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SUMMARY

Network latent space models assume each node is associated with an unobserved latent po-
sition in a Euclidean space, and such latent variables determine the probability of two nodes
connecting with each other. In many applications, nodes in the network are often observed along 10

with high-dimensional node variables, and these node variables provide important information
for understanding the network structure. However, the classical network latent space models
have several limitations in incorporating the node variables. In this paper, we propose a joint
latent space model where we assume that the latent variables not only explain the network struc-
ture, but also are informative for the multivariate node variables. We develop a projected gradient 15

descent algorithm that estimates the latent positions using a criterion incorporating both network
structure and node variables. We establish theoretical properties of the estimators and provide
insights on how incorporating high-dimensional node variables could improve the estimation ac-
curacy of the latent positions. We demonstrate the improvement in latent variable estimation and
the improvements in associated downstream tasks, such as missing value imputation for node 20

variables, by simulation studies and an application to a Facebook data example.

Some key words: Network analysis; latent space models; high-dimensional data

1. INTRODUCTION

Network data that describe the relations or interactions among individuals have been prevalent
in many scientific and engineering fields, including but not limited to social media, world wide 25

webs, and neuroscience (Newman, 2010; Kolaczyk & Csárdi, 2014). A network is usually repre-
sented by nodes and edges, where each node represents an individual and an edge represents the
connectivity between two nodes. In recent years, a collection of statistical models have been pro-
posed to analyze network data appearing in various domains, for example, see Goldenberg et al.
(2010) for a review. Many of the existing models are based on the assumption that the formation 30

of network links is driven by nodal latent variables, including stochastic block models (Holland
et al., 1983), latent space models (Hoff et al., 2002), random dot product graph models (Young
& Scheinerman, 2007; Athreya et al., 2017), etc. It is critical to estimate the node latent variables
accurately, because the estimated latent representations of nodes not only provide insights on the
structure of the network, but also can be further used as node features for subsequent tasks, such 35

as node clustering, prediction for node response variables, and network link prediction.
In practice, the network link information is often collected along with additional high-

dimensional node variables. For example, in an online social network, where nodes represent
users and links represent friendship relationships, we also observe users’ multiple personal in-
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formation such as age, gender, and education institution (Leskovec & Mcauley, 2012); and in a40

citation network where nodes represent papers and links represent citation relationships, word
frequencies over a large number of words for each paper are recorded as well (McCallum et al.,
2000). The dimension of node variables in these applications can be large in the sense that it
is comparable to the number of nodes. Existing studies have shown that node variables provide
complementary information to network links and often play important roles for estimating the45

latent structure of the network (Zhang et al., 2016; Binkiewicz et al., 2017; Newman & Clauset,
2016). Thus, it is important to model the network and node variables jointly such that the node
variable information can be utilized for improved understanding of the node latent variables.

This paper proposes a joint latent space model to model network links and high-dimensional
node variables simultaneously using shared latent variables. On one hand, as mentioned above,50

many commonly used network models assume that the network links are determined through
node latent variables. Among these models, latent space models are probably the most popu-
lar(Hoff et al., 2002) and have been shown to be powerful for capturing many commonly ob-
served features of real-world networks (Ward & Hoff, 2007; Ward et al., 2007, 2011; Friel et al.,
2016), such as node degree heterogeneity, homophily, and community structures (Ma et al.,55

2020). Taking advantage of these nice properties of the network latent space model, we also
assume that each node can be represented by a latent vector in a (low) dimensional Euclidean
space, and the connecting probability between two nodes depends on the corresponding pair of
nodes’ positions in the unobserved space. On the other hand, it is also commonly observed that
high- or moderate-dimensional variables that are correlated can often be explained in terms of a60

few unobserved latent variables as well (Bai & Li, 2012; Wang et al., 2017; Hair et al., 2018).
Further, for network data with node variables, the latent variables that explain the observed high-
dimensional node variables could be correlated with the latent position variables that explain the
network links. This motivates us to consider the joint latent space modeling framework, which
uses the shared latent variables to model both parts of the observed information, with the goal of65

utilizing node variables effectively to help estimate the node latent positions.
Various latent variable based network models have been proposed for modeling network data

with node variables, such as the latent space model (Hoff et al., 2002) and its variants (Hoff,
2003; Handcock et al., 2007; Hoff, 2005, 2008, 2009; Krivitsky et al., 2009; Sewell & Chen,
2015, 2016; Ma et al., 2020). When node covariates are present, existing latent space models usu-70

ally incorporate such information by including pairwise node variable similarities to model link
probabilities (Hoff et al., 2002; Ma et al., 2020). Such similarity-based approaches have several
limitations when node variables are of high dimension. First, majority of existing latent space
models adopt Bayesian estimation approaches. The high-dimensional similarity vector would
introduce a large number of parameters and additional MCMC sampling, therefore, making the75

estimation much more computationally challenging. Second, the performance of the similarity-
based method would be sensitive to the specific choice of the similarity measure; and it does
not model the relationship between the observed node variables and the latent variables. In prac-
tice, node variables are often correlated with latent variables and this relationship can be utilized
for better understanding of the network structure (Xu et al., 2012; Yang et al., 2013; Kim &80

Leskovec, 2012). Further, from the theoretical perspective, the existing literature has rarely stud-
ied the effects of high-dimensional node variables on estimating network latent representations,
which is necessary in modern network data analysis with node variables.

The main contributions of this paper are summarized from the following perspectives. From
the modeling perspective, the proposed framework has several advantages in comparison to the85

existing work. First, we model the relationship between node latent variables and node covariates
by a set of shared latent variables, which provides a natural way of borrowing information from
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node variables to improve the estimation of the latent variables. Second, the proposed model
adopts the framework of generalized linear factor models to model the distribution of node vari-
ables and, therefore, can handle multiple types of node variables arising in practice (such as 90

continuous, binary, and count variables, etc.). Further, we develop an efficient projected gradi-
ent descent algorithm to estimate the model parameters and latent representations, by treating
the latent representations as fixed effects. Such an estimation method is computationally more
efficient than the Bayesian approaches in the literature.

Moreover, from the theoretical perspective, we show that the proposed estimators of the (fixed 95

effect) joint latent space model are error rate optimal under mild conditions. We also establish
the corresponding non-asymptotic upper and lower error bounds. In addition, we provide new
findings on how the information from both the network and node variables would balance with
each other to affect the estimation of latent variables. In particular, we provide a theoretical guar-
antee that when the dimension of signal node variables is large enough, borrowing information 100

from node variables would always achieve improvement in estimating node latent positions, in
comparison with the results using network link information only. We also investigate how the
sparsity level of the network would affect the necessity of including node variables for joint
estimation. Our theoretical findings are further supported by extensive simulation studies.

2. PROPOSED METHOD 105

2.1. Joint Latent Space Model
We start by introducing notations. Assume we have n data points connected by a network G =

(V, E), where V = {1, 2, . . . , n} denotes the node set, and E denotes the edge set. We consider
undirected networks and write (i, i′) ∈ E if there is a link between node i and node i′. The
network can be represented by an adjacency matrix A ∈ {0, 1}n×n, where Aii′ = Ai′i = 1 if 110

(i, i′) ∈ E and Aii′ = Ai′i = 0 otherwise. Further, we assume for each node i, we also observe
a vector of covariate variables, denoted by Yi ∈ Rq. The matrix of node variables is denoted by
Y = [Y1, Y2, . . . , Yn]T ∈ Rn×q. For a general matrix M ∈ Rm×n, we denote its ith row by Mi·
and its jth column by M·j .

We consider a joint latent space model for modeling network data with high-dimensional node 115

variables. Specifically, we assume each node i ∈ V can be represented by a low-dimensional vec-
tor Zi ∈ Rk in an unobserved latent space. The latent variables of all the nodes are denoted by
Z = [Z1, Z2, . . . , Zn] ∈ Rn×k. As commonly assumed in previous network latent space models,
two nodes that are close in the latent space are more likely to be connected. Meanwhile, it is
also proper to assume that when the two nodes are close in the latent space, they may display 120

similarity regarding the observed traits. For instance, for two individuals who have close latent
representations in a social network, they may choose similar jobs or hold similar political per-
spectives. This naturally leads to the consideration that the latent variables not only model the
network connectivity, but also are informative for the node variables. In particular, we make the
assumption that the distribution of network links and that of node variables are driven by the 125

shared latent variables (Figure 1).
For the network A, we assume that for each pair of nodes (i, i′), given their latent positions Zi

and Zi′ , the presence or absence of an edge between them is determined by the corresponding
pair of latent variables and is independent of any other edges. Specifically, for i < i′, we assume
Aii′ = Ai′i

ind∼ Bernoulli(Pii′), with Pii′ = f(Zi, Zi′) for some function f . Multiple choices for 130

the function f are available, see Hoff et al. (2002), Hoff (2003, 2008), and Ma et al. (2020) for
examples. In this paper, we consider using the inner-product latent space model (Hoff, 2003; Ma
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Fig. 1: Graphical representation of the joint latent space model

et al., 2020), i.e.,

logitPii′ = ΘA
ii′ = αi + αi′ + ZTi Zi′ . (1)

The model specification (1) can also be expressed in a matrix form:

logitP = ΘA = α1Tn + 1nα
T + ZZT ,

where α = (α1, α2, . . . , αn)T . We choose the inner-product latent space model to model the
network part because of its flexibility to capture commonly observed network characteristics.135

For example, it allows node degree heterogeneity through the parameter αi’s, and in general the
larger αi, the more likely that node i connects with other nodes. It also allows for transitivity, i.e.,
nodes with common neighbors are more likely to connect since their latent positions are more
likely to have larger inner product.

Further, we assume that the same latent variables Z are used to describe the multivariate node140

variables Y ∈ Rn×q. Specifically, we assume that given Z, the entries in Y are independent and
Z models Y through generalized linear models (Dunn & Smyth, 2018), with

g(EY ) = ΘY = 1nγ
T + ZB, (2)

where γ ∈ Rq and B ∈ Rk×q are the “regression” coefficients. For example, when entries in Y
are continuous and g(x) = x is the identity mapping, we assume

Yij
ind∼ N

(
(1nγ

T + ZB)ij , σ
2
)

(3)

for some σ2. When entries in Y are all binary and g(x) = log{x/(1− x)}, we have145

Yij
ind∼ Bernoulli

(
exp (1nγ

T + ZB)ij
1 + exp (1nγT + ZB)ij

)
. (4)

More generally, when there are more than one type of variables in Y , we could divide Y into
R blocks, i.e., Y = [Y1| . . . |YR], with each sub-block containing the same type of variables and
having its own link function. For the following algorithms and theoretical results, we mainly
focus on the case that there is only one type of variables in Y . The corresponding results for Y
with multiple variable types can be naturally obtained.150

It is worth noting that certain modeling approaches for the community detection problem can
be considered as having a similar flavor to jointly modeling the distribution of A and Y via
shared latent variables, where the discrete latent variable Zi ∈ {0, 1}k represents the unobserved
community membership of node i. For instance, Xu et al. (2012), Yang et al. (2013), and Kim
& Leskovec (2012) assumed that for nodes from the same community or cluster, their edge155

connections and node variables should follow the common distribution specific to that cluster.
In other words, the node latent communities determine the distribution of both A and Y , and
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therefore information from bothA and Y could be used for community detection. Our joint latent
space model considers a more general setting where the latent variables could take continuous
values in the unobserved latent space. 160

Note that here we treat Z as fixed effects rather than random. This is due to two reasons. First,
our method does not require specific assumptions on the distribution of Z and therefore is more
flexible and general; while treating Z as random effects usually needs to make certain parametric
assumptions on the distribution of Z. Second, by treating Z as fixed parameters, gradient descent
methods can be adopted for parameter estimation and the computation is usually efficient and 165

scalable. On the other hand, when Z is viewed as random effects, the popularly used Bayesian
estimation approaches may be computationally expensive.

Remark 1. Although we assume that models (1) and (2) share the same set of latent variables
Z, this assumption can be easily relaxed. For instance, consider that we have latent variables
ZA ∈ Rn×k modeling A through (1). Meanwhile, there exists another set of latent variables 170

ZY ∈ Rn×k′ that are specifically informative for Y :

g(EY ) = 1nγ
T + ZYB. (5)

If there exists a matrix W ∈ Rk×k′ such that ZY ≈ ZAW , then model (5) could be rewritten as
g(EY ) ≈ 1nγ

T + ZAWB = 1nγ
T + ZAB

′ withB′ = WB, which gives a good approximation
to the model in (2). Therefore, even when the two sets of latent variables explaining network and
node variables are not exactly the same, but if there is an approximate linear transformation 175

relationship between them, our proposed joint latent space model is still valid, with ZA being the
shared latent variables that explain both parts of the observed information. Additionally, we could
further consider a more general case where ZA and ZY are different but have some overlapped
latent variables. These two sets of parameters ZA and ZY can still be jointly estimated, but it is
beyond the scope of the current paper, and we leave the investigation for future work. 180

To ensure the joint model to be identifiable, we need to put additional structural constraints on
the latent variables Z. First, note that we could add a constant term to bothZi andZj and subtract
the corresponding terms from αi and αj to keep the distribution ofA invariant, so we require that
the latent variables are centered, i.e., JZ = Z where J = In − 1n1Tn/n. This constraint makes
Z identifiable up to an orthogonal transformation of its rows. Correspondingly, B is identifiable 185

up to an orthogonal transformation of its columns. Therefore, we further require that the sample
covariance of Z, i.e., ZTZ/n, is a diagonal but non-identity matrix. Then the parameters α, Z,
B and γ can be uniquely determined.

2.2. Estimation
The parameters that need to be estimated are Z, α, B and γ. For the network data A, we 190

consider the loss function as its conditional negative log-likelihood:

LA = − logP (A|Z,α) = −
∑

1≤i,i′≤n

{
Aii′Θ

A
ii′ − fA(ΘA

ii′)
}
, (6)

where fA(x) = log{1 + exp (x)}. For the node variables Y , we have the negative conditional
log-likelihood as

LY = − logP (Y |Z,B, γ) = −
∑

1≤i≤n;1≤j≤q

{
YijΘ

Y
ij − fY (ΘY

ij)
}
, (7)
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where the terms that are irrelevant to Z and γ are omitted. The form of fY (·) depends on how the
distribution of Y is specified. For example, when Y is continuous as in model (3), fY (x) = x2/2;195

and when Y is binary as in model (4), then fY (·) takes the same form as fA(·).
We define the objective function as

L(Z,α,B, γ) = LA + λLY , (8)

where λ is a weight parameter that controls the information contributed from each part. Our
goal is to find the estimators Ẑ, α̂, B̂ and γ̂ that are the solutions to the following optimization
problem:200

min
Z∈Rn×k,JZ=Z,α∈Rn,B∈Rk×q ,γ∈Rq

L(Z,α,B, γ). (9)

To optimize (9), we consider using a projected gradient descent algorithm, which is commonly
used for solving constrained optimization problems. The term ‘projected’ means that we project
the parameter estimate into the space that satisfies the constraint. Specifically, at each iteration,
given all the other parameter estimates, the B̂ and γ̂ that minimize the objective function (8) can
be solved directly, and therefore, they are updated with those values. As for Ẑ and α̂, they are up-205

dated along the direction of their negative gradients. After the updates, we include an additional
projection step such that the parameter estimates satisfy the constraint in (9). The algorithm is
summarized in Algorithm 1. As pointed out by Ma et al. (2020), where the convergence property
of such algorithm has been studied, this algorithm is not guaranteed to converge to any global
optimizer when the objective function is not convex (as in this work). In Section 4, we use sim-210

ulation studies to demonstrate that the algorithm generally converges well and provides good
estimation results.

Algorithm 1. Projected Gradient Descent Algorithm for Parameter Estimation

Input: network adjacency matrix A ∈ Rn×n; node variables Y ∈ Rn×q; latent space dimension
k ≥ 1; initial estimates: Z0, α0, B0, γ0; step sizes ηz, ηα; number of iterations T
Parameters: Z,α,B, γ
For t = 0, 1, . . . , T − 1

Zt+1 = Zt − ηz∇ZL = Zt + 2ηz{A− f ′A(Θt)}(Zt)T + ληz{Y − f ′Y (ZtBt)}
(
Bt
)T

αt+1 = αt − ηα∇αL = αt + 2ηα{A− f ′A(Θt)}1n
(γt+1
j , Bt+1

·j ) = arg maxb∈Rk+1

∑
i{Yij [1, Zti·]b− fY ([1, Zti·]b)}, j = 1, . . . , q

Zt+1 = JZt+1

Output: Ẑ = ZT , α̂ = αT , B̂ = BT , γ̂ = γT

Algorithm 1 requires initial inputs of several hyperparameters. For the initialization value
Z0, α0, B0, γ0 of Z,α,B, γ and choice of step size ηZ and ηα, we adapt the initialization method
and step size choice proposed in Ma et al. (2020), which proposed to optimize a regularized215

version of the negative log-likelihood of the network data as in (6) to obtain initial estimates
Z0 and α0. Then we regress Y on Z0 to get an initialization of B0 and γ0. For the step size
choice, we let ηZ = η/‖Z0‖2F and ηα = η/(2n) for a small and fixed constant η. As for the
latent space dimension k, it can be selected through cross validation. As we focus on estimating
the latent variables that explain the network links, we consider performing cross validation on220

the adjacency matrix. In particular, we randomly remove entries from the adjacency matrix, then
fit the joint latent space model and predict those missing links based on the fitted values. The
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process can be repeated for several times and the k that gives the best link prediction performance
is chosen from a set of candidate values.

3. THEORETICAL RESULTS 225

In this section we state our main theoretical results on the estimation of Z under the joint
modeling framework. We first show the error bound of the estimators obtained from (9). Then
we discuss about how the joint modeling framework could improve the estimation of Z.

To study the theoretical properties, we make the following assumptions on parameters.

Assumption 1. There exists M1 > 0 such that −M1 < ΘA
ii′ < M1, for 1 ≤ i, i′ ≤ n. 230

Assumption 2. There exists M2 > 0 such that −M2 < ΘY
ij < M2, for 1 ≤ i ≤ n, 1 ≤ j ≤ q.

Moreover, we introduce a feasible parameter space as

F(n, k,M1,M2) =
{

Θ ∈ Rn×(n+q) | Θ = [ΘA,ΘY ],

ΘA = α1Tn + 1nα
T + ZZT ,ΘY = 1nγ

T + ZB,

max
1≤i,i′≤n

|ΘA
ii′ | < M1, max

1≤i≤n,1≤j≤q
|ΘY

ij | < M2, JZ = Z
} (10)

In the rest of the paper, we use F as an abbreviation of F(n, k,M1,M2) to denote the parameter
space. We denote

Θ∗ =
[
Θ∗A,Θ∗Y

]
=
[
α∗1Tn + 1n(α∗)T + Z∗(Z∗)T , 1n(γ∗)T + Z∗B∗

]
∈ F

as the ground truth parameter. We denote

Θ̂ =
[
Θ̂A, Θ̂Y

]
=
[
α̂1Tn + 1Tn α̂+ ẐẐT , 1nγ̂

T + ẐB̂
]
,

where Ẑ, α̂, B̂ and γ̂ are the solutions obtained from the optimization problem:
minΘ∈F L(Z,α,B, γ). Note that we constrain the true parameters and estimators in the fea-
sible parameter space, mainly for the purpose of theoretical analysis. In practical implemen- 235

tation of Algorithm 1, we do not put additional constraints regarding max1≤i,i′≤n |Θ̂A
ii′ | and

max1≤i≤n,1≤j≤q |Θ̂Y
ij |, and simulation studies indicate that this does not affect the results.

The next theorem provides upper and lower bounds on the estimation error of Θ̂.

THEOREM 1. Under Assumptions 1 and 2, we have

1

{n(n+ q)}1/2
E‖Θ̂−Θ∗‖F ≤

κmax(λ, 1)(2k + 3)1/2

min
(
min|v|<M1

f ′′A(v), λmin|v|<M2
f ′′Y (v)

) · 1

n1/2
, (11)

where κ is an absolute constant and M1, M2 and k are allowed to change with n. 240

Moreover, denote Θ ∈ Rn×(n+q) as an arbitrary estimator. When q = O(n), there exist Θ0 ∈
F , ε1 > 0 and n0, q0 > 0 such that for n > n0 and q > q0,

P

(
1

{n(n+ q)}1/2
‖Θ−Θ0‖F ≥

ε1

n1/2

)
≥ 1

2
. (12)

The proof is given in Section A of the Supplementary Material. When M1,M2 and k are fixed
constants, the result in (11) implies that ‖Θ̂−Θ∗‖F /{n(n+ q)}1/2 = Op(1/n1/2). Together
with the lower bound in (12), we can see that the rate of estimation error obtained in Theorem 1 245

is optimal. Moreover, the results also indicate that using the network itself, i.e., q = 0, we have
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‖Θ̂A −Θ∗A‖F /n = Op(eM1(k/n)1/2). Therefore, we achieve the same order of estimation er-
ror under the joint modeling framework, compared to that obtained with the network information
only. In particular, the upper bound of ‖Θ̂A −Θ∗A‖F /n is consistent with the results in Ma et al.
(2020), which considered the problem of estimating latent variables using network only, by min-250

imizing LA as defined in (6).
While Theorem 1 indicates that the error bounds of estimators obtained under the joint mod-

eling framework have the same order as that obtained from the network data (without Y ), we are
also interested in how the additional node variables Y can help the estimation of latent variables.
We evaluate the effect of Y in terms of the one-step update analysis. In particular, assuming we255

have an estimated Z̃ through the network, for example, from the algorithm proposed in Ma et al.
(2020). Suppose with node variables Y , we update Z̃ for one more step based on Algorithm 1,

Ẑ = Z̃ + (1− λ̃)ηz(A− f ′A(Θ̃A))Z̃ + λ̃ηz(Y − f ′Y (Θ̃Y ))(B̃)T , (13)

where λ̃ = λ/(λ+ 2) and B̃ is a reasonable estimates of B. To investigate the properties of Ẑ,
we focus on (3) where Y is continuous and make the following additional assumptions.

Assumption 3. The dimension of node variables q satisfies the condition that q = O(n).260

Assumption 4. cov(Z) = ZTZ/n = diag(λ1, . . . , λk) 6= Ik is diagonal and the diagonal ele-
ments are of constant order Θ(1).

Assumption 5. Denote the eigen-decomposition of BBT /q as UΛUT , where Λ =
diag(σ1, . . . , σk). The eigenvalues are of constant order Θ(1).

Assumption 3 allows q to grow on a slower or the same order of n. Assumptions 4 and 5 are265

standard since Z ∈ Rn×k and B ∈ Rk×q. Note that Assumption 5 implies that node covariates
could not be pure noises but are signals. The following theorem shows that we can achieve more
accurate estimation of Z, as long as the dimension of signal node variables is high enough.

THEOREM 2. Suppose Z̃ and α̃ are estimated from Algorithm 1 in Ma et al. (2020), and we
have a fixed B̃ satisfying ‖B̃ −B‖2F = O(1). Then under Assumptions 1–5, there exist positive270

constants C and λ̄ such that when q > Cn, we have E‖Ẑ − Z‖2F < E‖Z̃ − Z‖2F , for any λ̃ ∈
(0, λ̄), where Ẑ is obtained from (13). Moreover, we can show that under proper choice of λ̃
(whose form is specified in (S14) in the Supplementary Material), the improvement of estimating
Z, i.e., E‖Z̃ − Z‖2F − E‖Ẑ − Z‖2F , is at least{

σ̃kE‖Z̃ − Z‖2F − ‖Z̃ − Z‖F (nq−1σ̃1λ1)1/2‖B − B̃‖F
}2

ρ2

[{
σ̃kE‖Z̃ − Z‖F − (nq−1σ̃1λ1)1/2‖B − B̃‖F

}2
+ nq−1σ2σ̃1

] , (14)

where ρ2 = ηzq, and σ̃1 and σ̃k are the maximum and minimum eigenvalues of B̃B̃T /q respec-275

tively.

From Theorem 2, we see that with additional high-dimensional node variables, we can achieve
more accurate estimation of latent variables, in terms of E‖Ẑ − Z‖2F . The improvement in (14)
depends on the signal and noise contained in the node covariates. Specifically, σ̃k, the minimum
eigenvalue of B̃B̃T /q, can be approximately viewed as the signal in node covariates, and the280

quantity in (14) would increase as σ̃k increases. Moreover, the quantity monotonically decreases
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depending on σ2, the noise in the node covariates. In practice, a B̃ that satisfies the requirement
‖B̃ −B‖2F = O(1) can be obtained by regressing Y on Z̃.

Theorem 2 relies on specific Z̃ and α̃. More generally, we consider the scenario where we are
given initial estimates ofZ, α,B, γ, denoted by Z̃, α̃, B̃, γ̃, respectively, satisfying the conditions 285

that ‖Z̃ − Z‖2F = O(1), ‖α̃1Tn − α1Tn‖2F = O(n), ‖B̃ −B‖2F = O(1), and ‖γ̃ − γ‖22 = O(1).
The following proposition provides implications on under what scenarios the joint modeling
framework can help better estimate the latent variables Z.

PROPOSITION 1. Given Z̃, α̃, B̃, γ̃ that satisfy the above required conditions, we consider
updating Z̃ one step further by (13) and obtaining a Ẑ. Under Assumptions 1–5, there exists an 290

optimal λ̃opt such that E‖Ẑ − Z‖2F is minimized, and λ̃opt is given by (S8). When λ̃opt is strictly
positive, the joint modeling framework achieves a mean square error of Ẑ that is better than the
results when using information from A or Y only.

Proofs of Theorem 2 and Proposition 1 are given in Section B of the Supplementary Mate-
rial. For Proposition 1, the explicit expression of the optimal λ̃opt is given in (S8). It depends 295

on the signal and noise contained in both networks and node covariates, which provides useful
implications on how the information from both parts balance with each other. First, note that a
strictly positive λ̃opt suggests incorporating information from node variables is preferred. Based
on the calculation in the Supplementary Material, we can see that an overall sparser network
would more likely lead to a positive λ̃opt. Therefore, when the information from the network 300

part is relatively limited, borrowing information from node variables would be preferred and
helpful. Second, when controlling all other parameters and increasing q, we would also obtain
a larger λ̃opt. This suggests that when node variables are of higher dimension or contain richer
information, more weight should be put on the node variables part to improve the estimation of
Z. Finally, suppose we do not use the optimal λ̃ but fix it in the one step estimation. Section B 305

of the Supplementary Material also calculates the difference between taking a non-zero λ̃ and
λ̃ = 0, and the result also suggests that when the dimension of node variables increases or the
network gets sparser, the benefit of incorporating node variables becomes more significant in
terms of estimating Z. In Section 4 and Section C of the Supplementary Material, we use simu-
lation studies to demonstrate how network information and node variables information affect the 310

estimation of Z. Specifically, we examine the influence of the node variables dimension and the
network density in terms of estimating Z as well as the relationship between the dimension of
node variables and the optimal weight.

Remark 2. Our work is closely related to the problem of low rank matrix estimation and com-
pletion (Chatterjee et al., 2015; Candès & Tao, 2010; Bhaskar & Javanmard, 2015), due to the 315

assumption on the mean parameter Θ ∈ Rn×(n+q) defined in (10). Specifically, if we treat node
covariates and the network equally, we could view the problem as recovering the low-rank ma-
trix Θ with an observed matrix [A, Y ] ∈ Rn×(n+q). In fact, the upper bound in (11) depends on
k and n through the rate (k/n)1/2, which is consistent with that in low rank matrix estimation
literature. However, we could not directly leverage the existing matrix estimation and completion 320

method for estimating Z, since the matrix to be estimated is not an arbitrary low-rank matrix,
but has a specific structure due to the share latent factors Z. This is the distinct part of our model
assumption in comparison to the general low-rank matrix estimation problem.
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4. SIMULATION STUDIES

4.1. Effect of the Dimension of Node Variables325

To study how information borrowed from Y can affect estimating latent variables, we compare
the estimation of Z using the network latent space model and the joint latent space model. For
network latent space model, we consider the version without covariates to demonstrate how node
variables can be useful in improving the estimation of Z.

We first study the effect of node variable dimension. We set n = 200 and k = 2 or 4. We vary330

q from 2 to 100 to study how the dimension of node variables affects the estimation of Z. The
model parameters are specified as follows:r Generate the degree heterogeneity parameters α = (α1, α2, . . . , αn), where α1, α2, . . . , αn

iid∼
U [−0.25,−0.75];r Generate k latent vector centers µ1, . . . , µk ∈ Rk with coordinates i.i.d. from U [−1, 1];335 r Generate latent variables Z ∈ Rn×k: first generate a matrix Z0 ∈ Rn×k such that each entry
is i.i.d. N (0, 1). Then we divide n data points equally into k subsets, and for points in each
subset, add µ1, . . . , µk to them respectively. Lastly we transform Z by 1) setting Z = JZ, 2)
normalizing Z such that ‖ZZT ‖F = n, and 3) rotating Z = ZR for some rotation matrix R
such that the covariance of Z is a diagonal matrix;340 r Generate the coefficients B ∈ Rk×q, with each entry i.i.d from N (0, 1).

After setting the parameters, we generate A based on model (1) and generate Y based on
either model (3) or model (4). Under the considered parameter settings, the average density of
the networks is about 0.30. Each setting is repeated 30 times. For each replication, we fit both the
network inner-product latent space model and the joint latent space model to obtain estimations345

of Z, denoted by Znet and Zjoint respectively. We evaluate the performance of each method
using the criterion ∆Z = ‖ẐẐT − ZZT ‖2F /‖ZZT ‖2F . Figure 2 shows the average results of
the 30 replications, and we can see that as the dimension of Y increases, the estimation of Z
improves, and the joint latent space model starts to outperform the network latent space model
even when q is relatively small, indicating the constant C in Theorem 2 is of small value. Figure350

2 also demonstrates that overall the improvement of the joint latent space model over the network
latent space model is robust to the choice of λ, though the specific value of λ may affect how
much improvement we could obtain by incorporating node variables.

Fig. 2: Estimation of Z versus Dimension of Y
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4.2. Effect of Network Density
Section 4.1 shows that the more information provided from Y , the more improvement we 355

could obtain in the estimation of Z. As a counterpart, in this subsection we demonstrate the effect
of network density on estimating Z when the information from Y is fixed. We fixed q = 100 and
change the parameter settings in the network. The density of the network is controlled by varying
the range of the node degree heterogeneity parameters α, specifically varying from α1, . . . , αn ∼
U [−0.375,−0.125] to α1, . . . , αn ∼ U [−2.25,−0.75]. Z and B are set in the same manner as 360

in Section 4.1. Now under different settings of α, the network density ranges from 0.08 to 0.39.
We again repeat the simulation 30 times under each setting.

Figure 3 shows the estimation of Z based on Znet and Zjoint under different levels of the
network density. As the network gets sparser, the result of Z estimation using A only gets worse,
while the performance of Zjoint is relatively stable. This especially suggests the benefit of in- 365

corporating node variables in estimating Z, when the network is relatively sparse and may not
provide enough information.

Fig. 3: Estimation of Z versus Network Density

More supplementary simulation studies that support our theorectical findings are provided in
Section C of the Supplementary Material.

5. REAL DATA EXAMPLE 370

In this section, we demonstrate the proposed model on a Facebook social circle data for the
task of node variable missing value imputation. The dataset consists of 10 different networks,
each representing an ego network of a selected user, where the ego network is defined as the
network between all the user’s friends. See Figure 4 for an example of an ego network. For each
ego network, the data also records the users’ anonymized variables. For example, the original 375

dataset contains a variable ‘political = Democratic Party’, and the curated dataset would trans-
form this into ‘political = anonymized feature 1’. The variables associated with each node in this
data example are all binary. We analyzed 8 out these 10 networks as two of the networks have
relatively few nodes and several variable columns associated with them contain only one or a
few 1s. For each network, we also remove the variables that have too many or too few 1s in that 380

variable. If a variable of a user is missing, it is of interest to impute the missing value based on
the user’s own profile as well as his/her social connections.

We randomly sample 5% of the entries in the node variable matrix Y and set them as missing.
Then we fit the network latent space model and the joint latent space model respectively to obtain
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(a) (b) (c)

Fig. 4: Example of an ego-network: (a) Circle 1 network; (b) node variable matrix; (c) number
of variables vs mean of the variable.

n q density AUC
network joint MICE

circle 1 347 56 0.042 0.840 0.884 0.707
circle 2 755 66 0.105 0.865 0.873 0.739
circle 3 792 100 0.045 0.856 0.901 0.780
circle 4 1045 153 0.049 0.867 0.871 0.693
circle 5 547 58 0.03 0.852 0.905 0.738
circle 6 227 87 0.124 0.832 0.850 0.586
circle 7 159 55 0.134 0.809 0.836 0.621
circle 8 170 37 0.115 0.812 0.854 0.698

Table 1: Node variable missing value imputation results for Facebook data.

estimated Ẑnet and Ẑjoint. After obtaining the estimated Ẑ, for the jth column of Y , 1 ≤ j ≤ q,385

we regress those observed Yj’s on Ẑobs to obtain an estimated B̂j , then we predict those missing
entries in Yj’s by ẐmissB̂j . Moreover, we also apply MICE (Azur et al., 2011), a commonly used
method for missing value imputation which utilizes the node variables part only, as a benchmark.

The average AUROC over 30 replications are summarized in Table 1. The results indicate that
both network-based methods outperform MICE, and the joint latent space model consistently390

achieves better performance than the network latent space model across all 8 networks. Note
that the AUROC obtained by fitting the network latent space model is already promising, which
suggests that the network itself contains substantial information. However, we can still achieve
noticeable improvement after incorporating the node variable information. This implies that the
latent position variables are associated with the node variables and the joint estimation can help395

achieve more accurate estimation and imputation results.
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6. DISCUSSION

In our simulation and real data examples, we use all n data points with observed information
for model fitting, and we obtain estimated model parameters Ẑ ∈ Rn×k, α̂ ∈ Rn, B̂ ∈ Rq×k
and γ̂ ∈ Rq. The prediction for those missing node variables are also performed on these n data 400

points. One possible extension is to consider an inductive setting, where we make prediction on
a new node, which is not present during the training stage, with partially observed information.
For example, considering the cold-start scenario where only the new node’s variables Yn+1 are
observed but its link information to all the other n nodes are unknown. This is a case commonly
seen in social networks, where newly registered users only provide their personal information 405

but have not connect with any other users. To predict links between the (n+ 1)th node and the
previous n nodes, we can first estimate Ẑn+1 by regressing Yn+1 on the fitted B̂, then compare
α̂i + ẐTi Ẑn+1, for i = 1, . . . , n, to rank which nodes have higher probabilities to connect with
the new node. Correspondingly, we can also make predictions on the (n+ 1)th node variables,
when we only know its link information with other nodes. 410
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