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Abstract: Observability and detectability analyses are often used to guide the measurement setup and select the estimation
models used in dynamic state estimation (DSE). Yet, marginally observable states of a synchronous machine prevent the
direct application of conventional observability and detectability analyses in determining the existence of a DSE observer.
To address this issue, the authors propose to identify the marginally observable states and their associate eigenvalues by
finding the smallest perturbation matrices that make the system unobservable. The proposed method extends the
observability and detectability analyses to marginally observable estimation models, often encountered in the DSE of a
synchronous machine. The effectiveness and application of the proposed method are illustrated on the IEEE 10-machine 39-
bus system, verified using the unscented Kalman filter and the extended Kalman filter, and compared with conventional
methods. The proposed analysis method can be applied to guide the selection of estimation models and measurements to
determine the existence of a DSE observer in power-system planning.
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8,w,Ey,E;  Rotor angle, rotor speed, and d-axis and g-axis

transient voltages of a generator, respectively.

AA,AC Perturbation matrices of A and C.
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to an unobservable system, respectively.

1. Introduction

Dynamic state estimation (DSE) has been used to
estimate the dynamic states of power systems [1] [2]. To
ensure the existence of a DSE observer, it is important to
properly select inputs/outputs of estimation models [3].
Observability and detectability analyses have been used to
determine whether a DSE observer exists [4]- [5] for a
selected estimation model and guide measurement selection
[6].

Observability analysis determines whether the initial
states can be uniquely determined [4]. To apply one of the
well-established observability analysis methods used for
linear systems, a nonlinear system is linearized around an
operating point to calculate the observability matrix [7].
Previous work pointed out that observability based on
linearization is only a local property of a nonlinear system
around an equilibrium point instead of a global property [8].
In some highly nonlinear scenarios, applying the Lie
derivative to construct the observability matrix provides a
more accurate estimate at the cost of increased computational
complexity [7]. For a high-order model in power systems, the
computational complexity of the Lie derivative can be
mitigated by using an automatic differentiation technique [9]
[10]. The above methods require an analytical model to
derive the observability matrix. To relax that requirement, Qi
[11] and Sun [5] et al. use the empirical observability
Gramian matrix to quantify observability. Observability is a
sufficient condition to guarantee the existence of a DSE
observer.

In the DSE of a power system, it was noted in [12]
that some DSE observers converged even if their estimation
models were not observable. The result suggests that the
requirement from observability analysis is conservative and
may call for additional unnecessary measurements.
Leveraging detectability analysis, Zhou et al. [12] have
relaxed the observability requirement by showing that a DSE
observer converges not only for an observable system but also
for an unobservable system as long as the eigenvalues
corresponding to the unobservable states are stable.
Detectability analysis determines whether estimated states
can asymptotically converge to their true values as time
passes by [13]. As such, detectability is a more relaxed
condition than observability for determining the existence of
a DSE observer. Applying detectability analysis has the
potential to reduce the number of measurements required by
an observability analysis for determining the existence of a
DSE observer.

These conventional observability and detectability
analysis methods have laid solid groundwork for selecting
inputs/outputs and placing measurements for DSE in power

systems. Yet, they cannot determine the existence of a DSE
observer for a synchronous machine with marginally
observable states. While conventional methods can detect a
marginally observable system by checking the smallest
singular value (SSV) and the condition number of the
observability matrix, they cannot identify the marginally
observable states and their associate eigenvalues. As a result,
these conventional methods cannot determine whether
marginally observable states have stable eigenvalues and, in
turn, whether the marginally observable states will lead to the
divergence of a DSE observer.

To overcome the limitation of conventional methods
applied to a marginally observable model, the authors of this
paper propose an extended observability and detectability
method by identifying the marginally observable states and
their associate eigenvalues. To do so, the smallest
perturbation that can make the original system unobservable
is calculated using the algorithms in [14]. Then, the model is
transformed into staircase form through the Kalman
decomposition. The staircase form allows the marginally
observable states to be separated from the observable states
in observability analysis [13] and for their corresponding
eigenvalues to be identified for detectability analysis.
Through this procedure, the proposed method extends the
application of observability and detectability analyses to
marginally observable systems, which are quite common in
DSE with a high-order synchronous machine model.

The rest of this paper is organized as follows. The
method to identify marginally observable states and their
associated eigenvalues is introduced in Section 2. The
application of the proposed method in power systems is
discussed in Section 3. Case studies are carried out in Section
4. Finally, conclusions are drawn in Section 5.

2. Quantification of Observability and
Identification of Marginally Observable States

To apply the proposed method, a nonlinear model in
power systems needs to be linearized into (1) around its
operation points for observability and detectability analyses.

O _ hxe) + Fu) (1.)
y(t) = Cx(t) + Du(t) (1.b)

Here, x(t) € R™ ! is the state vector at time t, u(t) € RP*!
is the input vector, and y(t) € R™*? is the output vector; and
AER™ Be R, C e R™™ andD € R™P are the
corresponding Jacobian matrices.

2.1. Distance to Unobservability

_ The observability of model (1) can be quantified by
Ugr (4, C) defined in (2), which is the shortest distance of (1)
to an unobservable model.
(A+M,C'+AC')} 2)

5= - ([|laA
A, C = {| _|| :
Hr(4,€) £ min AC is unobservable

Here, ||| denotes the 2-norm of the matrix [15]; AA €
R™"and AC € R™" are the perturbation matrices.
Obviously, if ug(4, C) = 0, (1) is unobservable.

To find ugr(4,C), the controllability studies carried
out by [14] are adopted for observability studies using their
duality. In particular, it has been shown that the distance
defined in (2) is equivalent to (3), where A € C1*1. Note that

2



the unobservability condition in (2) is converted into the
condition of rank deficiency of the constructed matrix at
every eigenvalue, A, of the perturbed matrix A + A4 in (3.b)

[4].
T R )| S
R et {[AA]Es W
[A/q c R(n+m)><n
Sg() = - — 3b
() :mnkA+AA—AIn]<n (3-b)
C+AC
Furthermore, the distance can be reformulated as
UR (A, C) =
min - qu)Aq 4)
qEe{RM*1 UR"¥2}
where qTq = I3 € RV or IRZXZ and I3 is an identity
matrix.
Exploiting the duality of controllability and

observability, ug (4, C) and its associated g can be obtained.
Once the optimal solution g = g* is found, the corresponding
eigenvalues 4 = A" can be calculated via (5).

1 =eig(qTAq*) 5)

When g* € R™1, 1* is a real scalar that is associated
with the solution of (3); when g* € R™ 2, A* represents a pair
of complex conjugate eigenvalues that are associated with the
solution of (3). After A" and g* are found, the perturbation
matrices AA* and AC* can be obtained from (6).

_{1 —q *T}Aq*q*T

AC* = -Cq*q*T (6.b)
Here, I,, € R™™ is an identity matrix. The algorithms and the
corresponding derivations are summarized in Appendix A.

Note that when ugr(4,C) =0 the system is
unobservable. This is equivalent to that from the study on the
observability matrix [4] and conventional methods can be
directly applied to determine the existence of DSE observers.
Yet, when up (4, €) is very small, some states in the models
are marginally observable (i.e., effectively unobservable) and
conventional methods cannot directly determine whether a
DSE observer exists. This calls for an extended method to

separate marginally observable states from fully observable
states.

(6.2)

2.2. Marginally Observable States and Their
Eigenvalues

A system is marginally observable if it is very close to
an unobservable system. The shortest distance from the
studied system to an unobservable system is a numerically
robust metric to quantify the observability of a dynamical
system and identify a marginally observable system [15] [16].
Thresholds € and &' can be set up for the distance (7.a) and
relative distance (7.b) to determine whether the system
described by (1) is marginally observable.

0<pur(4,0)< ¢ (7.2)
l ' al (A‘CT) !
0<u, (40 = Hr <e (7b)

“A—yg

Here, (7.a) is more suitable for models quantified with
absolute errors, while (7.b) is more suitable for models
quantified with relative errors.

When (1) is marginally observable, i.c., (7) holds, the
marginally observable states can be separated from the
observable states by transforming the perturbed system into
the observability staircase form using the Kalman
decomposition for observability [13]. More specifically, a
unitary matrix U € R™™ can be found to transform {4 +
AA*,B,C + AC*, D} into (8) through the similarity transform

defined by (9).
dXo ()
dt — [Amo A1z [xmo ®
dx,(t) 0,4 X, (t) (8.2)
dt
+F?ﬂuu)
y(@) =[0¢c Col [x’""(g)] + [D]u(t) (8.b)
x(t) = UTx(t) (9.2)
s [Xmo(®)
xwz[%® (9.b)

Here, Xp,(t) € R®™*1 and x,(t) € R™! respectively
represent the marginally observable (mo) state vector and the
observable (0) state vector; A,,,(t) € R*M=1) 4 (1) €
RT%" , Alz(t) € R(-1)xr , 04€ R *®m-1) , By (t) c
R®™-MXP B (t) € R™P, 0, € R™ ™) and C, € R™"
are the corresponding transformed submatrices. Note that 04
is a zero matrix, which suggests that x, (t) is not influenced
by X (t). Also, O is a zero matrix, which suggests that
y(t) is not influenced by x,,,,(t). As such, the eigenvalues
corresponding to the marginally observable state are the
eigenvalues of 4,,, in (8.a).

2.3. Observers and Detectability Analysis on
Marginally Observable Systems

For a system described by (8), an observer can be
formed from measured inputs and outputs using (10) [17] for
the DSE. Here, 2(t) £ [£,,(£)T Z,(t)T]T € R™1 is the
estimate of x(t); K € R™™ is a design parameter, K,,,, =
K(1:n—r,:) € Ra=xm Ko 2Knm—7+1:n,:) €
R™ ™ In the DSE within the Kalman filter framework, K is
the Kalman gain that minimizes the estimation variance for
the unbiased estimate [17]. The estimation errors are defined
as  Ax(t) = x(t) —x(t) . The dynamical model of the
estimation errors can be written as (11) by first taking the
difference between (8.a) and (10.b), then substituting y(t) (8.b)
into the resulting equation.

dx(t
2O _ 4200+ Bu(d (10.9)
+K{y(t) — Cx(t) — Du(t)}
dxmo(t)
[ mo Alz - Kmocu] [fmo(t)]
dxo(t) Ao - Koco fu(t) (lob)
o (][ ]o)eo
dAx,,, (1)
d _ Amo Al - KmoCu Axmo(t)
dAfco =lo Azo —-K,C, HAxu(t) ] (11)
dt



According to the detectability analysis [12], the
convergence properties of the DSE depend on the stability
and observability of the states. For the observable states %,(t),
K in (11) can be selected to place the eigenvalues of 4, —
K,C, at the left half of the s-plane to make them stable [18]
such that the estimation errors of Ax,(t) will converge to
zero. By contrast, the eigenvalues of the marginally
observable states X, (t) are determined by 4,,, and cannot be
effectively controlled by K. The estimation errors of A%,,,,(t)
will increase if any eigenvalue of A,,, is unstable and
otherwise be damped out if all the eigenvalues of 4,,, are
stable. Thus, the convergence of the marginally observable
states in the DSE is mainly determined by the damping of the
right-most eigenvalues of 4,,,. If all the eigenvalues of 4,,,
are stable, there shall exist a DSE observer for the marginally
observable model. If any eigenvalues of 4,,, are unstable,
the DSE shall diverge.

3. Applications of the Proposed Method in the
Power System DSE

The proposed method can be used to determine
whether a DSE observer exists for different estimation
models of a synchronous machine. First, estimation models
for the DSE of a synchronous machine are discussed to show
the different options available to users. Then, the application
procedure of the proposed method is summarized.

3.1. Estimation Models

The dynamic model of a synchronous generator and
its associated controllers used in this paper are described by
the ninth-order ordinary differential equations (ODEs) in
(12)-(20) [19] [20]. Here, &8, w, E4, and Ej are the rotor angle,
rotor speed, and d-axis and g-axis transient voltages of the
generator, respectively; E¢q, Vg, and Vy are the field voltage,
the stabilizing transformer output, and the amplifier output of
the exciter, respectively; T and Ps, are the mechanical
torque and steam valve position of the turbine-governor
model, respectively; P', is the real power generated by the
generator; V;..r and P¢ are the control reference signals of the
exciter and governor, respectively.

Generator’s ODEs:

dé
& o (12)
do
=5 (Ty =P = D(w - wy), (13)
dE; 1 ,
d_tq = m(—Eé — (Xq — XIq + Erq), (14)
dEt’i _ 1 ’ ’
ar m(_Ed - (Xq - Xq)lq)- (15)
Exciter’s ODEs:
dEpg 1
T =T—E(— (KE +SE(Efd)) Efq +VR)' (16)
Kr
dVF 1 _VF + T_EVR
T K : (7
F\ _ T_E(KE + SE(Efd)) Efd
dav, 1
d—:=a(—vR+KA(me—VF—V))- (18)

Turbine-governor’s ODEs:

Gt T (=Ty + Psy), (19)
Py _1( p +p 1(w 1) 20
at -~ Ty \ P TP m (G . (20)

Assume that the voltage phasor (V = Vi + jV;) and
current phasor (J = Iy + jI;) are measured using a PMU at
the terminal bus of the synchronous machine. Also, the real
power (P,) and reactive power (Q,) injected to the generator
can be calculated from the voltage and current phasors
through P, +jQ, = VJ* and used as measurements. In
addition, V,..s and P are available to DSE. There are several
ways of setting up input, u(t), and output, y(t), of the
estimation model (1).

3.1.1 Models using Voltage Phasors as Inputs

One way of setting up the estimation model is to use
the voltage phasor as its input, ie., u(t)=
Ve Vi Vier Pc]T. When the current phasor is also
available, real power (P,) and reactive power (Q,) are used
as model output, i.e., y(t) = [P, Q]" (denoted as model a
henceforward). When the current phasor is not available
because of sensor failure or maintenance, model output can
be set as null, ie., y(t) =[] (denoted as model b
henceforward).

In this setup, the generated real power P’, in (13) can
be constructed from the voltage phasor and dynamic states
using (21) and (22). In (21), Iy, 14, Vg, and Vg are the
intermediate variables, which can be calculated from the
voltage phasor and states using (22). I and I, are the d-axis
and g-axis armature currents, respectively; Vg, V; are the d-
axis and g-axis terminal voltages, respectively.

P'o = (Ey+ 1,X0)1y + (Ef — 1,X})]1, 21
V4 = Vgsiné — V;cosé (22.2)
V; = Vgcosd — V;sind (22.b)
Es —Vq
Iy = X (22.¢)
_ Eg—Vy
Iy = X (22.d)

The output of real power (P,.) and reactive power (Q.)
in model a can be calculated from the voltage phasor and
states using (22) and (23).

Pe = led + Vqlq (233)

Qe = —Valg +Vyly (23.b)
3.1.2 Models using Current Phasors as Inputs

Another way of setting up the estimation model is to
use the current phasor as its input, ie., u(t)=
(g I Vier Pc]T. When the voltage phasor is also
available, real power (P,) and reactive power (Q,) are used
as model output, i.e., y(t) = [P. Q.] (denoted as model ¢
henceforward); When the voltage phasor is not available
because of sensor failure or maintenance, model output can
be set as mnull, ie., y(t) =[] (denoted as model d
henceforward).

In this setup, the generated real power P’, in (13) can
be constructed from the current phasor and dynamic states
using (21) and (24). The output of real power (P.) and
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reactive power (Q.) in model ¢ can be calculated from the
current phasor and states using (23) and (24).

I; = Igsind — I,cos$ (24.2)
Iq = Izcos§ — I;siné (24.b)
Vy = Ey+1,X) (24.c)
V, = Eg — 14X (24.d)

Note that in addition to the four models discussed
above, there are many other ways of setting up estimation
models for DSE with the same measurements. For example,
Fan et al. [21] proposed an estimation model that uses real
power and reactive power as its input and the voltage phasor
as its output. With many estimation models available, users
need a method to determine whether an estimation model can
ensure the existence of a DSE observer.

3.2. Application of the Proposed Method

In order to apply the proposed method to determine
whether a DSE observer exists for different estimation
models of a synchronous machine, the procedure illustrated
by the flow chart in Fig. 1 should be followed. The chart
suggests that if a model has a marginally observable or
unobservable state whose eigenvalues are not stable, the
corresponding DSE will diverge. In addition, a stable model
is preferred for DSE because a stable model will guarantee
the convergence of the DSE whether the system is observable,
marginally observable, or unobservable. Note that Steps 5
and 6 in the flow chart are the distinguishing features of the
proposed method in that it can be applied to a marginally
observable model while conventional methods cannot.

4. Case Studies

Application examples are presented in this section to
illustrate the properties and value of the proposed method in
guiding the selection of estimation models for DSE.
Specifically, the proposed method is applied to determine the
existence of a DSE observer for several different estimation
models of a synchronous machine in the IEEE 10-machine
39-bus system [22] [23] shown in Fig. 2. To verify the
analysis results of the proposed method, DSE is carried out
using the unscented Kalman filter (UKF) [20] and the
extended Kalman filter (EKF) [21] to reveal their
convergence properties. In addition, the detectability analysis
[12] and the observability analysis using the empirical
Gramian [11] [5], linearization [7], and the Lie derivative [7]
[9]1[10] are carried out to reveal the distinguishing features of
the proposed method.

4.1. Simulation Setup

The IEEE 10-machine 39-bus system is used to
generate simulation data. To simulate dynamic responses, the
transmission line between bus 16 and bus 21 is tripped off at
20 s. The system responses are recorded for 80 s. A phasor
measurement unit (PMU) is assumed to be installed at the
terminal bus of synchronous machine G5 and measures the
voltage phasor (V) and current phasor (J) at 60 samples/s.
One percent measurement noise in total vector error is added
to the measured phasors. The corresponding real power (P.)
and reactive power (Q.) are calculated from V and J. The

measurements allow the application of the four estimation
models discussed in the previous section for DSE.

Candidate models with different
measurement setups for DSE

1. Select one model

v

2. Linearize the model
around operation points

f—>
A divergent
model for DSE

V'S
N Yes
3. Is the model stable?

4. Is the model marginally
observable according to (7)2

5. Identify the unobservable and
marginally observable states (x,,,) using (8)

¥

6. Are the eigenvalues
of 4, in (8) stable?

Identified a convergent
model for DSE
Fig. 1. Flow chart of using the proposed method to select a
convergent estimation model for the DSE
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Fig. 2. One-line diagram of the IEEE 10-machine 39-bus
system [22]

4.2. Observability and Detectability Analyses
using the Proposed Method

Following the procedure described in Fig. 1, the
proposed method is applied to determine the existence of a
DSE observer for the four estimation models described in
subsection III.A. Table 1 summarizes the analysis results.
Considering that the relative noise level of the dynamic model



of a synchronous machine is often greater than 0.1%, the
relative threshold is set up as €' = 0.1% in (7).

As a result, the observability analysis using the
proposed method suggests that cases (b) and (d) are
unobservable, while cases (a) and (c) are marginally
observable according to (7). To implement step 3, the
rightmost eigenvalues of the estimation models are calculated
to check the stability of the estimation models. The
eigenvalues suggest that estimation models (a) and (b) are
stable while estimation models (c¢) and (d) are unstable.
According to step 3, DSE observers shall exist for models (a)
and (b). By contrast, the existence of a DSE observer for
models (c) and (d) shall be determined using steps 4, 5, and 6
by checking the eigenvalues of the marginally observable and

e For estimation model (c), the rightmost eigenvalue of
its marginally observable state is determined to be -
0.4820 using (8). Because the rightmost eigenvalue
associated with its marginally observable state is
stable, there shall exist a DSE observer for model (c)
that can converge according to step ©.

e For estimation model (d), the rightmost eigenvalue of
its unobservable state is determined to be 1.7641
using (8). Because the rightmost eigenvalue
associated with its unobservable state is unstable,
there shall not exist a DSE observer for model (d)
according to step 6.

unobservable states as follows:

Table 1 Observability and detectability analyses of four different estimation models to determine the existence of a DSE
observer using the proposed method (median + median absolute deviation)

Estimation Models (a) (b) () (d)
19 0.0138 £+ 0.0001 0+0 0.0135 + 0.00001 0+0
W'r (1.37 £0.01) x 10~* (N/A) (9.37£0.01) x 1075 (N/A)
System observability (¢' = 0.1%) Marginally Observable Unobservable Marginally Observable Unobservable
Rightmost eigenvalue of the model —0.0606 + 0.0002 —0.0606 + 0.0002 1.7641 + 0.0013 1.7641 4+ 0.0013
Stability of the estimation model Stable Stable Not Stable Not Stable
Rightmost eigenvalue of the
unobservable and marginally —0.4878 —0.0606 —0.4820 1.7641
observable states
Stability of the unobservable and Stable Stable Stable Not Stable
marginally observable states
Existence of a DSE observer Yes Yes Yes No
Convergence of the UKF Yes Yes Yes No
Convergence of the EKF Yes Yes Yes No
Table 2 Observability and detectability analyses using conventional methods [5] [7] [9] [10] [11] [12]
(median + median absolute deviation
Estimation Models (a) (b) (c) (d)
Observability SSv (7.03 4+ 3.90) x 10~° 0+0 (9.56 +12.90) x 107° 0+0
using Relative SSV (1.3940.77) x 10~1¢ (N/A) (145+1.95) x 10712 (N/A)
Empirical Observability Marginally Observable Unobservable Marginally Observable Unobservable
Gramian [5 Existence of a
[11] >l DSE observer No No No No
Observability S'SV 0.0959 + 0.0007_9 0+0 0.0357 + 0.00003_8 0+0
using Relative SSV (8.32 + 0.04) x 10 (N/A) (1.70‘1 0.002) x 10 (N/A)
. o . Observability Marginally Observable Unobservable Marginally Observable Unobservable
Linearization .
7] Existence of a No No No No
DSE observer
e SSV 0.430 + 0.020 0+0 Matlab out of memory 0+0
Ol:ls:;;;a;j;:ty Relative SSV (3.704+0.17) x 10~8 (N/A) Matlab out of memory (N/A)
. Observability Marginally Observable Unobservable (N/A) Unobservable
derivative [7] Existence of a '
[91110] DSE observer No No (N/A) No
SSv 0.0959 + 0.0007 0+0 0.0357 + 0.00003 0+0
Relative SSV (8.3240.04) x 10~° (N/A) (1.70 £ 0.002) x 108 (N/A)
Detectability Rightmost —0.0606 + 0.0002 | —0.0606 + 0.0002 1.7641 + 0.0013 1.7641 + 0.0013
Analysis[12] |—Sigenvalues
Detectability Yes Yes No No
Existence of a
DSE observer Yes Yes No No
Convergence of the UKF Yes Yes Yes No
Convergence of the EKF Yes Yes Yes No

In summary, a DSE observer exists for estimation
models (a), (b), (c) and does not exist for estimation model
(d). The above results also suggest that users may prefer
estimation models (a) and (b), which use voltage phasor as

their inputs because they guarantee the existence of a DSE
estimator whether the current phasor is available or not. In
other words, the voltage phasor is a must-have while the
current phasor is optional for the existence of a DSE estimator.
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When the current phasor is the input, as in model (d), a DSE
estimator does not exist when the voltage phasor is not
available. This suggests that adding a backup voltage phasor
when placing PMUs can act as a preventive strategy to reduce
the risk of losing the voltage phasor.

4.3. Verification using the UKF and EKF

To verify the above results, DSE is carried out using
the UKF and EKF to estimate the dynamic states of
synchronous machine 5. The nine targeted states include four
states of its generator (3, w,, Eg, Eq), three states of its exciter
(Efa, VF, Vr), and two states of its turbine-governor model
(Ty, Psyy). The corresponding state estimates are displayed in
Fig. 3. The DSEs for estimation models (a), (b), and (c)
converge, while the DSE for model (d) diverges. These
convergence properties are also summarized in the last two
rows of Table 1.

Note that the convergence properties of the UKF and
EKF agree. They are also consistent with the analysis results
on the existence of a DSE observer from the proposed method
as the existence of a DSE observer is a necessary, but not
sufficient, condition of the convergence of a DSE filter
(including for the UKF and EKF). In other words, the
convergence of the UKF and EKF indicates that there must
exist a DSE observer, but the reciprocal is not inherently true.
Similarly, if a DSE observer does not exist, the UKF and EKF
shall diverge. The consistency verifies the study results of the
proposed method.

The proposed method has been successfully applied to
other generators and their associated controllers, then verified
using the UKF and EKF. These results have been omitted for
brevity.

4.4. Comparison with the Conventional Methods

To reveal the distinguishing features of the proposed
method, the SSV and relative SSV of the observability
matrices from empirical Gramian [11] [5], linearization [7],
and Lie derivative [7] [9] [10] are calculated and summarized
in Table 2. To facilitate the comparison, the convergence of
the UKF and EKF is also shown in the last two rows of Table
2. Here, the relative SSV is defined as the ratio of the SSV to
the largest singular value, i.e., the inverse of the condition
number. Note that these observability analysis results are
consistent and suggest that models (a) and (c) are marginally
observable; and that models (b) and (d) are unobservable.
Note that these observability methods can successfully
explain the divergence of the UKF and EKF on model (d); but
they fail to explain the convergence of the DSE using the
UKF and EKF on models (a), (b), and (c).

—— True Value

= = ~UKF Model (a))

- - -UKF Model (b)
UKF Madel (c)

1.0002 ' i
1
i
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Fig. 3. True and estimated states of machine 5 in the IEEE
10-machine 39-bus system for the four models using the UKF
and EKF

Applying the detectability analysis method proposed
in [12], models (a) and (b) are detectable because they are
stable, while models (c) and (d) are not detectable because
they are unstable and effectively unobservable. Note that the
detectability method can successfully explain the DSE’s
divergence on model (d) and convergence on models (a) and
(b), but fails to explain the DSE’s convergence on estimation
model (¢). As such, the distinguishing feature of the proposed
method is its applicability to a marginally observable model,
such as model (c), whose eigenvalues corresponding to its
marginally observable states need to be identified.

5. Conclusions

Measurement setup may result in a marginally
observable state in estimation models used by the DSE, which
often occurs in a high-order synchronous machine model.
Conventional observability and detectability analyses cannot
be directly applied to a marginally observable system to
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determine whether a DSE observer exists for an estimation
model. Applying the method proposed here, the smallest
perturbation matrices that make the estimation models
unobservable are identified and used as a metric to quantify
the observability and identify the marginally observable
states as well as their associated eigenvalues. It is shown that
when all the eigenvalues of the marginally observable states
in a synchronous machine are stable, a DSE observer shall
exist. When one eigenvalue of the marginally observable
states in a synchronous machine is unstable, a DSE observer
shall not exist. As such, to ensure the convergence of DSE for
a marginally observable system, one shall select
measurement setup and estimation models which have stable
eigenvalues for marginally observable states and
unobservable states. The proposed method can identify
marginally observable states and their associate eigenvalues,
determining their detectability when conventional methods
cannot. Because a marginally observable system is often
encountered in power system DSE, this advantage allows the
proposed method to qualify more estimation models and
demand fewer measurements in determining the existence of
an observer than the conventional methods.

To leverage the powerful analytical tools available to
linear systems, the proposed method uses a linearized model

to approximate a nonlinear system around its operating points.

As such, the proposed method can be applied to the systems
that can be approximated reasonably well by linear models
around their operating points. On the other hand, the
linearization procedure may introduce linearization errors
when the nonlinearity of the system is strong. In future work,
the proposed method will be extended to handle the systems
with strong nonlinearity.

6. Appendix A. Find the Minimum Perturbation
Matrices

The method proposed in [14] is used in this paper to
identify the minimum perturbation matrices AA* and AC*
that make the original system unobservable. Specifically, the
solution to (Al.a) corresponds to a real A* while the solution
to (A1.b) corresponds to a pair of complex A*s. The solution
to (4) is obtained as the smaller value of pg4(4,C) and

luR,Z (/T' 6) .

Hr1(4,C) = rrﬂg,gl{ (n — a4 )AqH} (Al.a)
iz (4,C) = R{ (=94 )Aq”} (A1b)

The perturbation matrices AA* and AC* that make the
original system unobservable are not directly available in
terms of ¢ * [14] but are needed for the applications proposed
in this paper. Thus, they are derived in this appendix.

To be self-contained, algorithm 4 in [14] is
summarized as the flow chart in Fig. A1l. It uses algorithm 1,
which is summarized as the flow chart in Fig. A2. Note that
the minimum perturbation matrices are given in terms of
intermediate variables Q and Ax and By as in Fig. Al. To stay
consistent with the procedures used in [14], the derivation is
first performed for controllability and then extended to
observability using their duality. Note that the bars over the
matrix notation are removed in this Appendix (i.e., AA* —

AA™) for simplicity. Only the derivation procedure for solving
(Al.b) is given in this appendix because it can be easily
extended to solve (Al.a).

6.1. Perturbation matrix, AA* in terms of q* and A

6.1.1 Problem formulation
Given (A2) from algorithm 4 in the controllability
studies of [14], find the 4A* in terms of 4 and ¢ * that makes
the system uncontrollable. Then, extend the result to
observability studies to find 44* in terms of 4 and g*.

AA* = QARQT — A (A2)

where 4;, = QTAQ

_JA(1in—=2,1:n=-2) A(lin—2,n-1:n) (A3)
T Ay(n—1:n,1:n—-2) Ay(n—-1:in,n—1:n)

Ako

N [Ak(l:n—Z,l:n—Z) Ay(lin—2,n—1:n) (A4)
- 0 Ay(n—1:n,n—1:n)

6.1.2 Solution
A (lin—-2,1:n—-2) A, (l:in—2,n—1:n)

(A4) = Ay = Ain—-1in1in—-2) A (n-1linn-—1:n)
0
TA(n—1:n,1:n—2) 0]
Y gm0 a9 SBoas
0 0
Ao =0ra0-[g P]eraeln 7] (A3)
(A2) = AA* = QA QT —
A
45 pa =0 [g Z] QTAQ [1”52 8] Q"
. o 0G,1:n-2)T
= A =-[0 QC,n—1:n)] Q(:’n_l:n)r]
lin—=2)T
AlQG:,1:n—2) 0] g(( nﬁl'n))T

=—{QG,n—1m)QC,n—1:n)" }A{Q(¢,1:n
-2)Q¢,1:n—-2)"}

Q(:1:n—-2)Q(:1:n-2)T =1,-Q(:,;n—1:n)Q(;n—1:n)T

(46)

A4 = —{Q(:,n—1:n)Q(C,n—1:n)T}A
{I,-QCG,n—1:n)QCG,n—1:n)T} (A6)
= —{g*¢"NAlL, - ¢"¢"")

The observability duality of (A6) is (A7).

AR = (I, —q"q""}A{q"q""} (A7)

6.2. Perturbation matrix AC* in terms of g* and C

6.2.1 Problem formulation
Given (AS8), which is from the controllability studies,
find AB* in terms of B and ¢* that makes the system
uncontrollable. Then, extend the result to find AC* in terms
of C and ¢* for observability analysis.



B (1:in—2,3)
— Tp— k ]
where Be=0'5 [Bk(n— 1ny] A9
B
Byo = [ "(1:“‘2'9] (A10)
0
6.2.2 Solution
Bi(1n-2, I 01[Brn-2,
A10) =B é[ <1-n—2,-)]= n—2 ,
(10)=2 B 2 [ 1002 =gz ]| o
(49) [y O (49)
= Bio —[ 0 O]Bk = (A11)
— In—z 0 T
Bko—[ 0 O]Q B (Al1)

(A8) > AB* = QB,, — B
(411)

=>AB*=Q[1n(_)2 8]QTB_B
— {Q [In62 g] QT — QQT}B

~_0 [% 2] Q"B - (412)

AB*=—-Q(G,n—1:n)QCG,n—1:n)" B
Al2
= —q'q" B (A12)

The observability duality of (A12) is (A13).

AC* = —Cq*q*" (A13)

Inputs: matrices 4 and B of the
system

¥

k=0; Ak:A; B,g-:B.' Q:L,‘

. k=k+1;

k>Max iterations?
Yes
2. D=0, . .
3 ’;:', Warning of reaching
4' f=1! max iterations

5. @/ (A, By) as in Def. 5.1

il'l [8] |¢tj(l4k: Bﬁ) |>¢nm,\'?

6.Dp=| D) (4}, By

T =i =],
8. Apa=A/ (4. B (Def. 5.9 in [8])
9. Byu=B/(A;, By (Def. 5.9 in [8])

13. /iﬁ':Amu\': ﬁﬂ':Bmm;
0=l [k = max-
v
14. Oy=algorithm1(4,,; B;)

¥

15.1f ji=1, Q4= L, +[O(1,1)-1]eie' +Ou(1,2)ee,'+
Ou2, Dewe/+[Ou2,2)-1ee,” ;

Ifji=2, Ok= L+ [Qu(1.1)-1]eie! +Ou(1,2)eie,.,"+
On2, Dep el [On2,2)-1]e, e, 1",
where el:Iti("!jk); EH:]H(:)H); etr-izlu(»'r”']);

7
16. Ay /=0y 4:0x; By /=04 Bi; 0=00.

17. d>(*) as in Def. 5.10 in
[8] do(Ai: 1, By )<dx(Ay, BY)?

Outputs: ¢ =Q(:,n—1:in); A" = eig(q‘TAq');
o _ oA Qin=2,1in=2) A(lin=2Zn-1n)| ;.
AA _Q[ 0 Ak(n—l:n,n—l:n)]Q A;

. B (lin—2,: . . .
a8 =q| ( " )]_B; M2 (A B) = [laA* AB°|l.

Fig. Al. Flow chart for calculating the minimum distance
from a given system to an uncontrollable system through real
number perturbation using algorithm 4 in [14]



Inputs: matrices 4 and B of the
system

1

k=0;, A;=A; B;=B; O=1,.

Warning of
reaching max
iterations

L [U Sk Vil=
svd([Ar-Adn )] Bil)

!

2. 0FUg;
1 3. 4; f:QL:AA-le
By 1 =Qx By

4. d;(*) as in Def. 5.1 in [§]
di(Ag. 1, B ))<di(Ay, By)?

5. Outputs: Q; A¥=A(n,n);
1 =Si(n,n)

Fig. A2. Flow chart for calculating the minimum distance
from a given system to an uncontrollable system through
complex number perturbation using algorithm 1 in [14]
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