∈ (1, 2], the solution 𝑢 of the PDE system of (24) can never be identically 1 or 0 in the transition region 
Ω𝑏 .
Fig. 3. Comparison of computed and experimental data of solvation free ener-
gies of 11 alkanes and 11 alkenes when 𝑞 = 1.

Table 4

Convergence of total solvation free energies of eleven alkene molecules when 
𝑞 ⟶ 1+ e.g. 𝑞 = 1.01, 1.001, 1.0001,1.00001, 1.000001. The fitting parame-
ters are fixed as 𝛾 = 0.0746 kcal/(mol Å2), 𝑃ℎ = 0.0090 kcal/(mol Å3), 𝜖𝑐𝑠 = 0.496
kcal/mol, and 𝜖ℎ𝑠 = 0.00 kcal/mol.

Compound 1.01 1.001 1.0001 1.00001 1.000001

(kcal/mol)

3-methyl-1-butene 2.567 1.908 1.844 1.837 1.837
1-butene 2.268 1.701 1.647 1.641 1.641
ethene 1.888 1.524 1.489 1.485 1.485
1-heptene 2.797 1.930 1.846 1.837 1.837
1-hexene 2.625 1.857 1.784 1.776 1.775
1-nonene 3.126 2.060 1.957 1.946 1.946
2-methyl-2-butene 2.468 1.751 1.744 1.745 1.745
1-octene 3.049 2.083 1.990 1.980 1.980
1-pentene 2.381 1.716 1.653 1.646 1.645
1-propene 2.043 1.575 1.530 1.525 1.525
trans-2-heptene 2.789 1.918 1.835 1.826 1.826

choosing a finite sequence of 𝑞 (𝑞 = 1.01, 1.001, 1.0001, 1.00001, 1.000001) 
while fixing other model settings and parameters. Using the above set 
of alkene compounds, we compute the total solvation free energy for 
each alkene as well as its repulsive and attractive energy decomposi-
tion. It turns out that all of three energy quantities converge for all 
eleven alkene compounds. Table 4 demonstrates the convergence of to-
tal solvation free energy for the eleven molecules.
26
3.2.3. Comparison with previous GFBSS
If 𝑞 = 1, the numerical implementation of proposed constrained sol-

vation model turns out to be the same as the previous unconstrained 
nonpolar GFBSS model [8] with numerical constraints except for the 
following: in the presence of a two-sided obstacle for the characteristic 
function, the derived interface equation (24) is slightly different from 
previous unconstrained one [7,8]. Specifically, with constrained admis-
sible space, there is a 𝐻(𝑥) function in the current interface equation. It 
is unclear yet whether 𝐻(𝑥) plays an important role on the surface gen-
eration and then solvation free energy calculation. To check it, by using 
the same parameter set as above we compare the computational re-
sults of 11 alkanes and 11 alkenes between the generalized constrained 
model (with 𝐻(𝑥) and 𝑞 = 0.00001) and the unconstrained GFBSS model 
(without 𝐻(𝑥) and 𝑞 = 1). It is shown that the numerical difference 
between them is negligible. See Table 5. It implies that the newly pro-
posed constrained solvation model and the previous unconstrained one 
are equivalent to each other in terms of the solvation free energy calcu-
lation and prediction.

4. Conclusion

Variational based solvation models of biomolecules with smooth 
interface have drawn attentions in the past decade, since they have 
been developed as an efficient and reliable representation of solute-
solvent interfaces in the framework of implicit solvent models. This 
work has provided solid mathematical supports for a previous promis-
ing geometric flow based computational model (GFBSS) of solvation 
and its involved computational treatment. For this purpose, we intro-
duce a family of constrained variational solvation model with a param-
eter 𝑞 ∈ [1, 2]. In particular, when 𝑞 = 1, the newly proposed model is 
equivalent to the previous GFBSS model with two physical constraints: 
(1) a novel experimental based domain decomposition, and (2) a two-
sided obstacle for the characteristic function describing the optimal 
diffuse solute-solvent boundary. These constraints correspond to two 
previously adopted computational schemes in the numerical implemen-
tation of the GFBSS model.

The properties of the constrained solvation energy functional have 
been studied. It is shown that the resulting model is mathematically 
well-posed. Particularly, the existence of a global minimizer of the pro-
posed functionals has been proved; and the uniqueness is established 
when 1 < 𝑞 ≤ 2. Moreover, we obtain the convergence of the solvation 
energies and its unique minimizer 𝑢 as 𝑞 → 1+ to the case 𝑞 = 1. The 
convergence of the energies to the unconstrained model has also been 
verified numerically when 𝑞→ 1+.
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Table 5

Comparisons of nonpolar solvation energies between previous unconstrained 
GFBSS (without 𝐻(𝑥)) model and current constrained smooth interface sol-
vation model (with 𝐻(𝑥)) in which repulsive, attractive parts and total en-
ergies are compared with the above parameter set: 𝛾 = 0.0746 kcal/(mol Å2), 
𝑃ℎ = 0.0090 kcal/(mol Å3), 𝜖𝑐𝑠 = 0.496 kcal/mol, and 𝜖ℎ𝑠 = 0.00 kcal/mol.

Compound Rep. part (kcal/mol) Att. part (kcal/mol) Total (kcal/mol)

H(x) W/O H(x) H(x) W/O H(x) H(x) W/O H(x)

methane 4.21 4.21 -2.21 -2.21 2.00 2.00
ethane 5.90 5.90 -3.95 -3.95 1.95 1.95
butane 9.00 9.00 -6.89 -6.89 2.12 2.12
propane 7.45 7.45 -5.42 -5.41 2.03 2.03
pentane 10.58 10.58 -8.28 -8.27 2.30 2.30
hexane 12.13 12.13 -9.75 -9.75 2.38 2.38
isobutane 8.90 8.90 -6.64 -6.64 2.26 2.26
2-methylbutane 10.20 10.20 -7.80 -7.80 2.40 2.40
neopentane 10.21 10.21 -7.61 -7.61 2.60 2.60
cyclopentane 9.21 9.21 -8.04 -8.04 1.17 1.17
cyclohexane 10.45 10.45 -9.08 -9.08 1.37 1.37
3-methyl-1- butene 10.15 10.15 -8.32 -8.32 1.84 1.83
1-butene 8.68 8.68 -7.04 -7.04 1.64 1.64
ethene 5.51 5.51 -4.12 -4.03 1.49 1.48
1-heptene 13.42 13.42 -11.58 -11.58 1.84 1.83
1-hexene 11.83 11.83 -10.05 -10.06 1.78 1.77
1-nonene 16.64 16.54 -14.59 -14.60 1.95 1.94
2-methyl-2-butene 10.08 10.08 -8.33 -8.33 1.74 1.74
1-octene 14.99 14.99 -13.01 -13.01 1.98 1.98
1-pentene 10.22 10.22 -8.58 -8.58 1.65 1.64
1-propene 7.12 7.12 -5.59 -5.60 1.53 1.52
trans-2-heptene 13.45 13.45 -11.62 -11.63 1.83 1.82

Further, when 𝑞 ∈ (1, 2], the variation analysis of the constrained sol-
vation free energy functional results in a variational inequality whose 
solution is proved to be equivalent to the solution of a PDE based in-
terface equation. Although the new interface equation differs slightly 
from the previous interface equation, its numerical difference from the 
previous unconstrained model turns out to be negligible when 𝑞→ 1+. 
This implies that the newly proposed constrained solvation model with 
𝑞 = 1 and the previous unconstrained one are equivalent to each other in 
terms of the solvation free energy calculation and prediction. Our model 
validation, its numerical implementation, and solvation energy con-
vergence have been demonstrated using several common biomolecular 
modeling tasks, including one challenging set of 11 alkane molecules 
and one set of 11 alkene molecules. Note that, numerically, this work 
is limited to the study of nonpolar biomolecules to minimize model-
ing uncertainty by considering a relatively isolated situation in which 
electrostatic interactions between the solvent and solute are negligible.

For the future work, various analytic properties of the case 𝑞 = 1
will be intensively explored in a subsequent manuscript. Numerically, 
variational analysis and simulation studies will be extended to polar 
molecules and various applications. In addition, more advanced and 
efficient computation and parameterization strategies will be examined 
for the proposed models such as parallel computing.
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