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Abstract--The state estimation (SE) has been widely used in power 

system control centers to optimally estimate the states of the 

power grid in real time. Using different objective functions, many 

SE algorithms have been proposed to filter out measurement 

noise in different ways. In this paper, three widely-used SE 

algorithms, i.e., the weighted least squares (WLS), least absolute 

value (LAV), and projection statistics (PS) based algorithms, are 

compared in their estimation accuracy and computation time. 

The comparison was made using the simulation data generated 

from the IEEE 14-bus system and IEEE 118-bus system through 

the Monte-Carlo method. It is found that when the measurement 

noise is reasonably small and follows the independent Gaussian 

distribution, the WLS algorithm has the best accuracy and 

shortest computation time. When some measurements at leverage 

points were compromised by outliers, the PS based algorithm is 

the most robust among the three methods. The study results can 

be used to assist control centers in choosing the right SE 

algorithm based on the features of the measurement noise and 

setup. 

Index Terms--Least absolute value (LAV), projection statistics 

based algorithm, state estimation (SE), weighted least squares 

(WLS). 

I. Introduction  

As the modern power grid becomes more complicated and 
interconnected than ever, timely and accurately monitoring its 
operating conditions is essential for its reliable and efficient 
operation. To address the needs, a Supervisory Control and 
Data Acquisition (SCADA) system collects measurements of 
the power grid using remote terminal units and maintains a 
power flow model in a control center. However, a SCADA 
system still faces the following three challenges in monitoring 
operating conditions: i) The accuracy of measurements is often 
limited because of noise and limited instrument accuracy; ii) 
The number of direct measurements is often limited to save the 

cost; iii) Gross errors (a.k.a. outliers) may occur in some 
particular cases like damaged sensors and unexpected 
electromagnetic interference. These challenges limit the 
capability of the SCADA system in providing accurate and 
complete operating conditions of the power system. 

To address these challenges, state estimation (SE) has been 
used to filter out noise and estimate variables that are not 
directly measured [1] by fusing information from direct 
measurements and power flow models. A SE algorithm often 
consists of two steps: First, bus voltage phasors are estimated 
by solving over-determined algebraic equations constructed 
using the power flow models and direct measurements. Second, 
other related variables such as transmission-line power flows 
and bus power injections are derived by substituting the 
estimated bus voltage phasors into the power flow models. Note 
that the first step is the focus of the SE algorithms because it 
often needs to solve nonlinear equations constructed from noisy 
measurements for the bus voltage phasors, which are also 
known as (a.k.a.) the power system states. Leveraging the 
measurement redundancy in a power flow model, SE can 
accurately and efficiently monitor operational constraints on 
quantities such as bus voltage magnitudes and transmission line 
loading.  

Several algorithms have been developed to estimate the 
power system states [2]-[4] using different objective functions. 
Because each algorithm has its advantages and disadvantages, 
a systematic comparison of different algorithms’ performance 
is necessary. Thus, the purpose of this paper is to compare some 
widely-used SE algorithms in their estimation accuracy and 
computation time under the same conditions. Special attention 
is given to how robust each SE algorithm is when outliers show 
up at leverage points because these outliers often have small 
residuals and thus are very difficult to detect [6]. The SE 
algorithms under study include the weighted least squares 
(WLS) [1], least absolute value (LAV) [5], and projection 
statistics (PS) based algorithm [6]. 

The rest of the paper is structured as follows. Section II 
reviews the theoretical background as well as the analytical 
aspects related to the WLS, LAV, and PS based SE methods. 
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Section III compares the performance of the SE methods 
through case studies. The conclusion is drawn in Section IV. 

 

II. Review on the SE Problem and Algorithms 

To make this paper self-contained, the SE problem and three 
SE algorithms are briefly reviewed in this section. For technical 
details, readers are referred to [1] for the WLS, [5] for the LAV, 
and [6] for the PS algorithm. 

A. SE Problem 

Given measurements z and power flow model h(▪), the 
objective of SE is to estimate the states x that fits the 
measurement. For a power system with n buses and m 
measurements, the measurements can be written as the 
nonlinear algebraic function of the state x shown in (1) [1]. 

𝑧 = ℎ(𝑥) + 𝑟 (1) 

Here, z is the m×1 measurement vector, which often 
consists of measured real/reactive power injections, line flows, 
bus voltage magnitude. Symbol h(x) is for the m nonlinear 
measurement equations, which relate the states to the 
measurements. Symbol r is the m×1 measurement noise vector. 
Symbol x is the (2n-1)×1  vector of bus voltage magnitudes and 
angles, which need be estimated. Because the voltage angle of 
the slack bus is often used as the reference angle, there are 2n-
1 unknown states and m equations in the SE problem. 
Normally, m>2n-1 within an observable island so that one has 
an over-determined problem. Different SE algorithms propose 
different objective functions to estimate the states that provide 
the “best” fit.  

B. WLS Algorithm 

In the WLS algorithm, the SE problem is formulated as an 
optimization problem defined by (2).  

min
𝑥

𝐽(𝑥) = [𝑧 − ℎ(𝑥)]T𝑅−1[𝑧 − ℎ(𝑥)] (2) 

where R is the covariance matrix of the measurement noise. 

At the solution point, the first-order derivative of object 
function J(x) will be equal to 0 as described in (3). 

𝑔(𝑥) =
𝜕𝐽(𝑥)

𝜕𝑥
= −𝐻𝑇(𝑥)𝑅−1[𝑧 − ℎ(𝑥)] = 0 (3) 

Here 𝐻(𝑥) = [
𝜕ℎ(𝑥)

𝜕𝑥
]  is the first-order derivative of 

measurement function with respect to state x. 
Using the Taylor series to expand the non-linear function g(x) 
around the current state xk and neglect the higher-order terms, 
one may obtain (4). 

𝑥𝑘+1 − 𝑥𝑘 = −[𝐺(𝑥𝑘)]−1 ⋅ 𝑔(𝑥𝑘) (4) 

where 𝐺(𝑥𝑘) =
𝜕𝑔(𝑥𝑘)

𝜕𝑥
= 𝐻𝑇(𝑥𝑘) ⋅ 𝑅−1 ⋅ 𝐻(𝑥𝑘)  and k in the 

superscript is the iteration index. 

As g(▪) is linearized through the Taylor expansion, the 
Gauss-Newton method can be used to solve the WLS problem. 
The iterative step of the Gauss-Newton solution is outlined as 
follows: 

1. Initialize the state vector x; 

2. Calculate ∆𝑥𝑘; 

3. Terminate the iterations if the ∆𝑥𝑘 is smaller than the 

preset threshold; 

4. Use ∆𝑥𝑘 to update the state vector xk+1 and go to step 

2. 

C. LAV Algorithm 

In the LAV algorithm, the SE problem is formulated as an 
optimization problem defined by (5). 

min
𝑥

𝐽(𝑥) = ∑|𝑧𝑖 − ℎ𝑖(𝑥)|

𝑚

𝑖=1

 (5) 

The optimal solution of (5) can be obtained by iteratively 
solving the linear programming (LP) problem defined by (6)-
(8). 

min
𝑢,𝑣,Δ𝑥

∑(𝑢𝑖
𝑘 + 𝑣𝑖

𝑘)

𝑚

𝑖=1

 (6) 

subject to        𝑢𝑘
𝑖 − 𝑣𝑘

𝑖 = 𝛥𝑧𝑘 − 𝐻(𝑥𝑘) ⋅ 𝛥𝑥𝑘 (7) 

𝑢𝑘
𝑖，𝑣𝑘

𝑖 > 0 (8) 

where u, v are the non-negative slack vectors. 

By introducing the formulation (6)-(8), the LAV solve the 
SE problem through an iterative procedure which consists of a 
successive set of the LP problems. The iterative step is outlined 
as follows: 

1. Initialize the state vector x; 

2. Use the simplex LP to get 𝑢𝑘
𝑖, 𝑣

𝑘
𝑖 and 𝛥𝑥𝑘; 

3. Terminate the iterations if ∆𝑥𝑘 is smaller than the 

preset threshold; 

4. Use ∆𝑥𝑘 to update the state vector x and go to step 2 

D. PS based Algorithm 

In the PS based algorithm, the SE problem is formulated as 
an optimization problem defined by (9). 

min
𝑥

𝐽(𝑥) = [𝑧 − ℎ(𝑥)]T𝑊𝑃𝑆𝑅−1[𝑧 − ℎ(𝑥)] (9) 

Here, 𝑊𝑃𝑆  is the matrix used to down-weight the 
measurements at leverage points. In order to identify the 
leverage points, PS is introduced, which is defined by (10) 
(11)[10][11][12][13]. 

𝑃𝑆𝑖 =   𝑚𝑎𝑥
𝑣

 
|𝑙𝑖

𝑇𝑣|

𝑆𝑚

 (10) 

𝑆𝑚′ = 1.1926 𝑙𝑜𝑚𝑒𝑑
𝑖

 𝑙𝑜𝑚𝑒𝑑
𝑗≠𝑖

 |𝑙𝑖
𝑇𝑣 + 𝑙𝑗

𝑇𝑣| (11) 



Here, the lomed denotes a low median operator, which is 
defined as the [(m+1)/2]th order statistic out of m numbers. 

Symbol li is the ith row of (𝑅−1/2𝐻) and 𝑣 = 𝑙𝑗, 𝑗 = 1, . . . , 𝑚. 

When the PS value of a measurement exceeds the preselected 
threshold, it will be down-weighted in 𝑊𝑃𝑆 [6]. 

The iterative step of the PS based SE algorithm is outlined 
as follows: 

1. Initialize the state vector x; 

2. Calculate the PSs for all the measurements; 

3. Identify a leverage point by checking if its PS 

exceeds the preset threshold;  

4. Apply (4) with an extra weight matrix which 

down-weights all the leverage points to get 𝛥𝑥𝑘; 

5. Terminate the iterations if the ∆𝑥𝑘 is smaller than the 

preset threshold; 

6. Use ∆𝑥𝑘 to update the state vector x and go to step 2 

E. Total Vector Error (TVE) and Mean Squared 

Error(MSE) 

To evaluate the estimation accuracy of different SE 
algorithms, metrics are defined in (12) for the TVE and (13) for 
the MSE. 

𝑇𝑉𝐸 =
∑ |𝑉𝑖

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑉𝑖
𝑡𝑟𝑢𝑒|𝑛

𝑖=1

∑ |𝑉𝑖
𝑡𝑟𝑢𝑒|𝑛

𝑖=1

 (12) 

𝑀𝑆𝐸 =
1

𝑛
∑|𝑉𝑖

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 − 𝑉𝑖
𝑡𝑟𝑢𝑒|

2
𝑛

𝑖=1

 (13) 

F. Monte Carlo Simulation Method 

The Monte Carlo simulation method is used to model the 
probability that cannot be easily predicted due to the 
intervention of random variables. It was invented in the late 
1940s by Stanislaw Ulam, and the widely used in mathematical 
areas, especially for optimization, numerical integration, and 
generation of draws from a probability distribution problem. 

The Monte Carlo simulation is an appropriate option to 
assess the statistical performance of the three algorithms. In the 
study, a large number of repeated samples of noisy 
measurements are generated using (1) to mimic possible 
outcomes from random noise. These simulated measurements 
will be applied to assess the estimation accuracy of the three SE 
algorithms using the MSE, TVE. 

 

III. Case Studies  

To support well-informed decision making in a control 
center, one should select a SE algorithm that can accurately and 
timely estimate the states. To identify the right SE algorithm, 
the three SE algorithms are compared in this section to reveal 
their computation needs as well as estimation accuracy under 
different scenarios. Considering the randomness of the 
measurement noise, the comparison is made under a statistical 
framework using the Monte-Carlo method to focus on the 
distribution and average of performance metrics under many 
different instances of measurement noise. 

A. Studies using the IEEE 14-bus System 

As it is shown in Fig. 1, the IEEE 14-bus system has 20 
branches and 14 buses. It is assumed that the system has 30 
measurements, including 14 injection power measurements and 
16 power flow measurements, which are marked out in Fig. 1. 
Two categories of test cases are set up: the ones with outliers 
and the ones without outliers. For the test cases without outliers, 
all the measurement errors are assumed to have independent 
Gaussian distribution with zero mean and standard deviation 
(σ) of 0.01. In the test cases with outliers, three measurements 
are assumed to be contaminated by additional outliers which 
follow the Gaussian distribution with mean of zero and standard 
deviation of 0.4. All the measurements with outliers are placed 
at leverage points because the outliers at leverage points have 
small residuals and thus are difficult to detect. 

To account for the randomness of measurement noise, the 
Monte Carlo method is used to generate 500 instances of 
measurement noises to evaluate the statistical performance. For 
each instance of the test case, the estimation errors are 
quantified using the TVEs and MSEs defined by (12) and (13). 

 
Figure 1. Topology and measurement setup of the IEEE 14-bus system [14]. 

The WLS, LAV and PS algorithms are applied to the 500 
test cases without outliers and the 500 test cases with outliers to 
estimate the states. The estimation accuracy of the three 
algorithms are compared in Fig. 2 and Fig. 3 using TVEs and 
MSEs, respectively. Note that the boxplots in the figures reveal 
the distribution of the TVEs and MSEs in terms of their 
minimum, maximum, median, first and third quartiles as well 
as outliers. 



 
Figure 2. MSEs of the SE results of the IEEE 14-bus system for the 500 

Monte-Carlo simulations. 

From Fig. 2 and Fig. 3, it can be observed that for the cases 
without outliers, the median TVEs and MSEs of the three 
algorithms are similar.  Also, the WLS has lower dispersion in 
both TVEs and MSEs. After the outliers are added, it can be 
observed that the estimation errors become larger. Also, Fig. 2 
shows that the median TVE of the WLS approximately equals 
to 0.075 while the median TVE of the LAV and PS 
approximately equals to 0.05. Fig. 3 shows that the median 
MSE of WLS approximately equals 0.02 and the median MSE 
of LAV and PS approximately equal 0.01. The TVE and MSE 
of the WLS also have longer outlier tail than the other two 
algorithms. These observations indicate that when the system 
only has small measurement errors, the three SE algorithms 
have similar accuracy and the WLS algorithm has a bit 
advantage in its accuracy. But in the cases with outliers at the 
leverage points, the LAV and PS algorithms give more accurate 
estimates, which suggests that they can handle the outliers 
much better than the WLS algorithm. 

 
Figure 3. TVEs of the SE results of the IEEE 14-bus system for the 500 

Monte-Carlo simulations. 

B. Studies using the IEEE 118-bus System 

The IEEE 118-bus system, which has 152 branches and 118 
buses, is used in this subsection to evaluate the scalability of the 
SE algorithms when the problem size increases. It is assumed 
that the system has 300 measurements, including 78 injection 
measurements and 222 power flow measurements. Similar to 
the studies for the IEEE 14-bus system, two categories of study 
cases are generated: the ones without outliers and the ones with 
outliers. For the test cases without outliers, all the measurement 
errors are assumed to have independent Gaussian distribution 
with zero mean and standard deviation of 0.01. For the test 
cases with outliers, up to six measurements at leverage points 
are assumed to be contaminated by additional gross noise, 
which has Gaussian distribution with zero mean and standard 
deviation of 1.0.  

The WLS, LAV and PS algorithms are applied to the 500 
test cases without outliers and the 500 test cases with outliers to 
estimate the states. The estimation accuracy are compared in 
Fig. 4 through Fig. 6 in terms of TVEs and MSEs using 
boxplots. 

From Fig. 4, it can be observed that in the cases without 
outliers, the median TVE and median MSE of the WLS 
algorithm are lower than those of the other two algorithms. 
Among the three algorithms, the median TVE and median MSE 
of the PS based algorithm is the highest. From Fig. 5 and Fig. 
6, it can be observed that when the outliers are introduced at the 
leverage points, the median TVE and median MSE of the PS 
based algorithm are much lower than those of the other two 
algorithms. The median TVE and median MSE of the PS based 
algorithm are lower than those of the WLS algorithm. The 
observations indicate that the WLS algorithm achieves the 
highest accuracy when the measurements only carry small noise 
(without outliers), which follows Gaussian distribution. When 
facing the challenge of the outliers at leverage points, the PS 
based algorithm is the most robust one among the three 
algorithms. Also, the LAV algorithm is more robust against the 
outliers than the WLS algorithm. 

 
Figure 4. TVEs and MSEs of the SE results of the IEEE 118-bus system for 

500 Monte-Carlo simulations without outliers.  



 
Figure 5. TVEs and MSEs of the SE results of the 118-bus system for the 

500 Monte-Carlo simulations with three outliers. 

 
Figure 6.  TVEs and MSEs of the SE results of the 118-bus system for the 

500 Monte-Carlo simulations with six outliers. 

C. Comparison of Computational Time 

Power system operators depend on the SE to gain situational 
awareness of the system status in real time. The computation 
time of SE contributes to the time delay between the time 
instance that an event actually happens and the time instance 
that it shows up on the screens at the control center. When 
violations occur, the long-time delay of SE will incur delayed 
remedial reactions. Typically, the SE runs every 1-5 minutes. 
As such, the computational time of a SE algorithm should be 
much less than 1 minute.  

TABLE I. COMPUTATION TIME OF THE SE ALGORITHMS IN THE CASE 

STUDIES USING THE IEEE 14-BUS SYSTEM 

SE Algorithms 
Computation Time (in seconds/case) 

Without outliers With 3 outliers 

WLS 0.0009 0.0008 

LAV 0.0237 0.0263 

PS 0.0071 0.0071 

TABLE II. COMPUTATION TIME OF THE SE ALGORITHMS IN THE CASE 

STUDIES USING THE IEEE 118-BUS SYSTEM 

SE 

Algorithms 

Computation Time (in seconds/case) 

Without 

outliers 

With 3 

outliers 

With 6 

outliers 

WLS 0.031 0.036 0.037 

LAV 0.107 0.235 0.205 

PS 5.806 5.883 6.267 

 

The three SE algorithms are implemented using 

MATLAB™ and run on a computer with 6 cores @3.2 GHz, 

16 GB memory. The computation time is counted and 

summarized in Table I and II. The tables show that the WLS 

algorithm uses the least computation time in the SE for both the 

IEEE 14-bus system and the IEEE 118-bus system. The PS 

based algorithm uses less computation time than the LAV 

algorithm in the IEEE 14-bus system, but more computation 

time in the IEEE 118-bus system. The observation indicates that 

the computation time of the PS based algorithm increases 

rapidly with the increase of the system complexity. In most 

cases, the computation time increases when the outliers are 

introduced. For all the studied cases, the computation time is 

much shorter than one minute and therefore shall not be a major 

concern for causing time delay. For a larger system, the 

computation time of the PS based algorithm may cause some 

noticeable time delay, which could fail the real-time monitoring 

purpose of the state estimation when a power grid is subject to 

fast changes. 

IV. CONCLUSIONS 

Based on the studies carried out above, it can be concluded 
that when the measurements only have low-level noise 
following the Gaussian distribution, the WLS algorithm should 
be used for SE because it has the highest accuracy and shortest 
computation time. When outliers are introduced to the 
measurements at leverage points, the PS based algorithm has a 
built-in strategy in dealing with the outliers and therefore can 
estimate the states with the highest accuracy. However, the 
computation time of the PS based estimation algorithm is the 
longest one for a large system, which could be a drawback, 
especially when the system is subject to quick changes. If 
outliers present at leverage points and the PS based estimation 
could not be finished within the allocated time for a large 
system, the LAV algorithm can be a good option, because it has 
shorter computation time than the PS based algorithm and is 
more robust against the outliers than the WLS algorithm. 
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