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Abstract

Estimation of the large @-matrix in Cognitive Diagnosis Models (CDMs) with many items
and latent attributes from observational data has been a huge challenge due to its high com-
putational cost. Borrowing ideas from deep learning literature, we propose to learn the large
Q-matrix by Restricted Boltzmann Machines (RBMs) to overcome the computational difficul-
ties. In this paper, key relationships between RBMs and CDMs are identified. Consistent and
robust learning of the @-matrix in various CDMs is shown to be valid under certain conditions.
Our simulation studies under different CDM settings show that RBMs not only outperform the
existing methods in terms of learning speed, but also maintain good recovery accuracy of the
@Q-matrix. In the end, we illustrate the applicability and effectiveness of our method through a

TIMSS mathematics data set.
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1 Introduction

Cognitive Diagnosis Models (CDMs) are popular statistical tools widely applied to educational
assessments and psychological diagnoses, which have been receiving increasingly more attention
in the past two decades. In many modern assessment situations, examiners are concerned with
specific attributes that the examinees possess, and thus a simple overall score is no longer sufficient
to depict the whole picture of the candidates. As a result, a finer evaluation of the examinees’
attributes is desired. CDMs are such tools. They model the relationship between the test items
and the examinees’ latent skills, which is helpful in assessment design and post-assessment analysis
of the examinees’ latent attribute patterns. CDMs have seen vast applications in multiple scientific
disciplines, including educational assessments (Junker and Sijtsma, 2001; von Davier, 2008; Garcia
et al., 2014), psychiatric diagnosis of mental disorders (Templin and Henson, 2006; de la Torre

et al., 2018), epidemiological and medical measurement studies (Wu et al., 2016).

Many CDMs can be viewed as restricted latent class models that directly model the response
probabilities as functions of discrete latent attributes. A common goal of cognitive diagnoses is
to learn the examinees’ latent attributes, such as personalities or skills, based on their responses
to a combination of specially designed test items. The @Q-matrix plays a critical role in CDMs.
It specifies the dependency structure between the test items and the latent attributes. Knowing
the @Q-matrix accurately is important because it is indispensable to cognitive diagnoses. Besides,
the @-matrix itself can be used to categorize the test items and enable efficient design of future
assessments. However, in reality, many existing assessments do not even have the (J-matrix explic-
itly specified. Even the assessment providers specify the (Q-matrix when designing the assessment,
the specification may still be inaccurate. In many cases, one test item may potentially be linked
to multiple attributes, but usually only the most direct and apparent ones are identified in the
pre-designed )-matrix. Therefore, it is of paramount importance to develop methodologies to

efficiently learn the @-matrix from the observational responses.

Various approaches have been proposed in the literature to learn the @-matrix. Those methods
can be generally classified into two categories, validation of the existing @Q-matrix (de la Torre,

2008; DeCarlo, 2012; Chiu, 2013; de la Torre and Chiu, 2016) and direct estimation of the Q-



matrix from the observational data (Liu et al., 2012; Chen et al., 2015; Xu and Shang, 2018; Chung
and Johnson, 2018; Chen et al., 2018; Culpepper, 2019). However, most of the existing estimation
methods for the whole Q)-matrix in general suffer from huge computational cost and are not scalable
with the size of the QQ-matrix; they either break down or are extremely computationally expensive
even when the Q-matrix is moderately large. The high computational cost stems from the large
number of configurations of the @Q-matrix. If we view each binary element of the @-matrix as a
unique parameter, then the number of different configurations would grow exponentially with the
size of the -matrix. In many applications, the number of latent attributes being tested is large,
leading to a high-dimensional space for all possible latent attribute patterns. It is not uncommon
that the number of potential attribute patterns is large, sometimes even larger than the sample
size, making the estimation even more difficult. Such examples can be found in many applications,
such as educational assessments (Lee et al., 2011; Choi et al., 2015) and the medical diagnosis of
disease etiology (Wu et al., 2016); for instance, Section 5 presents a dataset from the Trends in
International Mathematics and Science Study (TIMSS), which has 13 binary latent attributes and
213 — 8192 attribute patterns while only 757 examinees. On the other hand, the number of items
being tested may also be large in many applications. One example is the TIMSS mathematical test
which often have more than 100 test items. Another example is the ADM admissions test, which
is given twice a year and is used as an entrance test to universities and colleges, contains a total
of 200 items (Gonzalez and Wiberg, 2017). Therefore, it remains an open and challenging problem

to learn the large Q-matrix from the observational data.

Borrowing the idea from the deep learning literature, we propose to use the restricted Bolzmann
machines (RBMs) to learn the large @Q-matrix. An RBM is a generative two-layer neural network
that can learn a probability distribution over a collection of inputs (Smolensky, 1986). Amongst
these inputs, some are observed variables while the others are latent variables that we do not
observe, which matches the restricted latent class CDM setting. The weight matrix W in RBMs
determines the relationship between the observed variables and the latent variables. By learning
this weight matrix W under the framework of RBMs, we show that the structure of the @-matrix
in CDMs can be inferred accordingly. Although this is similar to the maximum likelihood learning

approach, by tapping on RBMs, fast learning of the large ()-matrix can be achieved.



Our main contributions are that we identify the relationships between CDMs and RBMs, and
proposed a new way of learning the large Q-matrix efficiently. As far as we know, our proposed
method is among the first ones in the literature that is scalable with the size of the @-matrix (with
computational cost of O(J x K)) while at the same time retains high estimation accuracy. For
example, comparing to Xu and Shang (2018) which attains an estimation accuracy of 71.2% in the
GDINA setting with five independent latent attributes using 2000 observations, our method achieves
more than 86% overall accuracy and much faster computational speed. Another interesting finding
is that learning of the Q)-matrix by RBMs is robust to different CDMs, including the DINA, ACDM
and GDINA models. We provide theoretical guarantees under certain conditions and conduct
simulation studies to support our findings. Besides, because of the unsupervised learning nature of
RBMs, the traditional cross-validation (CV) procedure are not directly applicable. As a result, we

also present a new CV procedure specifically to the Q-matrix learning setting.

The remaining parts of the paper are organized as follows. Section 2 gives reviews on CDMs
and RBMs, and discussion of their relationships and why the learning of the -matrix by RBMs is
achieveable across different CDMs. Section 3 introduces our proposed estimation method and the
new CV procedure. Section 4 consists of simulation studies on data generated from three typical
CDMs. Section 5 demonstrates the performance of our proposed method through the data analysis
on a TIMSS mathematics data set. Section 6 concludes with discussions and potential future
directions. All the proofs and additional simulation results can be found in the Supplementary

Materials.

2 Estimation of Q-matrix Using RBMs

2.1 Review of CDMs

Many CDMs have been developed in recent decades, among which the Deterministic Input Noisy
output “And” gate model (DINA, Haertel, 1989; Junker and Sijtsma, 2001) is one of the most
popular and simple models and serves as the foundation for many complex CDMs. Other popularly
used CDMs include the Noisy Input Deterministic “And” gate model (NIDA, Junker and Sijtsma,

2001), the Reduced Reparametrized Unified Model (R-RUM, Hartz, 2002), the General Diagnostic



Model (GDM, von Davier, 2005), the Deterministic Input Noisy “Or” gate (DINO, Templin and
Henson, 2006), the Log linear CDM (LCDM, Henson et al., 2008), the Additive CDM (ACDM,
de la Torre, 2011) and the Generalized DINA model (GDINA, de la Torre, 2011).

Consider a CDM with J items and K latent attributes. There are two types of variables for
each subject: the observed responses for J items R = (Ry, ..., Ry) and the latent attribute pattern
a = (o, ..., ), which are both assumed to be binary. R; € {1,0} denotes whether the examinee
answers item j correctly and oy € {1,0} denotes possession or non-possession of the attribute k.
The Q-matrix, Q = (¢j 1) € {0, 1}/*K specifies the dependence structure between the items and
the latent attributes; ¢; 5 € {1,0} denotes whether a correct response to item j requires the latent
attribute k. If we denote the jth row of the Q-matrix to be q;, then q; reflects the full attribute
requirements of item j. For a latent attribute pattern o, we say a possesses all the required
attributes of item j if a = q;, where a = q; means oy, > g; for all k = 1,..., K. Different CDMs
model the item response functions P(R; = 1 | ) differently with the item parameters constrained
by the @-matrix and specific cognitive diagnostic assumptions. Below we introduce three popular

CDMs that will be considered in later discussions.

Example 1 (DINA model). Let R;; € {1,0} denote whether the subject i answers the item j
correctly. Under the DINA model (Haertel, 1989; Junker and Sijtsma, 2001), for the jth item and
the ith subject with the latent attribute pattern oy = (a1, ..., k), the ideal response variable is
defined as & j = Hk:qj’kzl Q= Hszl a;{j,;k. The ideal response & j = 1 only if o; = qj, that is,
the subject i needs to possess all the latent attributes required by the item j to have a positive ideal
response. The uncertainty is further incorporated by two parameters: the slipping parameter s; and
the guessing parameter g;. Specifically, s; = P(R;j =0|&,; =1) and gj = P(R;j =1]&,; =0).
The slipping parameter and the guessing parameter further satisfy 1 — s > g, which indicates that
the capable subjects will have higher positive probability than the incapable ones. The DINA model
is one of the most restrictive and interpretable CDMs for dichotomously scored test items. It is
a parsimonious model that requires only two parameters for each item regardless of the number of
attributes required for the item. It is appropriate when the tasks call for the conjunction of several
equally important attributes, and lacking one required attribute for the item is the same as lacking

all the required attributes.



Example 2 (ACDM). In the ACDM, mastering additional required attributes will increase the
positive response probability for the items. Specifically, if we take the identity link function in the
ACDM, then for the jth item and the ith subject with attribute pattern oy = (oy1,...,q;K), we

have
K

P(Rij=1]a) =00+ 6kt (1)
k=1

which implies that mastering the kth attribute increases the probability of success on the item j by
d;k if the kth latent attribute is required by the item j. Since there are no interaction terms in (1),
the contribution of each latent attribute is independent from one another. If the subject i lacks all
the required attributes for the item j, the term Zle 0.k kqjk would be 0, and the intercept d;¢ is
the probability of correctly answering the item j based on pure guessing. Furthermore, even if the
ith subject has all the required latent attributes of the item j, d; 0 +E,If:1 05,k Q5 K May not sum to
1. In that case, 1 — (5‘,‘,0 + Zszl 5j,kai,kq]',k) would be the probability of making a careless mistake.
The ACDM 1is more appropriate to use when the items call for independent latent attributes but

with different contributions to correct response to the items.

Besides the identity link function, other link functions are also proposed. One commonly used

link function is the logit link,

K
P(Rij=1|c;) = 0(5j,o + Z(Sj,kaz‘,kq]',k)- (2)

k=1
where o(z) = (1 + exp(—x))~'. Equation (2) is also equivalent to logit(P(R;; = 1 | o)) =
050+ Zszl 05,k 1q5k, which is the log-odds of a positive response. The interpretation would then
become that each required latent attribute contributes independently to the log-odds of correcting

answering item j by 6; 1 in an additive fashion.

Example 3 (GDINA model). Both the DINA and ACDM models are special cases of the more
general GDINA model (de la Torre, 2011). In addition to the intercept and the main effects in the

ACDMs, the GDINA model also allows interactions amongst the latent attributes. The equation



(3) gives the item response function for the GDINA model with identity link.

K K-1 K K
P(Rij=1]0:) =080+ GintirGn+ > > OjkrQinQip@Grdige + -+ 612.x | [ citie.
k=1 k=1 g/ =41 k=1

(3)
The parameters in equation (3) can be interpreted as follows: &g is the probability of a correct
response when none of the required attributes is present; 0y is the change in the probability of a
correct response when only mastering a single attribute ay; Oirr, a first-order interaction effect, is
the change in the probability of a correct response due to the possessing of both ay, and cgr in addition
to the main effects of mastering the two individual attributes; and 612, represents the change in
the probability of a correct response due to the mastery of all the required attributes in addition
to the main effects and all the lower-order interaction effects. Similarly to the ACDM model,
P(R;; = 1| o) is not required to be 1 even when the subject i possesses all the required attribute
for the item j. In that case, 1 — P(R;; = 1| «;) is the probability of making a careless mistake.
Moreover, the intercept 0;0 and the main effects are typically non-negative, but the interaction
effects can take on any values. Therefore, the GDINA model is appropriate if the mixed effects of

latent attributes on the probability of a correct response is of interest.

2.2 Review of Restricted Boltzmann Machines

RBMs are generative models that can learn probabilistic distributions over a collection of inputs.
RBMs were initially invented under the name Harmonium by Smolensky (1986) and gained currency
due to their fast learnability in the mid-2000. It has found vast applications in dimension reduc-
tion (Hinton and Salakhutdinov, 2006), classification (Larochelle and Bengio, 2008), collaborative

filtering (Salakhutdinov et al., 2007) and many other fields.

RBMs can also be viewed as a probabilistic bipartite graphical models, with observed (visible)
units in one part of the graph and latent (hidden) units in the other part. Typically all the
hidden units and the visible units are binary. In this work, we denote the visible units by R =
{Ry,..R;} € {0,1}’ and hidden units by a = {a1,...ax} € {0,1}¥ respectively. One key feature
of RBMs is that only interactions between hidden units and visible units are allowed. There are

neither connections among the visible units, nor any connections among the hidden units, as shown



in Figure 1.

Figure 1: A graphical illustration of RBM.

RBMs are characterized by the energy functions with the joint probability distribution specified
as

P(R,a;0) =

de) exp{ — E(R,q; 0)}, (4)

where F(R, «;0) is known as the energy function and Z(0) is the partition function,
Z@)= > Y exp{-ER 0]},
RE{0,1} ac{0,1}K

which has been proved to be intractable (Long and Servedio, 2010). In specific, the energy function

is given by

E(R,a;0) = -b"R—cl'a— R"Wa

J K J K
= — Z Rjbj — Z QRCL — Z Z Rjw; oy, (5)
j=1 k=1

j=1k=1

where 6 = {b,c, W} are the model parameters, b € R7 are visible biases, ¢ € RX are hidden biases
and W € R7*K is the weight matrix describing the interactions between the visible and the hidden

units.

Since no “R-R” or “a-a” interactions are allowed, the hidden and visible units are conditionally

independent given each other, and therefore the joint conditional probability mass functions can be



factored in to a product. This can be easily seen from Equation (4) and Equation (5). Specifically,

we have p
P(R|a;0) =[] P(R) | c; b, W), (6)
j=1
K
P(R; = 1] asb,W) = (b5 + 3 wysan), (7)
k=1
and
K
Pla|R;0) =[] P(ax | Ric, W), (8)
k=1
J
Play=1|Rie,W) = a(ck + ij,kRj» 9)

J=1

where o(z) = 1/(1 + exp{—=}) is the logistic sigmoid function.

RBMs and CDMs are in fact closely related. The binary observed item responses and the latent
attributes in CDMs can be viewed as counterparts to the visible units and the hidden units in
RBMs respectively. There is a direct connection between the two. If we fit an ACDM with the
logit link, where the conditional probability mass function (2) of the observed responses is modeled
as a sigmoid function of the latent attributes, then it takes exactly the same form as the conditional
probability function (7) of a visible unit given the hidden units in RBMs. Moreover, in a CDM,
qj,x = 0 indicates that there is no interaction between the item j and the latent attribute k, while
in the weight matrix of an RBM, w;; = 0 also implies no interaction between the jth visible unit
and the kth hidden unit. Therefore we would expect that w;; = 0 in an RBM whenever ¢;; = 0
in a CDM.

Using the previous example in Figure 1 for illustration, on the left of (10) is the weight matrix
W of an RBM, where w;;, # 0 indicates the presence of the interaction between the visible unit
R; and the hidden unit «j. The corresponding @Q-matrix in a CDM can be implied as shown on
the right. As we illustrate previously, the non-zero entries in the @-matrix of an ACDM can be
exactly inferred from the non-zero entries in the weight matrix W in an RBM. Interactions among
the latent attributes are allowed in the DINA and GDINA models, which violates the assumptions
of an RBM. However, the Q-matrix is still estimable in these models. We give detailed arguments

in Section 2.3.
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2.3 Robust Estimation of Q-matrix

In the previous section, we have discussed that RBMs can be used to learn the @)-matrix for the
ACDM with logit link. A natural question to ask is whether we can generalize this result to other
CDMs such as the DINA and GDINA models. In this section, we will illustrate that under certain
conditions, robust estimation of the @-matrix by RBMs is indeed achievable for common CDMs.
In particular, we will demonstrate that the QQ-matrix can be estimated correctly under the DINA

and GDINA settings.

We focus on the learning of a particular row of the @-matrix. It is in fact a variable selection
problem of the required latent variables for that particular item of interest. Conditional on «a,
we have discussed that RBMs are equivalent to the ACDM with the logit link, while the latter
exactly corresponds to the logistic regression with canonical link and additive main effects linear
predictor. Therefore in essence, RBMs can also be treated as main effect models. Starting with
the simplest case, we shall first study the model selection consistency with linear additive models
when the true models are the DINA or the GDINA model. Since it is still an open and challenging
problem to establish consistent variable selection under complex latent variable models, here we
start with the ideal case by assuming {aq, ..., ax } are independent, that is, all the latent variables
are independent. Although this is a strong assumption and is rarely fully satisfied in real world

scenarios, it can be relaxed in practice which is discussed in Remark 2.

Before giving formal statements, we first introduce some notations. Without loss of generality,
we focus on the analysis of the response to one single item. For a subject with @ = {a, ..., ax }, the
response to the considered item is denoted by R, where for clarity, we omit the item index in the

notation. Let K™ to be the number of required attributes for the item. Without loss of generality,

10



we let the first K* attributes be the required attributes for this item, that is, the corresponding
row in the @-matrix is q = (1, ..., 1,0, ...,0) with the first K* entries being 1 and all the remaining
K — K* entries being 0. For the response R generated from the DINA or the GDINA model, we
denote E*[R | a] as the regression mean function for the mis-specified linear regression model of R
on i, ...,ax. We show in the following propositions that the mis-specified mean function E*[R | ]

can identify the required attributes from the non-required ones.

Proposition 1 (DINA model). Assume {1, aq,...,ax} are independent with oy ~ Beroulli(py)
where p,, € (0,1), k = 1,2,..., K. If R is generated from the DINA model, then the mis-specified
linear additive model of R regressed on (o, g, ..., ax) has the mean function in the form of E*[R |

al = Po+ franr + Poca+ ...+ Brag with B #0 forl =1,2,...., K* and i, =0 fork = K*+1,..., K.

Proposition 1 states that under the independence condition and if the data is generated from
the DINA model, the significant variables included in the true model can be selected correctly using

a mis-specified linear model with additive main effects only.

Proposition 2 (GDINA model). Assume {a1,as,...,ax} are independent with oy, ~ Bernoulli(py;)
where p, € (0,1), k =1,2,...K. If R is generated from the GDINA model satisfying the monotonic-
ity assumption (i.e. acquiring an additional required skill ag, k = 1,2,.., K*, will always increase
the probability of a correct response), then the mis-specified linear additive model has the corre-
sponding mean function in the form of E*[R | a] = Bo + fraa + Paca + ... + Brax with B; # 0 for
I=1,2,...,.K*and B, =0 fork=K*+1,...,. K.

Similar to Proposition 1, Proposition 2 states that under suitable conditions, the significant
variables included in the true GDINA model can be selected correctly using a mis-specified linear
model with additive main effects only. The detailed proofs for all the propositions can be found in

Section 77 of the Supplementary Materials.

Propositions 1 and 2 demonstrate that the model selection consistency can be achieved using
a mis-specified linear main effect model. As we illustrated previously, the conditional probability
of a visible unit on the hidden units in RBMs can be regarded as a main effect logistic regression
model. Therefore we next give some intuition on why the main effect logistic regression model

will give a similar variable selection result to the linear models. Consider a main effect logistic
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regression model with the canonical link function, that is, logit (P(R | a)) = B0+ froq + ... +
Brak. Let R = (R;,i = 1,...,N) denote the response vector for all the N subjects, and let
n = (/LZ' = P(R; | ai),i = 1,...,N) denote the response probabilities for the subjects. We use

A= (o),

i € {0,1}V*K to denote the latent attribute matrix for the N subjects and A* to

denote the N x (K + 1) matrix [1; A] with the first column being an all-one vector. In linear
models, we usually use the least square estimation to estimate the coeflicients, while in logistic
regression, the iteratively re-weighted least square (IRLS) method is used. Next we will give some

intuition on why these two estimation methods will produce similar variable selection results.

Conditional on «;’s, in the (¢ + 1)th step of IRLS, the updating rule for parameter 6 :=

(607/817 76[() is
0(t+1) _ (A*TW(t)A*)_IA*TW(t)Z(t),

where Z(®) = A*T90) (W ®)~1(R—pu®) is the tth step working response and W) = diag (,ugt) (1-
,ugt)), ceey Mg\t,)(l — u%))) is a diagonal weight matrix with diagonal elements being the variance esti-
mates for each R;. Since there is no closed form of IRLS estimator and there is randomness in the
convergence process, it is very challenging to study the theoretical properties of the 8 estimated by
IRLS. So we only consider a one-step update of IRLS starting from the ideal case of true parameter
O:ue for illustration. It is reasonable to study this ideal case because IRLS will converge close to

the Oiue given the correct model specification and a large sample size. If we start with the true

parameters, that is, we let 8(0) = 6,4, then,

0(1) — (A*TWtrueA*)_IA*TVVtrueZtruey

where the working response, Zyue = A*7 Oprue + Wt;ule

(R — Mrue) is just a linear transformation
of observed response R. Note that this update takes the same form as the weighted least square
estimation of regressing Z;.,.. on A*. Hence, the variable selection result in the linear model would
be similar to that of the logistic regression. Combining Proposition 1 and Proposition 2, we have

justified that the learning of the @-matrix by RBMs is achievable across the DINA, ACDM and
GDINA models with both identity and logit links.

Remark 1. In practice, it is not uncommon that some of the 25 latent attribute patterns do not

12



exist in the collected observations, especially when K is large. How negatively will this impact on
the model selection consistency? In the DINA model, we see from the proof of Proposition 1 (see
Section 77 of the Supplementary Materials) that to ensure the variable selection consistency for
each required attribute ag, k = 1,..., K*, we need to observe data from subjects with {a | ag =
0,0 =1,i=1,....k—1,k+ 1,...,K*}and {a | a; = 1,0 = 1,...,K*}. In the GDINA model,
from the proof of Proposition 2, we can see that to ensure the variable selection consistency for
each ag, k=1,..., K*, we need to observe data from subjects with {a | g = O} and {a | ag = 1}.
Therefore, even though some of the latent patterns may not exist in our observed data, the selection

consistency is still achievable as long as the required attribute patterns are present.

Remark 2. The independent assumption on the latent attributes {ai,...,ax} can be relazed to
some extent in practice. To see this, consider the setting when {a1,...,ax} are possibly dependent
but the response R only directly depends on the first K* attributes {au, ..., ax+}. Given aq, ..., g+,
the response R is conditionally independent of oy for all k = K* 4+ 1,..., K. When only o, ..., i~
are present in the linear regression model of R regression on «’s, consider adding in one additional

ag, for any k= K* + 1, ..., K, into the regression model, then its coefficient can be expressed as

CO?}(R— E*[R | a1y ..., ai+], g — EX[ay | a1, ...,a;««])

Var(R —E*[R| o, ..., aK*])

where we denote E*[A | B| as the regression mean function of A on B. Since R and oy are
conditionally independent given aq, ..., ax~, the numerator of (11) is expected to be small. In real
implementations, the shrinkage imposed by the Ly penalty in our proposed method should be able
to recover most of these 0’s. This is indeed supported by our simulation results in Section 4, where
we consider moderate to high correlation regimes amongst the latent attributes and our proposed
method still achieves satisfactory estimation accuracy of the underlying QQ-matriz. Note also that
in the special case when K* = 1, the covariance term in (11) can be shown exactly equal to zero, in
which case By can be removed easily in the variable selection process. For a more detailed discussion

for the K* =1 case, please refer to Section 77 of the Supplementary Materials.
Remark 3. The rigorous consistency theory of using RBMs to learn the QQ-matriz under a general
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CDM setting can be difficult to establish. In the literature, even when the true models are binary
RBMs, consistency for training RBMs is an open and challenging problem. Due to the intractable
partition function in the binary RBM, an approzimate likelihood mazimizing approach has to be
employed, such as the popularly used Contrastive Divergence (CD) algorithm that will be further
introduced in Section 3. FEven though there are many works in literature studying the asymptotic
properties of the CD algorithm (MacKay, 2001; Yuille, 2004; Carreira-Perpinan and Hinton, 2005;
Bengio and Delalleau, 2009; Sutskever and Tieleman, 2010; Jiang et al., 2018), whether and why
the CD algorithm provides an asymptotically consistent estimate for binary RBMs are still open
questions. Therefore, establishing a consistency theorem using a mis-specified RBM model for the
DINA or the GDINA model as in this work is even more challenging, which is left for future
exploration. Nevertheless, the CD algorithm in practice has showed empirical success in training
RBMs, and our simulation results in Section 4 also demonstrate its effectiveness in training RBMs

to learn the Q-matriz in CDMs.

3 Proposed Estimation Method

In this section, we will introduce our proposed method in detail. As we have illustrated in Section
2, non-zero entries in the Q-matrix can be inferred from the corresponding non-zero entries in the
weight matrix of RBMs. Therefore, we are interested in a sparse solution of the weight matrix W.
It is well known that L; penalty has the property of producing sparse solutions (Rosasco, 2009).

Hence, we propose the following L; penalized likelihood as our objective function,
J K
in —log { P(R; 0 A k|- 12
min—log { P(R;0)} + ;;m,kr (12)

where log{ P(R;0)} is the marginal log-likelihood of the observed responses R, 8 = {b,c, W} are

the model parameters, and A is a non-negative tuning parameter for the L1 penalty.

Gradient descent algorithm is a standard numerical method to solve problem (12). The likeli-

hood part, following the derivation by Schlueter (2014), can be shown that its gradient with respect
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to the parameters has the following decomposition:

Slos(PR0) =~ Y PlalR:0) S E(Rac0) + Y P(r.az0) 5 B(raz0) (1)
ac{0,1}K Teimii
ac{0,1
0 0
= Ep(a|R:0) [ - %E(R, a; 9)} — Ep(r,a:0) [ - %E(T, a; 9)} (14)

In deep learning literature, this is a well-known decomposition into the positive phase and the
negative phase of learning, corresponding to the two expectations in (14) respectively. As the
two expectations do not have closed forms and are not directly tractable, researchers propose to
approximate the gradient by estimating these expectations through Monte Carlo sampling. In
particular, the positive phase corresponds to sampling the hidden units given the visible units,
while the negative phase corresponds to obtaining the joint hidden and visible samples from the

current model.

The bipartite graph structure of RBMs gives the special property of its conditional distributions
P(a | R) and P(R | o) being factorial and simple to compute and sample from, as shown in Section
2.2. Therefore, sampling for the positive phase is straightforward while obtaining samples from the
model for negative phase is not since it requires the joint hidden and visible samples. A widely
used algorithm to learn RBMs is known as the Contrastive Divergence (CD) algorithm, where the
negative phase is approximated by drawing samples from a short alternating Gibbs Markov chain
between visible units and hidden units starting from the observed training examples (Hinton, 2002).
In this work, we use a CD-1 algorithm where Gibbs chains are run for 1 step to approximate the

gradient of the log-likelihood part. Specifically, given the original data R we first sample a(*)

according to Equation (8) and Equation (9) to approximate the positive phase. Then given a(?),
we sample R based on Equation (6) and Equation (7), and we use (R, a(9)) to approximate

the negative phase.

At (t+ 1)th iteration, based on the sampled data, the parameters’ updates take the same form
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as gradient descent if we do not consider Lq penalty,

WY e wlf) + 40 i R'P(ag = 1| R;00) - fj RYP(ay =1 R 60) ), (15)
;L\[:l N =1

Byl 440 { S RY Z R } (16)
z;l N

™ e ) 44O S Pla =11 B”569) = 3 Plaw = 1| R 00) }/N, (17)
=1 =1

where RZ(O) = (RZ(?), Rgg), e RZ(S)), Rgl) = (Rg), Rg), ce Rg})), and (%) is the learning rate for the
tth iteration. Here we denote the updated weight matrix by W' = (ngk) Jx J¢ Since we also need
to consider the gradient of the L; penalty term later, and thus Equation (15) is an intermediate
update for the weight matrix. Detailed derivations can be found in the notes written by Schlueter
(2014). In this work, we use a linearly decreasing learning rate scheme, which is guaranteed to

converge as shown in Collins et al. (2008).

For the L; penalty term, we adopt the implementation developed by Tsuruoka et al. (2009),
which can achieve more stable sparsity structures. As pointed out by Tsuruoka et al. (2009), the
traditional implementation of L; penalty in gradient descent algorithm does not always lead to
sparse models because the approximate gradient used at each update is very noisy, which deviates

the updates away from zero.

The main idea of the implementation is to keep track of the total penalty and the penalty that
has been applied to each parameter, and then the L; penalty is applied based on the difference
between these cumulative values. By doing so, it is argued that the effect of noisy gradient is
smoothed away. To be more specific, at iteration ¢, let u(®) := )\Zle ~+® be the absolute value
of the total L; penalty that each parameter could have received up to the point, where v() is

the learning rate at step [. Let c(tk - f:% (wy?) - w’g.l,—:l)) be the total L; penalty that wj

has actually received up to step t, where w’ (;g is the intermediate update at step [ calculated by

Equation (15). Then at iteration (¢ + 1), we update w(t+1) by

wy(flj ) maX{O w (t]jl) (u(t) + cg,fk—l))} i w;g;ﬂ) S0,
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wj(.f,:rl) < min {O, w/g,—:l) + (u(t) - c;t};l))} if w’g,jl) <0.

)

Since the updates in Equation (15), (16) and (17) require summations over all the data samples,
it would be computationally expensive when the sample size is large. To reduce computational
burden, we implement a batch version of the CD-1 algorithm in practice, where we only use a small
batch of the whole data set in each iteration. Specifically, we randomly partition the whole data
set into B batches, and iterating through all the batches is known as one epoch in machine learning
literature. Here we use R = {R(]_),R(Q), . ,R(B)} to denote the partitions, Ng to denote the
batch size, and Nepocn to denote the number of epoches. The resulting algorithm is summarized in

Algorithm 1.

In our proposed algorithm, there are two tuning parameters: A for the L; penalty and ~yq for
the learning rate. To get good estimates of our model, we need to select a suitable combination of
hyper-parameters A and 7. A popularly used tuning procedure is cross validation (CV). However,
as RBMs are unsupervised learning models, we cannot rely on the so-called “test error” of the
labels. Instead, since visible units are re-sampled at each iteration in the CD algorithm, we may
use the reconstruction error of the visible units to assess the goodness of fit. Nevertheless, the
visible reconstruction error will always increase as the penalty coefficient A increases, because larger
penalty would introduce more bias. Therefore, the traditional CV procedures would not work here.
To solve this problem, given values of A and -, instead of directly using the VAV)WO obtained from
a penalized RBM to compute the reconstruction error, we propose to debias the non-zero entries
in WAﬁo by training an RBM with no penalty but fixing the zero positions the same as those in

W/\/m‘ The proposed CV producedure is summarized below.

1. Split the data into M partitions. Fach time we use one partition as the validation set and

the remaining as the training set.

2. Apply the penalized CD Algorithm 1 to train the RBM on the training set with pre-specified

A and g, and obtain the estimates WA% and Q Ao

3. Use the training set again to debias the non-zero entries of VAV,\WO. Specifically, we use VV;W0

as the initial value and set A = 0 in Algorithm 1 to train an unpenalized RBM, and only
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Algorithm 1: CD-1 algorithm with L; penalty

Input: Data R — {R(l), Ry, .. ,R(B)}, A, 70, and Nepoch.

Output: Estimates W l;, C.
Initialize wj(ok), bgo), 01(40)7 u(O) =0, c
for e =0,. Nepoch 1 do

forsz,...,B—ldo

R(O) — R(b-i—l);

Sample a® ~ P(a | R©;c®, W®);
Sample R®Y ~ P(R | o9; 61, W®);
u® — ot 4 x40,

for j=1,....,J,k=1,...,K do

‘ w§t]€+1) <—min{0 w(tH)—F( (t) —

end
end

for j=1,...,J do

end

for k=1,...,.K do

end

end

0)
Cik=C€ 12:0

t = e x B+ b (the number of iterations);

if t > 2 then c§tk D cg.t,f) + w](l;f)
if w7 > 0 then

‘ wj(t,j ) ¢ max {O,w’f;l) — (u® +¢
else

Dl 440 { S RO P = 1| B

‘ b(t“)<_b(t)+7(t){vaBlR ZfVBlRw}/NB’

(t+)<—c()+*y() Ve plag =1 R") = V8 Plag = 1| RY) L /Ng;
k i=1 1 i=1 (]

update the non-zero entries of VAV,\WO while keeping the zero entries unchanged. Hidden bias

c and visible bias b are updated at each step as usual. This step give us the de-biased weight

matrix W) .

4. Compute the reconstruction error on the validation set. In specific, at each iteration of the
CD algorithm, we fix W = VVV,\WO, and only update the hidden and visible biases.

reconstruction error is computed as the mean batch squared error between the latest sampled
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visible batches {Rgl), ey R,(%)} and the observational batches {Rgo), s RE,?)} in the validation

set.

5. For each combination of A and =y in the candidate set, we repeat Step 2-4 across all M
validation sets. The Q,\*ﬁg corresponding to the smallest mean batch squared error (see

Section 4 for definition) is taken as the final estimate of the @Q-matrix.

Another major difference from the traditional CV procedure is we select the Q-matrix corre-
sponding to the smallest validation error instead of taking average of the validation errors and then
training a new RBM with the best tuning parameters according to the smallest mean error. There
are two advantages. On one hand, the traditional way of averaging errors, though more stable, is
very time-consuming in this problem. On the other hand, the gradient descent steps in the CD
algorithm may only produce locally optimal results. To avoid being stuck in sub-optima, we run
the CD algorithm M times with different initializations and different training and validation sets
for each combination of A and g, and select the estimated -matrix corresponding to the smallest

validation error. By doing so, the @)-matrix is expected to be more accurately estimated.

Remark 4. The computational cost of our proposed method only grows linearly in K and this
enables estimation of very large QQ-matrices. As far as we know, the current methods in the literature
have computational cost greater than O(K), with the majority growing exponentially with K. For
example, in Xu and Shang (2018), they proposed to learn the Q-matrixz by estimating the coefficients
in the LCDM plus a penalty term with the EM algorithm. In the E-step of the EM algorithm, 2%
posterior probabilities for each of the attribute patterns need to be updated. However, we also point
out that there may be alternative approaches that are also computationally feasible. Thanks to one
of the reviewers, who suggests it may also be feasible to use the traditional ACDM to learn large
Q-matrices. Note that all of our arguments in Sections 2.3 also apply to the ACDM model. With
a high-order model that parameterizes the distribution of the binary vector of attributes, such as a
Probit model, the number of parameters that need to be learned can be reduced from 2% to O(K?).
Together with a stochastic gradient descent algorithm, this can also be a computationally feasible

approach.
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4 Simulation Studies

We conduct simulation studies on three popular CDMs, the DINA, ACDM and GDINA models,
to study the performance of our proposed method in learning the Q-matrix under different CDM
settings. In particular, we examine the scalability to the size of the (-matrix and the estimation

accuracy of the proposed algorithm.

We first introduce the metrics used to evaluate the performance of the proposed estimation
method. To measure the convergence of the algorithm, we investigate the change in the mean
batch errors against time. The mean batch error is the reconstruction error between the latest
sampled visible batches {RE}), s RE}B))} and the original observed batches {RE(I)%, .

{Rg(l);’ - RE%))} partitions the whole observed data set into B batches. Given the batch-size Npg,

. RE%)) } , where

the mean batch error is defined as

B Np J

1 2
BNp Z Z Z (REZ)),i,j o Rgg))@,j) :

b=1 i=1 j=1

To evaluate the estimation accuracy, we report entry-wise overall percentage error (OE), out of true

positives percentage error (OTP) and out of true negatives percentage error (OTN). Specifically,

) K
OE := K Zzﬂ{éj,k # ik}

Jj=1k=1

which is the percentage of wrongly estimated entries out of the total number of entries in the

@-matrix.
J K ~
Zj:l D k=1 l{qj,k =0,qk = 1}
J K
Zj:l Py ]]'{qj7k = 1}

which is defined as the percentage of wrongly estimated entries out of all true positive entries (i.e.

OTP :=

Y

entries 1) in the Q-matrix.

371 Yret H{djk = 1,q50 = 0}
Z}]:1 Zf:l ]l{qj',k = O}

OTN =

)

which is defined as the percentage of wrongly estimated entries out of all true negatives (i.e. entries

0) in the @-matrix. A challenge in computing these errors arises because the estimated Q-matrix
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can only be identified up to column permutations. To resolve this problem, we apply the Hungarian
algorithm to match the columns of the estimated @ to the true Q-matrix by jointly minimizing
the total column-wise matching errors. Details of the Hungarian algorithm can be found in Kuhn

(1955).

We consider different number of latent attributes K = 5,10, 15,20, 25. To ensure the Q-matrix

is identifiable so that it can be learned from the observational data, we specify it as follows:

Ik
Q=1Q] (18)
Q2

MEXE with value 1 in the (4,4)th entries

where I is a K dimensional identity matrix; @1 € {0, 1
for i =1,..., K and the (i,7+ 1)th entries for i = 1,..., K — 1, and values 0 for all the other entries;
Q2 € {0,1}%K with value 1 in entries (i,7) for i = 1,..., K, (i, — 1) for i = 2, ..., K and (i, + 1)
for i = 1,..., K — 1, and value 0 for all the remaining entries. The above construction sets the
number of items to be J = 3K. This Q-matrix satisfies the identifiability conditions in Gu and Xu
(2019) and therefore is identifiable under the DINA setting in Simulation Study 4.1. Moreover, this
construction also ensures the (generic) identifiability of the ACDM and GDINA models considered
in Simulation Studies 4.2 and 4.3 (see Xu, 2017; Gu and Xu, 2020b,a). A random design of the

@-matrix, in which its identifiability is not be guaranteed, is also considered in Section ?7 of the

Supplementary Materials.

In each simulation study, we consider two different sample sizes N = 2000 or 10000. Both
independent and dependent settings of latent attributes are explored. Denote the latent attribute
matrix by A = (ai)i]\il € {0,1}VXK which depicts the latent attribute patterns of the N exam-
inees. We use two steps to simulate the latent patterns (Chen et al., 2015). First, a Gaussian
latent vector is generated for each subject z; = (21, ..., ziKk) i N(0,%) for i = 1,..., N, where
Y =(1-plg +plglj, 1x = (1,...,1)%, and p is the correlation between any two different
latent attributes. In practice, since some attributes may be harder to master than others, different

thresholds are applied in the sampling of attribute profiles. In particular, for a given K, we specify

the thresholds ranging from —0.5 to 0.5, with a step size of 1/(K — 1), for each of attribute 1,2, ... K
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respectively. Then oy, = 1 if z; is greater than its respective threshold and oy = 0 otherwise. For
the independent setting, we set p = 0, while for the dependent settings, we consider both a low
correlation with p = 0.25 and a high correlation with p = 0.75. For the tuning of hyper-parameters,
we take the candidate sets as A € {0.003,0.004,...,0.015} and 9 € {0.5,1,...,5.5}, and perform
5-fold CV to select the best estimated Q-matrix. For each setting, 100 repetitions are simulated.

The batch size and the number of epochs are fixed at 50 and 300 respectively.

4.1 Simulation Study 1. DINA Model

For the DINA test items, we consider two uncertainty levels, g; = s; = 0.1 or g; = s; = 0.2 for
all j =1,...,J. Figure 2 plots the mean batch errors against time for the independent case with
K =5 (the first row) and K = 25 (the second row) across different sample sizes and different noise
levels. When K = 5, we can see that the CD-1 algorithm converge well after 6 seconds for all
different sample sizes under different noise levels. This suggests that with a small number of latent
attributes, the sample sizes and the uncertainty levels do not affect the convergence speed a lot.
Focusing on the second row of Figure 2, we note that although the size of the Q-matrix increases
from 75 (K = 5) to 1875 (K = 25), the convergence time only increases by around 10 seconds, and
the CD-1 algorithm converges well after just 15 seconds even when K = 25. This indicates that
the proposed method is scalable with the size of the ()-matrix. Dependent settings have similar

convergence rates and hence the results are omitted.

Figure 3 and 4 plot different estimation errors against the sizes of the Q-matrix for independent
and dependent settings respectively. For the independent case, in Figure 3, we can see that the
OE stays below 16% across all the settings. There is a decreasing trend in the OE as the Q-
matrix size increases due to the increasing sparsity of the true underlying ()-matrix. Our proposed
method performs significantly better than the baseline method predicting all the entries of the
@-matrix to be 0 (which would produce OE of 36% for K = 5). Furthermore, we note that
increasing uncertainty level will deteriorate the OTP, making the estimation of positive entries
harder. Increasing the sample size N would in general help improve the estimation accuracy. For
the dependent case, in Figure 4, we observe that the results in the low correlation setting are very

similar to that of the independent setting. This suggests that our proposed method is robust when
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moderate correlations amongst latent attributes exist. On the other hand, when the correlations
amongst the attributes are high, we see increments in all the three error metrics, OE, OTP and
OTN. The correlations amongst the attributes would compound the difficulty in estimation of the
Q-matrix. However, all the OE’s still stay well below 20%. Hence, our proposed method can still

achieve effective learning of the (Q-matrix when the correlations amongst the attributes are high.
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Figure 2: Plots of mean batch errors against time for the DINA data.
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Figure 3: Plots of different performance metrics against the size of the -matrix for the DINA data
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Figure 4: Plots of different performance metrics against the size of the Q-matrix for the DINA data
(dependent case with ¢ = s = 0.1). Row 1 and 2 correspond to correlation settings 0.25 and 0.75
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4.2 Simulation Study 2. ACDM Model

We conduct similar analysis using data generated from the ACDM to examine the convergence
speed and estimation accuracy of our proposed method. Define K7 to be the number of required
attributes for the item j. Without loss of generality, we let the first K7 attributes be the required
attributes for item j, i.e., the corresponding row in the Q-matrix is g¢; = (1,...,1,0,...,0) with the
first K entries being 1 and all the remaining K — K7 entries being 0. For an ACDM with the
identity link function 1, we have P(R; = 1 | 1) = d;0 + Zfi djk = pj, the highest success
probability achievable for the most capable subjects. Similar to the DINA setting, two different
uncertainty levels are considered: case 1. d;0 = 0.1, p; = 0.9 for all j = 1,...,J and case 2.
0j,0=02,p;=08forall j=1,...J. For k=1,..., K7, §; is set to be (pj — 5j70)/K]’-k, that is, the

contribution of each required attribute to the success probability is equal.

Figure 5 shows the convergence speed of our proposed method under the independent setting.
We observe similar patterns as in the DINA case: uncertainty levels and samples sizes do not have
significant impacts on the convergence speed. Our proposed algorithm is scalable with the size of
the @-matrix in the ACDM setting. Figure 6 and 7 plot different estimation metrics against the size
of the @Q-matrix for independent and dependent settings respectively. From Figure 6, we can see
that the results are very similar to those observed in the DINA model setting, which demonstrates
that our proposed methods is effective in the ACDM data. Furthermore, for the dependent setting
in Figure 7, we observe that when the correlation is of 0.25, the estimation accuracy remains similar
to that in the independent settings. When the correlation is of 0.75, unlike in the DINA setting,
the OE, OTP and OTN only increase very slightly. In particular, the OE stays well below 16.5%
when K = 5,10, ...,25. This suggests that when the true data generating model is the ACDM, our

proposed method is robust when the correlations amongst the attributes are high.
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Figure 5: Plots of mean batch errors against the time for the ACDM data. Case 1 represents the
setting when 9,0 = 0.1, p; = 0.9 for all j =1,...,J. Case 2 represents the setting when 4o = 0.2,
pj =08 forall j=1,...J.
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Figure 7: Plots of different performance metrics against the size of the @-matrix for the ACDM
data (dependent case with ;9 = 0.1, p; = 0.9 for all j = 1,...,J). Row 1 and 2 correspond to
correlation settings 0.25 and 0.75 respectively.

4.3 Simulation Study 3. GDINA Model

Let the highest success probability achievable for the most capable subjects be P(R; =1 | 1k ) := p;
from Equation (3). Similar to the ACDM setting, we consider two uncertainty levels: case 1.
0j0=0.1,p; =09 for all j =1,...,J and case 2. ;o = 0.2, p; = 0.8 for all j = 1,...,J. Using
the @Q-matrix specified at the beginning of this section, for each item j, we may have K7 = 1,2
or 3. When K7 = l,we set d; = p; — ;0. When K7 = 2, we let d;, = djp = (pj — d50)/3
and when K7 = 3 we set 0, = jprr = Ojkrrkr = (pj — 0j,0)/7. As such, the main effects and the
interaction terms are all assumed to have the same contributions to the probability of a positive

response. Both independent and dependent settings are considered.

Convergence rates under independent setting are summarized in Figure 8. Similar patterns to
the DINA and the ACDM settings can be observed, indicating that our algorithm is scalable to the
size of the @-matrix in the GDINA model. As before, dependent settings have similar convergence

patterns, and hence the results are not presented here. Behaviors of different estimation metrics
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over the size of the ()-matrix for both the independent and dependent settings are summarized in

Figure 9 and 10 respectively.

For the independent setting in Figure 9, slightly better estimation accuracy can be observed
than in the DINA and the ACDM settings. This suggests our proposed methods is effective in the
learning the @Q-matrix from data generated using the GDINA model. One thing to emphasize is
that our method is competitive amongst the existing algorithms in the literature. For example,
comparing to a similar simulation study in Xu and Shang (2018) for K = 5 independent attributes
and N = 2000, our overall estimation accuracy of around 87% is significantly better than theirs,
whose overall accuracy is 71.2%. Moreover, our method also has much smaller computational cost
than their method. For the dependent setting in Figure 10, we observe that the estimation accuracy
remains similar to the independent setting when the correlation is of 0.25. When the correlations
are increased to 0.75, all the three error metrics only increase very slightly. This observation is
similar to the ACDM setting. The OE’s remain well below 16.5% for all K = 5,10,...,25. This
suggests that when the true data generating model is the GDINA model, the proposed method is

fairly robust to high attribute correlations.
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Figure 8: Plots of mean batch errors against the size of the @Q-matrix for the GDINA data. Case
1 represents the setting when ;0 = 0.1, p; = 0.9 for all j = 1,...,J. Case 2 represents the setting
with higher uncertainty levels when d;0 = 0.2, p; = 0.8 for all j =1,..., J.
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Figure 9: Plots of different performance metrics against the size of the @Q-matrix for the GDINA
data (independent case). Case 1 represents the setting when 6,0 = 0.1, p; =09 forall j =1,...,J.
Case 2 represents the setting with higher uncertainty levels when d;9 = 0.2, p; = 0.8 for all
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Figure 10: Plots of different performance metrics against the size of the Q-matrix for the GDINA
data (dependent case with ;0 = 0.1, p; = 0.9 for all j = 1,...,J).
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4.4 Attribute Classifications

As discussed in Section 2.3, the marginal distributions of the attributes are mis-specified in RBMs, in
which a conditional independent structure is assumed. However, in practice, the latent attributes
are often highly correlated and the conditional independence assumption may not hold. This
mis-specification in latent attribute distributions is expected to bring in additional errors in the
estimated Q-matrix. In order to understand the practical implications of the mis-specification in
the estimated @-matrix, we compare the commonly used attribute classification accuracy (ACC)
rate obtained using the estimated Q-matrix (Q) and the true @Q-matrix (Q). In particular, when

there are N examinees, the ACC of the k’th attribute is defined as
| X
ACC(k) := N ; | Qi — i,

where &;;, and «;; represent the estimated and the true attribute values, respectively.

The simulation set-ups remain the same as the dependent settings in Section 4. All the DINA
data, the ACDM data and the GDINA data are considered. Attribute classifications are performed
using the estimated @ and the true Q under the corresponding true underlying CDMs. The results

are summarized in Table 1.

Not surprisingly, we observe that the ACC rates obtained using Q are worse than that using
Q in all settings across all models. The errors in Q stem from two sources, the mis-specification
error in the latent attributes’ marginal distribution and the sample estimation error. On the other
hand, we also note that the ACC rates obtained using Q do not deteriorate too much from using
the true Q when sample size is large, especially under the ACDM and GDINA models. This
suggests the @-matrix estimation accuracy in the ACDM and GDINA models may be less prone to
the mis-specification in the latent attributes’ marginal distribution. Furthermore, the ACC rates
drop as the number of attributes increases in the model. This reflects the increasing difficulty in
attribute classifications as the number of attributes increments. Surprisingly, the ACC rates are
generally higher when the correlation amongst attributes is higher. This may be because the higher
dependency among the attributes results in fewer numbers of possible attribute patterns, making

the estimation relatively easier. Not so surprisingly, we also observe that increasing sample size
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can in general help improve ACC rates.

We also conduct simulation studies to explore the potential of using the proposed method
to perform latent attribute classifications directly. The performance of the proposed method in
attribute classifications is satisfactory. For more details on the additional simulation results, please

refer to the Supplementary Materials.

N = 2000 N = 10000

p=0.25 p=0.75 p=0.25 p=0.75
Model | Q Q Q Q Q Q Q Q
DINA 0.806 0.944 0.888 0.956 0.830 0.945 0.890 0.957

K=5 ACDM | 0.812 0926 | 0.911 0.946 | 0.921 0.928 | 0.915 0.948
GDINA | 0918 0928 | 0935 0.949 | 0.928 0.929 | 0.947 0.950

DINA | 0.801 0.939 | 0.898 0.954 | 0.811 0.940 | 0.894 0.956
K =10 ACDM | 0.815 0.922 | 0.913 0.946 | 0.910 0.925 | 0.906 0.950
GDINA | 0.885 0.924 | 0939 0.949 | 0.926 0.926 | 0.899 0.951

Table 1: Average ACC rates out of 100 repetitions for K = 5,10 attributes respectively obtained
using the true CDMs. @ and @) denote the estimated @-matrix from the proposed method and the
true (Q-matrix respectively.

5 Real Data Analysis

We apply our proposed method to a TIMSS data set. TIMSS provides data on the mathematics
and science curricular achievement of the fourth and the eighth grade students across countries such
as the U.S. The data set contains 23 mathematical items from TIMSS 2003 items and is packed in
the CDM package in R (Robitzsch et al., 2020). Both a binary scored examinees’ response matrix
and an associated expert constructed @Q-matrix are included in the data set. In particular, the
binary response matrix consists of 757 observations, and it is therefore of dimension 757 by 23.
The @Q-matrix on the other hand specifies how the 23 items are related to 13 binary mathematical

skill attributes, as summarized in Table 2.
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Skill attributes

Items

1. Understand concepts of a ratio and a unit rate and use language appropriately 1,7, 20

2. Use ratio and rate reasoning to solve real world and mathematical problems 3, 11, 15, 19, 22
3. Compute fluently with multi-digit numbers and find common factors and multiples | 12, 18

4. Apply and extend previous understandings of numbers to the system of

rational numbers 4,17, 23

5. Apply and extend previous understandings of arithmetic to algebraic expressions 8, 13, 16, 21
6. Reason about and solve one-variable equations and inequalities 2,5, 6,10,14
7. Recognize and represent proportional relationships between quantities 3,6

8. Use proportional relationships to solve multi-step ratio and percent problems 11

9. Apply and extend previous understandings of operations with fractions to

add, subtract, multiply, and divide rational numbers 4,8, 18, 23
10. Solve real-life and mathematical problems using numerical and algebraic

expressions and equations )

11. Compare two fractions with different numerators and different denominators;

Understand a fraction a/b with as a > 1 a sum of fractions 1/b 1,9,18

12. Solve multi-step word problems posed with whole numbers and having whole

number answers using the four operations, including problems in which remainders

must be interpreted. Represent these problems using equations with a letter standing

for the unknown quantity; Generate a number or shape pattern that follows a given

rule. Identify apparent features of the pattern that were not explicit in the rule itself | 5, 15

13. Use equivalent fraction as a strategy to add and subtract fractions 1,12, 18

Table 2: Clusters of items according to the underlying skill attributes.

Expert Constructed Q-matrix
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Figure 11: Heat-plot of the expert constructed Q". The white/black blocks correspond to q% =0/1

respectively.

Note that the provided @-matrix may not fully represent the ground truth because the construc-

tion of the ()-matrix by experts is almost always subjective. In this case, the provided Q-matrix

was constructed from the consensus of two experts. When they are not able to reach an agreement

for any item through discussion, a third expert would step in to resolve the conflict.
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centage of two experts’ overall agreement for the constructed @-matrix is only 88.89%, according
to Su et al. (2013). We denote this expert constructed Q-matrix as Q° and its (i, j)th entry as
q?j. A heat-plot of Q¥ is summarized in Figure 11. To demonstrate the practical implications of
our proposed method, we start with this expert constructed Q¥ and explore further whether our

proposed method can improve on the quality of the Q)-matrix to better represent the ground truth.

We initialize the weight matrix with @° in our proposed method. The estimated @Q-matrix is
denoted as Q and its (7,7)th entry as §;;. If we treat the expert constructed QO as the truth for
evaluation purpose, then the entry-wise proportional “error” rate, the out of true positives “error”
rate and out of true negatives “error” rate of Q are 0.126, 0.053 and 0.139 respectively. The low
“error” rates suggest Q" and Q are similar and our proposed method can indeed recover the main

latent structure, especially the positive entries, in the expert constructed Q°.

Trained Q-matrix and Expert Constructed Q-matrix
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1 2 3 45 6 7 8 91011121314151617 1819 20212223
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Figure 12: Heat-plot to compare between the estimated Q and the expert constructed Q°. The
white blocks represent entries (7,j) when both §¢;; = q?j = 0. The black blocks represent entries
(4,7) when both ¢;; = q% = 1. The red blocks represent entries (i, ) when ¢;; = 0 and q?j = 1. The
blue blocks represent entries (i, j) when ¢;; = 1 and q?j =0.

Figure 12 presents the heat-plot of the comparison between the estimated Q and the expert
constructed Q°. In particular, white and black entries represent the cases when Gij = q?j =0 and
when ¢;; = q?j = 1 respectively. While blue and red entries represent the cases when ¢;; = 1, q?j =0

and when ¢;; = 0, q?j = 1 respectively. We see that the majority of the positive entries in Q° are

picked up by Q, and only 4 of them are predicted to be 0 in Q, as represented by the red blocks
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in Figure 12. This suggests the proposed method can estimate the -matrix with high sensitivity.
Some of these false negatives do make sense. For example, item 5 describes three figures arranged
in matchsticks with some patterns and asks for the total number of matchsticks that would be
used to construct figure 10 if the pattern continues. It is a pattern recognition problem and
does not seem to be closely related to attribute 6, “reason about and solve one-variable equations
and inequalities”. However, we acknowledge that this data driven approach can sometimes make
mistakes. For example, the other three false negatives predicted may not make much sense. Take
item 10 for example, which reads “inequality equivalent to x/3 > 8”. It clearly requires the
knowledge of attribute 6, which is not successfully identified by the proposed method. On the
other hand, the white regions, representing the agreed entry 0’s, occupy the majority of the plot.
This suggests the specificity is controlled. Moreover, we see some blue blocks scattering in Figure
12, which represent the entries that are 0 in Q° but are predicted to be 1 in Q Some of these blocks
capture information that is neglected by the expert when constructing the Q)-matrix. Take item
22 for example, whose description is “At a play, 3/25 of the people in the audience were children.
What percent of audience is this?” In the expert constructed @-matrix, this item only requires
mastering attribute 2. However, in our estimated Q, this item is further related to attribute 4,
“understanding of rational numbers”, 7, “recognizing proportional relationships” and 9, “applying
operations with fractions”. Nevertheless, we also want to point out that the proposed method may
over-select, resulting in redundant attributes being selected. For example, item 8 reads “If z = 3,
what is the value of —3x”. The proposed method predicts that it is related to attribute 2, “Use
ratio and rate reasoning to solve real world and mathematical problems”, but in fact item 8 does
not seem to be related to attribute 2. Therefore, careful examination of the predicted entries is

still needed, but it can potentially help to improve the quality of the ()-matrix.

We further compare the goodness-of-fit of Q% and Q across different CDMs, including the DINA,
ACDM and GDINA models using both AIC and BIC as criteria. We note that out of the three
models tested, the ACDM gives the smallest values of both AIC and BIC. Moreover, using Q
gives much smaller AIC (19348.71) than using Q° (19568.17) under the ACDM, which suggests the
estimated Q fits better under the ACDM than the expert constructed Q° in terms of AIC. On the

other hand, using Q achieves a BIC value of 20313.98, slightly worse than a BIC value of 20286.44
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obtained by using Q°. However, the two values are comparable in size and the improvement is not
significant. Nonetheless, since we do not know what the true underlying model and the @-matrix
are, consultation to the domain experts is still needed to make assertive conclusions about which

of Q and QY is better.

6 Discussions

In conclusion, our proposed method using RBMs with L; penalty can achieve both fast and accurate
learning of the large Q-matrices in different types of CDMs. This is shown by both the theoretical
proofs developed in Section 2.3 and the simulation studies carried out in Section 4. The real data
analysis on TIMSS data set further suggests that our method can also work well in real world
scenarios, and thus it would provide a powerful tool in large-scale exploratory cognitive diagnosis

assessments.

We discuss some potential use cases of our proposed method. One potential use case is to pro-
vide a reasonably accurate QQ-matrix for cognitive diagnoses such as latent attribute classifications,
when no Q-matrix or only an inaccurately specified @-matrix is available. Depending on the accu-
racy requirements, the estimated (Q-matrix can either be used directly in CDMs to perform latent
attribute classifications or can serve as a starting point for domain experts for further refinement
before use. Another potential use case is to provide a @Q-matrix estimate for test item catego-
rizations and enabling efficient design for future assessments. Similarly, whether the estimated
(Q-matrix can be used directly depends on the accuracy requirements in different real settings. To
add reliability and confidence for direct usage, goodness-of-fit measures such as AIC or BIC can
always be evaluated and compared between the estimated (Q-matrix and the potentially inaccurate
specified -matrix if it is available, as a first step. If the goodness-of-fit of the estimated Q-matrix
is bad, then either the model used is not appropriate or the estimated (Q-matrix is inaccurate. In
these cases, consultation to domain experts is still necessary. Nevertheless, our proposed method
may help reduce the burden placed on the experts. Based on the estimated )-matrix, if one finds
out that additional items with specific g-vectors need to be included in the test, then it is likely

such an item is indeed missing from the original test design. In this scenario, we recommend to
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include the additional item into the test design to keep safe. Furthermore, in the case when the
accuracy requirement is exceptionally high, our proposed method can still help. In this scenario, we
recommend to set the penalty term to be 0 and apply CD Algorithm 1 to train the original RBM
on the whole data set to obtain W. Then for each item j, experts can rank {|i;z : k = 1,..., K}
in a descending order first and pay more attention to those w;; with large absolute values as those

correspond to the gj; that are most likely to be 1’s.

Note that by initializing the RBM parameters W, b and ¢ randomly, the proposed estimation
method assumes no prior knowledge of the @-matrix. In practice, we may have partial knowledge
of the (-matrix, using which we could potentially obtain a better initialization of the parameters.
For example, we may have a pre-specified Q-matrix design with possible mis-specifications in some
entries; in such cases, we can initialize the weight matrix W and the visible bias vector b based on
our prior knowledge of the -matrix. Note that w;j in W correspond to §; g, in the ACDM.
From the perspective of initialization, we find what affects the learning accuracy most significantly
are the signs of the initial values. So, to keep things simple, we can initialize W with the partially
available (-matrix directly. For the visible biases, if the underlying model is believed to be the
DINA model, by considering a = 0, we can derive b; = log(g;/(1 — g;)). Under the ACDM or the
GDINA model, we can obtain b; = log(d;0/(1 — d;0)) using a similar argument. Though we do
not know g; or §; in reality, very likely these values are between 0 and 0.5, in which case b; < 0.
It is therefore reasonable to initialize each b; from a Uniform(—5,0) distribution. This would help

improve the estimation accuracy.

Some limitations of our method include it does not take into account the interactions between
the latent attributes due to the assumptions imposed on RBMs. In many real world scenarios,
it is not uncommon that the latent attributes interact with one another and have joint effects
on the distribution of the observed responses. One potential way to solve this problem is to
apply deep Boltzmann machines (DBMs) to model the distribution of the responses. Since DBMs
allow interactions between the latent attributes, it will capture the interactions between the latent
attributes and take that into account. Moreover, this paper focus more on the estimation part
while inference on the estimated Q-matrix is not discussed. It would be interesting to pin down the

asymptotic distributional form of this Q-matrix estimator to facilitate inferences such as hypothesis
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testing and constructing confidence intervals.
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This file contains additional simulation results in Section 1 and the proofs of all lemmas and

propositions in Section 2.

1 Additional Simulation Studies

1.1 Estimating Randomly Sampled Q-Matrix

In this section, we consider randomly sampled @-matrix in a way that can simulate potentially
more challenging scenarios. In specific, we include the one-, two- and three-attribute item designs.
The exact construction of the (Q-matrix is as follows. Similar to the construction in the main article,
we still fix the dimension of the Q-matrix to be 3K by K, i.e. 3K items with K attributes. For
each row j, we first determine which item design it will take by a random sampling scheme. Let
M = (Il( ) + (g( ) + ([3( ) The number of required attributes (denoted by n) for each item is randomly
sampled from {1, 2,3} with probabilities {(If) /M, (12() /M, (13() /M}. Then, n attributes are sampled
without replacement from {1,2, ..., K'} with equal probabilities, the corresponding entries in q; will
be set to 1 and the rest to 0. Note that this random construction of the Q-matrix would somewhat
simulate the extreme situations where the easiest learned one-attribute items will be sampled with
the smallest probabilities. For example, when K = 15, the probability to select a one-attribute

item is only 0.0261. Furthermore, we also point out that under this random design, there will be

a high chance the sampled @Q-matrix is not identifiable, making the estimation even more difficult.

*This research is partially supported by NSF CAREER SES-1846747, DMS-1712717, SES-1659328.



100 replications for each of K = 5,10,...,25 are considered and the average results are presented
in Figure 1. For illustration purpose, we only consider the settings when N = 2000 and when the
attributes are independent, for the DINA, the ACDM, and a mixture of the DINA, ACDM, and
DINO data. For the data from a mixture of three models, the data are generated from the DINA,
ACDM and DINO models with proportions 0.35, 0.35, and 0.3 respectively, respectively. All the

other set-ups remain the same as the independent settings in Section 4 of the main article.

From Figure 1, we can observe that the OE’s of our proposed method remain controlled for
three types of data. However, we can also see that the OE’s worsen and the OTP’s become much
more volatile compared to the fixed Q-matrix design in Section 4 of the main article. This is not
surprising because of the increased difficulty in the design where the Q-matrices contain more two-
and three-attribute items and the number of non-identifiable ()-matrices increases significantly. In
line with our observations in the main article, we also observe the increased uncertainty level impact
most negatively on the OTP. However, overall, the proposed method still possesses certain degrees

of learning power of the ()-matrix even in such extreme situations.
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Figure 1: Plots of different performance metrics against the sizes of the @-matrix. Rows 1 to 3
correspond to the DINA data, the ACDM data and a mixture of the DINA, ACDM and DINO data,
respectively. For the DINA and DINO data, two uncertainty levels are represented by g; = s; = 0.1
and g; = s; = 0.2 for all items j, where subscripts j are omitted in the legends. For both the
ACDM data and the GDINA data, cases 1 and 2 represent the settings when ;0 = 0.1, p; = 0.9
and d;0 = 0.2, p; = 0.8 for all j =1, ..., J respectively.

1.2 Attribute Classifications in Correlated Settings

In this section, we explore the potential of our proposed method in learning the latent attribute
patterns. As discussed in the main article, the marginal distributions of the latent attributes are
mis-specified in RBMs. Therefore, we would like to explore to what extent our proposed method
can perform latent attribute classifications directly when the conditional independence assumption

is intensely violated. Similarly, ACC rate is used to assess the performance. Recall that the ACC



of the k’th attribute is defined as
| XN
ACC(k) := ~ ; |G, — g

where &, and «;; represent the estimated value and the true value respectively.

The simulation set-ups remain the same as the dependent settings in Section ?? of the main
article. The recovered latent attribute matrix corresponding to the optimal estimated -matrix is
returned. All the DINA, ACDM and GDINA data are considered. For each of the 100 replications,
the ACC rate for every attribute in each of the settings with K = 5,10, ...,25 is evaluated. The
setting-wise average ACC rate is evaluated by computing the average ACC for each attribute out
of 100 repetitions first, and then averaging out of all the K latent attributes for each settings of

K =5,10,...,25. The results are summarized in Table 1.

Overall, we can see that the proposed method performs well in attribute classifications with all
ACC rates above 0.85. Furthermore, we also observe that the ACC rates drop as the number of
attributes increases in the model. The attribute patterns would increase as the number of attributes
increments, making the estimation more difficult. Similar to the observations made in the main
article, we see the ACC rates are generally higher when the correlations amongst attributes are
higher. We also point out that increasing sample size can in general improve ACC rates using the
proposed method. The performance of the proposed method is better on the ACDM data and the
GDINA data than on the DINA data. This is especially obvious when K is relatively small at 5

and 10. This observation is in line with our discussions in Section 7?7 of the main article.

N = 2000 N = 10000
p =025 p=0.75 p=0.25 p=0.75
DINA ACDM GDINA | DINA ACDM GDINA | DINA ACDM GDINA | DINA ACDM GDINA
0.898 0.916 0.916 0.917 0.927 0.924 0.903 0.916 0.917 0.918 0.932 0.931
0.897 0.896  0.900 0.888 0.902  0.903 0.901 0.907 0.911 0.885 0.911  0.912
0.878 0.876  0.880 0.880 0.888  0.893 0.891 0.887  0.893 0.880 0.897  0.900
0.875 0.863  0.869 0.879 0.885  0.889 0.883 0.879  0.882 0.874 0.894  0.893
0.866 0.853  0.857 0.875 0.883  0.887 0.877 0.868 0.874 0.874 0.887  0.890

Table 1: Average ACC rates for using RBM on the DINA data, the ACDM data and the GDINA
data. Rows 1 to 5 correspond to the settings with K = 5,10, ..., 25 respectively.




2 Proofs of Lemmas and Propositions

Before proving our main propositions 2.1 and 2.2, we first give a lemma which would be used in

the proof of the main propositions.

Lemma 1. Assume a are independent and oy ~ Ber(py) for k = 1,..., K. If true model with
response R satisfies either the GDINA model Equation (3) or the DINA model P(R =1 | a) =
g+ (1 —s—g)ajag...ax~ for some s,g satisfying g < 1 — s, then the mis-specified linear additive
model of R regressed on (a1, s, ...,ax) has the corresponding mean function in the form of E*[R |

al = B+ frag + Peas + ... + Brak with B, =0 fork=K*+1,..., K.

Proof of Lemma 1. By the independence assumption and the linear regression theory, we have for

k=1,... K,

B Cov (ozk, R)

" Var(ar)

1
S —e . R).
Pl = pr) ov (e, R)

Denote a1 g+ := {1, ..., ax+}, then by the Law of Total Covariance, we have for k = K*+1, ..., K,
Cov(ak, R) = E [Cov(ak, R | a1, k)] + Cov(E [ay | a1, i+, E [R | a1, k+]). (1)
Applying the independence assumption again, we have
Cov(E [ag | a1, k+],E[R| .. k+]) = Cov(pk, E[R | o1, k+]) = 0.

Hence, we only need to consider the first term of (1). Referring to Figure 2, we know that in both

the DINA and the GDINA model setting, R 1L oy | a1, g+ forall k = K* +1,..., K.
E [Cov(ak, R | a17,,_,K*)] =0.

Therefore,

0
By, = =0 Vk=K*+1,...K.

(1= pr)



wE e

Figure 2: Illustration of the conditional independence relationship between R and «j given
oy, .., ax forall k=K*+1,.. K

Next we give the proofs of our main propositions.

Proof of Proposition 1. First note that by Lemma 1, we have g =0 for k= K*+ 1, ..., K.

In the DINA setting, we have

1—s fax=1gs
P(R=1|a)=

g otherwise,

or,
Ber(1 —s) if a = 1g~

R|la~ (2)
Ber(g) otherwise.

Under the independence condition, for any k =1, ..., K*, we have

B Cov(ak, R) = Cov(ag, R).

- Var(o) pr(1 — pr)
Consider the following two events which partition the sample space of

K*
Eoy = {al,...,ak_l,ak+1,...,aK* | Hz‘:l,z‘;éko‘i = 0} and Fy = {al,...,Olk_l,ak+1,...,a[(*

i=

HK?LJ;HC o = 1}. Denote oy go\i = {041, vy Q—1, Q1 1, ...,aK*}. By the Law of Total Covari-



ance, we have

Cov(ak,R) =K [Cov(ak,R | oy, K*\k)] + COU(E [ak\al ..... K*\k],E [R | oy K*\k]). (3)

For a fixed k, define another two events: Fj ), := {a | ag = O} and Es3j, = {a | ag = 1}. Then in

the event of Eyy,

(4) =E[E[axR | Eog] —E [ox | Eo] E[R | Eo]]
— E[E [oxR | Box, Bsi| P(Esg) + E [axR | Eog, Fax] P(Eax) — E [ox] E [R | Fox]
=E9-pr— Dk 9]
~0.

In the event of E x,

(4) =E [E [axR | Bvi] —E[ox | Evk] E[R] Eyi]]
=E [E [axR | E1p, E3 5| P(Es k) + E [agpR | E1 g, E2 x| P(Ea )
—E[ax] ‘E[R| B, Bsk] - P(Esx) —E [ok] -E[R| Evg, Eag) - P(Bag)]
=E[(1 - s)pr + 0 —pr(1 — s)pr — prg(1 — pi)]

=pr(1 —pg)(1 — s —g).



Since the above reasoning works for any k = 1,2, ..., K*, we must have for each k = 1,2, ..., K*,

1
=—Covlag, R
P Pr(1 — pr) (. )
1
=——(0-P(Eyg) +pr(l— l—-s—g)-P(E
e =) (0- P(Eo k) + pr(1 — pr)( 9) - P(Evy))
K*
=(1-s—g) [[ »
i=1,i£k
#0.
O
Proof of Proposition 2. Note that by Lemma 1, we have 8y =0 for k= K* +1,..., K.
Under the independence condition, for any k& =1, ..., K*, we have
Br = ;Cov(ak R)
Var(ag) ’
1
= —Cov(ag, R). 5
pr(1 — pr) ( ) )

Denote S := {1,2,3,..., K*}. We consider the following 2% events: Ey := {a | oy = 0,Vl € S},
Ey; = {a |y =1,05=0,Vj #i¢€ S} for some 7 € S (i.e. events that only one of the required
variables taking value of 1 and all others being 0), Es i) = {a | =0aj=1,0,=0,Vk #1,j €
S } for some ¢ # j € S (i.e. events that any two of the required variables are 1 and all others being
0), ..., Eg~ := {a |y =1,V € S}. Note that Fy, E1; for i € S, Ey(; ;) for some i # j € S, ...,

FEi~ partition the sample space of a. The response R would have the following distribution.

¢

Ber(dyp) if Ey
Ber(dp + 9;) it Fy;
Rla ~ Ber(do + d; + 05 + 5z‘,j) if E27(i7j) (6)

Ber(50 + Zfz*l Op + ... + 512”,1(*) if Egs.



By the Law of Total Covariance, we have

Cov(ak,R) =K [Cov(ak,R | oy, K*\k)] + COU(E [ak\al 77777 K*\k],E [R | oy K\k]) (7)

..........
,,,,,

77777

In the event of £,

(8) =E [E [oxR | Ej] — E [ | EG| E [R] E]]
=& [E [owR | B, B1] P(E}) + E (o R | Ej, Eo| P(E)
—E[ax] E[R| Ej, E{]P(E}) — E [ax] B [R | Eg, Eg] P(Ep)
=E [(50 + 0Pk + (L= pr) - 0 — (8o + 6)pf — o (1 — pk)pk}

=pr(1 — pr)dk.



In the event of E7 ; for some i € S,

(8) =E [E [axR | Bi,] —E[ox | E{;| E[R | BT ]]
=E[E[axR | By ;, E1]P(E}) + E (xR | EY;, By P(Ep)
—E o] E[R| Ef;, E{] P(E}) — E [0k E [R | EY,, Eg] P(Ey)]
=E [(60 + 6 + 0 + 0ir)pk + (1 — pr) - 0 — (80 + 8 + 6k + ik )Pk — (S0 + 6:) (1 — pr)pi]

=pr(1 — pr)(6r + dir)-

In the event of £ (i) for some i # j € S,

(8) =E [E [O‘kR | ES,(i,j)] —E [O‘k’ | E;,(i,j ] [R | B (3,7) H

—E[E[oxR | B}, B P(E}) + E [axR | B ), By P(E})

(4,5)° (4,5)

—E[a] B[R] B ), ) P(EY) — E [ak] E [R | E3 (; 5y, Eo| P(Ep)]

(4,9)°
:E[(50+5i+5j+5k+5z‘j+5ik+5jk+6z‘jk)pk+(1_pk)'o
— (80 + 8; + 65 + Ok + 6ij + Sis + Oji + Sija )P — (60 + 6 + 65 + 045) (1 — pr)pi]

=pi(1 — pr) Ok + dir + Oji + ijic)-

Continuing this process and substitute the relevant values into Equation (5), we can show that

O it B
O + ik if Eii
Br = Ok + Oik + 05k + i if E*7( ) (9)

\(Sk + Zili*l,i;ék i + -+ 01K+ I By

10



Since the above holds for all £ =1,2,3,...K*, we have for each k =1,2,3,...K*,

Br =0k P(E§) + > (6 +0ix) - P(ET) + Y (Ok + Gk + 0k + 6ij) - P(E3 ;) + -

ies’ i,jES i#]
K*

+ O+ Y Okt 01ke)  P(Ejeey) (10)
i=1,i#k

Assuming monotonicity in acquiring an additional skill, we can show all the terms in (10) are
greater than 0. The first term is positive as both 5, and P(E() are positive. To see why the second
term is positive, consider two examinees, one with skill set a1 = {a |l =1, =0, Vi#£ieS }
while the other with skill set ag = {a | i = = 1,q =0, VI#ike S}. Then we know
according to Equation (3), P(R=1|a1) =d + 6 and P(R=1 | az) = dp + ; + 6k + dijx. The
monotonicity assumption then implies P(R =1 | a2) — P(R=1]| a1) = 0 + d;x > 0. Hence the
second term is positive. We can use a similar strategy to show all the terms in (10) are positive

and thus reach the conclusion that 8 # 0 for each k£ =1,2,3,...K*. O

Discussion of Remark 2. Conditional on «ay, as, ..., i+, consider adding one oy, for any k = K* +

1,..., K, into the main effect regression model, then its coefficient can be expressed as

5 C’ov(R —E*[R | a1y...,ax+], ap —E*ag | ai, ...,oaK*])
k: =

)

Va?"(R —E*[R| o, ..., aK*])

where E*[A | B] is the the regression mean function of A on B. In the special case when K* =1,
we seek to show f; = 0. When K* = 1, note that we must have E*[R | a1] = E[R | ay]. This is
because a; can only take values of 0 or 1. These two variability’s can be modeled exhaustively by
the free intercept and the only coefficient in the regression mean function. Note that when K* > 1,

this may not hold in general. Note by the Law of Total Covariance,

Cov(R —E*[R| 1], o —E*[ay | al])
:E{COU<R —E[R| 1], ap—Eag]|ai]] a1>} (11)

+ COU{E(R “E[R|ai]|en), E(agx—Elog | ]| al)}. (12)

11



Note (12) = 0 and

E :(R —E[R | a1]) (o — Elo | en]) | al} n E[ak ~Efay, | a1] | al}E[ak ~Efay, | a1] | al} }

IE:(R ~E[R | oa])(ar, — Eloy | en]) | Oﬂ]}

E :Rak — RE(ay, | a1) — axE(R | a1) + E(R | a1)E(ay, | a1) | al} }

Where the second line follows from E[ak —Elag | a1] | al} = 0 and the third line follows from
the fact that E[R | a1]E[ag | 1] = E[Ray | a1] by the conditional independence between R and ay,

given ay. Therefore, [ = 0. 0
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