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Abstract—With the prevalence of MaaS systems, route choice
models need to consider characteristics unique to them. MaaS
systems tend to involve service systems with fleets of vehicles; as a
result, the available service capacity depends on the choices of
other travelers in different parts of the system. We model this with
a new concept of “congestible capacity”; that is, link capacities are
a function of flow instead of link costs. This dependency is also
non-separable; the capacity in one link can depend on flows from
multiple links. An offline-online estimation method is introduced
to capture the structural effects that flows have on capacities and
the resulting impacts on route choice utilities. The method is first
applied to obtain unique congestible capacity shadow prices in a
multimodal network to verify the capability to capture congestion
effects on capacities. The capacities are shown to vary and impact
the utility of a route. The method is validated using real system
data from Citi Bike in New York City. The results show that the
model can fit to the data quite well and performs better than a
baseline modeling approach that ignores congestible capacity
effects. By relating the route choice to congestible capacities using
a random utility model, modelers can monitor and quantify the
impacts to traveler consumer surplus in real time. Applications of
the model and online method include monitoring capacity effects
on consumer surplus, using the model to direct incentives
programs for rebalancing and other revenue management
strategies, and to guide resource allocation to mitigate consumer
surplus impacts due to disruptions from incidents.

Index Terms— Mobility as a Service (MaaS), congestible
capacity, online route choice model

I. INTRODUCTION

RAVELER information has exploded over the past decade

with the development and wuse of Intelligent
Communication Technologies (ICTs) to detect and analyze
traffic conditions. The up-to-the-minute information is
provided in many places with travel websites, real-time
roadside infrastructure, “next-bus” displays, etc., which change
when, where, and how we travel /7], and has only expanded in
recent years with mobile devices and associated mobility
services. For example, not only can travelers choose to drive,
take subway or bus, bike, walk, or take taxi; they also have a
host of other mobility options accessed via mobile device apps:

Submitted on Jan. 16, 2021, for review. This study was conducted with
support from the NSF grants CMMI-1634973 and CMMI-1652735.

Susan Jia Xu was with the New York University, New York, NY 11201
USA (e-mail: jx731@nyu.edu). She is now with the San Diego Association of
Government (SANDAG), San Diego, CA 92101 USA.

station-based and dockless shared bikes, shared taxi options like
Via, Uber, or Lyft, and car sharing options like ReachNow or
Car2Go. Driven by data and technology, similar types of
transport services can be found in many major cities around the
world. The ecosystem for urban mobility is swiftly changing
from one of car-dependency to a more multimodal /2],
Mobility-as-a-Service (MaaS) /3 — 5] setting.

Operation of MaaS systems face challenges associated with
traveler information. In such systems, travelers inherently
interact with the MaaS by accessing some type of vehicular or
micromobility service in real time to make trips /6/. Example
providers like MaaS Global, Masabi, Moovit, and their
integration of different operators onto one platform come to
mind. The online nature of these services requires operators to
make dynamic fleet decisions like rebalancing idle vehicles /7,
8], updating prices and vehicle routes /9], updating vehicle
schedules [10], among others. These operations depend on
accurately measuring their impacts on traveler demand at the
route choice level. For example, having a certain number of idle
shared bikes docked at a station should impact travelers’
choices of where they pick up or drop-off their bikes. In other
words, MaaS platforms require effective route choice models to
inform operators and provide decision support for their
dynamic operations.

However, route choice models for highly dynamic
multimodal networks face unique challenges that need to be
overcome, especially with emerging technologies [71].
Travelers use mobile ticketing and reservations to pick up or
board a vehicle trip at one multimodal facility to get to another
[6]. As a result, the capacity of vehicles (spaces) at stations for
pick up or boarding (drop off or alighting) are dynamic and
depend on inbound and outbound flows of other travelers /7].

Unlike conventional traffic networks in which the link travel
cost may exhibit congestion effects with link performance
functions (see Bell /56]), MaaS systems have link capacities
that exhibit congestion effects. The link capacity of this system
can represent, for example, availability of vehicles or passenger
space during time interval t. In the case of bikeshare or carshare
system, the number of available bikes is the pickup link (virtual
link at a station connecting a walk link to a bike link) capacity
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and the number of empty bike docks is the drop-off link
capacity. The link capacity may be the number of passengers
that can be transported by a vehicle in microtransit, or number
of passengers per hour for fixed route transit with a line
capacity. In this study we call this congestible capacity (and to
the best of our knowledge has not been studied yet). The
capacity effect now also depends on that combined interaction
of operator policies and travel choices. If the balance of
travelers bringing vehicles to a location versus taking vehicles
away from a location changes between time periods, it should
impact the capacity and its effect on travelers’ route choices.
Similarly, if an operator were to change their rebalancing
algorithm parameters for a different time of day, it should be
reflected by a different system efficiency matrix estimated
offline.

Because these congestible capacities at each link are
influenced by multiple inbound and outbound flows from other
links, it results in non-separable (see [12]) link capacities that
depend on multiple links flows. Lastly, first-in-first-out
queueing characteristics also exist in such systems; for example,
even if an initially empty facility had 10 vehicles dropped off
in an hour, it does not necessarily mean that there is sufficient
capacity available for 10 individuals arriving within that same
hour as it depends on when they arrive. As a result, the effects
of capacity for a given time interval are not straightforward to
assume, and therefore need to be treated as latent, unobservable
variables during that same time interval /13].

Despite its long history /14 — 19], route choice models have
not considered latent congestible capacity effects to model
route choice in dynamic multimodal networks with online
information. Prior work on multimodal network route choice
focused on choice set generation considering overlap (e.g. /20
— 23]). Another related research area is route choice under real
time information (e.g. /24 — 28]), but that work focused on user
perceptions and equilibration/adaptation/learning with regards
to information provision. Other related research on traffic
assignment problem have dealt with capacity constraint.
However, they have not delved into modeling the dynamics of
system congestion effects on capacitated route choice nor on
congestible capacities.

We propose an online route choice model, updated each time
interval from prior time interval data, to provide a forecast of
route choices for the subsequent interval. The estimation and
updating of such a model allows a MaaS operator to monitor
the effects of their dynamic decisions on users’ route choice
behavior. This is done by introducing a latent congestible
capacity variable to capture the dynamic capacity effects in
multimodal systems and using observations from prior
interval(s) to forecast the latent variable and its effect on
dynamically capacitated route choice.

The reminder of the paper is organized as follows. Section 11
presents the online system setting and a literature review to
addressing the route choice model. Section III presents the
proposed online route choice model. Numerical experiments
are conducted using synthetic data in Section IV to verify the
model. Section VI presents a case study based on historical trip
data from the New York City (NYC) bike-sharing system, Citi

Bike. Finally, the conclusions are drawn, and future research is
discussed.

II. PROBLEM DESCRIPTION

Modeling route choice behavior is essential to forecast
travelers’ behavior under hypothetical scenarios and to
understand travelers’ reaction and adaptation to sources of
information /29/. Present research directions show growing
interest in understanding travelers’ behavior under multimodal
networks (e.g. /30 — 33]). To model route choices in a
multimodal network, one needs an extensive representation of
valuations and preferences that individuals have regarding
attributes of route components /30]. A well-known multimodal
transport network scenario is Park-and-Ride, which provides
parking facilities at the edge of city centers to encourage
parking and transfers to public transit /34 — 38]. New shared
mobility systems, such as bikeshare, are involved as first/last
mile transport modes /39].

We consider an online system in which a MaaS operator
receives link flow information x, for each link a € 4 in time
interval t with the network denoted by a directed graph
G(N, A). The set of links may be further divided into different
modes (e.g. walking, transfers in station, or in-vehicle) as A =
{Ay, Ay, ..., Ay}, where the index 0 denotes walking. The
system may be scheduled or on-demand (in which case it is a
Mobility-on-Demand system). Each link has a fixed,
generalized cost ¢, and a capacity u,.(x;), a € A, which varies
with time interval t because of a vector of non-separable link
flows, x; = {xw ...,x|A|t}. The u; can only be measured after
the interval ¢t.

The common characteristic assumed for this system is that
the capacity varies sufficiently dynamically within an interval
that the precise value perceived by travelers during the same
time interval varies by traveler and is not perfectly observable
to the system. An overview of the system is shown in Fig. 1.

We focus on the route choice model (). A traveler in period
t makes a choice of route k € K,.;; on the directed graph
G(N, A) to get from origin r to destination s, (r,s) € W, with
probability P, (k). The choice depends on availability of the
congestible capacity, which in turn depends on the flows
throughout the network (including the traveler whose route
choice is being modeled). A methodology is needed to estimate
u;(x,) and determine P, (k) in such a system.
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Fig 1. Illustration of functions operating within an online MaaS.

Capacity effects on route costs can be modeled using shadow
prices w,(x;) [40, 41] which capture the opportunity cost of
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the system having the capacity bound at a given amount and
resulting in diverting travelers to next-best alternatives. These
values are unobservable. Since these shadow prices depend on
the choices of other travelers (x), these can be modeled
similarly to the “field effect” observed in social influence-based
discrete choice models /42 — 44]. For example, Walker et al.
[45] presented a utility function with social influence as shown
in Eq. (1), where V(q;n, Z,; B) is the systematic utility of
individual-specific attributes gq;, and alternative-specific
attributes Z,,, Fj, is an endogenous proportion of people in the
decision-maker’s peer group choosing alternative i, and &;, is a
random disturbance. The parameter y reflects the influence that
the peer group has on the individual’s choice with positive
values demonstrating a bandwagon-type of effect while
negative values demonstrating congestion effects.
Uin = V(Qins Zn; B) + YFin + €in (1)

Endogenous effects have been studied extensively in recent
years [44 — 46] but they mostly pertain to social network effects
on long term decisions like technology adoption or mode
choice. Furthermore, the methodology revolves around using a
linear “field” effect. In the context of capacitated route choice,
a linear effect ignores the nonlinear dynamics resulting from
multiple link flows interacting on a link’s capacity. These
studies, however, offer insights on how to handle the
endogeneity. One way is by estimating the field effect in a two-
step approach.

In addition to unobservable link capacity effects to exhibit
endogeneity due to congestion effects, the effects can depend
on multiple other link flows, i.e. non-separability. In the
literature, non-separability is typically applied to link costs (e.g.
[47, 48]), not link capacity effects. The link capacity shadow
price can be estimated dependent on link flows under the setting
of an online system.

To summarize, the problem involves congestible capacity
effects that are typically unobserved but dependent nonetheless
on decisions of other travelers. Based on the literature, we
consider using shadow prices to capture the unobservable
capacity effect and handle its endogeneity by using a two-step
estimation approach to estimate capacity from link flow
patterns obtained from the prior time interval and follow that
with shadow price estimation.

III. PROPOSED METHODOLOGY

With respect to the route choice modeling, the two main steps
are (1) generating a realistic set of choices (routes); and (2)
modeling route choice given such a set of choices. Since the
focus of this study is on the estimation of the route choice with
congestible link capacities, we assume that the route choice set
is provided. For studies on choice set generation readers are
referred to Prato /29].

A. Model formulation

A random utility model (RUM) is formulated as follows. For
a given choice set K, , the utility of a route k € K, is
composed of links a € Ay,,, where A, € A, is the set of
links forming the portion of route k in mode m, with
generalized costs ¢, for traveler in a period t (unit of

observation) as defined in Eq. (2). The attribute w,; is the
shadow price corresponding to the link capacity u,, and is a
function of the set of link flows x;. The parameter 8,, is used to
scale the degree of dispersion in perception of the travel cost
differences for each modal link, where a higher value
corresponds to less indifference between two routes with
different travel costs.

M
Uk,rst = - Z gm Z (Ca + Wat (xt)) + Sk,rst (2)
m=0 a€Arm
where Vk,rst = Z%:O Om ZaeAkm(Ca + Wee (xt)) is the

representative utility and U, .5 is the utility of route k (the
altnerative i in Eq. (1)) for users of OD (r,s) in period t (as
individual n ). When ¢&,5 is Gumbel distributed, the
conditional logit form is shown in Eq. (3). Note that more
complex expressions can be considered, but we stick to a basic
multinomial logit (MNL) formulation for the sake of better
interpreting the relationship with the congestible capacity.

exp(Vk,rst)

Zk’EKrsn exp(Vk,rst) ©)
The shadow prices w,:(x,) are unobservable, but through
network flow complementary slackness conditions (see [41])
we know that the properties in Eq. (4) must hold.
if Xat = Ugt,Wae 2 0

Pr(k,rst) =

(42)

if Xt < Uge,Wae =0 (4b)

We can further relate the capacities 1, to the link flows.
Depending on arrivals of travelers to a link, the capacity will
vary. This random capacity is estimated using data from the
prior time interval to determine the effective coefficients
associated with all inbound and outbound link flows such that
the resulting u,; and wy, fit best. We define a linear system
efficiency matrix similar to input-output models (see Leontief
[55]) for statistically describing u, = f(x,, u;_1), where the
parameters relate to the technical efficiency observed in
converting flows into impacts on capacity for a given time
interval. Different system operating policies (e.g. rebalancing,
routing) will impact the parameters. For a given link a € 4,, in
a mode m, there is a set of inbound link flows Ir(a) and
outbound link flows O (a) at the tail node. There is also a set
of inbound link flows I (a) and outbound link flows Oy (a) at
the head node. The capacity is forecasted with a set of
simultaneous equations shown in Eq. (5).
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Xat < Ugye, Va€A,0<m<M (5b)

where Y, is a random disturbance term across each
observation t, assuming y,.~N (0, 52). There should be 4 + t
parameters and |A,,|t equations for one mode m. The 4 + ¢
parameters are associated with the inbound and outbound link
flows of head and tail nodes with a given mode m, and one
parameter g, for the link-specific random disturbance term.

The u,,—; and u,, are the capacities observed at the end of
the preceding period and the current period, respectively. The
signs preceding the parameters reflect the general effect of
having vehicle capacity versus space capacity. The values of the
parameters 8 should be between -1 and 1, where a value of 1
implies perfect efficiency in transferring the vehicle flows into
or out of capacity for the link, i.e. all inbound capacity arrives
first before all outbound demand. In dynamic systems the
randomness of the arrivals impacts the effective value of 8,
similar to how arrival patterns at traffic signals impact the
effective capacity of the approach.

(2) — (5) are related as follows.

,I,f , ,?lT, ,I,’f , ,(,JLH ,0, in Eq. (5) should be estimated offline to
capture typical structure of arrival patterns. Eq. (5) and the x;
values determine the value of each u,;. The values of w,, are
estimated using maximum likelihood constrained to the values
of ug, in Eq. (4). The representative utilities Vj, .5, can then be
specified with the w,; to determine the P, (k). The unimodal
network in Fig. 2 is used to illustrate the equations. This
network has two nodes having four paths (closed system) as
links. Egs. (5) are simplified into Egs. (6).
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Fig 2. The simple multimodal network used for illustrating the
methodology

B. Offline-online estimation

The parameters 6,, capture the perceived effects of modal
travel costs such as for walk time, in-vehicle time, fare price, or

binding capacity as shown in Eq. (2) (see Bell /56]). As 6,,, =
0, travelers become indifferent between routes, whereas 6,, —
oo suggest a deterministic perception of travel time. These
travel behavioral parameters are estimated offline from
historical route choice data during uncongested period set S;
where w,, =0,n€S; . The basis of the offline-online
estimation is the following logic: since 8, are time-invariant,
the estimated values can then be used during the congested
setting to estimate the w; in an online setting without bias. For
a RUM, the value of the parameters can be estimated by
maximizing the log-likelihood function in Eq. (7), where y;; =
1 if an observed trip between (r,s) chooses route k € K.
Since this is offline, the time period t can be left out of the
observation indexing. For logit models with Gumbel
disturbances, Eq. (7) is concave [54].

6 = arg max Z Z Yie In Prge (k; 6) (7)

tes, (r,s)ew keKrst

The parameters ,B,InT , ,?f ,Bm , 0, capture the efficiency
of the network structure, snnllar to how traffic models have
parameters capturing the platooning characteristics of arrival
patterns and input-output models in macroeconomics
describing technologies in converting one commodity to
another. These parameters are also estimated offline from
historical data from a period set S, on Eq. (5a), e.g. inflows and
outflows and the resulting average capacities, once for each
mode m . In the offline estimation, the capacities u, are
observed as the time-average capacities during the time interval
t. Each parameter and disturbance are assumed independent of
the other equations. As such, we estimate each equation as an
independent linear regression model with multiple post-interval
observations of capacity and inflows/outflows using ordinary
least squares.

The remaining w,; need to be updated in the online system
each interval t. We estimate the values of wy, for the current
time interval using constrained maximize likelihood as shown
in Eq. (8) based on u, forecast from the prior time interval. The
constraints in Eq. (8b) are set from #; and using x;_; as an
approximation X,. By design, the constrained optimization
ensures that a unique set of shadow prices are found: even in
the case where there may be multiple w,,’s that fit the observed
flow, Eq. (8a) is a continuous, concave function of w,; and will
lead to an optimal value. Estimation of w,; is done by first
setting W,;, = 0 if X,; = 14, and then estimating the remainder
via Eq. (8a) while requiring w,; = 0.

We
= arg max Z Yin In Prst(k; we|il, 0, J?t) (8)
e n (r,s)EW k€K,gt
Subject to
Egs. (4) with U, X, (8b)
w, =0 (8c)

The complete offline estimation and online system learning
process is summarized in Algorithm 1.

Algorithm 1. Offline-online estimation and system learning

OFFLINE ESTIMATION
1. Estimate 8, using Eq. (7) on sample route choice data under
uncongested conditions where w; = 0,t € S;.



2. Estimate {ﬁ,[,f O 6,4} using Eq. (5a) on historical
operational data with post-interval values of u, for each
interval t € S,.

ONLINE LEARNING: at the start of each interval t,

3. Observe the values of x;_1, U;_1.

4. Update i, using Eq. (5) and assume X; = x;_1.

5. Update the shadow prices W, using Eq. (8).

Once values of W, are estimated, we can use the model
Prsn(k|ﬁ,1nT ,ROT Bl pOH & W,) to determine route choices
for each OD pair (r,s) in time interval t. The model is
validated at two levels. The first is at the offline level to ensure
that 8,,, and {BATIJ , A,?lT, A,I,’l’ , A,(,)IH ,ﬁa} fit the data from out-of-
samples from S; and S,. The second is at the online level. Since
capacities and link flows are observed after the end of each
period t, if we have sampled observations of route choices each
period we can then validate the performance of the forecast
model.

C. Discussion of model properties

This model, applied over time, provides a monitor of the
traveler behavior and can be used to measure the impacts of any
system changes on changes in behavior. Example uses of this
monitoring include the following operational use cases:

e Identifying thresholds in link capacity shadow prices
where route choice elasticities are of interest;

e Identify thresholds in link volumes in which case the
congestion impacts on link capacities are critical;

e Online revenue management strategies like incentivizing
travelers to switch routes or directing service staff or
vehicles to mitigate critical capacities;

e Identify critical nodes in the network and over multiple
time periods in which the route choices most impact the
system performance throughout the network.

Each of the model estimation steps have their corresponding

goodness-of-fit measures as discussed in the prior section.

Evaluation of the online system overall is done using post-

interval comparison of predicted route flows and realized route

flows over multiple time periods. Since the application is an
online system, no flow equilibration (see /49, 50]) needs to be
assumed.

Eq. (5a) assumes normally distributed disturbances. In future
studies we will explore extreme value distributions like a
Weibull distribution which may better reflect the maximum
value distribution of capacity.

The methodology for estimating W, assumes a myopic
approach to the online learning, using X¥; = x;_4. This can be
problematic especially under larger time intervals. One way that
might improve this estimate is to model the longitudinal
behavior of the x, using a time series model X, =
f(xX¢-1,X¢—2, ... ) (see [51]) and apply that model to forecast the
flows in the current time interval. That will also be studied in
the future.

IV. VERIFICATION EXPERIMENTS

The proposed methodology is first verified in this section to
show that it works as intended. Two numerical experiments are
conducted using multimodal networks under an offline and

online system, respectively. The experiments have two primary
objectives.

The first objective is to demonstrate the flexibility of the
proposed method to adapt to links where capacities are binding
in some periods. This is accomplished by applying the
estimated models to compute route choice probabilities in
observed time periods.

The second objective is to show the ability of the proposed
method in detecting changes in w,, due to demand changes.

The validation of the methodology is conducted in Section I'V.

A. Multimodal network in offline system

The first numerical experiment is conducted on a MaaS
network with congestible capacity effects on multiple links in
an offline system, where each observation period assumes x,
and u,_4 are known. Since there’s no separate offline data set
without congestion, we simply assume the simulated ground
truth degree of dispersion 6 in this example is known: 8 =
0.0905. Consider a network as shown in Fig. 2 with four links,
where each link corresponds to one type of transport mode. The
generalized travel time for each link is shown in red parentheses.

The travelers’ route choices are generated randomly for 100
independent observations in 100 independent time intervals.
The sampled data set is available on our Github site /52/. There
are two paths in the choice set represented by the following link
sequences: (1,3), (2,4), where their generalized travel costs are
30 and 35, respectively. In this test, there are congestible
capacity effects observed on facility node 1, 2, and 3. Travelers
who choose path 1 (1,3) are constrained by the number of
available parking spaces at facility node 2. Travelers who
choose path 2 (2,4) are restricted to the number of shared bikes
for pick up at node 1 and the number of open docks for drop off
at node 3.

Firstly, it is important to illustrate the capability of the
proposed method to capture the heterogeneity of different
travelers’ effects. Egs. (9) describe the general effect of flows
into or out of each link on the capacities. The sign “-” stands for
the traveling direction from node 1 to node 4, and the “+” is the
opposite direction. There are two capacity functions for the bike
link, since each bike station has bikes for pickup and docks for
dropping off. The proposed method sets the capacity as a
function of the observed flow to and from that facility. Hence,
the congestible capacity functions are formulated as Eq. (9).

m=1" Up-p = Ug- g — Pr1Xg-¢ + .32X1+,t

(drive) Vit ©a)
m=2" Upp=t = Upp=e—1 + PaXoty — BaXa¢ (9b)
(bike) pick up +Yop-t
m=2" Upa-t = Uza-e-1 — BsXa—¢ + PeXot s (9¢)
(bike) drop of f +Y2a-t
m=2" Uppt e = Upp* -1 + PrXa-t — PaXot
(bike) pick up +Vopte (9d)
m=2% Upg+ = Upgt -1 — PoXo+ + BroXa-t
(bike) drop of f +Vaa+e (9e)

The parameters are estimated via regression of Eq. (5) across
the 100 observations. The parameters are estimated in Table 1.
In general, the inbound flows increase the capacity (e.g.
vehicles return) and the outbound flows decrease the capacity.
The signs preceding the parameters reflect the general effect of
having vehicle/bicycle capacity versus space capacity, which



are expected. The values of the parameters § are expected to be
between 0 and 1. The magnitude of the parameters f of the
drive link are higher than ones of bike link, which suggests the
drive link has higher efficiency in transferring the vehicle flows
into or out of capacity. Once the B’s are estimated, the link
capacities u, for each time interval are computed as u, =
Uu;_q + BTx,. The predicted capacity on the bike link (27)
across the 100 time intervals is shown in Fig. 3.

Table 1. Parameters estimation results
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Fig. 3. The predicted link capacity of bike pick-up link (u2p-) across
the 100 time intervals.

B. Multimodal network in online system

The example from Section IV.A is continued now in an
online context. Based on this value and the results from IV.A,
we updated the shadow prices w,; using Eq. (8). The travel
time in the utility function is updated to the sum of constant link
cost and the value of the shadow prices. The route choice
probability can then be computed, as illustrated for path 2 in
Fig. 4. We verified that the proposed model is flexible enough
to adapt to links where capacities might by binding in some
periods and not in others in a multimodal network.

Since the demand plays an important role in the proposed
model, we need to determine how the effect of congestible
capacity varies with the demand. The comparison among
different scenarios is shown in Fig. 5. For the 1015 observation,
there is a higher demand 105 from node 1 to node 4, and
observed path flows are {58,47}. The shadow price of path 1 is
estimated to 2.68 and its probability is calculated as 0.55. For
the next observation, the demand from node 1 to node 4 is
decreased to 95. We run the proposed model, and the new
shadow price of path 1 is estimated to 0.03. The probability of
path 1 is increased to 0.61. Because path 1 is the shortest when
no capacity is considered, the path probability would always
decrease from the uncapacitated state since the capacity would
increase the effective cost relative to path 2. We can quantify
how a higher demand results in higher w and lower probability
to choose path 1. Furthermore, this quantified congestion effect
is related to other flows in the network. For example, path 2
shows fluctuations in path probability during observations 1 to
40, so during that time the decision-maker can look to strategies
that impact bike drop-off, i.e. Eq. (9¢), and note that the
capacity is 34% more sensitive to inbound flow x,+ (0.5020)
than to outbound flow x,- (0.3759).

V. MODEL VALIDATION: CITI BIKE IN NEW YORK CITY

The proposed model is tested using trip historical data from
Citi Bike — the unique bikesharing system in New York City
(citibikenyc.com). Since the purpose of this experiment is to
validate the effectiveness of the model using real data, we can
simply rely on a bikeshare subnetwork in which travelers use
two modes to get to their destinations: walk and bike. The
setting includes multiple modes (walk from origin to bike
station pickup, bike to station drop-off, walk to destination) and
interacting flows (the effects of external flows are accounted for
in the estimation of the 8’s in the offline estimation).

0.500
0.450 D

0.400 o

Path Probability

0.350

Observations

P2-_with no capacity e P2- with capacity

Fig. 4. Comparison of path 2 probabilities in the multimodal network.

A. Data and experiment design

A subnetwork is extracted from the whole Citi Bike service
system as shown in Fig. 6 overlaid upon a Google Maps image.
The zones in the study area are categorized by Census 2010 (see
Open Data in Department of City Planning in NYC). The
centroid of the zone is created to represent origin or destination
for travelers making trips from or to the zone. This is consistent
with conventional transportation network modeling practice,
where the zone sizes and centroids are selected to properly
represent population clusters. If the walk trips were removed
and only station-to-station considered, farther apart station pairs
that are situated closer to centroids would confuse the model.
Aggregated demand for each Census Tract (CT) by time
interval were generated from Citi Bike historical data. The
network is designed to have 17 zones and 41 bikesharing
stations. While predicting traveler’s choice, they are assumed
to pick up and drop off bikes to the nearest station. The general
travel cost is the sum of walking time from the zone centroid to
the pickup station, cycle time, and the walking time from the
drop-off station to the zone centroid.

Prior to process bikesharing trip data, we checked the
weather data for the month of July in 2018. Dates with clear and
good weather are preferred, because of the control of
environmental variables effect on user’s choice. Moreover, the
aggregate ridership for each weekday (e.g. Monday to Friday)
in July 2018 is checked. For five consecutive weekdays, the
daily ridership should not be too different. Hence, five
weekdays of Citi Bike trip historical data from July 9%, 2018 to
July 13™ 2018 are used as a test data set, and one day of trip
historical data on July 18%, 2017 is used as the training data set.
The observed time interval is set to 30 minutes, as Citi Bike
membership include unlimited 30-min rides. The travel cost is
computed as distance divided by speed. The following steps are
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taken to prepare data for the proposed route choice model
learning method, and the sample of a data frame for one OD
within a time interval is shown in Table 2.

4.00 B Demand: (100,100)
© 3z H Demand: (105,100)
$u 2.6763
s
> a
200 B =z 1.4334
tw O
€W
Es
g 0.0329
0.00

Drive Link 1 in Multimodal Network

Fig. 5. Comparison of congestible capacity effect on drive link due to
demand change.

- = Legend
= Station Hub Line
. ® Citi Bike Station

- .| % Zone Centroid 2

5‘-;04‘ i e T I Study Network (Census Tract 2010) . .

Fig. 6. Study network in the case study.

1. To extract trip historical data from Citi Bike System Data
on the following days: 07/09/2018, 07/10/2018,
07/11/2018, 07/12/2018, 07/13/2018, and 07/18/2018.

2. To import the map of study network (e.g. 17 Census Tract
(CT) zones)

3. To filter Citi Bike trip historical data by study area (e.g. Citi
Bike stations that are included in the study network, see
Fig. 6)

4. To aggregate Citi Bike trip data by time interval and CT
zone

a. Trip data by time intervals
b. In and out demand for each CT zone
c. Inand out trip frequency to station level

5. To finalize a list of origin/destination (OD) information by
the time interval. For each time interval, there is a set of
ODs.

The route choice set is the combination of pick up Citi Bike

stations and drop off Citi Bike stations for each OD. The links

are not physical road sections in the real world; they are virtual
arcs that connect pairs of stations. As congestion occurs in the
study network, the congestible capacity effects on a user’s
choices (e.g. choice of pick up station and drop-off station)
should be recognized by the proposed behavior learning model.

The shadow prices should reflect stations that become

congested with binding capacity effects that result in route

diversions.

Table 2. A sample of required data frame for the one OD within a time

interval

Start End start.station end.station choice cost infreq outfreq out in

CT CcT id id demand demand
13100 10100 447 379 0 12.66 1 1 7 2
13100 10100 447 3255 0 1508 3 1 7 2
13100 10100 447 492 1 1213 3 1 7 2
13100 10100 447 490 0 145 0 1 7 2
13100 10100 469 490 0 13.06 0 0 7 2
13100 10100 469 379 0 11.04 1 0 7 2
13100 10100 469 3255 0 13.63 3 0 7 2
13100 10100 469 492 0 105 3 0 7 2
13100 10100 500 492 0 933 3 1 7 2
13100 10100 500 490 0 119 0 1 7 2
13100 10100 500 379 0 987 1 1 7 2
13100 10100 500 3255 0 1248 3 1 7 2

The magnitudes of the shadow prices give a relative measure
of the insufficient capacity in the link with respect to other links.
Finally, three different route choice models are applied to make
qualitative comparisons:

@) MNL with generalized travel cost;

(i1) MNL with updated travel cost, where shadow prices
are estimated under constant capacity;

MNL with updated travel cost, where shadow prices
are estimated under constraints determined by
congestible capacity function.

Note that the subnetwork is subject to flows to/from external
stations, which are not modeled using gateway stations since
there would be other sources of noise like distances between
external centroids and those stations. Since the objective is to
compare across models in the same environment, this should
remain a fair comparison. Furthermore, while the system
efficiency matrix does not directly include the external flows,
any system increases or decreases would be accounted for in the
coefficients at stations near the edges or be captured by the error
terms. For the same reason, a single value of theta is used for
both the bike and walk modes.

(iii)

B. Citi Bike system case study results

The test data set is used to estimate parameters in the
congestible capacity function. Since we set 30 minutes as one
observation period, there are 240 time intervals in total for the
five consecutive weekdays data set. The one-day training data
set includes 48 time intervals. Each station has two congestible
capacity functions, one for pickup and another for drop-off.
Given specifications and observations of different time
intervals with network flows and initial capacities at the start of
each observed period, the parameters of congestible capacity
function are estimated. Fig. 7 illustrates the performance of the
proposed method to estimate congestible capacity to station
level over time. It shows in-sample and out-of-sample
trajectories of the capacities for the station #519, which has the
highest in and out frequencies in the study network (location
shown in Fig. 6 is at Grand Central Station). Because of the
assumption of lag in the update of the flow (step 4 of Algorithm
1), naturally parts of the estimated versus observed will look
like there is a lag. Major differences that occur would indicate
a strong shift in the flow patterns. The full results of all other
stations are shown in Xu /57/ and posted as Appendices on the
Github site /52], which includes the p-values for the estimated
B’s in Appendix D.

In Fig. 8, the upper plot shows a comparison between in-
sample capacity predictions and observations over five
consecutive weekdays for station #519, and the lower one
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shows comparison results for the same station using the out-of-
sample data set. There’s a strong correlation between the
model’s estimates and its observed values in both plots. The
normalized root-mean-square deviation (NRMSD) is computed
to compare between observations and model estimates. For
station #519, the values of NRMSD are 7.64% and 7.62% for
in-sample pick up and drop off, respectively. For out-of-sample,
the values of NRMSD are 8.11% and 8.12% for pickup and
drop-off, respectively. The lower values of NRMSD (e.g. less
than 10%) indicate less residual variance. The average values
of NRMSD based on the selected 41 stations in the network are
10.67% (in-sample pick up), 10.62% (in-sample drop off),
15.47% (out-of-sample pick up), and 15.10% (out-of-sample
drop off). Values of NRMSD for the full list of stations in the
network are shown in Xu /57] and posted on the Github site
[52].

The estimated capacity functions are applied to obtain
congestible capacities. For an observed time interval, non-
negative shadow prices are computed if the observed link flow
is equal to the estimated capacity (e.g. inbound flow is equal to
the number of available docks in the station or outbound flow
is equal to the number of available bikes in the station).
R/RStudio 1.1.456 is used to do data processing.

For comparison, route choice probability estimation is run for
four scenarios, shown in Table 3. For the day of July 18, 2018,
the total number of observed trips are 16,940. The basic MNL
with no consideration of congestible capacity effects (Model 1)
is set as a benchmark, since it is used often in the real world.
Model 2 assumes an MNL model where shadow prices are
estimated based on an assumed fixed capacity. Model 3 allows
for shadow prices estimated from congestible capacity, but with
a fixed 6. Model 4 allows 6 to vary among observations.

Table 3. Scenarios evaluated in the case study

Models Description

Model 1 MNL with constant link costs (8 = 0.1)

(Baseline)

Model 2 MNL with shadow prices determined whenever the
shortest path is not chosen (8 = 0.1)

Model 3 MNL with congestible capacity effects (6 = 0.1)

Model 4 MNL with congestible capacity effects (8 varies

among observations)

For validation, the estimated choices for each scenario are
plotted in Fig. 8. The moving average of the match score is
calculated as a percentage in bold on top of each plot. The
baseline model has a match score of 75.32% while the model
with congestible capacity effects constraints and constant
degree of dispersion has a match score of 77.69%. The model
with a variable degree of dispersion has a score that is only
0.8% lower than the model with a constant one, which may be
because of the time dimension.

The results clearly suggest two conclusions. The first is that
naively assuming a capacity to estimate shadow prices (Model
2) can result in less accurate predictions (vs Model 1). By also
incorporating congestible capacities, we see that the model
becomes more accurate. Of greater value, however, is that the
online model allows us to monitor and quantify the effect that
changes in flows have on changes in capacity and their impacts
on the consumer surplus of travelers. To demonstrate this online
monitoring, we illustrate it for one route from Station 519

(outside Grand Central Station) to Station 362 (37" and
Broadway) shown in Fig. 9. The model provides a quantitative
explanation for the effect of imbalances in bikes and spaces
between the two stations on the cost of travel, more than
doubling the travel time for the short period or adding up to 50%
of the cost shortly prior to 7PM. These costs reflect not just the
stations’ binding capacities but also those of other stations
nearby corresponding to alternative routes and the flows
through the system. A modeler using an MNL without the
congestible capacity, or for even more accurate predictions
using a machine learning model (e.g. /60]), but that would not

have interpretable results relating these attributes.
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VI. CONCLUSION AND FUTURE WORK

With the prevalence of MaaS systems, route choice models
need to consider characteristics unique to them. MaaS systems
tend to involve service systems with fleets of vehicles; as a
result, the available service capacity depends on the choices of
other travelers in different parts of the system. We model this
with a new concept of congestible capacity; that is, link
capacities rather than link costs are a function of flow. This
dependency is also non-separable; the capacity in one link can
depend on flows from multiple links.

To model route choice in this setting, a system of offline-
estimated equations is used to capture the structural dependency
of capacity on inbound and outbound flows, similar to how
signalized intersections’ capacities depend on arrival patterns
of vehicles that can vary from fully random to more platoon-
like arrivals. Then, an online-estimated route choice model is
used to capture the shadow price corresponding to any binding
capacity. This approach of relying on online estimation and
observation avoids the endogeneity of the congestible



capacities in favor of a practical monitoring and prediction
system.
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Fig. 8. Comparison results for designed scenarios.
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Fig. 9. Travel cost for route from Station 519 to Station 362 by time
of day.

The method is first applied to obtain unique congestible
capacity shadow prices in a multimodal network. For the
numerical experiment, we verify that the methodology has the
capability to capture congestion effects on capacities for a
multimodal network, where capacities vary and the effects of
binding capacities impact the utility of a route. Results show
that higher demand lead to higher congestible capacity effects.

The method is validated using real system data from Citi Bike
in New York City, based on an extracted neighbourhood
network in Manhattan midtown, NYC. The results show that
the model can fit to the data quite well and performs better than
a baseline modeling approach that ignores congestible capacity
effects. By relating the route choice to congestible capacities
using a random utility model, modelers can monitor and
quantify the impacts to traveler consumer surplus in real time.

There are several different avenues for future research. One is
to consider a route equilibrium model that is not based on online
application, in which a stochastic user equilibration can be
obtained between route choice forecasts and assigned flows
impacting those choices based on congestible capacity. This
may involve the equilibrium model from Brock and Durlauf /44]
or a mean-field game approach [53]. Another avenue is to
investigate the use of the online route choice models to support
online demand management strategies like customer
incentivization programs to help rebalance vehicles (like the
Bike Angels program at Citi Bike). A third avenue is to use this
approach to estimate real-time route choices in a multimodal
setting to dynamically construct path sets in a MaaS network.

This would be useful for developing dynamic MaaS route
assignment models. A fourth avenue is to make use of the
learning and monitoring aspect for incident management and
operations. For example, if a link or node gets disrupted in a
time interval, the route choice model can be relied upon to
quantify the consumer surplus impacts and anticipate where to
allocate resources during the short term. The learning can also
be refined to classify travelers by different traveling speeds
(walking, bike, driving, etc.) so that route costs can be more
accurately estimated for them. The model can be further
compared to latent variable models of route choice (e.g. /58],
[59]) that may capture the latent shadow price variable.

ACKNOWLEDGEMENT

This study was conducted with partial support from NSF
grants CMMI-1634973 and CMMI-1652735 and forms one
chapter of Susan Jia Xu’s PhD dissertation. Helpful comments
from Song Gao at UMass Ambherst are much appreciated. Any
errors and views expressed are solely the authors.

REFERENCES

[1] Federal Highway Administration (FHWA) (2005). Managing demand
through travel information services. FHWA-HOP-05-005 (Washington,
DQ).

[2] Shaheen, S. (2015). The future of mobility & carsharing.
http://www.slideshare.net/susanshaheen/presentation-2-ss-final, last
accessed April 7th, 2017.

[3] Djavadian, S. & Chow, J. Y. J. (2017). An agent-based day-to-day
adjustment process for modeling ‘Mobility as a Service” with a two-sided
flexible transport market. Transportation Research Part B 104, 36-57.

[4] Chow, J. Y. J. (2018). Informed Urban Transport Systems: Classic and
Emerging Mobility Methods toward Smart Cities. Elsevier.

[5] Wong, Y. Z., Hensher, D. A., & Mulley, C. (2020). Mobility as a service
(MaaS): Charting a future context. Transportation Research Part A 131,
5-19.

[6] Zhang,]., Liao, F., Arentze, T., & Timmermans, H. (2011). A multimodal
transport network model for advanced traveler information systems.
Procedia Social and Behavioral Science 20, 313-322.

[7] Chow, J.YJ., & Sayarshad, H.R. (2014). Symbiotic network design
strategies in the presence of coexisting transportation networks.
Transportation Research Part B 62, 13-34.

[8] Sayarshad, H.R., & Chow, J.Y.J. (2017). Non-myopic relocation of idle
mobility-on-demand vehicles as a dynamic location-allocation-queueing
problem. Transportation Research Part E 106, 60-77.

[9] Sayarshad, H.R., & Chow, J.Y J. (2015). A scalable non-myopic dynamic
dial-a-ride and pricing problem. Transportation Research Part B 81, 539-
554

[10] Allahviranloo, M., & Chow, J.Y.J. (2019). A fractionally owned
autonomous vehicle fleet sizing problem with time slot demand
substitution effects. Transportation Research Part C 98, 37-53.

[11] Di, X., & Liu, H.X. (2016). Boundedly rational route choice behavior: a

review of models and methodologies. Transportation Research Part B 85,

142-179.

Watling, D. & Hazelton, M.L. (2003). The dynamics and equilibria of

day-to-day assignment models. Networks and Spatial Economics, 3(3),

349-370.

[13] Everitt, B.S. (1984). An Introduction to Latent Variable Models,
Monographs on Statistical and Applied Probability. Chapman and Hall.

[14] Dial, R.B. (1971). A probabilistic multipath traffic assignment model
which obviates path enumeration. Transportation Research 5(2), 349-
370.

[15] Prashker, J.N., & Bekhor, S. (1998). Investigation of stochastic network
loading procedures. Transportation Research Record, 1645(1), 94-102.

[16] Ben-Akiva, M. & Bierlaire, M. (1999). Discrete choice methods and their
applications to short term travel decisions. Handbook of Transportation
Science, 5-33.

[17] Guevara, C.A. (2010). Endogeneity and sampling of alternatives in spatial
choice models. PhD Dissertation, MIT, USA.

[12]



(18]

[19

[}

[20

=

[21]

[22

—

(23]

[24]

[25

[}

[26

[}

[27

—

(28]

[29

—

[30

[

[31

—

[32

—

[33

—

[34]

[35

[}

[36]

[37

—

[38]

[39

—

[40]

[41]

[42

—

[43

—

[44

finar)

Ben-Elia, E. & Shiftan, Y. (2010) Which road do I take? A learning based
model of route choice with real-time information. Transportation
Research Part A 44(4), 249-264.

Fosgerau, M., Frejinger, E., & Karlstrom, A. (2013). A link based network
route choice model with unrestricted choice set. Transportation Research
Part B 56, 70-80.

Hoogendoorn-Lanser, S., van Nes, R., & Bovy, P. (2005). Path size
modeling in multimodal route choice analysis. Transportation Research
Record 1921(1), 27-34.

Bovy, P. H., & Hoogendoorn-Lanser, S. (2005). Modelling route choice
behaviour in multi-modal transport networks. Transportation, 32(4), 341-
368.

Hoogendoorn-Lanser, S., & Bovy, P. (2007). Modeling overlap in
multimodal route choice by including trip part-specific path size factors.
Transportation Research Record 2003(1), 74-83.

Cats, O., Koutsopoulos, H. N., Burghout, W., & Toledo, T. (2011). Effect
of real-time transit information on dynamic path choice of passengers.
Transportation Research Record 2217(1), 46-54.

Mahmassani, H.S., & Jayakrishnan, R. (1991). System performance and
user response under real-time information in a congested traffic corridor.
Transportation Research Part A 25(5), 293-307.

Hall, R.W. (1996). Route choice and advanced traveler information
systems on a capacitated and dynamic network. Transportation Research
Part C 4(5), 289-306.

Dia, H. (2002). An agent-based approach to modelling driver route choice
behaviour under the influence of real-time information. Transportation
Research Part C 10(5-6), 331-349.

Peeta, S., & Yu, J.W. (2005). A hybrid model for driver route choice
incorporating en-route attributes and real-time information effects.
Networks and Spatial Economics 5(1), 21-40.

Lu, X., Gao, S., & Ben-Elia, E. (2011). Information impacts on route
choice and learning behavior in a congested network: experimental
approach. Transportation Research Record, 2243(1), 89-98.

Prato, C.G. (2009). Route choice modeling: past, present and future
research directions. Journal of Choice Modelling 2(1), 65-100.

Arentze, T.A. & Molin, E.JE. (2013). Travelers’ preference in
multimodal networks: design and results of a comprehensive series of
choice experiments. Transportation Research Part A 58, 15-28.

Dibbelt, J., Pajor, T. & Wagner, D. (2015). User-constrained multimodal
route planning. ACM J. Exp. Algor. 19 (3), 1-19.

Verbas, 1.0., Mahmassani, H.S. & Hyland, M.F. (2015). Dynamic
assignment-simulation methodology for multimodal urban transit
networks. Transportation Research Record 2498, 64-74.

Zheng, N. & Geroliminis, N. (2016). Modeling and optimization of
multimodal urban networks with limited parking and dynamic pricing.
Transportation Research Part B 83, 36-58.

Bos, .D.M., Van der Heijden, R.E.C.M., Molin, E.J.E., & Timmermans,
H.J.P. (2004). The choice of park and ride facilities: an analysis using a
context-dependent hierarchical choice experiment. Environment and
Planning A 36, 1673-1686.

Molin, E., & van Gelder, M. (2008). Freeway access to public transport:
a hierarchical multimodal choice modal. Transportation Research Record
2076, 106-113.

Liu, Z., & Meng, Q. (2014). Bus-based park-and-ride system: a stochastic
model on multimodal network with congestion pricing schemes.
International Journal of Systems Science 45(5), 994-1006.

Chow, J.Y.J. & Djavadian, S. (2015). Activity-based market equilibrium
for capacitated multimodal transport systems. Transportation Research
Part C 59, 2-18.

Zhao, X.,Li, Y., & Xia, H. (2017). Behavior decision model for park-and-
ride facilities utilization. Advances in Mechanical Engineering 9(7), 1-9.
Fishman, E., Washington, S. & Haworth, N. (2013). Bike share: a
synthesis of the literature. Transportation Reviews, 33, 148-165.

Bell, M. G., Shield, C. M., Busch, F., & Kruse, G. (1997). A stochastic
user equilibrium path flow estimator. Transportation Research Part C
5(3-4), 197-210.

Xu, S. J., Nourinejad, M., Lai, X., & Chow, J.Y.J. (2018). Network
learning via multiagent inverse transportation problems. Transportation
Science 52(6), 1347-1364.

Manski, C.F. (1993). Identification of endogenous social effects: the
reflection problem. Review of Economic Studies 60, 531-42.

Manski, C.F. (1999). Identification problems in the social sciences.
Harvard University Press.

Brock, W. & Durlauf, S. (2001). Discrete choice with social interactions.
Review of Economic Studies 68, 235-260.

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Walker, J. L., Ehlers, E., Banerjee, 1., & Dugundji, E. R. (2011).
Correcting for endogeneity in behavioral choice models with social
influence variables. Transportation Research Part A 45,362-374.

Kim, J., Rasouli, S., & Timmermans, H.J.P. (2017). Social networks,
social influence and activity travel behavior: a review of models and
empirical evidence. Transportation Reviews, 1-25.

Guo, X. L. & Liu, H. X. (2011) Bounded rationality and irreversible
network change. Transportation Research Part B 45, 1606-1618.

Bie, J. (2008). The dynamical system approach to traftic assignment: the
attainability of equilibrium and its application to traffic system
management. Ph.D. Thesis, The Hong Kong University of Science and
Technology, Hong Kong.

Blume, L. & Durlauf, S. (2003). Equilibrium concepts for social
interaction models. International Game Theory Review 5(3), 193-209.
Watling, D.P., Rasmussen, T.K., Prato, C.G., & Nielsen, O.A. (2015).
Stochastic user equilibrium with equilibrated choice sets: Part [-Model
formulations under alternative distributions and  restrictions.
Transportation Research Part B 77, 166-181.

Xu, S.J., & Chow, J.Y.J. (2020). A longitudinal study of bike
infrastructure impact on bikesharing system performance in New York
City. International Journal of Sustainable Transportation, 14(11), 886-
902.

Github (2020). BUILT NYU lab Github site for the
https://github.com/BUILTNY U/multimodal_route choice
Lachapelle, A., & Wolfram, M. T. (2011). On a mean field game approach
modeling congestion and aversion in pedestrian crowds. Transportation
Research part B 45(10), 1572-1589.

McFadden, D. (1973). “Conditional Logit Analysis of Qualitative Choice
Behavior”. In Frontiers in Econometrics, edited by P. Zarembka, pp. 105—
142. New York: Academic Press.

Leontief WW (1936). Quantitative input and output relations in the
economic systems of the United States. The Review of Economic Statistics
18(3), 105-125.

Bell, M.G. (1995). Stochastic user equilibrium assignment in networks
with queues. Transportation Research Part B 29(2), 125-137.

Xu, S.J. (2019). Learning in Capacitated Multimodal Networks Over
Time (Doctoral dissertation, New York University Tandon School of
Engineering).

Prato, C. G., Bekhor, S., & Pronello, C. (2012). Latent variables and route
choice behavior. Transportation, 39(2), 299-319.

Kaplan, S., & Prato, C. G. (2012). Closing the gap between behavior and
models in route choice: The role of spatiotemporal constraints and latent
traits in choice set formation. Transportation Research Part F 15(1), 9-
24.

Ma, T.Y., Chow, J.Y. and Xu, J., 2017. Causal structure learning for travel
mode choice using structural restrictions and model averaging algorithm.
Transportmetrica A: Transport Science, 13(4), pp.299-325.

study.

Susan Jia Xu received the B.S. degree in civil
engineering from Ryerson University, Toronto,
Canada, in 2013 and the M.S. degree in
transportation system engineering from University
of California Irvine, Irvine, CA, USA, in 2015. She
got the Ph.D. degree in transportation engineering at
New York University, New York, NY, USA.

Joseph Chow is an Institute Associate Professor in
the Department of Civil & Urban Engineering at
New York University Tandon School of
Engineering, and Deputy Director of the
C2SMART University Transportation Center. His
research interests lie in emerging mobility in urban
public transportation systems, particularly with
Mobility-as-a-Service. He obtained his Ph.D. at UC

Irvine in 2010, and a BS and MEng at Cornell University in 2000 and

2002.

10


https://github.com/BUILTNYU/multimodal_route_choice

