Computers and Mathematics with Applications 107 (2022) 17-28

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

www.elsevier.com/locate/camwa

A constrained variational model of biomolecular solvation and its n
numerical implementation S

Yuanzhen Shao ?, Elizabeth Hawkins ", Kai Wang ¢, Zhan Chen >*

 Department of Mathematics, University of Alabama, Tuscaloosa, AL, United States of America
b Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA, United States of America
¢ Department of Computer Science, Georgia Southern University, Statesboro, GA, United States of America

ARTICLE INFO ABSTRACT
Keywords: Variational based solvation models of biomolecules with smooth interface have drawn attentions in the past
Biomolecular solvation decade since they have been developed as an efficient and reliable representation of solute-solvent interfaces
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in the framework of implicit solvent models. This work aims at providing solid mathematical supports for
a promising geometric flow based computational solvation model with smooth interface (GFBSS) and its
involved computational treatments. For this purpose, we improve the GFBSS model by explicitly including two
physical constraints: (1) a novel experimental based domain decomposition, and (2) a two-sided obstacle for
the characteristic function describing the optimal diffuse solute-solvent boundary. It is shown that the resulting
constrained model is mathematically well-posed. Further, to overcome the challenges arising from including
these constraints, we propose a family of generalized constrained energy functionals whose variations satisfy
a g-Laplacian type equation for nonpolar molecules. The solvation free energies predicted by the generalized
models converge to that of the proposed constrained one. Most importantly, the numerical difference between
the generalized models and the previous unconstrained GFBSS model is negligible. It implies that the newly
proposed constrained solvation model and the previous unconstrained one are equivalent to each other in terms
of the solvation free energy calculation and prediction. Our model validation, its numerical implementation, and
solvation energy convergence have been demonstrated using several common biomolecular modeling tasks.
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1. Introduction

Solute-solvent interactions are typically described by solvation en-
ergies (or closely related quantities): the free energy of transferring the
solute from a vacuum to the solvent environment of interest (e.g., water
at a certain ionic strength). Solvation free energies can be calculated by
a variety of computational methods ranging from very time-consuming
quantum mechanical approaches to simple phenomenological modifica-
tions of Coulomb’s law. Implicit solvent methods have become popular
for many applications in molecular simulation [2,5,20]. A variety of im-
plicit solvent models [2,14,27,40,42,46] are available to describe polar
solvation; currently one of the most widely-used methods is the Poisson-
Boltzmann (PB) [2,21,24,29]. The separation of the discrete and the
continuum domains in implicit solvent models requires an interface to
indicate the separation of solute atoms from the surrounding solvent.
Many solvation quantities, including surface areas, cavitation volumes,
and electrostatic free energies, are sensitive to the interface definition.
There are a number of different surface definitions, which include the
van der Waals (vdW) surface, the solvent excluded surface (SES) and
the solvent accessible surface (SAS), available for implicit solvent ap-
plications. These surface models do have much success in biomolecular
modeling tasks such as protein folding, protein-protein interactions, and
macromolecular docking. However, they are ad hoc partitions and may
create geometric singularities. In addition, it has been observed that
these surface definitions either non-negligibly overestimate or underes-
timate the solvation free energies [44].

In the framework of PB based implicit solvent approach, variational
models of solvation have recently received attention [7,17,45,47,48,
50]. Among them, geometric flow based solvation model with smooth
interface (GFBSS) [7] stands out as one of pioneering work. It not
only incorporates descriptions of solvent-solute interactions and polar-
nonpolar coupling but also generates optimal diffuse interface between
solute and solvent by the minimization of proposed energy functional.
In particular, it aims at a physically realistic smooth solvent-solute
boundary. The usage of smooth interface (related to inhomogeneous di-
electric profile) can be justified physically and biologically. First of all,
there should be a smooth transition region, in which atoms of solute
and solvent are mixed, between the SES surface and SAS surface. From
a quantum mechanical point of view, biomolecules interact with solvent
molecules and/or other biomolecules, and their wave functions and
their electron density distributions overlap spatially. In addition, when
considering the structures of water and ions around the biomolecules
or close to the charged surface in PB equations, an effective position-
dependent dielectric function is needed to describe the smoothly vary-
ing dielectric property in the solvent domain [1,4,28].

The main idea of GFBSS model is to introduce a characteristic func-
tion u to describe the distribution of solute throughout the domain (u =1
for pure solute and u =0 for pure solvent) [7]. Then the minimization
of a proposed total energy functional leads to an optimal profile of the
characteristic function, which is defined as the smooth solvent-solute
boundary between the atomic solute domain and continuum solvent
domain. Specifically, the following total solvation free energy was pro-
posed in terms of u:

I=/y|Vu(r)|dr+/Phu(r)dr+/ps(l—u(r))UVdW(r)dr
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Here [, y|Vu(r)|dr is used to describe the surface energy of the macro-
molecule. It measures the disruption of intermolecular and/or in-
tramolecular bonds that occurs when a surface is created. [, P,udr is
the mechanical work of creating the biomolecular size vacuum in the
solvent. p, is the solvent bulk density, and U¥4¥(r) is the attractive por-
tion of the van der Waals potential at point r. It represents the attractive
dispersion effects near the solvent-solute interface and has been shown
by Wagoner and Baker [44] to play a crucial role in accurate nonpolar
solvation analysis. In the second and third lines of (1), y is the electro-
static potential; p,, is the density of molecular charges; ¢,, and ¢, are the
dielectric constants of the molecule and the solvent, respectively. Usu-
ally, ¢, ~ 1 for the protein and ¢, ~ 80 for the water. g; is the charge of
ion species j=1,2,---, N,; kp is the Boltzmann constant; T is the abso-
lute temperature; c is the bulk concentration of the j-th ionic species;
and f=1/kpT. For notational brevity throughout this paper, we put

N,

B(s)=p"" [Z e (ePsai — 1)] )

Jj=1

The first three terms of (1) are usually termed the nonpolar portion of
the solvation energy. The remaining terms are called the polar portion
of the solvation energy.

With improved parameterization and solution schemes, GFBSS mod-
els have been developed as an efficient and reliable representation of
solute-solvent interfaces by accounting for varying dielectric constants
near the molecules in a natural means [7,13,43,45,49]. In spite of its
success in solvation prediction and model applications, there are several
mathematical questions that need to be pursued and investigated for
its further model development, analysis and applications. One is about
the existence of a non-trivial physically meaningful global minimizer
of the proposed energy functional. For instance, regarding nonpolar
molecules, one only needs to consider the first three terms of equation
(1). Consequently, u =0 throughout the domain may become a trivial
global minimizer. That leads to zero or negative nonpolar free energy
which is supposed to be positive based on biological measurement. To
avoid this type of nonphysical outcome, a biological fact has been taken
into consideration in previous numerical implementations (the first nu-
merical constraint): there is no solute atom outside a boundary (such as
SAS surface) and there should exist continuous pure solute region with-
out solvent atoms inside it. As a result, u was fixed to be 1 for the pure
solute region and O in the pure solvent area. Then the targeted optimal
u profile is only to be determined in the transition area [7] between the
pure solute and the pure solvent regions.

The second theoretical consideration of the previous GFBSS model
stems from the following question: how can one assure that the global
minimizer 0 <u* <1 as designed for a solute density function? Numeri-
cally, a simple cut-off strategy together with relaxing schemes has been
applied to the solution process to guarantee u € [0, 1] [7] (the second nu-
merical constraint): u is set to be zero when a computed value is below
zero and 1 when it is above 1.

This work aims at providing rigorous theoretical supports for the
previous unconstrained GFBSS model [7] and its associated numerical
strategies. To the end, we improve the previous unconstrained GFBSS
model by explicitly incorporating the two aforementioned numerical
constraints: (1) a novel experimental based domain decomposition,
and (2) a two-sided obstacle for the characteristic function describing
the optimal diffuse solute-solvent boundary. The proposed constrained
model is proved to be mathematically well-posed.

However, including the two numerical constraints in equation (1)
generates an essential difficulty in determining its first variation. This
makes the numerical computations of the solvation energy, i.e. the mini-
mum energy predicted by equation (1), a challenging task. To overcome



Y. Shao, E. Hawkins, K. Wang et al.

this difficulty, we further propose a family of g-energy type functionals
with the same constraints. It is proved that their minimum energies
and minimizers converge to those of equation (1) with constraints.
Such constrained g-energy functionals are known to lead to variational
inequalities. For nonpolar molecules, we are able to transform these
inequalities into g-Laplacian type equations. Based on these analyses,
numerical implementation and validation of the generalized solvation
models are given as well as its numerical comparison with the previous
GFBSS model.

The rest of this paper is organized as follows. We first describe in
details our new constrained total solvation energy functional and the
corresponding g-energy type functionals in Section 2.1. Then the ex-
istence and uniqueness of global minimizers of these functionals are
studied in Section 2.2 and 2.3. The convergence of the energies pre-
dicted by the constrained g-energy functionals is proved in Section 2.4.
It is followed by a variational process to derive the interface models
for surface generation in Section 2.5. Finally, numerical validation and
complementary simulation of constrained variational model are demon-
strated in Section 3. Section 4 is the concluding remark.

1.1. List of notations

In this article, we use r = (x, y, z) to denote the coordinates in R3.
Given two vectors u, v € R3, u-v is their inner product. £3 and H? always
stand for the Lebesgue measure in R? and the 2-dimensional Hausdorff
measure, respectively.

Given U C R3, U stands for the closure of U. The topological bound-
ary of U is denoted by oU.

Suppose that X is a Banach space. Given a sequence {we b, =
(uy,uy, ) in X, u = u in X means that u, converge weakly to some
ueX.

Given 1 < p < oo, LP(U) denotes the set of all p-integrable (Lebesgue)
measurable functions defined on U c R?; and when p = o0, L?(U) stands
for the space of all essentially bounded measurable functions. We de-
note their norms by || - ||, W*kP(U) is the Sobolev space consisting of
functions whose weak derivatives up to k-th power belong to L?(U);
HY(U)=wW'2(U); BV(U) consists of all functions f € L!(Q) that are
of bounded variation in U, whose total variation in U is denoted by
[IDfI(U). Their norms are denoted by || - [y 1.4, || - | g1 and || - || 5y, re-
spectively. Wok‘” (U) and Hé(U) mean the closure of C°(U) in wkr(U)
and H'(U), respectively.

2. Mathematical model and its analysis
2.1. The total energy functional

Experimentally, it has been known that beyond a boundary (such as
solvent excluded surface), which encloses the immersed molecules, sol-
vent atoms are not present. Moreover, as described in the introduction,
the wave functions of the solute and solvent overlap spatially as well
as their electron density distributions. Therefore, there must be a mix-
ing region of the solvent and solute. Based on these considerations, we
explicitly introduce a novel domain decomposition for the whole com-
putational domain as follows.

Let Q C R? be a bounded and connected Lipschitz domain composed of
three disjoint subdomains with Lipschitz boundaries:

+ Q,: solute (molecular) region;
+ Q: solvent region;
+ Q,: solute-solvent mixing region.

All three subdomains are predefined. We further assume that 0Q C 0Q;
and 0Q,, C 0Q,. Let

T, =0Q,

be the solvent excluded surface enclosing the pure solute region and
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u=0

O<u<1i Qs
Solvent

Fig. 1. Illustration of model domain definition and decomposition: Q,,: solute
(molecular) region; Q,: solvent region; Q,: solute-solvent mixing region.

$0 =09\ 0Q,

be the solvent accessible surface outside of which is the pure solvent
domain. Suppose that £, N Z,=# and Q,,,Q, are non-empty. A picture
illustration of the domain definition and decomposition can be found in
Fig. 1. We further assume that the solute region Q,, contains N,, solute
atoms located at ry, -+, ry, ; and there are N, ion species outside Q.

Moreover, we revise the previous definition of u and the energy func-
tional based on the domain decomposition shown in Fig. 1. We define
u : Q- R in such a way that u(r) represents the solute volume ratio at
position r € Q. As such, the physical constraints

u(r)e[0,1] fora.a.reQ 2
and
u=1 ae inQ, and u=0 a.e. inQ; 3)

need to be imposed. Constrain (2) makes the potential minimizer u of
the solvation energy functional meaningful as a volume ratio function;
Constrain (3), together with the domain decomposition, guarantees that
Q,, and Q, are purely occupied by the molecule and the aquatic solvent,
respectively. These two conditions ensure that the potential minimizer
u is physical.

Furthermore, to overcome the challenges arising from incorporating
Constraints (2) and (3) as mentioned in the introduction, we extend the
definition of the nonpolar portion of solvation free energy by consider-
ing

Iy ) =/ [71Vu@)|? + Pyu(r) + p,(1 —u(@)HU ¥ (r)] dr
Q

with ¢ € [1,2]. Note that we generalize the surface energy term by ex-
tending specific g = 1 to the general case 1 < g <2. When ¢ = 1, the term
/Q |Vu|dr = || Dul|(Q2) stands for the total variation of u in Q, which is
adopted in the original formulation in [7]. Note that U¥4W (r) can be for-
mulated by Y, UM (r) in which U (r) represents the attractive part of
Lennard-Jones potential [7,44]. To this end, the L-J potential can be di-
vided into attractive U™ and repulsive U, in different ways. Here we
take a Weeks-Chandler-Andersen (WCA) decomposition based on the
original WCA theory [31]:

at,WCA . _ | —€;5(r)
vi (r)‘{uHm

0<|r—r|l <20,
Ir =l 22'%6,,,

1/6
0<|lr —r;l| <2"/%0;,

! e —r;| =2,

rep, WCA _ Uiu(r) + €5 (r)
U (r)= { 0

where

o= (%)= (2]

with o;; of length and well depth parameters ¢;; of energy depending
on the atom type.
Similarly, the PB theory based polar energy can be defined as

1wy)= / (o = 3 e@IVY P - (1= wBw)] dr.
Q
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where e(u) = ue,, + (1 — u)e is the dielectric constant. In addition, we
assume the neutral condition

NC

o0 —
Q¢ =0.
=

Physically, u and thus the profile of the solvent-solute boundary,
must be determined by the energy minimization principle. Therefore,
our task is to identify the energy functional to be optimized, and to
evaluate the desired solvent-solute properties depending on u.

(C)

With all these preparations, we are now in a position to state the
minimization problem of the total energy functional

Kt 9) = Ly o) + 1,0, 9). ®)

In (5), y satisfies the boundary value problem of the generalized
Poisson-Boltzmann equation (GPBE)
in Q;
(6)

on

dive)Vy) + (1 —uw)B' () =—p,,
0Q,

V=V

where y,, € W*(Q) is a predefined boundary value. Therefore given
a measurable u satisfying (2) and (3), y = w(u) is determined via (6).

Based on (6), the minimization problem (5) can be stated as to min-
imize

Iq(u)=/ [yqu|q+ Pu+p,(1 —u)UVdW] dr
Q

+ [ o= Je@ivel - -wBw)| ar. @

Q

in the admissible space

X, ={ue Wh4(Q) : u satisfies Constraints (2) and (3)},

when ¢ > 1, and

X, ={u € BV (Q) : u satisfies Constraints (2) and (3)},

when ¢ = 1; y is determined via (6) in the space

A={ve H'(Q) : v|jo =)

A couple of comments on the energy functional (7) for the case g €
(1,2] are as follows.

Remarks 2.1.

(i) Inthe case 1 < ¢ <2, the functional (7) is strictly convex in u. Based
on this fact, we will show in Theorem 2.4 that the minimizer of (7)
is unique in X,.

It is known that a constrain like (2) generates a two-sided obstacle
problem, whose variation results in an variational inequality. In
the case of ¢ € (1,2], the knowledge of the porosity of free bound-
aries of g-Laplacian equations can be adopted to transform the
variational inequality into a PDE. Such knowledge, however, is un-
known in the case g = 1.

Note that the first variation of /, |Vu|?dr, as will be shown in

Section 2.5, produces a term of the form Au := div(|Vul972Vu).
This is called the g-Laplacian operator, which is also termed the
p-Laplacian operator in lots of literature. In our manuscript, we
adopt the letter “g” instead of “p” to distinguish the notation /, of
the polar energy from the notation of the total energy I, in (7).
The subscript ¢ in the latter is to indicate its dependence on g.
It is also known that the minimizer of a total variation model,
which corresponds to the case ¢ = 1, with constraints like (3) usu-
ally suffers from jump discontinuity along X,. This may lead to
additional computational errors.

(i)

(iii)

20
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(iv) Most importantly, in Section 2.4, we will show that, as ¢ —» 17,
the minimizers u, of I,(-) and the corresponding solvation energies
converge to their counterparts in the case g =1.

We would like to point out that this result does not follow from
the standard convergence results of the solutions of g-Laplacian
equations A u = f to that of the 1-Laplacian equation. Indeed, such
convergence only holds when f satisfies some restrictive condi-
tions in certain function spaces. See [11,15,26,34-36] for some
related work.

2.2. The generalized Poisson-Boltzmann equation

Following the ideas in [12,32,33], for any u € X,, we set

Elyl=-1,y)= / [5e@IVul? = gy + (1= 0B dr.
Q

Proposition 2.2. Given any u € X|, there exists a unique y, € A such that

E,ly,]= ll,fleiﬂE“[W] < co.

Moreover, v, is the unique weak solution to the boundary value problem
(6). Finally, v, satisfies
lwllgr + vl < Co.
Particularly, the constant C, depends only on vy, and can be chosen inde-

pendent of u.

Proof. (i) First observe that e(u) € L*(Q) with 1 =¢,, < e(u) < ¢, = 80.
By the standard elliptic theory, cf. [23, Theorems 8.3 and 8.16], the
boundary value problem

{div(e(u)Vv/) +p,=0

V=V

in Q;

on 0Q

has a unique weak solution ¥, i.e.

/ eV, - Vndr = / pundr, Vn€ Hy(Q), ®
Q Q

satisfying

I ll g1 + 1)l < M. ©)

The constant M depends only on v, and thus is independent of u.

(ii) Observe that B(0) = 0; and (4) implies that B’(0) = 0 and
B'(+0) = +00. In addition, B”(s) > 0. We thus conclude that B(0) =
?éiD%B(s) and B is strictly convex. We define E, : H(}(Q) - RU {4}

by

E,ly] =/ [Se@IVw P+ (1= wBw +4,)] dr.
Q

By the direct method of calculus of variation, there exists a global mini-

mizer @, € H(} Q) of E,, i.e. E,[,]= min E,[y]. Moreover, the strict
weH (@)

convexity of the functional E, implies that , is the unique global min-
imizer. Note that by (8)

Egui=Ely -0+ [ [SewiVi? - o0, ar.
Q

Let y, =¥, + ,. From the above equality, we learn that
E,ly,]= vl}leiﬂE“[W]'

(iii) By the properties of B(-) and (9), there exists some 4 > 0 such
that
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B'(A+y,)>1 and B'(-A+1,)<-1.

Recall £3 is the Lebesgue measure in R3. If £3({|,| > 4}) > 0, we define

A on {y, > A}
=1, on{-i<y, <A}
-1 on {y, <-4}

Then € H(; (Q), cf. [16, Proposition 20.2], and E,[¥] < E,[¥,]. This
contradicts the uniqueness of global minimizer of E, and thus |,| < 4
a.e.. As a direct consequence, we obtain

vl < C

for some C; depending only on y,.
(iv) The dominated convergence theorem implies that , € Hé (Q)
satisfies

/[G(M)Vli/,, Vi + (1= wB (y,)ndr =0 (10)
Q

for all n € H(;(Q) N L*(Q). By a standard approximation argument, it is
not hard to see that (10) also holds true for all y € H (} (Q). Taking n =1y,
in (10) yields

/ [e@)| Vi, |* + (1 —w)B (y,)@,]dr =0.
Q

Since |@,| < 4 a.e. and |B'(y,)| < C for some C depending only on vy,
we conclude that

lwull g1 < Cy.

Again the constant C, depends only on . In sum, we can take C, =

C+G. O

Proposition 2.3. Let u;,u € X, be such that u, — u in L'(Q) as k — .
Let y;,w € A be the corresponding electrostatic potentials, i.e.,

E, Iyl =minE, [w] and E,ly]=minE,[w].

Then lim E, [w]=E,lw].
k—oco

Proof. The proof is essentially the same as that of [12, Theorem

3.2]. O
2.3. Minimizing the total energy functional

Theorem 2.4. For every q € [1,2], there exists some u, € X, such that
I, (uy)= 5253 1,(u) with I,(u,) finite. When q € (1,2], the minimizer is unique

in X,

Proof. The existence of a solution can be proved by using a standard
argument in Calculus of Variation. See for example [18, Theorem 8.2.2].
For the reader’s convenience, we will present a brief proof. Because

several estimates in this proof will be used later in Section 2.4. Given
any u € X, recall from Proposition 2.2 that

€
Elw,]<Ely,l< Esllwmllzl +C [IWeolleo + Blllvello)] < Cs

for some C; independent of u and g. Therefore, for any u € X,

Iq(M) :Inp,q(u) - Eu(l//u) > Inp,q(u) - Eu(l//eo)
>y|IVulld + Pyllull? — C, — C; an

. _ aW S . . R
with C; = —p; ‘/Q\Qm UY*"dr, which implies M, := ulenaqu I,(w) is finite.

Now we can find a minimizing sequence {w;}? 6 C &, such that

21
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klim I,(wy) = M,. (11) implies that {we )2, are uniformly bounded in
—00 -

X,. As a direct consequence, when g > 1, there exists some u, € X, such
that

wy—u, inWYQ and w,->u, inLYQ) as k- oco;

or when ¢ =1, we apply [19, Theorem 5.2.3.4] to obtain some u; € X;
such that w;, — u; in L1(Q) as k — oo.

Finally, the lower semi-continuity of I, ,(), cf. [18, Section 8.2.2]
and [19, Theorem 5.2.1.1], Proposition 2.3 and the dominated conver-
gence theorem imply that

M, = I,(u;) <liminf I,(0,).

and thus u, is a global minimizer of I,(-) with I (u,) finite.

When ¢ > 1, the uniqueness of a global minimizer is a direct con-
sequence of the strict convexity of I,(:). Indeed, let u, = tuy + (1 — t)u,
for 1 € 10,1] and up,u; € X, with 4 # u,. Then it follows from Proposi-
tion 2.2 that

L) =1 o) + 1, (s w,)

<t [I,,,,,q(uo) +1,, (g, y/ut)] +(1-1 [Iw(ul) + Ip'q(ul,y/ul)]

<t [lnp,q(uo) + lp’q(uo,y/uo)] +(1=1) [l,,p,q(ul) 1w, )]
=1, () + (1 = O (uy),

as I,

np,q 18 strictly convex when ¢ > 1.

O
Remark 2.5. Lacking the strict convexity of I,(-), in general, the mini-
mizer of I,(-) does not need to be unique.

2.4. Asymptotic behavior of 1,(-) as ¢ — 1*

Let u, minimize I,(-). In this section, we will show that, when X, €
C? with i € {0,1}, u, converges to a minimizer of 7;(-) as g — 1+,

We will first prove two lemmas. To prepare for the necessary nota-
tions, define

Q; ={reQ:distr,Q;)<1/k} withje€ {m,s)}

and

Vi ={u€eX :u=1inQ,, and =0 inQ,}, keN.
Lemma 2.6. For every f € Y),, there exists a sequence {fﬂ}f";1 « C“(ﬁ)

satisfying Constraints (2) and (3) such that

@ f,— fin LYQ), and
@) [IDf,NI€) = IDfII(RQ) as n— co.

Proof. For any 6 > 0, let #; be the Friedrichs mollifying kernel. For any
n €N, we choose ¢, > 0 so small that

@ f, =, * f satisfies Constrain (3) and
®) IIfu=flli <1/n

Constrain (2) is obviously fulfilled by f,,. Then, it holds lim || f, - f|l, =
0.
It remains to show (ii). [19, Theorem 5.2.1.1] implies that

1D/ (@) < liminf 1D, 1.

Extending f to be identically zero outside Q, we can consider f as an
element in BV (R?). For any ¢ € C(g (Q) with [|¢||, <1, we have
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/f,,dlvqbdr_/( Me, *f)le¢dP—/fle *qﬁ) dr
/fle

The inequality follows from the definition of BV -functions.
supremum over all such ¢, we derive that

dr <IDFIR?) = I DF (€.

Taking

1D £, 1) < IDfII(€Y),

which implies that

limsup [| D, () < [ Df11(€).

This completes the proof. []

Lemma 2.7. For every f € X, we define {fi}2, € BV(Q) by
1, XEQ,

fi0=10, xeQ,
f(x), elsewhere.

If %, € C? with i € {0, 1}, then

@ f— fin LY (Q) and
(D IDfNE€) = IDFIC) as k — co.

Proof. The proof for (i) is straightforward. So we will only show (ii). In
the following proof, it is always assumed that i € {0, 1}. Since X; are C2,
there exists some a > 0 such that X; has a tubular neighborhood B, (%))
of width a > 0, cf. [23, Exercise 2.11] and [30, Remark 3.1]. Denote
by v; the outward pointing (into Q,) unit normal of X,. Then the map
defined by

A Zx(aa)—>R3 (x,r) = x +rv(x)

is a C!-diffeomorphism; and ;. := A;(Z;,r) is a C! -hypersurface, whose
outward unit normal is denoted by v,,. In particular, v;, = v;. By the
inverse function theorem, there exist two maps P; € C!(B,(Z;),%;) and
d; € C1(B,(Z,),(—a,a)), where P, is the nearest point projection onto X,
and d; is the signed distance to X; with d;(x) > 0 for x € B,(%;,)NQ,. Note
that d; is indeed C?, see [37] for example. We can define two C!-vector
fields V; : B,(Z;) » R> by

Vi) =V, 4,0 ().

For any r € (0,a), put U;, := B,.(%;) N Q,. Due to the trace theorem of
BV -functions, cf. [19, Theorem 5.3.1], we have

/fdivV,-dr+/V,--d[Df]:/T,dez—/Trdez

U;

ir ir i Z;

for all f € X, with H? being the two-dimensional Hausdorff measure.
Here T, f is the trace of f|y, on dU,,; and [Df] is the vector-valued
measure for the gradient of f.

Pushing r — 0" above yields that

rli%l/T,de%/T,deZ.

3

12)
[19, Theorem 5.2.1.1] implies that

IDAII() <liminf | Df, |(€).

Observe that 0Q,,, =X, ; /, and 0Q,; \ 0Q =X for sufficiently large

k. Denote by T, f the trace of Flap\(up,uu,,) 00 0 [\ (Up,uU,,)].
Direct computations show c

22
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IDfi () — I Df1I(€)

=1

[ a-tynane- /(1—T1/kf>dH2—||Df||(U,1/k>

Zi1/k

MN

/’Tl/kf Tl/kf‘ dH?

i /k

Mw

[ a=tnane- /(1—Tl,kf>dH2—||Df||( a0

Zi1/k

i=1

From (12), we infer that

lim /(I—Tl/kf)de /(1—Tl,kmez—qun(U,l/k) 0.

Zi1/k

This implies that
1i£nSUP 1D £ 1) < 1D fII(€).
This completes the proof. []

Theorem 2.8. Assume that =, € C? with i € {0,1}. As ¢ — 17, u, converges
to a minimizer u of I,(-) in L?(Q) for any 1 < p < co. Moreover,

ql_iHL L,(ug) =1, ().

Proof. Fix v € W4(Q) satisfying Constraints (2) and (3). Then

Iq(U)Sy/|VU|‘1dr+PhV01(Q\Qm)+/pSUVder+C0||pm||onl(Qm)
Q

s

<Cs,
where C, is the constant in Proposition 2.2 and Cs is independent of g.

This yields that

Cs 21,002 7 [ Va7 + Byl -
Q
> [7lIVul1f + Pyllullf] (Vol(@)'~7 = C; - C,

-c,

13

where C; and C, are the constants in the proof of Theorem 2.4. We thus
infer from (13) that

lugllypr1 < Cg

for some Cq independent of ¢. [19, Theorem 5.2.3.4] implies that,

given any sequence g, — 1*, there exists a subsequence of {u, }* , not

relabeled, converging to some u € X} in L'(Q). The Riesz-Thorin inter-
polation theorem then implies that Ug, U in LP(Q) for all pe[1, ) as
n — oco. Note that

/ [Vug|?dr > [|[Vuy || (Vol(Q))' 4 .

Then it follows from [19, Theorem 5.2.1.1] and Proposition 2.3 that
<limi
I(w) < llmtrolf an (uq").

On the other hand, we define

1, XEQ,
wy(x) =10, X€EQ
u(x), elsewhere.

We will show that
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limsupan(uqn)SII (wy)- 14

Lemma 2.6 implies that we can find a sequence {w,;}?, such that
wy; € Cc2(@Q)n X, for all g and

we; = w, in LY(Q) and || Dw,,lI(Q) = [[Dw, () asi— .

Since u, minimizes /,(-) in X, we have

1y, (ug,) < Iy, (Wi ).

Pushing n — oo, the dominated convergence theorem implies that

lim sup an (”qn) < I (wy ).

n—oo
Then Lemma 2.6 and Proposition 2.3 immediately yield (14). Now
Lemma 2.7 and Proposition 2.3 imply that

lim sup an (uq”) <Lw. O
n—oo

2.5. Variations and surface models

To prepare the theoretic basis for the numerical simulations, we will
derive the first variation of the energy functional in the case ¢q € (1,2].
Because of the presence of the constrained admissible space, the re-
sulted surface model is expected to be different from previous uncon-
strained smooth surface models. For simplicity, we will confine our
attention to the minimization problem of the nonpolar energy which
includes the surface energy term. By doing so, modeling uncertainties
can be minimized by considering a relatively isolated situation in which
electrostatic interactions between the solvent and solute are negligible.
This is because different types of energies may contribute to uncertain-
ties for the model comparision.

Because of Constrain (3), the nonpolar energy can be reduced to

Ly =1,

() + M, (15)

where My = P, Vol(Q,) + p, [, UV dr is independent of u and

fnp’q(u)z/ [71Vul? + Pyu+ py(1 = )UYW] dr (16)
Q

is the nonpolar energy contained in €,.

Proposition 2.9. (16) has a unique global minimizer u, in the admissible
space

Ly={ueW"(Qy) u=ion¥; withi=0,1 and 0<u ae inQ}.

Moreover, u, € X,. Here it is understood that a function v € & is automat-
ically extended to be one in X, by

1 whenr eQ,
v(r)=5u(r) whenreQ,
0 whenr € Q.

Proof. The existence and uniqueness of a global minimizer in 2, fol-
lows from the strict convexity of fnp!q(~) and the direct method of Cal-
culus of Variation. If £3({uq > 1})#0, we put

i )= 1 if u, (r) > 1;
1 u,(r) otherwise.

[16, Proposition 20.2] again implies that i, € 2, and a direct computa-
tion shows that

Ly o) < 1y, o (ug).

A contradiction. Therefore, u, € X,. [
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Remarks 2.10.

(i) The reason to enlarge the admissible space X, to Z, is due to the
following consideration. The first variation of (16) yields an ob-
stacle problem of g-Laplacian equation. To study the variational
formula, in the following, we will use the porosity of the free
boundary of g-Laplacian with one-sided obstacle [25], which corre-
sponds to the one-sided bound 0 < u in the definition of &,. Such a
result, nevertheless, is unknown for the two-sided bound 0 <u < 1.

(ii) Following the proof of Theorem 2.8, one can show that, consider-
ing u, as an element in X, u, = u in LY(Q) for some minimizer u
of I,,,(-) in X,. Moreover,

qlir}l+ I,,p’q(uq) = I,,p’l(u).

Pick any ¢ € 2, and let

y(r)=(1 - 1)uq + rq§=uq + T(qﬁ—uq), 7€[0,1].

Since &, is convex, we conclude that y(z) € . Set L(7) = I,,, ,(v(2)).
Then

L(z) - L(0)

0<L/(0)= lim
=0+ T

- / [alVit, 1972V, - V(= ) + (Py = p, U W) = )] dr.
Q
Let a : 2, x W, ""(€,) > R be defined by
a(u, v) =/ [ralVul*=2Vu - Vo + (P, — p,U™)0] dr.
Q

We will show that there is a unique solution to the following variational
inequality in &,

aw,¢—u)>0 forall peZ,. a7)

A crucial step of the proof is the following estimate.

Lemma 2.11. There exist two positive constants ¢ and C such that

q

-2 2
cllullpra +lvllgr)™ " llu=oll,, , < abu—v)—a@u-v) <Cllu-vll,

for allu,v € ¥,, where %, :={we W'(Q,) : w=ion% withi=0,1}.

Proof. Due to [41], it holds for all £,¢ € R3 and 1 < g <2 that

|le19=2 = 112 < Cle - ¢! as)
and

E=CP e e

—o T (g2 - (2] - (g = 0). 19
T SCee- 10 €= 0 19

The inequality a(u,u — v) — a(v,u —v) < Cllu — ull‘;V » is immediate from
(18). It follows from (19) that

a1 — v) — a(v,u — v) =yq/ (|vu|q*2vu - |vU|HvU) V(- v)dr

Qp

ZM/ V(= 0)P(IVul + Vo))~ dr

Q
27ql| V=)l Val + Vol )17 (20)
2c(llullyra + N0l 1V @ = O @D

In the above, (20) follows from the reverse Holder inequality and (21)
is a consequence of the Minkowski and Poincaré’s inequalities. []
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Proposition 2.12. There is a unique solution to the variational inequal-
ity (17) in 2.

Proof. We already know that u,isa solution to (17). It remains to show
the uniqueness part. Assume to the contrary that (17) has two solutions
uvEZ,. (17) states that

0<a(u,v—u)+a(v,u—v).
On the other hand, the above lemma implies that

2

-2
02 a(u,u—v) = a,u—0v) 2 c(lullyrq + 0l llu=vll,,

which yields |lu — v|ly1, =0 and thus u=v a.e. in Q.

O
We decompose Q, into

Q= Qb+ LlQ(;, where Qb+ ={reQ,: u,(r)>0)}.

Proposition 2.13. u € P solves (17) iff u solves

Ph _ psuvdW

H@u) in Q; 22)

on %

in %,, where A u = div(|Vu|9=2Vu) is the g-Laplacian operator and

H(t) = L
1o

Proof. (=): In Proposition 2.12, we have shown that u, is the unique
solution to (17). It follows from [10, Theorem 1] that ug € C(y). Then,
it is a well-known result that U, solves

t>0
t<0.

qrAgu= Py — p, U™

in Q;’, cf. [18, Section 8.4.2]. [25, Lemma 1.1] shows that
arBgu= (P, = p,U" ™) por —u inQ,

for some nonnegative Radon measure u supported in 9Q; . Meanwhile,
[25, Theorem 1.3] implies that £3(0QZ) =0. In this case, it is known
that u, solves (22). See also [39, Theorem 1.3] for a related problem.

(<): We already know that u, isa solution to (22). If u and v solve
(22) in Yo then

yq/ [qulq’QVu— |Vv|q’2Vv] -V(u—v)dr

Qp

+/(Ph — p,UYW) [Hw)(u — v) + H@)(v —u)] dr =0.
Q

Direct computations show H (u)(u — v) + H(v)(v — u) > 0. It follows from
Lemma 2.11 that

0 =yq/ (1Vu|*=2Vu — |Vo|72V0) - V(u - v) dr

Q,

+ / (P, = p,U™Y) [H (u)(u — v) + H(0)(v — u)] dr
Qy

2

-2
Ze(llullyrra + lollyra)* ™ llu=vll],,,-

This implies that u = v a.e. in Q,. Therefore, u, is the unique solution to

22)in %, O

24
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3. Computational schemes and simulation results
3.1. Numerical implementation

The nonpolar free energy functional of solvation for biomolecules at
equilibrium is given by
Lpg= / [y|Vu(r)|q + Puu(r) + p,(1 — u(r))U"dW(r)] dr. (23)
Q

To obtain the optimal function u, we rewrite the equation (22) into

{—ququ + (P -pUHw) =0 in Q

(24)

u=i on X,

where A u is the g-Laplacian operator. y is a parameter constant. The
solution u of (24) is regarded as our “diffuse solvent-solute boundary” to
calculate the solvation free energy based on (23). Actually, the solution
of the above PDE can be attained via a parabolic PDE as discussed in
earlier work [3,7].

ou P Vu

— =|Vu|71|d |4 2
o [Vul [IV<yq|W|2_q>+ ] (25)
where the generalized “potential” V is defined as

V = (=P, + p,U" ") H(u). (26)

Finally, in (25), as r — oo, the initial profile of u evolves into a steady
state solution, which solves the original (24).
Numerically, the equation (25) can be rewritten in the form [3].

ou _ (ui +u§ +(qg— l)ug)uZZ +(u)2( +(qg— l)ui +u§)uyy + (g — l)ui +u§ +u§)um
ot =74 u§+u§_+u§
2uuguy, +2uuu,, +2uu,u
_ _ yExy x%z%xz z¥y%tyz ) ) 2\2—q
y2—-q)q +(‘/ux+uy+uz) V.

w2+ ul+u2
27)

The explicit scheme is applied to the time-dependent derivative. Finite
difference schemes are used for the first and second order derivatives
with respect to space coordinates as we did previously [7]. To imple-
ment the domain decomposition in (3), u is fixed to be one in the pure
solute area Q,, enclosed by van der Waals surface (vdW). u is fixed to
be zero in the pure solvent domain Q; outside solvent accessible sur-
face (SAS). In practice, a few smoothing steps are applied to make X,
and T, to be C2. In addition, a simple relaxing scheme is applied to the
solution process of interface equation (25) to guarantee its convergence
as follows:

(28)

U=y, + (1 —a)uy,.

Uy and u,,; denote the new and old u values from the current and
previous time steps, respectively. We set a = 0.5 for the simulation here.
Finally, a simple cutoff strategy is conducted to apply Constraint (2)
and to avoid possible numerical errors:

u(x) uel0,1]
u=<0 u<0 (29)
1 u>1.

The cutoff checkup is carried out every time step or several steps during
the solution of equation (27). Finally, a very small number, such as 107°,
is added to the denominator to avoid possible zeros in the denominator
[71.

Regarding the parameterization, we adopt a previous simple strat-
egy [8]. We fix the solvent density p, to be 0.0334 1/A3 [8,44], the
solvent radius 6, =0.65 A, and the carbon atom radius o, =1.87 A.
Meanwhile, y, Py, €,, and €, are considered as fitting parameters. Note
that ¢;,, and ¢, are well depth parameters of the hydrogen and carbon,
respectively. Eventually, an iterative procedure is designed as follows:
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Table 1
Different optimized parameters and RMS errors from various ¢ values.

q value v (kcal/(molA2)) P, (kcal/(molA3)) ¢, (kcal/mol)  RMS (kcal/mol)
1.5 0.0017 0.000 0.461 0.187
1.3 0.0072 0.000 0.412 0.280
1.1 0.032 0.019 0. 50 0.108
1.05 0.0493 0.013 0.492 0.108
1.01 0.0687 0.010 0.488 0.109
1.001 0.0740 0.009 0.486 0.109
1.00001 0.0746 0.009 0.486 0.109

Step 0: We choose an initial set of fitting parameters and a trial set
of molecules with existing atomic coordinates, radii, and experimental
data of solvation free energies.

Step 1: For the j-th molecule, (25) is solved to find the solution of
u; with current parameter values, j=1,--, N,,. Here N,, represents the
total number of molecules in the trial set.

Step 2: All non-negative parameters P,, y, and ¢, are determined
and updated by a non-negative least squares algorithm via minimizing
a target function

N S \2
T = min Z(I’ —I;’EXP) ,
(pre) =\ " pa
where I, is known experimental data of solvation free energies for

the j-th molecule.
Step 3: The iterative loop step 1 and step 2 continue until all fitting
parameters converge within a pre-set tolerance.

3.2. Simulation results

In this subsection, for the purpose of numerical simulation and
convergence demonstration, a set of 11 alkanes is chosen as a calibra-
tion set which includes linear, branched, and cyclic apolar compounds.
Meanwhile, it serves as the trial set of molecules for the above parame-
terization process. In the present work, nonpolar solvation free energy
is calculated by (23) containing terms related to surface area, volume,
and Lennard-Jones (LJ) solvent-solute interactions. The repulsive and
attractive parts of solvation free energy can be calculated separately in
the present model. Specifically, first two terms of (23) count for the re-
pulsive part of solvation free energy. This allows a detailed comparison
of our variational model with different ¢ values and with other compu-
tational methods [22].

3.2.1. Model validation

The parameter constant g in the surface energy term of (23) needs
to be determined for model validation and solvation energy calcu-
lation and prediction. For an arbitrary ¢ between 1 and 2, optimal
fitting parameters can be found and then corresponding diffuse inter-
face and solvation free energy will be computed. For example, for the
set of 11 alkane compounds with g = 1.1, optimized fitting parame-
ters are obtained: surface tension y = 0.032 kcal/(mol Az), solvent pres-
sure P, =0.0186 kcal/(mol A3), LJ parameters ¢,, = 0.50 kcal/mol, and
€p,s = 0.00 kecal/mol. The root mean square (RMS) error is obtained to be
0.108 kcal/mol. It turns out that different q values lead to different op-
timized parameter set. g is not close enough to 1 (greater than or equal
to 1.3), the numerical result may become non-physical. For instance,
one may obtain zero for the optimized solvent pressure P, through the
non-negative least squares algorithm. Zero pressure is non-physical re-
garding the solvation process. In contrast, when ¢ is close enough to
1, it is evident that our model accurately catches subtle differences be-
tween linear, branched, and cyclic apolar compounds by reproducing
the total solvation free energies of 11 alkanes. Different optimized pa-
rameters and RMS errors from various ¢ values are shown in Table 1.

Note that, when ¢ € (1,2], the solution u of the PDE system (24) can
never be identically 1 or 0 in the transition region of Q,. For otherwise,

25
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Table 2

Computed total solvation free energies of the trial set of 11 alkane compounds
and their repulsive and attractive decomposition when ¢ = 1.00001. y = 0.0746
keal/(mol A2), P, = 0.0090 keal/(mol A%) and ¢,, = 0.486 kcal/mol, and ¢, = 0.00
kcal/mol.

Compound Rep. part Att. part Numerical Experimental [6]
(kcal/mol)

methane 4.21 -2.21 2.00 2.00
ethane 5.90 -3.95 1.95 1.83
propane 9.00 -6.89 2.12 1.96
butane 7.45 -5.42 2.03 2.08
pentane 10.58 -8.28 2.30 2.33
hexane 12.13 -9.75 2.38 2.49
isobutane 8.90 -6.64 2.26 2.52
2-methylbutane 10.20 -7.80 2.40 2.38
neopentane 10.21 -7.61 2.60 2.50
cyclopentane 9.21 -8.04 1.17 1.20
cyclohexane 10.45 -9.08 1.37 1.23
RMS of calibration set 0.109

Table 3

Computed total solvation free energies of 11 alkene compounds and their re-
pulsive and attractive decomposition when g = 1.00001. The fitting parame-
ters are taken from the above trial set: y = 0.0746 kcal/(mol 10\2), P, = 0.0090
keal/(mol A3), e,, = 0.496 kcal/mol, and €5, = 0.00 kcal/mol.

cs

Compound Rep. part Att. part Numerical Experimental [38]
(kcal/mol)

3-methyl-1-butene 10.15 -8.32 1.84 1.82
1-butene 8.68 -7.04 1.64 1.38
ethene 5.51 -4.12 1.49 1.27
1-heptene 13.42 -11.58 1.84 1.66
1-hexene 11.83 -10.05 1.78 1.68
1-nonene 16.64 -14.59 1.95 2.06
2-methyl-2-butene 10.08 -8.33 1.74 1.31
1-octene 14.99 -13.01 1.98 2.17
1-pentene 10.22 -8.58 1.65 1.66
1-propene 7.12 -5.59 1.53 1.27
trans-2-heptene 13.45 -11.62 1.83 1.66
RMS of prediction set 0.21

it will violate the fact that u € W!’(Q). Some numerical evidence can
be found in Figure (2) in which a smooth transition region can be easily
observed in-between two atoms even for a simple two-atom system.

Moreover, as g — 17, the corresponding solvation energies converge
as described in Remark 2.10 (ii) and proved in Theorem 2.8. Therefore,
when ¢ is very close to 1, the numerical results of solvation free en-
ergy calculated by the generalized constrained solvation model can be
considered as counterpart results of the proposed constrained solvation
model when g = 1. Because of that, we choose ¢ = 1.00001 to validate
our constrained solvation model. With the above set of 11 alkanes, new
optimized fitting parameters are obtained for g = 1.00001: y = 0.0746
kcal/(mol A2), P, = 0.0090 keal/(mol A%) and ¢,, = 0.486 kcal/mol, and
€55 = 0.00 kcal/mol. It also reproduces the total solvation free energies
of 11 alkanes very well (see Table 2). The root mean square (RMS) error
is 0.109 kcal/mol.

Moreover, with ¢ =1.00001 we conduct a predictive study for a set
of previously-used 11 alkene compounds [8,9,38]. The above-obtained
optimized parameters of g = 1.00001 are utilized assuming the same
solvent behavior. Solvation free energies of 11 alkene compounds are
shown in Table 3, as well as their repulsive and attractive decomposi-
tion. Our numerical predictions match the experimental data, and their
correlation is illustrated in Fig. 3 together with the comparisons for 11
alkanes. The RMS error of 11 alkenes is 0.21 kcal/mol.

3.2.2. Minimized energy converges when g — 1+

In view of Theorem 2.8, as ¢ — 1%, the corresponding solvation ener-
gies converge to that with g = 1. Therefore, it is meaningful to verify the
convergence numerically when g — 1*. We let the value of ¢ go to 1 by
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Fig. 3. Comparison of computed and experimental data of solvation free ener-
gies of 11 alkanes and 11 alkenes when g = 1.

Table 4

Convergence of total solvation free energies of eleven alkene molecules when
q— 17 e.g. ¢ =1.01, 1.001, 1.0001,1.00001, 1.000001. The fitting parame-
ters are fixed as y = 0.0746 kcal/(mol A2), P, = 0.0090 kcal/(mol A%), €,, = 0.496
kcal/mol, and ¢, = 0.00 kcal/mol.

Compound 1.01 1.001 1.0001 1.00001 1.000001
(kcal/mol)
3-methyl-1-butene 2.567 1.908 1.844 1.837 1.837
1-butene 2.268 1.701 1.647 1.641 1.641
ethene 1.888 1.524 1.489 1.485 1.485
1-heptene 2.797 1.930 1.846 1.837 1.837
1-hexene 2.625 1.857 1.784 1.776 1.775
1-nonene 3.126 2.060 1.957 1.946 1.946
2-methyl-2-butene 2.468 1.751 1.744 1.745 1.745
1-octene 3.049 2.083 1.990 1.980 1.980
1-pentene 2.381 1.716 1.653 1.646 1.645
1-propene 2.043 1.575 1.530 1.525 1.525
trans-2-heptene 2.789 1.918 1.835 1.826 1.826

choosing a finite sequence of ¢ (¢ = 1.01, 1.001, 1.0001, 1.00001, 1.000001)
while fixing other model settings and parameters. Using the above set
of alkene compounds, we compute the total solvation free energy for
each alkene as well as its repulsive and attractive energy decomposi-
tion. It turns out that all of three energy quantities converge for all
eleven alkene compounds. Table 4 demonstrates the convergence of to-
tal solvation free energy for the eleven molecules.
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i

Fig. 2. A cross-section view of u profile for a two-ball system (1.4,0,0) and (-3,0,0) with radus 2 A. Here those fitting parameters are obtained for ¢ = 1.00001:
7 = 0.0746 keal/(mol A2), P, =0.0090 kcal/(mol A3) and ¢,, = 0.486 kcal/mol. It is shown that a smooth transition region can be observed around and in-between two
atoms even for a simple two-atom system. Note that when ¢ € (1,2], the solution u of the PDE system of (24) can never be identically 1 or 0 in the transition region

3.2.3. Comparison with previous GFBSS

If g = 1, the numerical implementation of proposed constrained sol-
vation model turns out to be the same as the previous unconstrained
nonpolar GFBSS model [8] with numerical constraints except for the
following: in the presence of a two-sided obstacle for the characteristic
function, the derived interface equation (24) is slightly different from
previous unconstrained one [7,8]. Specifically, with constrained admis-
sible space, there is a H(x) function in the current interface equation. It
is unclear yet whether H(x) plays an important role on the surface gen-
eration and then solvation free energy calculation. To check it, by using
the same parameter set as above we compare the computational re-
sults of 11 alkanes and 11 alkenes between the generalized constrained
model (with H(x) and ¢ =0.00001) and the unconstrained GFBSS model
(without H(x) and g = 1). It is shown that the numerical difference
between them is negligible. See Table 5. It implies that the newly pro-
posed constrained solvation model and the previous unconstrained one
are equivalent to each other in terms of the solvation free energy calcu-
lation and prediction.

4. Conclusion

Variational based solvation models of biomolecules with smooth
interface have drawn attentions in the past decade, since they have
been developed as an efficient and reliable representation of solute-
solvent interfaces in the framework of implicit solvent models. This
work has provided solid mathematical supports for a previous promis-
ing geometric flow based computational model (GFBSS) of solvation
and its involved computational treatment. For this purpose, we intro-
duce a family of constrained variational solvation model with a param-
eter ¢ € [1,2]. In particular, when ¢ = 1, the newly proposed model is
equivalent to the previous GFBSS model with two physical constraints:
(1) a novel experimental based domain decomposition, and (2) a two-
sided obstacle for the characteristic function describing the optimal
diffuse solute-solvent boundary. These constraints correspond to two
previously adopted computational schemes in the numerical implemen-
tation of the GFBSS model.

The properties of the constrained solvation energy functional have
been studied. It is shown that the resulting model is mathematically
well-posed. Particularly, the existence of a global minimizer of the pro-
posed functionals has been proved; and the uniqueness is established
when 1 < g <2. Moreover, we obtain the convergence of the solvation
energies and its unique minimizer u as ¢ — 1% to the case ¢ = 1. The
convergence of the energies to the unconstrained model has also been
verified numerically when g - 1+.
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Table 5

Comparisons of nonpolar solvation energies between previous unconstrained
GFBSS (without H(x)) model and current constrained smooth interface sol-
vation model (with H(x)) in which repulsive, attractive parts and total en-
ergies are compared with the above parameter set: y = 0.0746 kcal/(mol }0\2),
P, =0.0090 keal/(mol A3), e,, = 0.496 kcal/mol, and ¢, = 0.00 kcal/mol.

Compound Rep. part (kcal/mol) Att. part (kcal/mol) Total (kcal/mol)
Hx) W/OH®X) H(x) W/0 H(x) H(x) W/O H(x)
methane 4.21 4.21 -2.21 221 2.00 2.00
ethane 5.90 5.90 -3.95 -3.95 1.95 1.95
butane 9.00 9.00 -6.89 -6.89 212 212
propane 7.45 7.45 -5.42  -5.41 2.03 2.03
pentane 10.58 10.58 -8.28 -8.27 2.30 2.30
hexane 12.13 1213 -9.75  -9.75 2.38 2.38
isobutane 8.90 8.90 -6.64 -6.64 2.26 2.26
2-methylbutane 10.20 10.20 -7.80 -7.80 2.40 2.40
neopentane 10.21 10.21 -7.61  -7.61 2.60 2.60
cyclopentane 9.21 9.21 -8.04 -8.04 1.17 117
cyclohexane 10.45 10.45 -9.08 -9.08 1.37 1.37
3-methyl-1- butene 10.15 10.15 -8.32  -8.32 1.84 1.83
1-butene 8.68 8.68 -7.04  -7.04 1.64 1.64
ethene 5,51 5.51 -412  -4.03 1.49 1.48
1-heptene 13.42 13.42 -11.58 -11.58 1.84 1.83
1-hexene 11.83 11.83 -10.05 -10.06 1.78 1.77
1-nonene 16.64 16.54 -14.59 -14.60 1.95 1.94
2-methyl-2-butene  10.08 10.08 -8.33 -8.33 1.74 1.74
1-octene 14.99 14.99 -13.01 -13.01 1.98 1.98
1-pentene 10.22 10.22 -8.58 -8.58 1.65 1.64
1-propene 712 7.2 -5.59  -5.60 1.53 1.52
trans-2-heptene 13.45 13.45 -11.62 -11.63 1.83 1.82

Further, when g € (1,2], the variation analysis of the constrained sol-
vation free energy functional results in a variational inequality whose
solution is proved to be equivalent to the solution of a PDE based in-
terface equation. Although the new interface equation differs slightly
from the previous interface equation, its numerical difference from the
previous unconstrained model turns out to be negligible when g — 1%.
This implies that the newly proposed constrained solvation model with
q =1 and the previous unconstrained one are equivalent to each other in
terms of the solvation free energy calculation and prediction. Our model
validation, its numerical implementation, and solvation energy con-
vergence have been demonstrated using several common biomolecular
modeling tasks, including one challenging set of 11 alkane molecules
and one set of 11 alkene molecules. Note that, numerically, this work
is limited to the study of nonpolar biomolecules to minimize model-
ing uncertainty by considering a relatively isolated situation in which
electrostatic interactions between the solvent and solute are negligible.

For the future work, various analytic properties of the case ¢ =1
will be intensively explored in a subsequent manuscript. Numerically,
variational analysis and simulation studies will be extended to polar
molecules and various applications. In addition, more advanced and
efficient computation and parameterization strategies will be examined
for the proposed models such as parallel computing.
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