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Abstract: Observability and detectability analyses are often used to guide the measurement setup and select the estimation 
models used in dynamic state estimation (DSE). Yet, marginally observable states of a synchronous machine prevent the 
direct application of conventional observability and detectability analyses in determining the existence of a DSE observer. 
To address this issue, the authors propose to identify the marginally observable states and their associate eigenvalues by 
finding the smallest perturbation matrices that make the system unobservable. The proposed method extends the 
observability and detectability analyses to marginally observable estimation models, often encountered in the DSE of a 
synchronous machine. The effectiveness and application of the proposed method are illustrated on the IEEE 10-machine 39-
bus system, verified using the unscented Kalman filter and the extended Kalman filter, and compared with conventional 
methods. The proposed analysis method can be applied to guide the selection of estimation models and measurements to 
determine the existence of a DSE observer in power-system planning. 
 

Nomenclature 

 

(∙)∗ Optimal solution of (∙). 

∈ Element of. 

≜ Equal by definition. 

0A, 0C Zero-value submatrices of A and C. 

𝐴, 𝐵, 𝐶, 𝐷 Jacobian matrices of the dynamic system in the 

observability staircase form. 

𝐴̅, 𝐵̅, 𝐶̅, 𝐷̅ Jacobian matrices of the dynamic system after 

linearization. 
‖𝐴‖ Two-norm of matrix A. 

𝐴𝐻 Conjugate transpose of matrix 𝐴. 

𝐴𝑇 Transpose of matrix 𝐴. 

𝐴𝑘(𝑖: 𝑗, 𝑘: 𝑙) Submatrix of Ak formed by its elements on 

rows i through j and columns k through l. 

𝐴𝑘(𝑖: 𝑗, : ) Submatrix of Ak formed by its rows i through j. 

𝐴𝑚𝑜 , 𝐴𝑜 Submatrices of A for marginally observable 

states and observable states, respectively. 

ℂ𝑛×𝑚 Complex-number matrix set of size 𝑛 ×𝑚. 

𝐸𝑓𝑑 , 𝑉𝐹 , 𝑉𝑅 Field voltage, stabilizing transformer output, 

and amplifier output of the exciter, 

respectively. 

𝑒𝑖𝑔(∙) Operation of finding eigenvalues. 

ℐ Current phasor. 

In Identity matrix of size 𝑛 × 𝑛. 

K Kalman gain. 

m Number of system outputs. 

n Number of dynamic system states. 

N/A Not applicable. 

p Number of dynamic system inputs. 

Pe Real power. 

PFs Participation factors. 

q Normalized right eigenvector. 

Qe Reactive power. 

r Number of observable states. 

ℝ𝑛×𝑚 Real-number matrix set of size 𝑛 × 𝑚. 

𝑟𝑎𝑛𝑘(∙) Operation of finding the rank of a matrix. 

𝑆𝑅(∙) Set of perturbation matrices that make the 

model unobservable. 

t Current time. 

𝑇𝑀, 𝑃𝑆𝑉 Mechanical torque and steam valve position of 

the turbine-governor model, respectively. 

𝑇𝑞0
′  Time constant of 𝐸𝑑

′ . 

U Unitary matrix for transforming the system 

into the observability staircase form. 

𝒱 Voltage phasor. 

𝑥(𝑡) State vector after transformation into the 

observability staircase form. 

𝑥̅(𝑡) State vector after linearization. 

𝑥̂(𝑡) Estimated state of 𝑥(𝑡). 

𝑥𝑚𝑜, 𝑥̂𝑚𝑜 Marginally observable states and their 

estimates. 

𝑥𝑜, 𝑥̂𝑜 Observable states and their estimates. 

𝑦(𝑡) Output vector of the dynamic system. 
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𝛿, 𝜔, 𝐸𝑑
′ , 𝐸𝑞

′  Rotor angle, rotor speed, and d-axis and q-axis 

transient voltages of a generator, respectively. 

Δ𝐴̅, Δ𝐶̅ Perturbation matrices of 𝐴̅ and 𝐶̅. 

Δ𝑥(𝑡) Difference between 𝑥̂(𝑡) and 𝑥(𝑡). 

𝜀, 𝜀′ Thresholds of distance and relative distance 

for determining observability. 

𝜆 Eigenvalue. 

𝜇𝑅 , 𝜇′𝑅 Shortest distance and relative shortest distance 

to an unobservable system, respectively. 

 

1. Introduction 

Dynamic state estimation (DSE) has been used to 

estimate the dynamic states of power systems [1] [2]. To 

ensure the existence of a DSE observer, it is important to 

properly select inputs/outputs of estimation models [3]. 

Observability and detectability analyses have been used to 

determine whether a DSE observer exists [4]- [5] for a 

selected estimation model and guide measurement selection 

[6]. 

Observability analysis determines whether the initial 

states can be uniquely determined [4]. To apply one of the 

well-established observability analysis methods used for 

linear systems, a nonlinear system is linearized around an 

operating point to calculate the observability matrix [7]. 

Previous work pointed out that observability based on 

linearization is only a local property of a nonlinear system 

around an equilibrium point instead of a global property [8]. 

In some highly nonlinear scenarios, applying the Lie 

derivative to construct the observability matrix provides a 

more accurate estimate at the cost of increased computational 

complexity [7]. For a high-order model in power systems, the 

computational complexity of the Lie derivative can be 

mitigated by using an automatic differentiation technique [9] 

[10]. The above methods require an analytical model to 

derive the observability matrix. To relax that requirement, Qi 

[11] and Sun [5] et al. use the empirical observability 

Gramian matrix to quantify observability. Observability is a 

sufficient condition to guarantee the existence of a DSE 

observer. 

In the DSE of a power system, it was noted in [12]  

that some DSE observers converged even if their estimation 

models were not observable. The result suggests that the 

requirement from observability analysis is conservative and 

may call for additional unnecessary measurements. 

Leveraging detectability analysis, Zhou et al. [12] have 

relaxed the observability requirement by showing that a DSE 

observer converges not only for an observable system but also 

for an unobservable system as long as the eigenvalues 

corresponding to the unobservable states are stable. 

Detectability analysis determines whether estimated states 

can asymptotically converge to their true values as time 

passes by [13].  As such, detectability is a more relaxed 

condition than observability for determining the existence of 

a DSE observer. Applying detectability analysis has the 

potential to reduce the number of measurements required by 

an observability analysis for determining the existence of a 

DSE observer. 

These conventional observability and detectability 

analysis methods have laid solid groundwork for selecting 

inputs/outputs and placing measurements for DSE in power 

systems. Yet, they cannot determine the existence of a DSE 

observer for a synchronous machine with marginally 

observable states. While conventional methods can detect a 

marginally observable system by checking the smallest 

singular value (SSV) and the condition number of the 

observability matrix, they cannot identify the marginally 

observable states and their associate eigenvalues. As a result, 

these conventional methods cannot determine whether 

marginally observable states have stable eigenvalues and, in 

turn, whether the marginally observable states will lead to the 

divergence of a DSE observer.  

To overcome the limitation of conventional methods 

applied to a marginally observable model, the authors of this 

paper propose an extended observability and detectability 

method by identifying the marginally observable states and 

their associate eigenvalues. To do so, the smallest 

perturbation that can make the original system unobservable 

is calculated using the algorithms in [14]. Then, the model is 

transformed into staircase form through the Kalman 

decomposition. The staircase form allows the marginally 

observable states to be separated from the observable states 

in observability analysis [13] and for their corresponding 

eigenvalues to be identified for detectability analysis. 

Through this procedure, the proposed method extends the 

application of observability and detectability analyses to 

marginally observable systems, which are quite common in 

DSE with a high-order synchronous machine model. 

The rest of this paper is organized as follows. The 

method to identify marginally observable states and their 

associated eigenvalues is introduced in Section 2. The 

application of the proposed method in power systems is 

discussed in Section 3. Case studies are carried out in Section 

4. Finally, conclusions are drawn in Section 5.  

2. Quantification of Observability and 
Identification of Marginally Observable States 

To apply the proposed method, a nonlinear model in 

power systems needs to be linearized into (1) around its 

operation points for observability and detectability analyses.  

𝑑𝑥̅(𝑡)

𝑑𝑡
= 𝐴̅𝑥̅(𝑡) + 𝐵̅𝑢(𝑡) (1.a) 

𝑦(𝑡) = 𝐶̅𝑥̅(𝑡) + 𝐷̅𝑢(𝑡) (1.b) 

Here, 𝑥̅(𝑡) ∈ ℝ𝑛×1 is the state vector at time t, 𝑢(𝑡) ∈ ℝ𝑝×1 

is the input vector, and 𝑦(𝑡) ∈ ℝ𝑚×1 is the output vector; and 

𝐴̅ ∈ ℝ𝑛×𝑛 , 𝐵̅ ∈ ℝ𝑛×𝑝, 𝐶̅ ∈ ℝ𝑚×𝑛 , and 𝐷̅ ∈ ℝ𝑚×𝑝  are the 

corresponding Jacobian matrices. 

 
2.1. Distance to Unobservability 

 

The observability of model (1) can be quantified by 

𝜇𝑅(𝐴̅, 𝐶̅) defined in (2), which is the shortest distance of (1) 

to an unobservable model.  

𝜇𝑅(𝐴̅, 𝐶̅) ≜ min {‖
Δ𝐴̅
Δ𝐶̅
‖ ∶ 

(𝐴̅ + Δ𝐴̅, 𝐶̅ + Δ𝐶̅ )
𝑖𝑠 𝑢𝑛𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒

 }  (2) 

Here, ‖∙‖  denotes the 2-norm of the matrix [15]; Δ𝐴̅ ∈
ℝ𝑛×𝑛and Δ𝐶̅ ∈ ℝ𝑚×𝑛  are the perturbation matrices. 

Obviously, if 𝜇𝑅(𝐴̅, 𝐶̅) = 0, (1) is unobservable. 

To find 𝜇𝑅(𝐴̅, 𝐶̅), the controllability studies carried 

out by [14] are adopted for observability studies using their 

duality. In particular, it has been shown that the distance 

defined in (2) is equivalent to (3), where 𝜆 ∈ ℂ1×1. Note that 
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the unobservability condition in (2) is converted into the 

condition of rank deficiency of the constructed matrix at 

every eigenvalue, 𝜆, of the perturbed matrix 𝐴̅ + Δ𝐴̅ in (3.b) 

[4]. 

𝜇𝑅(𝐴̅, 𝐶̅) = min
𝜆∈ℂ1×1

{ min
[Δ𝐴̅
Δ𝐶̅
]∈𝑆𝑅(𝜆) 

(‖Δ𝐴̅
Δ𝐶̅
‖)}  (3.a) 

𝑆𝑅(𝜆) = {

[Δ𝐴̅
Δ𝐶̅
] ∈ ℝ(𝑛+𝑚)×𝑛                     

        ∶ 𝑟𝑎𝑛𝑘 [
𝐴̅ + Δ𝐴̅ − 𝜆𝐼𝑛
 𝐶̅ + Δ𝐶̅

] < 𝑛
} (3.b) 

Furthermore, the distance can be reformulated as  

𝜇𝑅(𝐴̅, 𝐶̅) =                    

            min
𝑞∈{ℝ𝑛×1 ∪ℝ𝑛×2}

{‖
(𝐼2̃ − 𝑞𝑞

𝑇)𝐴̅𝑞

𝐶̅𝑞
‖}  

(4) 

where 𝑞𝑇𝑞 = 𝐼2̃ ∈ ℝ
1×1 𝑜𝑟 ℝ2×2   and 𝐼2̃  is an identity 

matrix. 

Exploiting the duality of controllability and 

observability, 𝜇𝑅(𝐴̅, 𝐶̅) and its associated 𝑞 can be obtained. 

Once the optimal solution 𝑞 = 𝑞∗ is found, the corresponding 

eigenvalues 𝜆 = 𝜆∗ can be calculated via (5).  

𝜆∗ = 𝑒𝑖𝑔(𝑞∗𝑇𝐴̅𝑞∗) (5) 

When 𝑞∗ ∈ ℝ𝑛×1, 𝜆∗ is a real scalar that is associated 

with the solution of (3); when 𝑞∗ ∈ ℝ𝑛×2, 𝜆∗ represents a pair 

of complex conjugate eigenvalues that are associated with the 

solution of (3). After 𝜆∗  and 𝑞∗  are found, the perturbation 

matrices Δ𝐴̅∗ and Δ𝐶̅∗ can be obtained from (6).  

Δ𝐴̅∗ = −{𝐼𝑛 − 𝑞
∗𝑞∗𝑇}𝐴̅𝑞∗𝑞∗𝑇 (6.a) 

Δ𝐶̅∗ = −𝐶̅𝑞∗𝑞∗𝑇 (6.b) 

Here, 𝐼𝑛 ∈ ℝ
𝑛×𝑛 is an identity matrix. The algorithms and the 

corresponding derivations are summarized in Appendix A. 

Note that when 𝜇𝑅(𝐴̅, 𝐶̅) = 0  the system is 

unobservable. This is equivalent to that from the study on the 

observability matrix [4] and conventional methods can be 

directly applied to determine the existence of DSE observers. 

Yet, when 𝜇𝑅(𝐴̅, 𝐶̅) is very small, some states in the models 

are marginally observable (i.e., effectively unobservable) and 

conventional methods cannot directly determine whether a 

DSE observer exists. This calls for an extended method to 

separate marginally observable states from fully observable 

states. 

  

2.2. Marginally Observable States and Their 
Eigenvalues 

 

A system is marginally observable if it is very close to 

an unobservable system. The shortest distance from the 

studied system to an unobservable system is a numerically 

robust metric to quantify the observability of a dynamical 

system and identify a marginally observable system [15] [16]. 

Thresholds 𝜀 𝑎𝑛𝑑 𝜀′ can be set up for the distance (7.a) and 

relative distance (7.b) to determine whether the system 

described by (1) is marginally observable.  

0 < 𝜇𝑅(𝐴̅, 𝐶̅) <  𝜀 (7.a) 

0 < 𝜇′𝑅(𝐴̅, 𝐶
̅) ≜

𝜇𝑅(𝐴̅, 𝐶̅)

‖
𝐴̅ − 𝜆∗𝐼𝑛
𝐶̅

‖

< 𝜀′ 
(7.b) 

Here, (7.a) is more suitable for models quantified with 

absolute errors, while (7.b) is more suitable for models 

quantified with relative errors. 

When (1) is marginally observable, i.e., (7) holds, the 

marginally observable states can be separated from the 

observable states by transforming the perturbed system into 

the observability staircase form using the Kalman 

decomposition for observability [13].  More specifically, a 

unitary matrix 𝑈 ∈ ℝ𝑛×𝑛  can be found to transform {𝐴̅ +
Δ𝐴̅∗, 𝐵̅, 𝐶̅ + Δ𝐶̅∗, 𝐷̅} into (8) through the similarity transform 

defined by (9).  

[

𝑑𝑥𝑚𝑜(𝑡)

𝑑𝑡
𝑑𝑥𝑜(𝑡)

𝑑𝑡

] = [
𝐴𝑚𝑜 𝐴12
0𝐴 𝐴𝑜

] [
𝑥𝑚𝑜(𝑡)

𝑥𝑜(𝑡)
]

+ [
𝐵𝑚𝑜
𝐵𝑜
] 𝑢(𝑡) 

(8.a) 

𝑦(𝑡) = [0𝐶 𝐶𝑜] [
𝑥𝑚𝑜(𝑡)

𝑥𝑜(𝑡)
] + [𝐷]𝑢(𝑡) (8.b) 

𝑥̅(𝑡) = 𝑈𝑇𝑥(𝑡)  (9.a) 

𝑥(𝑡) ≜ [
𝑥𝑚𝑜(𝑡)

𝑥𝑜(𝑡)
] (9.b) 

Here,  𝑥𝑚𝑜(𝑡) ∈ ℝ
(𝑛−𝑟)×1  and 𝑥𝑜(𝑡) ∈ ℝ

𝑟×1  respectively 

represent the marginally observable (mo) state vector and the 

observable (o) state vector; 𝐴𝑚𝑜(𝑡) ∈ ℝ
(𝑛−𝑟)×(𝑛−𝑟), 𝐴𝑜(𝑡) ∈

ℝ𝑟×𝑟 , 𝐴12(𝑡) ∈ ℝ
(𝑛−𝑟)×𝑟 , 0𝐴 ∈ ℝ

𝑟×(𝑛−𝑟) , 𝐵𝑚𝑜(𝑡) ∈
ℝ(𝑛−𝑟)×𝑝 , 𝐵𝑜(𝑡) ∈ ℝ

𝑟×𝑝 , 0𝐶 ∈ ℝ
𝑚×(𝑛−𝑟) , and 𝐶𝑜 ∈ ℝ

𝑚×𝑟 

are the corresponding transformed submatrices.  Note that 0𝐴 

is a zero matrix, which suggests that 𝑥𝑜(𝑡) is not influenced 

by 𝑥𝑚𝑜(𝑡). Also, 0𝐶  is a zero matrix, which suggests that 

𝑦(𝑡) is not influenced by 𝑥𝑚𝑜(𝑡). As such, the eigenvalues 

corresponding to the marginally observable state are the 

eigenvalues of 𝐴𝑚𝑜 in (8.a). 

 

2.3. Observers and Detectability Analysis on 
Marginally Observable Systems 

 

For a system described by (8), an observer can be 

formed from measured inputs and outputs using (10) [17] for 

the DSE. Here, 𝑥̂(𝑡) ≜ [𝑥̂𝑚𝑜(𝑡)
𝑇 𝑥̂𝑜(𝑡)

𝑇]𝑇 ∈ ℝ𝑛×1  is the 

estimate of 𝑥(𝑡); 𝐾 ∈ ℝ𝑛×𝑚  is a design parameter, 𝐾𝑚𝑜 ≜
𝐾(1: 𝑛 − 𝑟, : ) ∈ ℝ(𝑛−𝑟)×𝑚 , 𝐾𝑜 ≜ 𝐾(𝑛 − 𝑟 + 1: 𝑛, : ) ∈
ℝ𝑟×𝑚. In the DSE within the Kalman filter framework, K is 

the Kalman gain that minimizes the estimation variance for 

the unbiased estimate [17]. The estimation errors are defined 

as  Δ𝑥(𝑡) = 𝑥̂(𝑡) − 𝑥(𝑡) . The dynamical model of the 

estimation errors can be written as (11) by first taking the 

difference between (8.a) and (10.b), then substituting y(t) (8.b) 

into the resulting equation. 
𝑑𝑥̂(𝑡)

𝑑𝑡
= 𝐴𝑥̂(𝑡) + 𝐵𝑢(𝑡) 

                       +𝐾{𝑦(𝑡) − 𝐶𝑥̂(𝑡) − 𝐷𝑢(𝑡)} 
(10.a) 

[

𝑑𝑥𝑚𝑜(𝑡)

𝑑𝑡
𝑑𝑥𝑜(𝑡)

𝑑𝑡

] = [
𝐴𝑚𝑜 𝐴12 −𝐾𝑚𝑜𝐶𝑜
0𝐴 𝐴𝑜 − 𝐾𝑜𝐶𝑜

] [
𝑥𝑚𝑜(𝑡)

𝑥𝑜(𝑡)
] 

                       + [
𝐾𝑚𝑜
𝐾𝑜
] 𝑦(𝑡) + ([

𝐵𝑚𝑜
𝐵𝑜
] − [

𝐾𝑚𝑜
𝐾𝑜
]𝐷)𝑢(𝑡) 

(10.b) 

[

𝑑Δ𝑥𝑚𝑜(𝑡)

𝑑𝑡
𝑑Δ𝑥𝑜
𝑑𝑡

] = [
𝐴𝑚𝑜 𝐴12 −𝐾𝑚𝑜𝐶𝑜
0 𝐴𝑜 − 𝐾𝑜𝐶𝑜

] [
Δ𝑥𝑚𝑜(𝑡)

Δ𝑥𝑜(𝑡)
] (11) 
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According to the detectability analysis [12], the 

convergence properties of the DSE depend on the stability 

and observability of the states. For the observable states 𝑥̂𝑜(𝑡), 

K in (11) can be selected to place the eigenvalues of 𝐴𝑜 −
𝐾𝑜𝐶𝑜 at the left half of the s-plane to make them stable [18] 

such that the estimation errors of Δ𝑥𝑜(𝑡) will converge to 

zero. By contrast, the eigenvalues of the marginally 

observable states 𝑥̂𝑚𝑜(𝑡) are determined by 𝐴𝑚𝑜 and cannot be 

effectively controlled by K. The estimation errors of Δ𝑥̂𝑚𝑜(𝑡) 
will increase if any eigenvalue of 𝐴𝑚𝑜  is unstable and 

otherwise be damped out if all the eigenvalues of 𝐴𝑚𝑜  are 

stable. Thus, the convergence of the marginally observable 

states in the DSE is mainly determined by the damping of the 

right-most eigenvalues of 𝐴𝑚𝑜. If all the eigenvalues of 𝐴𝑚𝑜 

are stable, there shall exist a DSE observer for the marginally 

observable model.  If any eigenvalues of 𝐴𝑚𝑜 are unstable, 

the DSE shall diverge. 

3. Applications of the Proposed Method in the 
Power System DSE  

The proposed method can be used to determine 

whether a DSE observer exists for different estimation 

models of a synchronous machine. First, estimation models 

for the DSE of a synchronous machine are discussed to show 

the different options available to users. Then, the application 

procedure of the proposed method is summarized. 

 

3.1. Estimation Models  
 

The dynamic model of a synchronous generator and 

its associated controllers used in this paper are described by 

the ninth-order ordinary differential equations (ODEs) in 

(12)-(20) [19] [20]. Here, 𝛿, 𝜔, 𝐸𝑑
′ , and 𝐸𝑞

′  are the rotor angle, 

rotor speed, and d-axis and q-axis transient voltages of the 

generator, respectively; 𝐸𝑓𝑑 , 𝑉𝐹 , and 𝑉𝑅 are the field voltage, 

the stabilizing transformer output, and the amplifier output of 

the exciter, respectively; 𝑇𝑀 and 𝑃𝑆𝑉  are the mechanical 

torque and steam valve position of the turbine-governor 

model, respectively; 𝑃′𝑒  is the real power generated by the 

generator; 𝑉𝑟𝑒𝑓  and 𝑃𝐶  are the control reference signals of the 

exciter and governor, respectively. 

Generator’s ODEs:   

𝑑𝛿

𝑑𝑡
= 𝜔 − 𝜔𝑠 , (12) 

𝑑𝜔

𝑑𝑡
=
𝜔𝑠
2𝐻
(𝑇𝑀 − 𝑃′𝑒 − 𝐷(𝜔 −𝜔𝑠)), (13) 

𝑑𝐸𝑞
′

𝑑𝑡
=
1

𝑇𝑑0
′ (−𝐸𝑞

′ − (𝑋𝑑 − 𝑋𝑑
′ )𝐼𝑑 + 𝐸𝑓𝑑), (14) 

𝑑𝐸𝑑
′

𝑑𝑡
=
1

𝑇𝑞0
′ (−𝐸𝑑

′ − (𝑋𝑞 − 𝑋𝑞
′ )𝐼𝑞). (15) 

Exciter’s ODEs:  

𝑑𝐸𝑓𝑑

𝑑𝑡
=
1

𝑇𝐸
(−(𝐾𝐸 + 𝑆𝐸(𝐸𝑓𝑑))𝐸𝑓𝑑 + 𝑉𝑅), (16) 

𝑑𝑉𝐹
𝑑𝑡
=
1

𝑇𝐹
(

 
−𝑉𝐹 +

𝐾𝐹
𝑇𝐸
𝑉𝑅

−
𝐾𝐹
𝑇𝐸
(𝐾𝐸 + 𝑆𝐸(𝐸𝑓𝑑))𝐸𝑓𝑑  )

 , (17) 

𝑑𝑉𝑅
𝑑𝑡
=
1

𝑇𝐴
(−𝑉𝑅 + 𝐾𝐴(𝑉𝑟𝑒𝑓 − 𝑉𝐹 − 𝑉) ). (18) 

Turbine-governor’s ODEs:  

𝑑𝑇𝑀
𝑑𝑡

=
1

𝑇𝐶𝐻
(−𝑇𝑀 + 𝑃𝑆𝑉), (19) 

𝑑𝑃𝑆𝑉
𝑑𝑡

=
1

𝑇𝑆𝑉
(−𝑃𝑆𝑉 + 𝑃𝐶 −

1

𝑅𝐷
(
𝜔

𝜔𝑠
− 1)). (20) 

Assume that the voltage phasor (𝒱 = 𝑉𝑅 + 𝑗𝑉𝐼 ) and 

current phasor (ℐ = 𝐼𝑅 + 𝑗𝐼𝐼) are measured using a PMU at 

the terminal bus of the synchronous machine. Also, the real 

power (𝑃𝑒) and reactive power (𝑄𝑒) injected to the generator 

can be calculated from the voltage and current phasors 

through 𝑃𝑒 + 𝑗𝑄𝑒 = 𝒱ℐ
∗  and used as measurements. In 

addition, 𝑉𝑟𝑒𝑓  and 𝑃𝐶  are available to DSE. There are several 

ways of setting up input, 𝑢(𝑡) , and output, 𝑦(𝑡) , of the 

estimation model (1). 

3.1.1 Models using Voltage Phasors as Inputs 
One way of setting up the estimation model is to use 

the voltage phasor as its input, i.e., 𝑢(𝑡) =
[𝑉𝑅 𝑉𝐼 𝑉𝑟𝑒𝑓 𝑃𝐶]𝑇 .  When the current phasor is also 

available, real power (𝑃𝑒) and reactive power (𝑄𝑒)  are used 

as model output, i.e., 𝑦(𝑡) = [𝑃𝑒 𝑄𝑒]
𝑇 (denoted as model a 

henceforward). When the current phasor is not available 

because of sensor failure or maintenance, model output can 

be set as null, i.e., 𝑦(𝑡) = [ ]  (denoted as model b 

henceforward).  

In this setup, the generated real power  𝑃′𝑒  in (13) can 

be constructed from the voltage phasor and dynamic states 

using (21) and (22). In (21), 𝐼𝑑 , 𝐼𝑞 , 𝑉𝑑, and 𝑉𝑞  are the 

intermediate variables, which can be calculated from the 

voltage phasor and states using (22). 𝐼𝑑  and  𝐼𝑞  are the d-axis 

and q-axis armature currents, respectively; 𝑉𝑑 , 𝑉𝑞  are the d-

axis and q-axis terminal voltages, respectively.  

𝑃′𝑒 = (𝐸𝑑
′ + 𝐼𝑞𝑋𝑞

′ )𝐼𝑑 + (𝐸𝑞
′ − 𝐼𝑑𝑋𝑑

′ )𝐼𝑞 (21) 

𝑉𝑑 = 𝑉𝑅𝑠𝑖𝑛𝛿 − 𝑉𝐼𝑐𝑜𝑠𝛿 (22.a) 

𝑉𝑞 = 𝑉𝑅𝑐𝑜𝑠𝛿 − 𝑉𝐼𝑠𝑖𝑛𝛿 (22.b) 

𝐼𝑑 =
𝐸𝑞
′ − 𝑉𝑞

𝑋𝑑
′  (22.c) 

𝐼𝑞 = −
𝐸𝑑
′ − 𝑉𝑑
𝑋𝑞
′  (22.d) 

The output of real power (Pe) and reactive power (Qe) 

in model a can be calculated from the voltage phasor and 

states using (22) and (23). 

𝑃𝑒 = 𝑉𝑑𝐼𝑑 + 𝑉𝑞𝐼𝑞 (23.a) 

𝑄𝑒 = −𝑉𝑑𝐼𝑞 + 𝑉𝑞𝐼𝑑 (23.b) 

3.1.2 Models using Current Phasors as Inputs 
Another way of setting up the estimation model is to 

use the current phasor as its input, i.e., 𝑢(𝑡) =
[𝐼𝑅 𝐼𝐼 𝑉𝑟𝑒𝑓 𝑃𝐶]𝑇 .  When the voltage phasor is also 

available, real power (𝑃𝑒) and reactive power (𝑄𝑒)  are used 

as model output, i.e., 𝑦(𝑡) = [𝑃𝑒 𝑄𝑒]
𝑇 (denoted as model c 

henceforward); When the voltage phasor is not available 

because of sensor failure or maintenance, model output can 

be set as null, i.e., 𝑦(𝑡) = [ ]  (denoted as model d 

henceforward).  

In this setup, the generated real power  𝑃′𝑒  in (13) can 

be constructed from the current phasor and dynamic states 

using (21) and (24). The output of real power (Pe) and 
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reactive power (Qe) in model c can be calculated from the 

current phasor and states using (23) and (24). 

𝐼𝑑 = 𝐼𝑅𝑠𝑖𝑛𝛿 − 𝐼𝐼𝑐𝑜𝑠𝛿 (24.a) 

𝐼𝑞 = 𝐼𝑅𝑐𝑜𝑠𝛿 − 𝐼𝐼𝑠𝑖𝑛𝛿 (24.b) 

𝑉𝑑 = 𝐸𝑑
′ + 𝐼𝑞𝑋𝑞

′  (24.c) 

𝑉𝑞 = 𝐸𝑞
′ − 𝐼𝑑𝑋𝑑

′  (24.d) 

Note that in addition to the four models discussed 

above, there are many other ways of setting up estimation 

models for DSE with the same measurements.  For example, 

Fan et al. [21] proposed an estimation model that uses real 

power and reactive power as its input and the voltage phasor 

as its output. With many estimation models available, users 

need a method to determine whether an estimation model can 

ensure the existence of a DSE observer.  

 

3.2. Application of the Proposed Method  
 

In order to apply the proposed method to determine 

whether a DSE observer exists for different estimation 

models of a synchronous machine, the procedure illustrated 

by the flow chart in Fig. 1 should be followed. The chart 

suggests that if a model has a marginally observable or 

unobservable state whose eigenvalues are not stable, the 

corresponding DSE will diverge. In addition, a stable model 

is preferred for DSE because a stable model will guarantee 

the convergence of the DSE whether the system is observable, 

marginally observable, or unobservable. Note that Steps 5 

and 6 in the flow chart are the distinguishing features of the 

proposed method in that it can be applied to a marginally 

observable model while conventional methods cannot. 

4. Case Studies 

Application examples are presented in this section to 

illustrate the properties and value of the proposed method in 

guiding the selection of estimation models for DSE. 

Specifically, the proposed method is applied to determine the 

existence of a DSE observer for several different estimation 

models of a synchronous machine in the IEEE 10-machine 

39-bus system [22] [23] shown in Fig. 2. To verify the 

analysis results of the proposed method, DSE is carried out 

using the unscented Kalman filter (UKF) [20] and the 

extended Kalman filter (EKF) [21] to reveal their 

convergence properties. In addition, the detectability analysis 

[12] and the observability analysis using the empirical 

Gramian [11] [5], linearization [7], and the Lie derivative [7] 

[9] [10] are carried out to reveal the distinguishing features of 

the proposed method.  

 

4.1. Simulation Setup 
 

The IEEE 10-machine 39-bus system is used to 

generate simulation data. To simulate dynamic responses, the 

transmission line between bus 16 and bus 21 is tripped off at 

20 s. The system responses are recorded for 80 s. A phasor 

measurement unit (PMU) is assumed to be installed at the 

terminal bus of synchronous machine G5 and measures the 

voltage phasor (𝒱) and current phasor (ℐ) at 60 samples/s. 

One percent measurement noise in total vector error is added 

to the measured phasors. The corresponding real power (Pe) 

and reactive power (Qe) are calculated from 𝒱  and ℐ . The 

measurements allow the application of the four estimation 

models discussed in the previous section for DSE.  

 
Fig. 1. Flow chart of using the proposed method to select a 

convergent estimation model for the DSE 

 
Fig. 2. One-line diagram of the IEEE 10-machine 39-bus 

system [22] 

4.2. Observability and Detectability Analyses 
using the Proposed Method  

 

Following the procedure described in Fig. 1, the 

proposed method is applied to determine the existence of a 

DSE observer for the four estimation models described in 

subsection III.A. Table 1 summarizes the analysis results. 

Considering that the relative noise level of the dynamic model 
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of a synchronous machine is often greater than 0.1%, the 

relative threshold is set up as 𝜀′ = 0.1% in (7).  

As a result, the observability analysis using the 

proposed method suggests that cases (b) and (d) are 

unobservable, while cases (a) and (c) are marginally 

observable according to (7). To implement step 3, the 

rightmost eigenvalues of the estimation models are calculated 

to check the stability of the estimation models. The 

eigenvalues suggest that estimation models (a) and (b) are 

stable while estimation models (c) and (d) are unstable. 

According to step 3, DSE observers shall exist for models (a) 

and (b). By contrast, the existence of a DSE observer for 

models (c) and (d) shall be determined using steps 4, 5, and 6 

by checking the eigenvalues of the marginally observable and 

unobservable states as follows:  

• For estimation model (c), the rightmost eigenvalue of 

its marginally observable state is determined to be -

0.4820 using (8). Because the rightmost eigenvalue 

associated with its marginally observable state is 

stable, there shall exist a DSE observer for model (c) 

that can converge according to step 6.  

• For estimation model (d), the rightmost eigenvalue of 

its unobservable state is determined to be 1.7641 

using (8). Because the rightmost eigenvalue 

associated with its unobservable state is unstable, 

there shall not exist a DSE observer for model (d) 

according to step 6. 

 

Table 1 Observability and detectability analyses of four different estimation models to determine the existence of a DSE 

observer using the proposed method (median  median absolute deviation)  

Estimation Models (a) (b)  (c)  (d) 

𝛍𝐑 0.0138 ± 0.0001 0 ± 0 0.0135 ± 0.00001 0 ± 0 

𝛍′𝐑 (1.37 ± 0.01) × 10−4 (N/A) (9.37 ± 0.01) × 10−5 (N/A) 

System observability (𝜀′ = 0.1%) Marginally Observable Unobservable Marginally Observable Unobservable 

Rightmost eigenvalue of the model −0.0606 ± 0.0002 −0.0606 ± 0.0002 1.7641 ± 0.0013 1.7641 ± 0.0013 

Stability of the estimation model Stable Stable Not Stable Not Stable 

Rightmost eigenvalue of the 

unobservable and marginally 

observable states 

−0.4878 −0.0606 −0.4820 1.7641 

Stability of the unobservable and 

marginally observable states  
Stable Stable Stable Not Stable 

Existence of a DSE observer Yes Yes Yes No 

Convergence of the UKF Yes Yes Yes No 

Convergence of the EKF  Yes Yes Yes No 

 

Table 2 Observability and detectability analyses using conventional methods [5] [7] [9] [10] [11] [12]  

(median  median absolute deviation)  

Estimation Models (a) (b)  (c)  (d) 

Observability 

using 

Empirical 

Gramian [5] 

[11] 

SSV (7.03 ± 3.90) × 10−9 0 ± 0 (9.56 ± 12.90) × 10−9 0 ± 0 

Relative SSV (1.39 ± 0.77) × 10−11 (N/A) (1.45 ± 1.95) × 10−12 (N/A) 

Observability Marginally Observable Unobservable Marginally Observable Unobservable 

Existence of a 

DSE observer 
No No No No 

Observability 

using 

Linearization 

[7]  

SSV 0.0959 ± 0.0007 0 ± 0 0.0357 ± 0.00003 0 ± 0 

Relative SSV (8.32 ± 0.04) × 10−9 (N/A) (1.70 ± 0.002) × 10−8 (N/A) 

Observability Marginally Observable Unobservable Marginally Observable Unobservable 

Existence of a 

DSE observer 
No No No No 

Observability 

using Lie 

derivative [7] 

[9] [10]  

SSV 0.430 ± 0.020 0 ± 0 Matlab out of memory 0 ± 0 

Relative SSV (3.70 ± 0.17) × 10−8 (N/A) Matlab out of memory (N/A) 

Observability Marginally Observable Unobservable  (N/A) Unobservable 

Existence of a 

DSE observer 
No No (N/A) No 

Detectability 

Analysis [12] 

SSV 0.0959 ± 0.0007 0 ± 0 0.0357 ± 0.00003 0 ± 0 

Relative SSV (8.32 ± 0.04) × 10−9 (N/A) (1.70 ± 0.002) × 10−8 (N/A) 

Rightmost 

eigenvalues  
−0.0606 ± 0.0002 −0.0606 ± 0.0002 1.7641 ± 0.0013 1.7641 ± 0.0013 

Detectability Yes Yes No No 

Existence of a 

DSE observer 
Yes Yes No No 

Convergence of the UKF Yes Yes Yes No 

Convergence of the EKF Yes Yes Yes No 

In summary, a DSE observer exists for estimation 

models (a), (b), (c) and does not exist for estimation model 

(d). The above results also suggest that users may prefer 

estimation models (a) and (b), which use voltage phasor as 

their inputs because they guarantee the existence of a DSE 

estimator whether the current phasor is available or not. In 

other words, the voltage phasor is a must-have while the 

current phasor is optional for the existence of a DSE estimator. 



 

 

7 

 

 

When the current phasor is the input, as in model (d), a DSE 

estimator does not exist when the voltage phasor is not 

available. This suggests that adding a backup voltage phasor 

when placing PMUs can act as a preventive strategy to reduce 

the risk of losing the voltage phasor. 

 

4.3. Verification using the UKF and EKF 
 

To verify the above results, DSE is carried out using 

the UKF and EKF to estimate the dynamic states of 

synchronous machine 5. The nine targeted states include four 

states of its generator (𝛿, 𝜔𝑟 , 𝐸𝑑
′ , 𝐸𝑞

′ ), three states of its exciter 

(𝐸𝑓𝑑 , 𝑉𝐹 , 𝑉𝑅 ), and two states of its turbine-governor model 

(𝑇𝑀 , 𝑃𝑆𝑉). The corresponding state estimates are displayed in 

Fig. 3. The DSEs for estimation models (a), (b), and (c) 

converge, while the DSE for model (d) diverges. These 

convergence properties are also summarized in the last two 

rows of Table 1.  

Note that the convergence properties of the UKF and 

EKF agree. They are also consistent with the analysis results 

on the existence of a DSE observer from the proposed method 

as the existence of a DSE observer is a necessary, but not 

sufficient, condition of the convergence of a DSE filter 

(including for the UKF and EKF). In other words, the 

convergence of the UKF and EKF indicates that there must 

exist a DSE observer, but the reciprocal is not inherently true. 

Similarly, if a DSE observer does not exist, the UKF and EKF 

shall diverge. The consistency verifies the study results of the 

proposed method. 

The proposed method has been successfully applied to 

other generators and their associated controllers, then verified 

using the UKF and EKF. These results have been omitted for 

brevity. 

 

 
4.4. Comparison with the Conventional Methods 

 

To reveal the distinguishing features of the proposed 

method, the SSV and relative SSV of the observability 

matrices from empirical Gramian [11] [5], linearization [7], 

and Lie derivative [7] [9] [10] are calculated and summarized 

in Table 2. To facilitate the comparison, the convergence of 

the UKF and EKF is also shown in the last two rows of Table 

2. Here, the relative SSV is defined as the ratio of the SSV to 

the largest singular value, i.e., the inverse of the condition 

number. Note that these observability analysis results are 

consistent and suggest that models (a) and (c) are marginally 

observable; and that models (b) and (d) are unobservable. 

Note that these observability methods can successfully 

explain the divergence of the UKF and EKF on model (d); but 

they fail to explain the convergence of the DSE using the 

UKF and EKF on models (a), (b), and (c). 

 

 
Fig. 3. True and estimated states of machine 5 in the IEEE 

10-machine 39-bus system for the four models using the UKF 

and EKF 

 

Applying the detectability analysis method proposed 

in [12], models (a) and (b) are detectable because they are 

stable, while models (c) and (d) are not detectable because 

they are unstable and effectively unobservable. Note that the 

detectability method can successfully explain the DSE’s 

divergence on model (d) and convergence on models (a) and 

(b), but fails to explain the DSE’s convergence on estimation 

model (c). As such, the distinguishing feature of the proposed 

method is its applicability to a marginally observable model, 

such as model (c), whose eigenvalues corresponding to its 

marginally observable states need to be identified.  

5. Conclusions 

Measurement setup may result in a marginally 

observable state in estimation models used by the DSE, which 

often occurs in a high-order synchronous machine model. 

Conventional observability and detectability analyses cannot 

be directly applied to a marginally observable system to 
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determine whether a DSE observer exists for an estimation 

model. Applying the method proposed here, the smallest 

perturbation matrices that make the estimation models 

unobservable are identified and used as a metric to quantify 

the observability and identify the marginally observable 

states as well as their associated eigenvalues. It is shown that 

when all the eigenvalues of the marginally observable states 

in a synchronous machine are stable, a DSE observer shall 

exist. When one eigenvalue of the marginally observable 

states in a synchronous machine is unstable, a DSE observer 

shall not exist. As such, to ensure the convergence of DSE for 

a marginally observable system, one shall select 

measurement setup and estimation models which have stable 

eigenvalues for marginally observable states and 

unobservable states. The proposed method can identify 

marginally observable states and their associate eigenvalues, 

determining their detectability when conventional methods 

cannot. Because a marginally observable system is often 

encountered in power system DSE, this advantage allows the 

proposed method to qualify more estimation models and 

demand fewer measurements in determining the existence of 

an observer than the conventional methods.    

To leverage the powerful analytical tools available to 

linear systems, the proposed method uses a linearized model 

to approximate a nonlinear system around its operating points. 

As such, the proposed method can be applied to the systems 

that can be approximated reasonably well by linear models 

around their operating points. On the other hand, the 

linearization procedure may introduce linearization errors 

when the nonlinearity of the system is strong. In future work, 

the proposed method will be extended to handle the systems 

with strong nonlinearity. 

6. Appendix A. Find the Minimum Perturbation 
Matrices  

The method proposed in [14] is used in this paper to 

identify the minimum perturbation matrices Δ𝐴̅∗  and Δ𝐶̅∗ 
that make the original system unobservable. Specifically, the 

solution to (A1.a) corresponds to a real 𝜆∗ while the solution 

to (A1.b) corresponds to a pair of complex 𝜆∗s. The solution 

to (4) is obtained as the smaller value of 𝜇𝑅,1(𝐴̅, 𝐶̅)  and 

𝜇𝑅,2(𝐴̅, 𝐶̅). 

𝜇𝑅,1(𝐴̅, 𝐶̅) = min
𝑞∈ℝ𝑛×𝟏

{‖
(𝐼𝑛 − 𝑞𝑞

𝑇)𝐴̅𝑞

𝐶̅𝑞
‖}  (A1.a) 

𝜇𝑅,2(𝐴̅, 𝐶̅) = min
𝑞∈ℝ𝑛×2

{‖
(𝐼𝑛 − 𝑞𝑞

𝑇)𝐴̅𝑞

𝐶̅𝑞
‖}  (A1.b) 

The perturbation matrices Δ𝐴̅∗ and Δ𝐶̅∗ that make the 

original system unobservable are not directly available in 

terms of q* [14] but are needed for the applications proposed 

in this paper. Thus, they are derived in this appendix.  

To be self-contained, algorithm 4 in [14] is 

summarized as the flow chart in Fig. A1. It uses algorithm 1, 

which is summarized as the flow chart in Fig. A2. Note that 

the minimum perturbation matrices are given in terms of 

intermediate variables Q and Ak and Bk as in Fig. A1. To stay 

consistent with the procedures used in [14], the derivation is 

first performed for controllability and then extended to 

observability using their duality. Note that the bars over the 

matrix notation are removed in this Appendix (i.e., Δ𝐴̅∗ →

𝛥𝐴∗) for simplicity. Only the derivation procedure for solving 

(A1.b) is given in this appendix because it can be easily 

extended to solve (A1.a).  

 
6.1. Perturbation matrix, 𝛥𝐴∗ in terms of q* and A  

 

6.1.1 Problem formulation 
Given (A2) from algorithm 4 in the controllability 

studies of [14], find the 𝛥𝐴∗ in terms of A and q* that makes 

the system uncontrollable. Then, extend the result to 

observability studies to find 𝛥𝐴̅∗ in terms of A and q*. 

 

𝛥𝐴∗ = 𝑄𝐴𝑘0𝑄
𝑇 − 𝐴 (A2) 

where 𝐴𝑘 = 𝑄
𝑇𝐴𝑄 

= [
𝐴𝑘(1: 𝑛 − 2, 1: 𝑛 − 2) 𝐴𝑘(1: 𝑛 − 2, 𝑛 − 1: 𝑛)

𝐴𝑘(𝑛 − 1: 𝑛, 1: 𝑛 − 2) 𝐴𝑘(𝑛 − 1: 𝑛, 𝑛 − 1:𝑛)
] 

(A3) 

𝐴𝑘0

≜ [
𝐴𝑘(1: 𝑛 − 2, 1: 𝑛 − 2) 𝐴𝑘(1: 𝑛 − 2, 𝑛 − 1: 𝑛)

0 𝐴𝑘(𝑛 − 1:𝑛, 𝑛 − 1: 𝑛)
] 

(A4) 

6.1.2 Solution 

 (𝐴4) ⇒ 𝐴𝑘0 = [
𝐴𝑘(1: 𝑛 − 2, 1: 𝑛 − 2) 𝐴𝑘(1: 𝑛 − 2, 𝑛 − 1: 𝑛)

𝐴𝑘(𝑛 − 1: 𝑛, 1: 𝑛 − 2) 𝐴𝑘(𝑛 − 1: 𝑛, 𝑛 − 1:𝑛)
] 

−[
0 0

𝐴𝑘(𝑛 − 1: 𝑛, 1: 𝑛 − 2) 0
] 

(𝐴3)
⇒   𝐴𝑘0 = 𝐴𝑘 − [

0 0
0 𝐼2

] 𝐴𝑘 [
𝐼𝑛−2 0
0 0

] 
(𝐴3)
⇒  (𝐴5) 

 

𝐴𝑘0 = 𝑄
𝑇𝐴𝑄 − [

0 0
0 𝐼2

] 𝑄𝑇𝐴𝑄 [
𝐼𝑛−2 0
0 0

] (A5) 

 

(𝐴2)⇒ΔA∗ = 𝑄𝐴𝑘0𝑄
𝑇 − 𝐴 

(𝐴5)
⇒   ΔA∗ = −𝑄 [

0 0
0 𝐼2

] 𝑄𝑇𝐴𝑄 [
𝐼𝑛−2 0
0 0

] 𝑄𝑇 

⇒ ΔA∗ = −[0 𝑄(: , 𝑛 − 1: 𝑛)] [
𝑄(: ,1: 𝑛 − 2)𝑇

𝑄(: , 𝑛 − 1: 𝑛)𝑇
] 

𝐴[𝑄(: ,1: 𝑛 − 2) 0] [
𝑄(: ,1: 𝑛 − 2)𝑇

𝑄(: , 𝑛 − 1: 𝑛)𝑇
] 

= −{𝑄(: , 𝑛 − 1: 𝑛)𝑄(: , 𝑛 − 1: 𝑛)𝑇 } 𝐴 {𝑄(: ,1: 𝑛

− 2)𝑄(: ,1: 𝑛 − 2)𝑇 } 
𝑄(:,1:𝑛−2)𝑄(:,1:𝑛−2)𝑇 =𝐼𝑛−𝑄(:,𝑛−1:𝑛)𝑄(:,𝑛−1:𝑛)

𝑇

→                                       (𝐴6) 

𝛥𝐴∗ = −{𝑄(: , 𝑛 − 1: 𝑛)𝑄(: , 𝑛 − 1: 𝑛)𝑇}𝐴 

                      {𝐼𝑛 − 𝑄(: , 𝑛 − 1: 𝑛)𝑄(: , 𝑛 − 1: 𝑛)
𝑇} 

= −{𝑞∗𝑞∗𝑇}𝐴{𝐼𝑛 − 𝑞
∗𝑞∗𝑇}           

(A6) 

The observability duality of (A6) is (A7).   

𝛥𝐴̅∗ = −{𝐼𝑛 − 𝑞
∗𝑞∗𝑇}𝐴{𝑞∗𝑞∗𝑇} (A7) 

 
6.2. Perturbation matrix 𝛥𝐶∗ in terms of q* and C 

 

6.2.1 Problem formulation 
Given (A8), which is from the controllability studies, 

find 𝛥𝐵∗  in terms of B and q* that makes the system 

uncontrollable. Then, extend the result to find 𝛥𝐶∗ in terms 

of C and q* for observability analysis. 
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Δ𝐵∗ = 𝑄𝐵𝑘0 − 𝐵 (A8) 

where              𝐵𝑘 = 𝑄
𝑇𝐵=[

𝐵𝑘(1: 𝑛 − 2, ∶)

𝐵𝑘(𝑛 − 1: 𝑛, ∶)
] (A9) 

𝐵𝑘0 ≜ [
𝐵𝑘(1:𝑛−2,∶)

0
] (A10) 

6.2.2 Solution 

(𝐴10)⇒𝐵𝑘0 ≜ [
𝐵𝑘(1:𝑛−2,∶)

0
] = [

𝐼𝑛−2 0
0 0

] [
𝐵𝑘(1:𝑛−2,∶)
𝐵𝑘(𝑛−1:𝑛,∶)

] 

(𝐴9)
⇒   𝐵𝑘0 = [

𝐼𝑛−2 0
0 0

] 𝐵𝑘  
(𝐴9)
⇒  (𝐴11) 

 

𝐵𝑘0 = [
𝐼𝑛−2 0
0 0

] 𝑄𝑇𝐵 (A11) 

 
(𝐴8) → Δ𝐵∗ = 𝑄𝐵𝑘0 − 𝐵 

(𝐴11)
⇒    Δ𝐵∗ = 𝑄 [

𝐼𝑛−2 0
0 0

]𝑄𝑇𝐵 − 𝐵 

                             = {𝑄 [
𝐼𝑛−2 0
0 0

]𝑄𝑇 − 𝑄𝑄𝑇} 𝐵 

                             = −𝑄 [
0 0
0 𝐼2

] 𝑄𝑇𝐵 → (𝐴12) 

 

Δ𝐵∗ = −𝑄(: , 𝑛 − 1: 𝑛)𝑄(: , 𝑛 − 1: 𝑛)𝑇 𝐵 

= −𝑞∗𝑞∗𝑇 𝐵 
(A12) 

 

The observability duality of (A12) is (A13). 

ΔC∗ = −𝐶𝑞∗𝑞∗𝑇 (A13) 

 
Fig. A1. Flow chart for calculating the minimum distance 

from a given system to an uncontrollable system through real 

number perturbation using algorithm 4 in [14] 
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Fig. A2. Flow chart for calculating the minimum distance 

from a given system to an uncontrollable system through 

complex number perturbation using algorithm 1 in [14] 
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