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POLICY OPTIMIZATION FOR \bfscrH \bftwo LINEAR CONTROL
WITH \bfscrH \infty ROBUSTNESS GUARANTEE:

IMPLICIT REGULARIZATION AND GLOBAL CONVERGENCE\ast 

KAIQING ZHANG\dagger , BIN HU\dagger , AND TAMER BA\c SAR\dagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Policy optimization (PO) is a key ingredient for modern reinforcement learning. For
control design, certain constraints are usually enforced on the policies to optimize, accounting for
stability, robustness, or safety concerns on the system. Hence, PO is by nature a constrained (non-
convex) optimization in most cases, whose global convergence is challenging to analyze in general.
More importantly, some constraints that are safety-critical, e.g., the closed-loop stability, or the \scrH \infty -
norm constraint that guarantees the system robustness, can be difficult to enforce on the controller
being learned as the PO methods proceed. In this paper, we study the convergence theory of PO for
\scrH 2 linear control with \scrH \infty robustness guarantee. This general framework includes risk-sensitive lin-
ear control as a special case. One significant new feature of this problem, in contrast to the standard
\scrH 2 linear control, namely, linear quadratic regulator problems, is the lack of coercivity of the cost
function. This makes it challenging to guarantee the feasibility, namely, the \scrH \infty robustness, of the
iterates. Interestingly, we propose two PO algorithms that enjoy the implicit regularization property,
i.e., the iterates preserve the \scrH \infty robustness automatically, as if they are regularized. Furthermore,
despite the nonconvexity of the problem, we show that these algorithms converge to a certain globally
optimal policy with globally sublinear rates, without getting stuck at any other possibly suboptimal
stationary points, and with locally (super)linear rates under additional conditions. To the best of
our knowledge, our work offers the first results on the implicit regularization property and global
convergence of PO methods for robust/risk-sensitive control.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . policy optimization, robust control, global convergence, implicit regularization,
learning for control
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\bfD \bfO \bfI . 10.1137/20M1347942

1. Introduction. Recent years have seen tremendous success of reinforcement
learning (RL) in various sequential decision-making applications [40] and continuous
control tasks [26]. Interestingly, most successes hinge on the algorithmic framework of
policy optimization (PO), umbrellaing policy gradient (PG) methods [41], actor-critic
methods [24], trust-region methods [39], etc. This inspires an increasing interest in
studying the convergence theory, especially global convergence to optimal policies, of
PO methods; see recent progress in both classical RL contexts [1, 6], and continuous
control benchmarks [10, 15, 29, 47].

In general, PO methods solve RL problems under the framework of constrained
optimization minK\in \scrK \scrJ (K), where K is the parameter of the policy/controller, \scrJ (K)
is the cost function the agent needs to minimize, and \scrK denotes the feasible set of
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K.1 For instance, in the standard continuous control task, linear quadratic regu-
lator (LQR), the controller is parameterized as ut =  - Kxt, the cost is \scrJ (K) :=\sum \infty 

t=0 E[x\top 
t Qxt+u\top 

t Rut], and \scrK is the set of K such that the system is stabilizing un-
der K. Such a constrained optimization problem is generally nonconvex, even for the
simple LQR problems [10, 15]. To ensure the feasibility of K on the fly as PO meth-
ods proceed, projection of the iterates onto \scrK seems to be natural. However, such
a projection may not be computationally efficient or even tractable. For example,
projection onto the stability constraint in LQR problems can hardly be computed, as
the set \scrK therein is well known to be nonconvex [15]. Fortunately, such a projection
is not needed when PG-based methods are used to solve LQR, as \scrJ (K) therein has
a coercive property, i.e., the cost grows up to infinity as K approaches the boundary
of \scrK [10]. Hence, the intuition behind this avoidance of projection is that, as long
as the cost is decreased along the iteration, the iterates stay in \scrK and remain stabi-
lizing. Such a result is algorithm-agnostic, in the sense that it is independent of the
algorithms adopted, as long as they follow any descent directions of the cost.

Besides the stability constraint, another commonly used one in the control liter-
ature is the \scrH \infty -norm constraint, which plays a fundamental role in robust control
[2, 14, 48] and risk-sensitive control [16, 44]. Such a constraint can be used to guaran-
tee robust stability/performance of the closed-loop systems when model uncertainty is
present. Compared with LQR under the stability constraint, control synthesis under
the \scrH \infty constraint leads to a fundamentally different optimization landscape, which
has not been fully investigated yet. In this paper, we take an initial step towards
understanding the theoretical aspects of policy-based RL methods on robust/risk-
sensitive control problems with such a constraint. Specifically, we establish a conver-
gence theory for PO methods on \scrH 2 linear control problems with \scrH \infty constraints,
referred to as mixed \scrH 2/\scrH \infty state-feedback control design in the robust control lit-
erature [16, 22, 23]. As the name suggests, the goal of mixed design is to find a
robust stabilizing controller that minimizes an upper bound for the \scrH 2-norm, subject
to that the \scrH \infty -norm on a certain input-output channel is less than a prespecified
value. This general framework also includes risk-sensitive linear control, modeled as
linear exponential quadratic Gaussian (LEQG) [21, 44] problems as a special case. In
addition, this framework is also closely related to maximum-entropy \scrH \infty control [16]
and zero-sum linear quadratic (LQ) dynamic games [4].

Two challenges exist in the analysis of PO methods for mixed design problems.
First, by definition, the \scrH \infty -norm constraint is defined in the frequency domain, and
is hard to impose by directly projecting onto \scrK , especially when the system model is
unknown in RL. Nevertheless, preserving the \scrH \infty -norm constraint as the controller
updates is critical in practice, as the violation of it can be catastrophic for real systems.
Second, more importantly, compared to LQR, the cost of mixed design is no longer
coercive, as illustrated in Figure 1(b) (and formally established later). Therefore, the
decrease in cost cannot guarantee the feasibility of the iterate, as the cost remains
finite around the boundary of \scrK . There may not even exist a constant step size that
induces global convergence to the optimal policy. In this paper, we show that two
PO methods can indeed preserve the robustness constraint along the iterations, and
enjoy global convergence guarantees.

1Hereafter, we will mostly adhere to the terminologies and notational convention in the control
literature, which are equivalent to, and can be easily translated to, those in the RL literature, e.g.,
cost versus reward, control versus action, etc.
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(a) LQR (b) Mixed \scrH 2/\scrH \infty Control

Fig. 1. Comparison of the landscapes of LQR and mixed \scrH 2/\scrH \infty control design that illustrates
the difficulty of analyzing the latter. The dashed lines denote the boundaries of the constraint sets \scrK .
For (a) LQR, \scrK is the set of all linear stabilizing state-feedback controllers; for (b) mixed \scrH 2/\scrH \infty 
control, \scrK is set of all linear stabilizing state-feedback controllers satisfying an extra \scrH \infty constraint
on some input-output channel. The solid lines represent the contour lines of the cost \scrJ (K). K and
K\prime denote the control gain of two consecutive iterates; \bigstar denotes the global optimizer.

Contribution. Our key contributions are threefold: First, we study the landscape
of mixed \scrH 2/\scrH \infty design problems, and propose three PG-based methods, inspired by
those for LQR [15]. Second, we prove that two of them (the Gauss--Newton and the
natural PG) enjoy the implicit regularization property, i.e., the iterates are automat-
ically biased to satisfy the required \scrH \infty constraint. Third, we establish the global
convergence of those two PO methods to the globally optimal policy with globally
sublinear and locally (super)linear rates under certain conditions, despite the non-
convexity of the problem. In particular, the two policy search directions always lead
convergence to a certain global optimum, without getting stuck at any other possi-
bly suboptimal stationary points/local optima. To the best of our knowledge, our
work appears to be the first studying the global convergence theory of PO methods
for learning for robust/risk-sensitive control. Due to space limitations, we focus on
the discrete-time settings in this paper. We have also established a set of results for
continuous-time settings, and detailed numerical simulations, which can be found in
the companion report [46]. We have included some of the simulation results in the
appendix, to illustrate the computation efficiency of our PO methods. We highlight
the most related literature as follows, and refer to [46] for a more detailed one.

Related work. The history of mixed \scrH 2/\scrH \infty control design dates back to the
seminal works [5, 23] for continuous-time and [22, 31] for discrete-time settings, re-
spectively. A nonsmooth constrained optimization perspective for solving general
output-feedback mixed design problems was adopted in [2], with a proximity control
algorithm designed to handle the constraints explicitly, and convergence guarantees
to stationary-point controllers. Numerically, there also exist other packages for multi-
objective \scrH 2/\scrH \infty control [3] that are based on nonsmooth nonconvex optimization.
However, in spite of achieving impressive numerical performance, these methods have
no theoretical guarantees for either the global convergence or the \scrH \infty -norm con-
straint violation. It is also not yet clear how these methods can be made model-free.
Mixed \scrH 2/\scrH \infty control can also be unified with risk-sensitive linear control [16, 44],
maximum-entropy \scrH \infty control [16], and zero-sum dynamic games [4, 21]. Recently,
first-order optimization methods have also been applied to finite-horizon risk sensi-
tive nonlinear control, but the control inputs (instead of the policy) are treated as
decision variables [37]. Convergence to stationary points was shown therein. Besides
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these direct controller/policy search methods, general mixed \scrH 2/\scrH \infty control can also
be tackled via Youla-parameterization-based approaches [8, 12, 36, 38], which lead to
convex programming problems that can be solved numerically. However, actual im-
plementation of these approaches either requires a finite-horizon truncation of system
impulse responses, which loses optimality guarantees [8], or require solution of (a large
enough sequence of [12, 36]) semidefinite programs or linear matrix inequalities with
lifted dimensions [12, 36, 38], which may not be computationally efficient for large-
scale dynamical systems. More importantly, it is not yet clear how to implement these
approaches in the data-driven regime, without identifying the model. In contrast, the
direct search methods can easily be made model-free; see, e.g., the methods in [15, 29]
for LQR. Another related line of work is on PO for LQR, which stemmed from the
adaptive policy iteration algorithm in [9]. Lately, studying the global convergence of
PG-based methods for LQR [10, 15, 17, 29, 30, 43] has drawn increasing attention.
Starting from the seminal work [15], where the optimization landscape was studied,
[29, 30] have improved the sample complexity of [15]. However, no robustness was
concerned in these LQR (\scrH 2 control) formulations. More recently, [17, 43] have ex-
tended the work to the case with multiplicative noises, as one way to improve the
controller's robustness.

2. Preliminaries. We first formulate mixed \scrH 2/\scrH \infty control with a single input-
output channel as a constrained PO problem. We note that this problem covers risk-
sensitive linear control [21] as a special case [16]. We provide some new results on
this connection in [46, sect. 2]. Consider the linear system

xt+1 = Axt +But +Dwt, zt = Cxt + Eut,(2.1)

where xt \in Rm, ut \in Rd denote the states and controls, respectively, wt \in Rn is
the disturbance, zt \in Rl is the controlled output, and A,B,C,D,E are matrices of
proper dimensions. It has been shown in [22] that a linear time-invariant (LTI) state-
feedback controller (without memory) suffices to achieve the optimal performance
of mixed \scrH 2/\scrH \infty design under this state-feedback information structure.2 Hence,
it suffices to consider only a stationary state-feedback controller parameterized as
ut =  - Kxt. With this parameterization, the transfer function from the disturbance
wt to the output zt can be represented as\Biggl[ 

A - BK D

C  - EK 0

\Biggr] 
.(2.2)

In common with [4, 16, 23], we make the following assumption on (A,B,C,D,E).

Assumption 2.1. There exists some R > 0 such that E\top [C E] = [0 R].

Assumption 2.1 is fairly standard, which clarifies the exposition substantially by
normalizing the control weighting and eliminating cross-weightings between control
signal and state [4]. Hence, the transfer function in (2.2) has the equivalent form3 of

\scrT (K) :=

\Biggl[ 
A - BK D

(C\top C +K\top RK)1/2 0

\Biggr] 
.(2.3)

2For discrete-time settings, if both the (exogenous) disturbance wt and the state xt are available,
i.e., under the full-information feedback case, LTI controllers may not be optimal [22]. Interestingly,
for continuous-time settings, LTI controllers are indeed optimal [23].

3Strictly speaking, the transfer functions for (2.2) and (2.3) are equivalent in the sense that the
values of \scrT \sim (K)\scrT (K) are the same for all the points on the unit circle.
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Hence, robustness of the designed controller can be guaranteed by the constraint
on the \scrH \infty -norm, i.e., \| \scrT (K)\| \infty < \gamma for some \gamma > 0. The intuition behind the
constraint, which follows from the small gain theorem [45], is that the constraint on
\| \scrT (K)\| \infty implies that the closed-loop system is robustly stable in that any stable
transfer function \Delta satisfying \| \Delta \| \ell 2\rightarrow \ell 2 < 1/\gamma may be connected from zt back to wt

without destablizing the system. For more background on \scrH \infty control, see [4, 48].
For notational convenience, we define the feasible set of mixed \scrH 2/\scrH \infty control design
as

\scrK :=
\bigl\{ 
K

\bigm| \bigm| \rho (A - BK) < 1, and \| \scrT (K)\| \infty < \gamma 
\bigr\} 
.(2.4)

We note that the set \scrK may be unbounded.
In addition to the constraint, the objective of mixed \scrH 2/\scrH \infty design is usually

an upper bound of the \scrH 2 norm of the closed-loop system. Let \scrJ (K) be the cost
function of mixed design. Then the common forms of \scrJ (K) include [31]

\scrJ (K) = Tr(PKDD\top ),(2.5)

\scrJ (K) =  - \gamma 2 log det(I  - \gamma  - 2PKDD\top ),(2.6)

\scrJ (K) = Tr
\bigl[ 
D\top PK(I  - \gamma  - 2DD\top PK) - 1D

\bigr] 
,(2.7)

where PK is the solution to the following Riccati equation

(A - BK)\top \widetilde PK(A - BK) + C\top C +K\top RK  - PK = 0(2.8)

with \widetilde PK defined as

\widetilde PK := PK + PKD(\gamma 2I  - D\top PKD) - 1D\top PK .(2.9)

All three objectives in (2.5)--(2.7) are upper bounds of the \scrH 2-norm [31]. In par-
ticular, cost (2.5) has been adopted in [5, 18], which resembles the standard \scrH 2/LQG
(linear quadratic Gaussian) control objective, but with PK satisfying a Riccati equa-
tion instead of a Lyapunov equation. Cost (2.6) is related to maximum entropy
\scrH \infty -control; see the detailed relationship between the two in [32]. In addition, cost
(2.7) can also be connected to the cost of LQG using a different Riccati equation
[31, Remark 2.7]. As \gamma \rightarrow \infty , the costs in all (2.5)--(2.7) reduce to the cost for LQG,
i.e., \scrH 2 control design problems.

In sum, the mixed \scrH 2/\scrH \infty control design can be formulated as

min
K

\scrJ (K) s.t. K \in \scrK (2.10)

with \scrJ (K) and \scrK defined in (2.5)--(2.7) and (2.4), respectively.
A key element of the above formulation is the feasibility constraint (2.4), which

is characterized in the frequency domain and hence hard to directly enforce over K
in PO. Interestingly, by using a significant result in robust control theory, i.e., the
bounded real lemma [4, Chapter 1], [35, 48], constraint (2.4) can be related to Riccati
equation/inequality as follows.

Lemma 2.2 (bounded real lemma). Consider a discrete-time transfer function
\scrT (K) defined in (2.3), then the following three conditions are equivalent:

\bullet The controller K lies in \scrK defined in (2.4), i.e., \rho (A - BK) < 1 and \| \scrT (K)\| \infty <
\gamma .
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\bullet The Riccati equation (2.8) admits a unique stabilizing solution PK \geq 0 such
that (i) I  - \gamma  - 2D\top PKD > 0; (ii) (I  - \gamma  - 2PKDD\top ) - \top (A - BK) is stable.
\bullet There exists some P > 0, such that

I  - \gamma  - 2D\top PD > 0,(2.11)

(A - BK)\top \widetilde P (A - BK) - P + C\top C +K\top RK < 0,

where \widetilde P := P + PD(\gamma 2I  - D\top PD) - 1D\top P .

The three conditions in Lemma 2.2 will be frequently used in the ensuing analysis.
Note that the unique stabilizing solution to (2.8) for any K \in \scrK , is also minimal, if
the pair (A - BK,D) is stabilizable; see [34, Theorem 3.1]. This holds here since any
K \in \scrK is stabilizing. More comments on Lemma 2.2 are provided in section A.1.

3. Landscape and algorithms. In this section, we investigate the optimization
landscape of mixed \scrH 2/\scrH \infty control design, and develop PO algorithms for solving
(2.10) provably. In particular, we focus on the representative example cost \scrJ (K)
in (2.6), as it coincides with the objective of LEQG, a fundamental setting in risk-
sensitive control (cf. [46, sect. 2]). Although we focus here on the LEQG cost function,
the techniques and most of the results below apply to other types of costs as well; see
the brief discussions in later sections, and more detailed ones in [46].

3.1. Optimization landscape. We start by showing that the mixed-design
problem in (2.10) lacks convexity and coercivity.

Lemma 3.1 (nonconvexity and no coercivity). The discrete-time mixed \scrH 2/\scrH \infty 
design problem (2.10) is nonconvex. Moreover, the cost functions (2.6) is not coercive.
Particularly, as K \rightarrow \partial \scrK , where \partial \scrK is the boundary of the constraint set \scrK , the cost
\scrJ (K) does not necessarily approach infinity.

The proof of Lemma 3.1 is deferred to section A.2. Note that the results above
also apply to the other two objectives, (2.5) and (2.7), the proofs of which are not
included here due to page limitation, and can be found in [46, Lemmas 3.1, 3.2]. In
particular, we show nonconvexity by an easily constructed example that the convex
combination of two control gains K and K \prime in \scrK may no longer lie in \scrK . Similar
nonconvexity of the constraint set also exists in LQR problems [10, 15], and has been
recognized as one of the main challenges for solving PO via gradient-based methods.

More importantly, we have also constructed a simple example to show the lack
of coercivity for (2.10). Note that the landscape of LQR has the desired property
of being coercive [10, Lemma 3.7], which played a significant role in the analysis of
PO methods for LQR. The intuition for this result is that for given K \in \scrK , the
policy evaluation equation for mixed design problems is a Riccati equation (see (2.8)
(a quadratic equation of PK in a 1-dimensional case), while for LQR, the policy
evaluation equation is a Lyapunov equation, which is essentially linear. Hence, some
additional condition on K is required for the existence of the solution, which can be
more restrictive than the conditions on K and PK that yield a finite \scrJ (K). In this
case, the existence condition of the solution characterizes the boundary of \scrK , which
leads to a well-defined PK , and thus a finite value of \scrJ (K), even when K approaches
the boundary \partial \scrK .

The lack of coercivity turns out to be the main challenge when analyzing the
stability/feasibility of PO methods here, in contrast to LQR problems. Detailed
discussion on this is provided in section 4.1. The illustration in Figure 1 in section 1
of the landscapes of two problems was actually based on Lemma 3.1. We then show
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the differentiability of \scrJ (K) at each K within \scrK , and provide the closed form of the
PG.

Lemma 3.2 (PG expression). The cost \scrJ (K) defined in (2.6) is differentiable in
K for any K \in \scrK , and the PG has the following form:

\nabla \scrJ (K) = 2
\bigl[ 
(R+B\top \widetilde PKB)K  - B\top \widetilde PKA

\bigr] 
\Delta K ,

where \Delta K \in Rm\times m is a matrix given by

\Delta K :=
\infty \sum 
t=0

\bigl[ 
(I  - \gamma  - 2PKDD\top ) - \top (A - BK)

\bigr] t
D(I  - \gamma  - 2D\top PKD) - 1D\top 

\cdot 
\bigl[ 
(A - BK)\top (I  - \gamma  - 2PKDD\top ) - 1

\bigr] t
,(3.1)

and \widetilde PK is defined in (2.9).

The proof of Lemma 3.2 is provided in section A.3. Similar expressions for PG
can also be derived for the other two objectives (2.5) and (2.7), with only the form
of \Delta K being different, e.g., see our LQ zero-sum game paper [47], where the cost
used was essentially the one in (2.5) in the trace form. Note that Lemma 3.2 also
implies some property on the landscape of \scrJ (K). Specifically, if \Delta K > 0 is full rank,

then \nabla \scrJ (K) = 0 admits a unique solution K = (R + B\top \widetilde PKB) - 1B\top \widetilde PKA, which
corresponds to the unique global optimum. Otherwise, if \Delta K \geq 0 is not full rank,
there can be multiple stationary points. Yet, one global optimum is still of the same
form. We formally establish this in the following proposition proved in section A.4.

Proposition 3.3. Suppose that the discrete-time mixed \scrH 2/\scrH \infty design admits
a global optimal solution K\ast \in \scrK ; then, one such solution has the form of K\ast =
(R + B\top \widetilde PK\ast B) - 1B\top \widetilde PK\ast A. Additionally, if the pair

\bigl( 
(I  - \gamma  - 2PKDD\top ) - \top (A  - 

BK), D
\bigr) 
is controllable at some stationary point of \scrJ (K) such that \nabla \scrJ (K) = 0, then

this is the unique stationary point, and corresponds to the unique global optimizer K\ast .

We note that the landscape result above can also be shown for the other two
objectives (2.5) and (2.7). In fact, the key in proving Proposition 3.3 is to show that
PK\ast is matrixwise minimal in the positive semidefinite sense for all PK with K \in \scrK .
Note that since the objectives (2.5) and (2.7) are both monotonically nondecreasing
in the eigenvalues of PK , one can verify that K\ast is also the global optimizer. Besides
(2.5) and (2.7), such an argument also applies to other objectives nondecreasing in
the eigenvalues of PK . Note that K\ast may not be the unique global minimizer without
the controllability assumption. Although the controllability assumption is standard
[31], and is also satisfied automatically by LEQG problems (see our [46, sect. 3]), we
will show next that our PO methods can find the global optimum K\ast even without
this assumption.

3.2. PO algorithms. Consider three PG-based methods as follows. For sim-
plicity, we define

EK := (R+B\top \widetilde PKB)K  - B\top \widetilde PKA.(3.2)

We also suppress the iteration index, and use K and K \prime to represent the control gain
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before and after one-step of the update.

PG: K \prime = K  - \eta \nabla \scrJ (K) = K  - 2\eta EK\Delta K ,(3.3)

Natural PG: K \prime = K  - \eta \nabla \scrJ (K)\Delta  - 1
K = K  - 2\eta EK ,(3.4)

Gauss--Newton: K \prime = K  - \eta (R+B\top \widetilde PKB) - 1\nabla \scrJ (K)\Delta  - 1
K

= K  - 2\eta (R+B\top \widetilde PKB) - 1EK ,(3.5)

where \eta > 0 is the step size. The updates are motivated by the PO updates for
solving LQR problems [10, 15], but with PK therein replaced by \widetilde PK . The natural
PG update is related to the gradient over a Riemannian manifold, while the Gauss--
Newton update is one type of quasi-Newton update; see [10] for further justifications
on the updates. In particular, with \eta = 1/2, the Gauss--Newton update (3.5) can be
viewed as the policy iteration update for infinite-horizon mixed \scrH 2/\scrH \infty design. To
enable a model-free RL update rule, the (natural) PG directions can be estimated
by sampling the trajectories of the system, as well as the cost functions, without
estimating system parameters; see examples in [15, 29, 47]. More discussions on the
model-free versions of these updates can be found in [46, sects. 3 and 6].

4. Theoretical results. In this section, we study the convergence of the PO
methods proposed in section 3.

4.1. Implicit regularization. The first key challenge in the convergence analy-
sis for PO methods, is to ensure that the iterates remain feasible as the algorithms
proceed, hopefully without the use of projection. This is especially significant in mixed
design problems, as the feasibility here means robust stability, the violation of which
can be catastrophic in practical online control design. We formally define the concept
of implicit regularization to describe this feature.

Definition 4.1 (implicit regularization). For mixed \scrH 2/\scrH \infty control design prob-
lem (2.10), suppose an iterative algorithm generates a sequence of control gains \{ Kn\} .
If Kn \in \scrK for all n \geq 0, this algorithm is called regularized; if it is regularized without
projection onto \scrK for any n \geq 0, this algorithm is called implicitly regularized.

One possible way for the iterates to remain feasible is to keep shrinking the step
size, whenever the next iterate goes outside \scrK , following for example the Armijo
rule. However, as the cost \scrJ (K) is not necessarily smooth (see Lemma 5.1 and its
discussion later), it may not converge within a finite number of iterations [20, Theorem
3.2]. Another option is to project the iterate onto \scrK . Nonetheless, it is challenging
to perform projection onto the \scrH \infty -norm constraint set in a data driven manner.

For LQR problems, due to the coercivity of the cost that as K approaches the
boundary of the stability/feasibility region \{ K \in Rd\times m | \rho (A  - BK) < 1\} , i.e., as
\rho (A  - BK) \rightarrow 1, the cost blows up to infinity, and due to the fact that the cost is
continuous with respect to K, the lower-level set of the cost is compact [28] and is
contained within the stability region. Hence, there is a strict separation between any
lower-level set of the cost and the set \{ K \in Rd\times m | \rho (A  - BK) \geq 1\} . There thus
exists a constant step size such that as long as the initialization control is stabilizing,
the iterates along the path remain stabilizing and keep decreasing the cost.

In contrast, for mixed \scrH 2/\scrH \infty design problems, lack of coercivity invalidates the
argument above, as the control approaching the robustness constraint boundary \partial \scrK 
may incur a finite cost, and the descent direction may still drive the iterates out of the
feasibility region. In addition, there may not exist a strict separation between all the
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lower-level sets of the cost and the complementary set \scrK c. This difficulty has been
illustrated in Figure 1 in the introduction. Interestingly, we show in the following
theorem that the natural PG and Gauss--Newton methods in (3.4)--(3.5) enjoy the
implicit regularization feature, with certain constant step sizes.

Theorem 4.2 (implicit regularization property). For any control gain K \in \scrK 
with \| K\| <\infty , suppose that the step size \eta satisfies the following:

\bullet Natural PG (3.4): \eta \leq 1/(2\| R+B\top \widetilde PKB\| );
\bullet Gauss--Newton (3.5): \eta \leq 1/2.

Then the K \prime obtained from (3.4)--(3.5) also lies in \scrK . Equivalently, K \prime is stabilizing,
i.e., \rho (A - BK \prime ) < 1, and satisfies that (i) there exists a solution PK\prime \geq 0 to the Riccati
equation (2.8); (ii) I - \gamma  - 2D\top PK\prime D > 0; (iii) \rho 

\bigl( 
(I - \gamma  - 2PK\prime DD\top ) - \top (A - BK \prime )

\bigr) 
< 1.

Proof sketch. The general idea, contrary to the coercivity-based idea that works
for any descent direction, is that we focus on the feasibility of K \prime after an update
along certain directions : either (3.4) or (3.5). By the bounded real lemma, i.e.,
Lemma 2.2, the feasibility condition for K \prime , if K \prime is stabilizing, is equivalent to the
existence of P > 0 such that the linear matrix inequalities (LMIs) in (2.11) hold for
K \prime . Moreover, it is straightforward to see that such a P > 0, if it exists, satisfies
(A  - BK \prime )\top P (A  - BK \prime )  - P < 0, which can be used to show that K \prime is stabilizing
[7]. Thus, it now suffices to find such a P .

To show this, we first study the case with step sizes being the upper bound
in the theorem, i.e., \eta = 1/2 for Gauss--Newton and \eta = 1/(2\| R+B\top \widetilde PKB\| ) for
natural PG. As the solution to the Riccati equation (2.8) under K, PK \geq 0 satisfies
I  - \gamma  - 2D\top PKD > 0, the first LMI in (2.11). Hence, it may be possible to perturb
PK to obtain a P > 0 such that the equality in (2.8) becomes a strict inequality of
the second LMI in (2.11), while preserving the first LMI. Moreover, if K \prime is not too
far away from K, such a perturbed PK should also work for K \prime . Such an observation
motivates the use of PK as the candidate of P for the LMIs in (2.11) under K \prime .

Indeed, it can be shown that substituting P = PK makes the second LMI in (2.11)
under K \prime nonstrict, namely, the left-hand side (LHS) \leq 0; see (5.5) in the detailed
proof. To make it strict, consider the perturbed P = PK +\alpha \=P for some \alpha > 0, where
\=P > 0 is the solution to some Lyapunov equation

(A - BK)\top (I  - \gamma  - 2DD\top PK) - \top \=P (I  - \gamma  - 2DD\top PK) - 1(A - BK) - \=P =  - I.(4.1)

Such a Lyapunov equation (4.1) always admits a solution \=P > 0, since K \in \scrK implies
that (I  - \gamma  - 2DD\top PK) - 1(A  - BK) is stable. The intuition of choosing (4.1) is as
follows. First, the LHS of the second LMI in (2.11) under K \prime can be separated as

(4.2)

(A - BK \prime )\top \widetilde P (A - BK \prime ) - P + C\top C +K \prime \top RK \prime 

= [(A - BK \prime )\top \widetilde P (A - BK \prime ) - (A - BK)\top \widetilde P (A - BK)] +K \prime \top RK \prime  - K\top RK\underbrace{}  \underbrace{} 
1

+ (A - BK)\top \widetilde P (A - BK) - P + C\top C +K\top RK\underbrace{}  \underbrace{} 
2

.
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By some algebra, the first term 1 is of order o(\alpha ). Since for small \alpha ,

\widetilde P = \widetilde PK + (I  - \gamma  - 2PKDD\top ) - 1(\alpha \=P )(I  - \gamma  - 2DD\top PK) - 1 + o(\alpha ),

this, combined with the Riccati equation (2.8) and (4.1), makes the second term 2 =
 - \alpha I + o(\alpha ). Hence, there exists small enough \alpha > 0 such that 1 + 2 < 0, ensuring
that the updated K \prime is feasible. Last, by the linearity of LMIs, any interpolation of
K \prime with a smaller step size is also feasible/robustly stable, completing the proof.

The detailed proof of Theorem 4.2 is deferred to section 5.1. Recall from Lemma
3.2 that for the other two objectives (2.5) and (2.7), the only difference of the PG form
is in the form of \Delta K . Notice that our update rules of natural PG and Gauss--Newton
are independent of this \Delta K . Hence, the implicit regularization results in Theorem 4.2,
in terms of ensuringK \in \scrK , also apply to the other objectives. Note that theoretically,
it is not clear yet if vanilla PG enjoys implicit regularization. It is possible that vanilla
PG does not preserve the robustness constraint. Hence, hereafter, we only focus on
the global convergence of natural PG method (3.4) and Gauss--Newton method (3.5).

4.2. Global convergence. The term global convergence here refers to two no-
tions: (i) the convergence performance of the algorithms starting from any feasible
initialization pointK0 \in \scrK ; (ii) convergence to the global optimal policy under certain
conditions. We formally establish the results for the natural PG (3.4) and Gauss--
Newton (3.5) updates in the following theorem.

Theorem 4.3 (global sublinear convergence). Suppose that K0 \in \scrK and \| K0\| <
\infty . Then, under the step size choices4 as in Theorem 4.2, both updates (3.4) and (3.5)

converge to the global optimum K\ast = (R+B\top \widetilde PK\ast B) - 1B\top \widetilde PK\ast A in that the average
of \{ \| EKn\| 2F \} over iterations converges to zero with O(1/N) rate.

The proof of Theorem 4.3 is detailed in section 5.2. The key idea is to first quan-
tify the difference in PK (both its upper and lower bounds) for any two control gain
matrices K and K \prime (cf. Lemma 5.1). Essentially it delivers some ``almost smoothness""
of PK : the leading terms in both upper and lower bounds depend on \| K \prime  - K\| with
the remaining terms being on the order of o(\| K \prime  - K\| ) if K \prime is close to K. Then, by
substituting two consecutive iterates K \prime , K \prime and the upper bound in Lemma 5.1, the
sublinear global convergence follows similarly to the analysis of smooth nonconvex
optimization using the descent lemma [11, 33]. Note that the luxury of conducting
this analysis is attributed to the implicit regularization result in Theorem 4.2, which
already ensures that the next iterate is always robustly stable. This is the key dif-
ference from any smooth nonconvex optimization and LQR analysis. Similarly to the
discussion after Theorem 4.2, the global convergence results also apply to the other
two objectives (2.5) and (2.7), as the update rules natural PG and Gauss--Newton, as
well as the performance metric (the average of \{ \| EKn\| 2F \} ), are all independent of \Delta K .

We note that the controllability assumption made in Proposition 3.3 is not re-
quired for the global convergence here. Remarkably, there might be multiple station-
ary points such that \nabla \scrJ (K) = 0, while the two specific search directions (3.4) and
(3.5) provably avoid the other local minima, and always converge to the global opti-
mum K\ast that minimizes PK in the positive semidefinite sense. This can be viewed
as another implication of implicit regularization, in that (3.4) and (3.5) always bias
the iterates towards a certain global optimal solution, without getting stuck at other
stationary points that are possibly suboptimal. The key reason is that, without using

4In fact, for natural PG (3.4), it suffices to require \eta \leq 1/(2\| R+B\top \widetilde PK0
B\| ) for the initial K0.
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the curvature information in \Delta K , these two PO methods can converge to the specific
and optimal stationary point such that EK = 0, instead of an arbitrary one. In con-
trast to the results for LQR [15], only globally sublinear O(1/N), instead of linear,
convergence rates can be obtained so far. This O(1/N) rate of the (iteration average)
gradient norm square matches the global convergence rate of gradient descent and
second order algorithms to stationary points for nonconvex problems [11].

We can obtain faster local (super)linear rates, and this is formalized as follows.

Theorem 4.4 (local (super)linear convergence). Suppose that the conditions in
Theorem 4.3 hold, and additionally DD\top > 0 holds. Then, under the step size choices
as in Theorem 4.3, both updates (3.4) and (3.5) converge to the optimal control gain
K\ast with locally linear rate, in the sense that the objective \{ \scrJ (Kn)\} defined in (2.6)
converges to \scrJ (K\ast ) with a linear rate. In addition, if \eta = 1/2, the Gauss--Newton
update (3.5) converges to K\ast with a locally Q-quadratic rate.

Proof of the above theorem is deferred to section 5.3. Key to the locally faster
rates is that the property of gradient dominance [33] holds locally around the global
optimum, which can be proved by substituting the lower bound of two consecutive
PK 's in Lemma 5.1. Note that this lower bound only holds locally. The gradient
dominance property has been shown to hold globally for LQR problems [15], and also
hold locally for zero-sum LQ games [47]. The Q-quadratic rate mirrors the rate of
Gauss--Newton with \eta = 1/2 (essentially policy iteration) for LQR problems [10, 19].

5. Proofs of the main results. Now we provide proofs for the main results.

5.1. Proof of Theorem 4.2. To show that K \prime lies in \scrK , we first argue that it
suffices to find some P > 0 such that

I  - \gamma  - 2D\top PD > 0, and(5.1)

(A - BK \prime )\top \widetilde P (A - BK \prime ) - P + C\top C + (K \prime )\top RK \prime < 0,(5.2)

where \widetilde P := P + PD(\gamma 2I  - D\top PD) - 1D\top P . By the Schur complement, showing
(5.1)--(5.2) is also equivalent to showing

\biggl[ 
(A - BK \prime )\top P (A - BK \prime ) - P + C\top C +K \prime \top RK \prime (A - BK \prime )\top PD

D\top P (A - BK \prime )  - (\gamma 2I  - D\top PD)

\biggr] 
< 0.

(5.3)

We denote the LHS of (5.2) by  - M . Thus, (5.1) and (5.2) imply

(A - BK \prime )\top P (A - BK \prime ) - P =  - M  - C\top C  - (K \prime )\top RK \prime  - (A - BK \prime )\top PD

\cdot (\gamma 2I  - D\top PD) - 1D\top P (A - BK \prime ) \leq  - M < 0,

which shows that K \prime is stabilizing, i.e., \rho (A - BK \prime ) < 1 [7]. Thus, Lemma 2.2 can be
applied to K \prime . Then, (5.1) and (5.2) are identical to (2.11), which further shows that
\| \scrT (K \prime )\| \infty < \gamma and hence K \prime \in \scrK . Hereafter we will focus on finding such a P > 0.

We first find such a P for the Gauss--Newton update (3.5) with step size \eta = 1/2.
Specifically, we have

K \prime = K  - (R+B\top \widetilde PKB) - 1EK = (R+B\top \widetilde PKB) - 1B\top \widetilde PKA.(5.4)

Since PK \geq 0 satisfies the conditions (i)--(iii), and K and K \prime are close to each other,
we can choose PK as a candidate for P . Hence, by the Riccati equation (2.8), the
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LHS of (5.2) can be written as

(5.5)

[A - B(R+B\top \widetilde PKB) - 1B\top \widetilde PKA]\top \widetilde PK [A - B(R+B\top \widetilde PKB) - 1B\top \widetilde PKA] - PK + C\top C

+ [(R+B\top \widetilde PKB) - 1B\top \widetilde PKA]\top R[(R+B\top \widetilde PKB) - 1B\top \widetilde PKA]

=  - 
\bigl[ 
(R+B\top \widetilde PKB) - 1B\top \widetilde PKA - K

\bigr] \top 
\cdot (R+B\top \widetilde PKB)

\bigl[ 
(R+B\top \widetilde PKB) - 1B\top \widetilde PKA - K

\bigr] 
\leq 0,

where we substitute K \prime from (5.4), and the last equation is by completing the squares.
Now we need to perturb PK to obtain a P such that (5.5) holds with a strict

inequality. To this end, we define \=P > 0 as the solution to the Lyapunov equation

(A - BK)\top (I  - \gamma  - 2DD\top PK) - \top \=P (I  - \gamma  - 2DD\top PK) - 1(A - BK) - \=P =  - I,(5.6)

and let P = PK + \alpha \=P > 0 for some \alpha > 0. By Lemma 2.2, (I  - \gamma  - 2DD\top PK) - 1(A - 
BK) is stable, and thus the solution \=P > 0 exists. For (5.1) to hold, we need a small
\alpha > 0 to satisfy

\alpha D\top \=PD < \gamma 2I  - D\top PKD.(5.7)

Also, the LHS of (5.2) can be written as in (4.2), with 1 , 2 being defined therein.

We aim to find some \alpha > 0 such that 1 + 2 < 0. Note that \widetilde P can be written as

(5.8)\widetilde P = [I  - \gamma  - 2(PK + \alpha \=P )DD\top ] - 1(PK + \alpha \=P )

=
\bigl[ 
(I  - \gamma  - 2PKDD\top ) - 1 + (I  - \gamma  - 2PKDD\top ) - 1(\alpha \gamma  - 2 \=PDD\top )(I  - \gamma  - 2PKDD\top ) - 1

+ o(\alpha )
\bigr] 
(PK + \alpha \=P ) = \widetilde PK + (I  - \gamma  - 2PKDD\top ) - 1(\alpha \=P )(I  - \gamma  - 2DD\top PK) - 1 + o(\alpha ),

where the first equation follows by definition, and the second one uses the fact that
(X + Y ) - 1 = X - 1  - X - 1Y X - 1 + o(\| Y \| ), for a small perturbation Y around the
matrix X. Thus, 1 can be written as

(5.9)

1 =  - K \prime \top B\top \widetilde PA - A\top \widetilde PBK \prime +K \prime \top (R+B\top \widetilde PB)K \prime +K\top B\top \widetilde PA+A\top \widetilde PBK

 - K\top (R+B\top \widetilde PB)K

\leq  - K \prime \top B\top \widetilde PA - A\top \widetilde PBK \prime +K \prime \top (R+B\top \widetilde PB)K \prime +A\top \widetilde PB(R+B\top \widetilde PB) - 1B\top \widetilde PA

=
\bigl[ 
(R+B\top \widetilde PB) - 1B\top \widetilde PA - K \prime \bigr] \top (R+B\top \widetilde PB)

\bigl[ 
(R+B\top \widetilde PB) - 1B\top \widetilde PA - K \prime \bigr] ,

where the inequality follows by completing squares. By substituting in K \prime from (5.4),
we further have

1 \leq 
\bigl[ 
(R+B\top \widetilde PB) - 1B\top \widetilde PA - (R+B\top \widetilde PKB) - 1B\top \widetilde PKA

\bigr] \top 
(R+B\top \widetilde PB)

\cdot 
\bigl[ 
(R+B\top \widetilde PB) - 1B\top \widetilde PA\underbrace{}  \underbrace{} 

3

 - (R+B\top \widetilde PKB) - 1B\top \widetilde PKA
\bigr] 
.(5.10)
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Note that by (5.8), we have

3 =
\bigl[ 
(R+B\top \widetilde PKB) - 1  - (R+B\top \widetilde PKB) - 1B\top (I  - \gamma  - 2PKDD\top ) - 1(\alpha \=P )(I  - \gamma  - 2DD\top PK) - 1

\cdot B(R+B\top \widetilde PKB) - 1 + o(\alpha )
\bigr] 
B\top \bigl[ \widetilde PK + (I  - \gamma  - 2PKDD\top ) - 1(\alpha \=P )(I  - \gamma  - 2DD\top PK) - 1

+ o(\alpha )
\bigr] 
A = (R+B\top \widetilde PKB) - 1B\top \widetilde PKA+O(\alpha ) + o(\alpha ),

which can be combined with (5.10) to show 1 = o(\alpha ).
Moreover, by (5.8), 2 can be written as

(5.11) e 2 = (A - BK)\top 
\bigl[ \widetilde PK + (I  - \gamma  - 2PKDD\top ) - 1(\alpha \=P )(I  - \gamma  - 2DD\top PK) - 1

+ o(\alpha )
\bigr] 
(A - BK) - P + C\top C +K\top RK

= (A - BK)\top (I  - \gamma  - 2PKDD\top ) - 1(\alpha \=P )(I  - \gamma  - 2DD\top PK) - 1

\cdot (A - BK) - \alpha \=P + o(\alpha )

=  - \alpha I + o(\alpha ),

where the first equation uses (5.8), the second one uses the Riccati equation (2.8),
and the last one uses (5.6). Therefore, for small enough \alpha > 0 such that 1 + 2 < 0,
and it also satisfies (5.7), there exists some P > 0 such that both (5.1) and (5.2) hold
for K \prime obtained with step size \eta = 1/2. On the other hand, such a P also makes the
LMI (5.3) hold for K, i.e.,\Biggl[ 

(A - BK)\top P (A - BK) - P + C\top C +K\top RK (A - BK)\top PD

D\top P (A - BK)  - (\gamma 2I  - D\top PD)

\Biggr] 
< 0,(5.12)

as now 1 in (4.2) is null, and the same \alpha above makes 2 < 0. For \eta \in [0, 1/2], define
K\eta = K + 2\eta (K \prime  - K). By linearity, convexity of the quadratic form, and combining
(5.3) and (5.12), one can show that (5.12) also holds for K\eta for any \eta \in [0, 1/2]. Thus,
K\eta satisfies the conditions (i)--(iii) in the theorem.

Now we prove a similar result for the natural PG update (3.4). Recall that

K \prime = K  - 2\eta [(R+B\top \widetilde PKB)K  - B\top \widetilde PKA].(5.13)

As before, we first choose P = PK . Then, the LHS of (5.2) under K \prime is written as

(A - BK \prime )\top \widetilde PK(A - BK \prime ) - PK + C\top C +K \prime \top RK \prime 

= (K \prime  - K)\top (R+B\top \widetilde PKB)[K \prime  - (R+B\top \widetilde PKB) - 1B\top \widetilde PKA]

+ [K  - (R+B\top \widetilde PKB) - 1B\top \widetilde PKA]\top (R+B\top \widetilde PKB)(K \prime  - K),(5.14)

where the equation holds by adding and subtracting [K - (R+B\top \widetilde PKB) - 1B\top \widetilde PKA]\top 

(R+B\top \widetilde PKB)[K \prime  - (R+B\top \widetilde PKB) - 1B\top \widetilde PKA]. Substituting (5.13) into (5.14) yields

(5.15)

(A - BK \prime )\top \widetilde PK(A - BK \prime ) - PK + C\top C +K \prime \top RK \prime 

=  - 2\eta [(R+B\top \widetilde PKB)K  - B\top \widetilde PKA]\top [(R+B\top \widetilde PKB)K  - B\top \widetilde PKA]

+ 4\eta 2[(R+B\top \widetilde PKB)K  - B\top \widetilde PKA]\top (R+B\top \widetilde PKB)[(R+B\top \widetilde PKB)K  - B\top \widetilde PKA]

 - 2\eta [(R+B\top \widetilde PKB)K  - B\top \widetilde PKA]\top [(R+B\top \widetilde PKB)K  - B\top \widetilde PKA].
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By requiring the step size \eta to satisfy

\eta \leq 1

2\| R+B\top \widetilde PKB\| 
,(5.16)

we can bound (5.15) as

(A - BK \prime )\top \widetilde PK(A - BK \prime ) - PK + C\top C +K \prime \top RK \prime 

\leq  - 2\eta \cdot [(R+B\top \widetilde PKB)K  - B\top \widetilde PKA]\top [(R+B\top \widetilde PKB)K  - B\top \widetilde PKA] \leq 0,(5.17)

namely, letting P = PK leads to the desired LMI that is not strict.
Now suppose that P = PK + \alpha \=P for some \alpha > 0, where \=P > 0 is the solution to

(5.6). Note that \alpha still needs to satisfy (5.7). Also, the LHS of (5.2) can be separated
into 1 and 2 as in (4.2). From the LHS of the inequality in (5.9), we have

1 =  - 2\eta [(R+B\top \widetilde PKB)K  - B\top \widetilde PKA]\top [(R+B\top \widetilde PB)K \prime  - B\top \widetilde PA]

 - 2\eta [(R+B\top \widetilde PB)K  - B\top \widetilde PA]\top [(R+B\top \widetilde PKB)K  - B\top \widetilde PKA]

\leq  - 2\eta [(R+B\top \widetilde PKB)K  - B\top \widetilde PKA]\top [(R+B\top \widetilde PKB)K  - B\top \widetilde PKA]

 - 2\alpha \eta [(R+B\top \widetilde PKB)K  - B\top \widetilde PKA]\top [(B\top \=PB)K \prime  - B\top \=PA]

 - 2\alpha \eta [(B\top \=PB)K  - B\top \=PA]\top [(R+B\top \widetilde PKB)K  - B\top \widetilde PKA],

where the first step follows by adding and subtracting [(R+B\top \widetilde PB) - 1B\top \widetilde PA - K]\top 

(R + B\top \widetilde PB)[(R + B\top \widetilde PB) - 1B\top \widetilde PA  - K \prime ], and the definition of K \prime in (5.13). The

second step follows by separating \widetilde P as \widetilde PK + \alpha \=P in a similar manner, and by using
(5.16), (5.15), and (5.17). Moreover, notice that

 - 2\alpha \eta [(R+B\top \widetilde PKB)K  - B\top \widetilde PKA]\top [(B\top \=PB)K\prime  - B\top \=PA] - 2\alpha \eta [(B\top \=PB)K  - B\top \=PA]\top 

\cdot [(R+B\top \widetilde PKB)K  - B\top \widetilde PKA]

\leq 2\eta [(R+B\top \widetilde PKB)K  - B\top \widetilde PKA]\top [(R+B\top \widetilde PKB)K  - B\top \widetilde PKA] + 2\alpha 2\eta [(B\top \=PB)K\prime 

 - B\top \=PA]\top [(B\top \=PB)K\prime  - B\top \=PA] - 4\alpha \eta 2[(R+B\top \widetilde PKB)K  - B\top \widetilde PKA]\top (B\top \=PB)

\cdot [(R+B\top \widetilde PKB)K  - B\top \widetilde PKA].

Therefore, we can finally show

1 \leq 2\alpha 2\eta [(B\top \=PB)K \prime  - B\top \=PA]\top [(B\top \=PB)K \prime  - B\top \=PA].(5.18)

By assumption \| K\| < \infty and PK \geq 0 exists; we know that \widetilde PK is bounded, and so
is K \prime obtained from (5.13) using a finite step size \eta . Also, \=P has a bounded norm.
Thus, 1 in (5.18) is o(\alpha ) and there exists a small enough \alpha > 0 such that 1 + 2 < 0,
since from (5.11), 2 =  - \alpha I + o(\alpha ). In other words, there exists some P > 0 such
that (5.3) holds for K \prime obtained from (5.13) with step size satisfying (5.16). This
completes the proof of the first argument. Last, by Lemma 2.2, we equivalently have
that the conditions (i)--(iii) in the theorem hold for K \prime , which completes the proof.

5.2. Proof of Theorem 4.3. We first introduce the following lemma that can
be viewed as the counterpart of the cost difference lemma in [15]. Unlike the equality
relation given in the lemma in [15], we establish both lower and upper bounds for
the difference of two matrices PK\prime and PK . The proof of the lemma is provided in
section A.5.
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Lemma 5.1 (cost difference lemma). Suppose that both K,K \prime \in \scrK . Then, we
have the following upper bound:

PK\prime  - PK \leq 
\sum 
t\geq 0

[(A - BK \prime )\top (I  - \gamma  - 2PK\prime DD\top ) - 1]t
\bigl[ 
 - (K  - K \prime )\top EK  - E\top 

K(K  - K \prime )

+ (K  - K \prime )\top (R+B\top \widetilde PKB)(K  - K \prime )
\bigr] 
[(I  - \gamma  - 2PK\prime DD\top ) - \top (A - BK \prime )]t,(5.19)

where EK is defined in (3.2). If additionally \rho 
\bigl( 
(A - BK \prime )\top (I - \gamma  - 2PKDD\top ) - 1

\bigr) 
< 1,

then we also have the lower bound:

PK\prime  - PK \geq 
\sum 
t\geq 0

[(A - BK \prime )\top (I  - \gamma  - 2PKDD\top ) - 1]t
\bigl[ 
 - (K  - K \prime )\top EK  - E\top 

K(K  - K \prime )

+ (K  - K \prime )\top (R+B\top \widetilde PKB)(K  - K \prime )
\bigr] 
[(I  - \gamma  - 2PKDD\top ) - \top (A - BK \prime )]t.(5.20)

Now we show the global convergence of two PO updates.

Gauss--Newton: Recall that for the Gauss--Newton update, K \prime = K  - 2\eta (R +

B\top \widetilde PKB) - 1EK . By Theorem 4.2, K \prime also lies in \scrK if \eta \leq 1/2. Then, by the upper
bound in (5.19), we know that if \eta \in [0, 1/2],

PK\prime  - PK \leq ( - 4\eta + 4\eta 2)
\sum 
t\geq 0

[(A - BK \prime )\top (I  - \gamma  - 2PK\prime DD\top ) - 1]t

\cdot 
\Bigl[ 
E\top 

K(R+B\top \widetilde PKB) - 1EK

\Bigr] 
[(I  - \gamma  - 2PK\prime DD\top ) - \top (A - BK \prime )]t \leq 0,(5.21)

which implies the monotonic decrease of PK (matrix wise) along the update. Since
PK is lower bounded, such a monotonic sequence of \{ PKn

\} along the iterations must
converge to some PK\infty \in \scrK . Now we show that this PK\infty is indeed PK\ast . By mul-
tiplying both sides of (5.21) with any matrix M > 0, and then taking the trace, we
have that if \eta \in [0, 1/2],

Tr(PK\prime M) - Tr(PKM) \leq ( - 4\eta + 4\eta 2) Tr

\biggl\{ \sum 
t\geq 0

[(A - BK \prime )\top (I  - \gamma  - 2PK\prime M) - 1]t

\cdot 
\Bigl[ 
E\top 

K(R+B\top \widetilde PKB) - 1EK

\Bigr] 
[(I  - \gamma  - 2PK\prime M) - \top (A - BK \prime )]tM

\biggr\} 
\leq  - 2\eta Tr

\bigl[ 
E\top 

K(R+B\top \widetilde PKB) - 1EKM
\bigr] 

\leq  - 2\eta \sigma min(M)

\sigma max(R+B\top \widetilde PKB)
Tr(E\top 

KEK)

\leq  - 2\eta \sigma min(M)

\sigma max(R+B\top \widetilde PK0
B)

Tr(E\top 
KEK),(5.22)

where the second inequality follows by keeping only the first term in the infinite sum-
mation of positive definite matrices, the third one uses that Tr(PA) \geq \sigma min(A) Tr(P ),

and the last one is due to the monotonic decrease of PK , and the monotonicity of \widetilde PK

with respect to PK with K0 \in \scrK being the initialization of K at iteration 0. From
iterations n = 0 to N  - 1, replacing M by I, summing over both sides of (5.22), and
dividing by N , we further have

1

N

N - 1\sum 
n=0

Tr(E\top 
Kn

EKn
) \leq 

\sigma max(R+B\top \widetilde PK0B) \cdot 
\bigl[ 
Tr(PK0) - Tr(PK\infty )

\bigr] 
2\eta \cdot N

,
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namely, the sequence \{ Kn\} converges to the stationary point K such that EK = 0
with O(1/N) rate. By Proposition 3.3, this stationary point corresponds to one global
optimum K\ast .

Natural PG: Recall that the natural PG update follows K \prime = K  - 2\eta EK . By
Theorem 4.2, K \prime also lies in \scrK if \eta \leq 1/(2\| R + B\top \widetilde PKB\| ). By the upper bound
(5.19), this step size yields that

PK\prime  - PK \leq 
\sum 
t\geq 0

[(A - BK \prime )\top (I  - \gamma  - 2PK\prime DD\top ) - 1]t
\bigl[ 
 - 4\eta E\top 

KEK + 2\eta E\top 
KEK

\bigr] 
\cdot [(I  - \gamma  - 2PK\prime DD\top ) - \top (A - BK \prime )]t \leq 0,(5.23)

which also implies the matrixwise monotonic decrease of PK along the update. Sup-
pose the convergent matrix is PK\infty . As before, multiplying both sides of (5.23) by
M > 0, and taking the trace, yields

Tr(PK\prime M) - Tr(PKM) \leq  - 2\eta Tr
\bigl( 
E\top 

KEKM
\bigr) 

(5.24)

for any M > 0, where the inequality follows by only keeping the first term in the
infinite summation. Letting M = I, summing up (5.24) from n = 0 to n = N  - 1,
and dividing by N , we conclude that

1

N

N - 1\sum 
n=0

Tr(E\top 
Kn

EKn
) \leq Tr(PK0

) - Tr(PK\infty )

2\eta \cdot N
,

namely, \{ Kn\} converges to the stationary point K such that EK = 0 with an O(1/N)
rate, which is also the global optimum. In addition, since \{ PKn\} is monotonically

decreasing, it suffices to require the step size \eta \in [0, 1/(2\| R+B\top \widetilde PK0
B\| )].

5.3. Proof of Theorem 4.4. To ease the analysis, we show the convergence
rate of a surrogate value Tr(PKDD\top ). This is built upon the following relationship
between the objective value \scrJ (K) and Tr(PKDD\top ).

Lemma 5.2. Suppose that both K,K \prime \in \scrK , and PK \geq PK\prime . Then, it follows that

\scrJ (K) - \scrJ (K \prime ) \leq \| (I  - \gamma  - 2D\top PKD) - 1\| \cdot [Tr(PKDD\top ) - Tr(PK\prime DD\top )].

Proof. First, by Sylvester's determinant theorem, \scrJ (K) can be rewritten as

\scrJ (K) =  - \gamma 2 log det(I  - \gamma  - 2PKDD\top ) =  - \gamma 2 log det(I  - \gamma  - 2D\top PKD).

By the mean value theorem, for any (A,B) with det(A), det(B) > 0, we have
log det(A) = log det(B) + Tr[(B + \tau (A  - B)) - 1(A  - B)] for some 0 \leq \tau \leq 1. This
leads to

\scrJ (K) - \scrJ (K \prime ) =  - \gamma 2 log det(I  - \gamma  - 2D\top PKD) + \gamma 2 log det(I  - \gamma  - 2D\top PK\prime D)

= Tr[XD\top (PK  - PK\prime )D]

\leq \| X\| \cdot [Tr(D\top PKD) - Tr(D\top PK\prime D)] = \| X\| \cdot [Tr(PKDD\top ) - Tr(PK\prime DD\top )],

where X = (I  - \gamma  - 2\tau D\top PK\prime D  - \gamma  - 2(1 - \tau )D\top PKD) - 1, and the inequality uses the
facts PK \geq PK\prime and Tr(PA) \leq \| A\| \cdot Tr(P ) for any real symmetric P \geq 0. Note that
by PK \geq PK\prime ,

X \leq (I  - \gamma  - 2D\top PKD) - 1 =\Rightarrow \| X\| \leq \| (I  - \gamma  - 2D\top PKD) - 1\| .

This completes the proof.
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Lemma 5.2 implies that in order to show the convergence of \scrJ (K), it suffices to
study the convergence of Tr(PKDD\top ), as long as \| (I  - \gamma  - 2D\top PKD) - 1\| is bounded
along the iterations. This is indeed the case since by (5.21) and (5.23), PK is monotone
along both updates (3.4) and (3.5). By induction, ifK0 \in \scrK , i.e., I - \gamma  - 2D\top PK0D > 0,
then I  - \gamma  - 2D\top PKnD \geq I  - \gamma  - 2D\top PK0D > 0 holds for all iterations n \geq 1. This
further yields that for all n \geq 1, \| (I  - \gamma  - 2D\top PKn

D) - 1\| \leq \| (I  - \gamma  - 2D\top PK0
D) - 1\| ,

namely, \| (I  - \gamma  - 2D\top PKD) - 1\| is uniformly bounded.
Now we show the local linear convergence rate of Tr(PKDD\top ). By (5.20), for

any K \prime such that (I  - \gamma  - 2PKDD\top ) - \top (A - BK \prime ) is stabilizing, we have

PK\prime  - PK \geq 
\sum 
t\geq 0

[(A - BK \prime )\top (I  - \gamma  - 2PKDD\top ) - 1]t
\bigl[ 
 - E\top 

K(R+B\top \widetilde PKB) - 1EK

\bigr] 
\cdot [(I  - \gamma  - 2PKDD\top ) - \top (A - BK \prime )]t,(5.25)

where the inequality follows from completion of squares. By taking traces on both
sides of (5.25), and letting K \prime = K\ast , we have

Tr(PKDD\top ) - Tr(PK\ast DD\top ) \leq Tr
\Bigl[ 
E\top 

K(R+B\top \widetilde PKB) - 1EK

\Bigr] 
\cdot \| \scrW K,K\ast \| 

\leq 
Tr

\bigl( 
E\top 

KEK

\bigr) 
\sigma min(R)

\cdot \| \scrW K,K\ast \| ,(5.26)

where \scrW K,K\ast is defined as

\scrW K,K\ast 

:=
\sum 
t\geq 0

[(I  - \gamma  - 2PKDD\top ) - \top (A - BK\ast )]tDD\top [(A - BK\ast )\top (I  - \gamma  - 2PKDD\top ) - 1]t.

Note that K\ast \in \scrK and thus (I  - \gamma  - 2PK\ast DD\top ) - \top (A  - BK\ast ) is stabilizing. Let
\epsilon := 1 - \rho 

\bigl( 
(I  - \gamma  - 2PK\ast DD\top ) - \top (A - BK\ast )

\bigr) 
, and note that \epsilon > 0. By the continuity

of PK , and that of \rho (\cdot ) [42], there exists a ball \scrB (K\ast , r) \subseteq \scrK , centered at K\ast with
radius r > 0, such that for any K \in \scrB (K\ast , r),

\rho 
\bigl( 
(I  - \gamma  - 2PKDD\top ) - \top (A - BK\ast )

\bigr) 
\leq 1 - \epsilon /2 < 1.(5.27)

Gauss--Newton: By Theorem 4.3, \{ Kn\} approaches K\ast . Thus, there exists some
Kn \in \scrB (K\ast , r). Let K = Kn and thus K \prime = Kn+1. Replacing M in (5.22) by
DD\top > 0 and combining (5.26), we have

Tr(PK\prime DD\top ) - Tr(PKDD\top )

\leq  - 2\eta \sigma min(DD\top )\sigma min(R)

\sigma max(R+B\top \widetilde PK0B)\| \scrW K,K\ast \| 
[Tr(PKDD\top ) - Tr(PK\ast DD\top )],

which further implies that

Tr(PK\prime DD\top ) - Tr(PK\ast DD\top )

\leq 
\biggl( 
1 - 2\eta \sigma min(DD\top )\sigma min(R)

\sigma max(R+B\top \widetilde PK0
B)\| \scrW K,K\ast \| 

\biggr) 
\cdot [Tr(PKDD\top ) - Tr(PK\ast DD\top )].(5.28)

(5.28) shows that the sequence \{ Tr(PKn+pDD\top )\} decreases to Tr(PK\ast DD\top ) starting
from some Kn \in \scrB (K\ast , r). By continuity, there must exist a close enough Kn+p such
that the lower-level set \{ K | Tr(PKDD\top ) \leq Tr(Kn+pDD\top )\} \subseteq \scrB (K\ast , r). Hence,
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starting from Kn+p, the iterates will never leave \scrB (K\ast , r). By (5.27), \scrW K,K\ast , as the
unique solution to the Lyapunov equation

[(I  - \gamma  - 2PKDD\top ) - \top (A - BK\ast )]\scrW K,K\ast [(I  - \gamma  - 2PKDD\top ) - \top (A - BK\ast )] +DD\top 

=\scrW K,K\ast ,

must have its norm bounded by some constant \scrW r > \| DD\top \| for all K \in \scrB (K\ast , r).
Replacing \| \scrW K,K\ast \| in (5.28) by \scrW r gives the uniform local linear contraction of
\{ Tr(PKn

DD\top )\} , which gives the local linear rate of \{ \scrJ (Kn)\} by Lemma 5.2.
In addition, by the upper bound (5.19) and EK\ast = 0, we have

Tr(PK\prime DD\top ) - Tr(PK\ast DD\top )

(5.29)

\leq Tr
\Bigl\{ \sum 

t\geq 0

[(A - BK \prime )\top (I  - \gamma  - 2PK\prime DD\top ) - 1]t
\bigl[ 
(K \prime  - K\ast )\top (R+B\top \widetilde PK\ast B)

\cdot (K \prime  - K\ast )
\bigr] 
[(I  - \gamma  - 2PK\prime DD\top ) - \top (A - BK \prime )]tDD\top 

\Bigr\} 
.

For \eta = 1/2, suppose that some K = Kn \in \scrB (K\ast , r). Then, K \prime = Kn+1 =

(R+B\top \widetilde PKB) - 1B\top \widetilde PKA yields that

K \prime  - K\ast = (R+B\top \widetilde PKB) - 1B\top ( \widetilde PK  - \widetilde PK\ast )B(R+B\top \widetilde PK\ast B) - 1B\top \widetilde PKA

+ [(R+B\top \widetilde PK\ast B) - 1B\top ( \widetilde PK  - \widetilde PK\ast )A].

Moreover, notice that

\widetilde PK  - \widetilde PK\ast = (I  - \gamma  - 2PKDD\top ) - 1PK  - (I  - \gamma  - 2PK\ast DD\top ) - 1PK\ast (5.30)

= (I  - \gamma  - 2PK\ast DD\top ) - 1\gamma  - 2(PK  - PK\ast )DD\top (I  - \gamma  - 2PKDD\top ) - 1

+ (I  - \gamma  - 2PK\ast DD\top ) - 1(PK  - PK\ast ),

which, combined with (5.3), gives

\| K \prime  - K\ast \| F \leq c \cdot \| PK  - PK\ast \| F(5.31)

for some constant c > 0. Combining (5.29) and (5.31) yields

Tr(PK\prime DD\top ) - Tr(PK\ast DD\top ) \leq c\prime \cdot [Tr(PKDD\top ) - Tr(PK\ast DD\top )]2

for some constant c\prime . Note that from some p \geq 0 such that Kn+p onwards never
leaves \scrB (K\ast , r), the constant c\prime is uniformly bounded, which proves the Q-quadratic
convergence rate of \{ Tr(PKn

DD\top )\} , and thus the rate of \{ \scrJ (Kn)\} , around K\ast .

Natural PG: Replacing M in (5.24) by DD\top > 0 and combining (5.24) and (5.26)
yield

Tr(PK\prime DD\top ) - Tr(PK\ast DD\top ) \leq 
\biggl( 
1 - 2\eta \sigma min(R)

\| \scrW K,K\ast \| 

\biggr) 
\cdot [Tr(PKDD\top ) - Tr(PK\ast DD\top )].

Using a similar argument as above, one can establish the local linear rate of \{ \scrJ (Kn)\} 
with a different contracting factor. This concludes the proof.
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6. Conclusions. In this paper, we have investigated the convergence theory of
policy optimization methods for \scrH 2 linear control with \scrH \infty -norm robustness guaran-
tees. Viewed as a constrained nonconvex optimization, this problem was addressed
by policy optimization methods with provable convergence to the global optimal pol-
icy. More importantly, we showed that the proposed policy optimization methods
enjoy the implicit regularization property, despite the lack of coercivity of the cost
function. We expect the present work to serve as an initial step toward further under-
standing of RL algorithms on robust/risk-sensitive control tasks. Interesting future
research directions include developing the sample complexity of the proposed methods
in the model-free setting, investigating the implicit regularization property of other
policy optimization methods, extending the results to the settings beyond linear time-
invariant systems and state-feedback controllers, and studying the policy optimization
landscape for \scrH \infty control synthesis.

Appendix A. Supplementary proofs.

A.1. On the proof of Lemma 2.2. This lemma just states a variant of the
well-known bounded real lemma, and we omit the details here. The only subtlety
worth mentioning is that the second condition automatically ensures that K is a
stabilizing controller due to the well-known fact that one can perturb the solution PK

to obtain a solution for the strict matrix inequality in the third condition.

A.2. Proof of Lemma 3.1. Due to space limitation, we refer to [46, sect. 3.1]
for a proof of nonconvexity of the problem, with an easily constructed example.

Note that \| K\| may be unbounded for K \in \scrK . We show via counterexamples that
for K with \| K\| < \infty , the cost does not necessarily go to infinity as K approaches
the boundary of \scrK . Suppose DD\top > 0 is full rank. For cost \scrJ (K) of form (2.5), it
remains finite as long as PK is finite. By Lemma 2.2, I  - \gamma  - 2D\top PKD > 0 always
holds for K \in \scrK . Thus, \lambda max(PK) also has to be finite.

For cost \scrJ (K) of the forms (2.6) and (2.7), with DD\top > 0, it is finite if both PK

is finite and I  - \gamma  - 2D\top PKD > 0 is nonsingular. The first condition is not violated
as already shown above. We now show via a 1-dimensional example that the second
condition is not violated either as K \rightarrow \partial \scrK . In fact, the Riccati equation (2.8) that
defines PK becomes a quadratic equation for the 1-dimensional case:

D2P 2
K  - [\gamma 2  - (A - BK)2\gamma 2 + (C2 +RK2)D2]PK + (C2 +RK2)\gamma 2 = 0.(A.1)

Thus, it is possible that the condition for the existence of solutions to the quadratic
equations is more restrictive than the conditions on PK in the bounded real lemma.
Specifically, the solutions have the following form:

PK =
\gamma 2  - (A - BK)2\gamma 2 + (C2 +RK2)D2

2D2

\pm 
\sqrt{} 
[\gamma 2  - (A - BK)2\gamma 2 + (C2 +RK2)D2]2  - 4D2(C2 +RK2)\gamma 2

2D2
.(A.2)

Denote the discriminant of (A.1) by \blacklozenge , and let \blacklozenge = 0 admit solutions. Note

1 - \gamma  - 2D2PK = 1 - 1 - (A - BK)2 + \gamma  - 2(C2 +RK2)D2

2
\pm \gamma  - 2

\surd 
\blacklozenge 

2

=
1 + (A - BK)2

2
 - \gamma  - 2(C2 +RK2)D2

2
\pm \gamma  - 2

\surd 
\blacklozenge 

2
,
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which, as \blacklozenge \rightarrow 0, can be greater than 0 with small enoughD and large enough \gamma . Addi-
tionally, if the choices of A,B,C,D,R, \gamma ensure that (A - BK)(1 - \gamma  - 2PKD2) - 1 < 1,
then such a K \in \scrK . This way, as K approaches the boundary of \{ K | \blacklozenge \geq 0\} , it
is also approaching \partial \scrK , while the value of PK approaches [\gamma 2  - (A  - BK)2\gamma 2 +
(C2 +RK2)D2] \cdot (2D2) - 1, a finite value. The above argument can be verified numer-
ically by choosing A = 2.75, B = 2, C2 = 1, R = 1, D2 = 0.01, \gamma = 0.2101. In this
case, 1  - \gamma  - 2D2PK \rightarrow 0.2354 > 0 and (A  - BK)(1  - \gamma  - 2PKD2) - 1 \rightarrow 0.9998 < 1
if K \rightarrow 1.2573, which is the value that makes \blacklozenge \rightarrow 0. However, the corresponding
PK \rightarrow [\gamma 2 - (A - BK)2\gamma 2+(C2+RK2)D2] \cdot (2D2) - 1 = 3.3752 > 0, a finite value that
also satisfies 1  - \gamma  - 2D2PK > 0. Hence, both the costs in (2.6) and (2.7) approach a
finite value, which completes the proof of Lemma 3.1.

A.3. Proof of Lemmas 3.2. Note that \scrJ (K) defined in (2.6) is differentiable
with respect to PK , provided that det(I  - \gamma  - 2PKDD\top ) > 0. This holds for any
K \in \scrK since by Lemma 2.2

I  - \gamma  - 2D\top PKD > 0\Rightarrow det(I  - \gamma  - 2D\top PKD) = det(I  - \gamma  - 2PKDD\top ) > 0,

where we have used Sylvester's determinant theorem that det(I+AB) = det(I+BA).
Thus, it suffices to show that PK is differentiable with respect to K.

Recall that

\widetilde PK = PK + PKD(\gamma 2I  - D\top PKD) - 1D\top PK = (I  - \gamma  - 2PKDD\top ) - 1PK ,(A.3)

where the second equation uses the matrix inversion lemma, and define the operator
\Psi : Rm\times m \times Rd\times m \rightarrow Rm\times m as

\Psi (PK ,K) : = C\top C +K\top RK + (A - BK)\top \widetilde PK(A - BK).

Note that \Psi is continuous with respect to both PK and K, provided that \gamma 2I  - 
D\top PKD > 0. Also note that the Riccati equation (2.8) can be written as

\Psi (PK ,K) = PK .(A.4)

Notice the fact that for any matrices A, B, and X with proper dimensions,

vec(AXB) =
\bigl( 
B\top \otimes A

\bigr) 
vec(X).(A.5)

Thus, by vectorizing both sides of (A.4), we have

vec
\bigl( 
\Psi (PK ,K)

\bigr) 
= vec(C\top C +K\top RK) + vec

\bigl( 
(A - BK)\top \widetilde PK(A - BK)

\bigr) 
(A.6)

= vec(C\top C +K\top RK) +
\bigl[ 
(A - BK)\top \otimes (A - BK)\top 

\bigr] 
\cdot vec

\bigl( 
(I  - \gamma  - 2PKDD\top ) - 1PK

\bigr) 
= vec(PK).

By defining \widetilde \Psi : Rm2\times Rdm \rightarrow Rm2

as a new mapping such that \widetilde \Psi \bigl( 
vec(PK), vec(K)

\bigr) 
:=

vec
\bigl( 
\Psi (PK ,K)

\bigr) 
, the fixed-point equation (A.6) can be rewritten as

\widetilde \Psi \bigl( 
vec(PK), vec(K)

\bigr) 
= vec(PK).(A.7)

Since vec is a linear mapping, it now suffices to show that vec(PK) is differentiable
with respect to vec(K). To this end, we apply the implicit function theorem [25] on
the fixed-point equation (A.7). To ensure the applicability, we first note that the set
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\scrK defined in (2.4) is an open set. In fact, by Lemma 2.2, for any K \in \scrK , there exists
some P > 0 such that the two LMIs in (2.11) hold. Since the inequality is strict, there
must exists a small enough ball around K such for any K \prime in the ball, the LMIs still
hold. Hence, the set \scrK is open by definition.

Moreover, by the chain rule of matrix differentials [27, Theorem 9], we know that

\partial vec
\bigl( 
(I  - \gamma  - 2PKDD\top ) - 1PK

\bigr) 
\partial vec\top (PK)

= (PK \otimes I) \cdot \partial vec[(I  - \gamma  - 2PKDD\top ) - 1]

\partial vec\top (PK)
+ I \otimes (I  - \gamma  - 2PKDD\top ) - 1,(A.8)

where I denotes the identity matrix of proper dimension.
Now we claim that

\partial vec[(I  - \gamma  - 2PKDD\top ) - 1]

\partial vec\top (PK)
(A.9)

= [(\gamma  - 2DD\top ) \cdot (I  - \gamma  - 2PKDD\top ) - 1]\otimes (I  - \gamma  - 2PKDD\top ) - 1.

To show this, we compare the element at the [(j - 1)m+i]th row and the [(l - 1)m+k]th
column of both sides of (A.9) with i, j, k, l \in [m], where both sides are matrices of
dimensions m2 \times m2. On the LHS, notice that

\partial (I  - \gamma  - 2PKDD\top ) - 1

\partial [PK ]k,l

= (I  - \gamma  - 2PKDD\top ) - 1 \cdot \partial (\gamma 
 - 2PKDD\top )

\partial [PK ]k,l
\cdot (I  - \gamma  - 2PKDD\top ) - 1,

which follows from (F - 1)\prime =  - F - 1F \prime F - 1 for some matrix function F . Also,

\partial (\gamma  - 2PKDD\top )

\partial [PK ]k,l
= \gamma  - 2

\left[  0
[DD\top ]l,1 \cdot \cdot \cdot [DD\top ]l,m

0

\right]  \leftarrow kth row,

where only the kth row is nonzero and is filled with the lth row of DD\top . Due to these
two facts, we have\biggl[ 

\partial vec[(I  - \gamma  - 2PKDD\top ) - 1]

\partial vec\top (PK)

\biggr] 
(j - 1)m+i,(l - 1)m+k

=
\partial [(I  - \gamma  - 2PKDD\top ) - 1]i,j

\partial [PK ]k,l

= \gamma [(I  - \gamma  - 2PKDD\top ) - 1]i,k \cdot 
m\sum 
q=1

[DD\top ]l,q \cdot [(I  - \gamma  - 2PKDD\top ) - 1]q,j .(A.10)

On the right-hand side of (A.9), we have\bigl[ 
[(\gamma  - 2DD\top ) \cdot (I  - \gamma  - 2PKDD\top ) - 1]\otimes (I  - \gamma  - 2PKDD\top ) - 1

\bigr] 
(j - 1)m+i,(l - 1)m+k

= [(\gamma  - 2DD\top ) \cdot (I  - \gamma  - 2PKDD\top ) - 1]l,j \cdot [(I  - \gamma  - 2PKDD\top ) - 1]i,k,

(A.11)

due to the definition of the Kronecker product and the fact that the matrix

(\gamma  - 2DD\top ) \cdot (I  - \gamma  - 2PKDD\top ) - 1 = D(\gamma 2I  - D\top PKD) - 1D\top (A.12)

is symmetric. Thus, (A.10) and (A.11) are identical for any (i, j, k, l), proving (A.9).
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By substituting (A.9) into (A.8), we have

\partial vec
\bigl( 
(I  - \gamma  - 2PKDD\top ) - 1PK

\bigr) 
\partial vec\top (PK)

= [I + (\gamma  - 2PKDD\top )(I  - \gamma  - 2PKDD\top ) - 1]\otimes (I  - \gamma  - 2PKDD\top ) - 1

= (I  - \gamma  - 2PKDD\top ) - 1 \otimes (I  - \gamma  - 2PKDD\top ) - 1,

where the first equation uses the facts that (A \otimes B)(C \otimes D) = (AC) \otimes (BD) and
(A\otimes B)+ (C \otimes B) = (A+C)\otimes B, and the last one uses the matrix inversion lemma.

By (A.8), we can thus write the partial derivative of \widetilde \Psi \bigl( 
vec(PK), vec(K)

\bigr) 
as

\partial \widetilde \Psi \bigl( 
vec(PK), vec(K)

\bigr) 
\partial vec\top (PK)

=
\bigl[ 
(A - BK)\top \otimes (A - BK)\top 

\bigr] 
\cdot 
\partial vec

\bigl( 
(I  - \gamma PKDD\top ) - 1PK

\bigr) 
\partial vec\top (PK)

=
\bigl[ 
(A - BK)\top (I  - \gamma PKDD\top ) - 1

\bigr] 
\otimes 

\bigl[ 
(A - BK)\top (I  - \gamma PKDD\top ) - 1

\bigr] 
.

Therefore, the partial derivative

\partial 
\bigl[ \widetilde \Psi \bigl( 

vec(PK), vec(K)
\bigr) 
 - vec(PK)

\bigr] 
\partial vec\top (PK)

=
\bigl[ 
(A - BK)\top (I  - \gamma  - 2PKDD\top ) - 1

\bigr] 
\otimes 

\bigl[ 
(A - BK)\top (I  - \gamma  - 2PKDD\top ) - 1

\bigr] 
 - I,

which is invertible, since the eigenvalues of [(A  - BK)\top (I  - \gamma  - 2PKDD\top ) - 1] \otimes 
[(A - BK)\top (I  - \gamma  - 2PKDD\top ) - 1] are the products of the eigenvalues of (A  - BK)\top 

(I  - \gamma  - 2PKDD\top ) - 1, and the matrix (A  - BK)\top (I  - \gamma  - 2PKDD\top ) - 1 has spectral

radius less than 1 for all K \in \scrK . Also, since \widetilde \Psi \bigl( 
vec(PK), vec(K)

\bigr) 
 - vec(PK) is con-

tinuous with respect to both vec(PK) and vec(K), by the implicit function theorem
[25], we know that there exists an open neighborhood around vec(PK) and vec(K)
(thus including vec(PK) and vec(K)), so that vec(PK) is a continuously differentiable
function with respect to vec(K), and so is PK with respect to K, in the neighborhood.
Note that this holds for any K \in \scrK . This proves the differentiability of \scrJ (K) at all
K \in \scrK .

Now we establish the form of the PG. By Lemma 2.2, we know that for any K \in \scrK ,
(A  - BK)\top (I  - \gamma  - 2PKDD\top ) - 1 is stable and I  - \gamma  - 2D\top PKD > 0. Therefore, the
expression \Delta K in (3.1) exists, and so does the expression for \nabla \scrJ (K). We then verify
the expressions by showing the form of the directional derivative \nabla Kij

\scrJ (K), i.e., the
derivative with respect to each element Kij in the matrix K. By definition of \scrJ (K)
in (2.6), we have

\nabla Kij
\scrJ (K) =  - \gamma 2 Tr

\bigl\{ 
(I  - \gamma  - 2PKDD\top ) - \top [\nabla Kij

(I  - \gamma  - 2PKDD\top )]\top 
\bigr\} 

(A.13)

= Tr
\bigl[ 
(I  - \gamma  - 2PKDD\top ) - 1\nabla Kij

(PKDD\top )
\bigr] 
,

where the first equality follows from the chain rule and the fact that \nabla X log detX =
X - \top , and the second one follows from the fact that Tr(A\top B\top ) = Tr(BA)\top =
Tr(BA) = Tr(AB). Furthermore, since DD\top is independent of K, and Tr(ABC) =
Tr(BCA), we obtain from (A.13) and (A.12) that

\nabla Kij
\scrJ (K) = Tr

\bigl[ 
(I  - \gamma  - 2PKDD\top ) - 1\nabla Kij

PK \cdot DD\top \bigr] 
= Tr

\bigl[ 
\nabla Kij

PK \cdot D(I  - \gamma  - 2D\top PKD) - 1D\top \bigr] 
.(A.14)
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Now we establish the recursion of \nabla Kij
\scrJ (K) using the Riccati equation (2.8).

Letting M := D(I  - \gamma  - 2D\top PKD) - 1D\top , we have from (2.8), (A.3), and (A.14) that

\nabla Kij
\scrJ (K) = Tr

\bigl( 
\nabla Kij

PK \cdot M
\bigr) 

= (2RKM)ij  - 
\bigl[ 
2B\top \widetilde PK(A - BK)M

\bigr] 
ij
+Tr

\bigl[ 
(A - BK)\top (\nabla Kij

\widetilde PK)(A - BK)M
\bigr] 
,

(A.15)

where on the right-hand side (RHS) of (A.15), the first term is due to that
\nabla K Tr(K\top RKM) = 2RKM for any positive definite (and thus symmetric) matrix

M , the second term is the gradient with \widetilde PK fixed, and the third term is the gradient
with A - BK fixed.

In addition, by taking the derivative on both sides of (A.3), we have

\nabla Kij
\widetilde PK = (I  - \gamma  - 2PKDD\top ) - 1\nabla Kij

PK \cdot \gamma  - 2DD\top (I  - \gamma  - 2PKDD\top ) - 1PK

+ (I  - \gamma  - 2PKDD\top ) - 1\nabla KijPK

= (I  - \gamma  - 2PKDD\top ) - 1\nabla KijPK \cdot [D(\gamma 2I  - D\top PKD) - 1D\top PK + I]

= (I  - \gamma  - 2PKDD\top ) - 1 \cdot \nabla KijPK \cdot (I  - \gamma  - 2DD\top PK) - 1,(A.16)

where the first equation uses the fact that \nabla X(P - 1) =  - P - 1 \cdot \nabla XP \cdot P - 1, the second
one uses (A.12), and the last one uses the matrix inversion lemma. Notice that
(I  - \gamma  - 2DD\top PK) - 1 = (I  - \gamma  - 2PKDD\top ) - \top . Thus, (A.16) can be written as

\nabla Kij
\widetilde PK = (I  - \gamma  - 2PKDD\top ) - 1 \cdot \nabla Kij

PK \cdot (I  - \gamma  - 2PKDD\top ) - \top .(A.17)

Substituting (A.17) into (A.15) yields the following recursion:

\nabla Kij\scrJ (K) = (2RKM)ij  - 
\bigl[ 
2B\top \widetilde PK(A - BK)M

\bigr] 
ij

+Tr
\bigl[ 
\nabla Kij

PK \cdot (I  - \gamma  - 2PKDD\top ) - \top (A - BK)M(A - BK)\top (I  - \gamma  - 2PKDD\top ) - 1\underbrace{}  \underbrace{}  
M1

\bigr] 
.

By performing a recursion on Tr
\bigl( 
\nabla KijPK \cdot M1

\bigr) 
, and combining all the i, j terms into

a matrix, we obtain the form of the gradient given in Lemma 3.2.

A.4. Proof of Proposition 3.3. The proof is based on a game-theoretic per-
spective on the problem. First, for any K \in \scrK , by [4, Theorem 3.7], with A, B, D, Q,
R, \gamma therein being replaced by A - BK, 0, D, Q+K\top RK, R, \gamma here, we obtain that
the Riccati equation in (2.5) corresponds to the generalized algebraic Riccati equation
(3.52b) in [4], for this auxiliary game. By Lemma 2.2, the solution PK \geq 0 satisfies
(3.53) in [4]. Recall that PK is the unique stabilizing solution to (2.5), and is thus
also minimal if (A - BK,D) is stabilizable [34, Theorem 3.1], which is indeed the case
since K \in \scrK is stabilizing. Hence, by [4, Theorem 3.7(ii), (iv)], the controller and the
disturbance that attain the upper value of the game have, respectively, the forms of
ut = 0 and wt = (\gamma 2I  - D\top PKD) - 1D\top PK(A  - BK)xt for all t. This shows that in
the original game with A, B, D, Q, R, \gamma (as defined in [4, Chapter 3.7]), and with
a fixed K \in \scrK , the maximizing disturbance has the form wt as above, and the value
under the pair (K, - (\gamma 2I - D\top PKD) - 1D\top PK(A - BK)) is indeed x\top 

0 PKx0. By again
applying [4, Theorem 3.7] to the original game, we know that the value is x\top 

0 PK\ast x0,
and is achieved by the optimal controller u\ast 

t =  - K\ast xt and the maximizing disturbance
w\ast 

t = [(\gamma 2I  - D\top PK\ast D) - 1D\top PK\ast (A - BK\ast )]xt with K\ast being defined in the propo-
sition. By the definition of the value of the game, we know that x\top 

0 PKx0 \geq x\top 
0 PK\ast x0
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for any K \in \scrK . As the above arguments hold for any x0, we know that PK \geq PK\ast . Fi-
nally, notice that for K,K\ast \in \scrK , 0 < I - \gamma  - 2D\top PKD \leq I - \gamma  - 2D\top PK\ast D (cf. Lemma
2.2). By det(I - \gamma  - 2PKDD\top ) = det(I - \gamma  - 2D\top PKD), we know that \scrJ (K) \geq \scrJ (K\ast )
for any K \in \scrK . This completes the proof for the first half of the proposition.

For the second half of the proposition, note that \Delta K \geq 0 since I - \gamma  - 2D\top PKD > 0
for any K \in \scrK by Lemma 2.2. Also, since (I  - \gamma  - 2D\top PKD) - 1 \geq I, we know that

\Delta K \geq 
\infty \sum 
t=0

\bigl[ 
(I  - \gamma  - 2PKDD\top ) - \top (A - BK)

\bigr] t
DD\top \bigl[ 

(A - BK)\top (I  - \gamma  - 2PKDD\top ) - 1
\bigr] t
.

(A.18)

By [48, Lemma 21.2], the RHS of (A.18) is always positive definite, since
((I  - \gamma  - 2PKDD\top ) - \top (A - BK), D) is controllable, i.e.,\bigl( 

(A - BK)\top (I  - \gamma  - 2PKDD\top ) - 1, D\top \bigr) 
is observable. Thus, \Delta K > 0 is full rank. By the optimality condition \nabla \scrJ (K) = 0, it

follows that K\ast = (R + B\top \widetilde PK\ast B) - 1B\top \widetilde PK\ast A is the unique stationary point, which
is thus the unique global optimizer. This completes the proof of Proposition 3.3.

A.5. Proof of Lemma 5.1. We start with the following helper lemma.

Lemma A.1. Suppose that K,K \prime \in \scrK . Then we have that I  - \gamma  - 2PK\prime DD\top is
invertible, and

(I  - \gamma  - 2PK\prime DD\top ) - 1(PK  - \gamma  - 2PK\prime DD\top PK\prime )(I  - \gamma  - 2DD\top PK\prime ) - 1 \leq \widetilde PK .(A.19)

Proof. First, since K,K \prime \in \scrK , by Lemma 2.2, I  - \gamma  - 2D\top PK\prime D > 0 is invertible.
Thus, det(I  - \gamma  - 2PK\prime DD\top ) = det(I  - \gamma  - 2D\top PK\prime D) \not = 0, namely, I  - \gamma  - 2PK\prime DD\top 

is invertible. Then the desired fact is equivalent to

PK  - \gamma  - 2PK\prime DD\top PK\prime \leq (I  - \gamma  - 2PK\prime DD\top ) \widetilde PK(I  - \gamma  - 2DD\top PK\prime )

= \widetilde PK  - \gamma  - 2PK\prime DD\top \widetilde PK  - \gamma  - 2 \widetilde PKDD\top PK\prime + \gamma  - 4PK\prime DD\top \widetilde PKDD\top PK\prime 

which can be further simplified as

( \widetilde PK  - PK) - \gamma  - 2PK\prime DD\top \widetilde PK  - \gamma  - 2 \widetilde PKDD\top PK\prime + \gamma  - 2PK\prime DD\top PK\prime 

+ \gamma  - 4PK\prime DD\top \widetilde PKDD\top PK\prime \geq 0.(A.20)

By \widetilde PK = (I  - \gamma  - 2PKDD\top ) - 1PK and (A.12), we have

\gamma  - 2PK\prime DD\top \widetilde PK = \gamma  - 2PK\prime DD\top (I  - \gamma  - 2PKDD\top ) - 1PK = PK\prime D(\gamma 2I  - D\top PKD) - 1D\top PK .

Thus, it follows that

( \widetilde PK  - PK) - \gamma  - 2PK\prime DD\top \widetilde PK  - \gamma  - 2 \widetilde PKDD\top PK\prime 

= (PK  - PK\prime )D(\gamma 2I  - D\top PKD) - 1D\top (PK  - PK\prime ) - PK\prime D(\gamma 2I  - D\top PKD) - 1D\top PK\prime .

Therefore, (A.20) is equivalent to

(PK  - PK\prime )D(\gamma 2I  - D\top PKD) - 1D\top (PK  - PK\prime ) - PK\prime D(\gamma 2I  - D\top PKD) - 1D\top PK\prime 

+ \gamma  - 2PK\prime DD\top PK\prime + \gamma  - 4PK\prime DD\top \widetilde PKDD\top PK\prime \geq 0.
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Given the fact \gamma 2I > D\top PKD and another fact that

 - PK\prime D(\gamma 2I  - D\top PKD) - 1D\top PK\prime + \gamma  - 2PK\prime DD\top PK\prime + \gamma  - 4PK\prime DD\top \widetilde PKDD\top PK\prime = 0,

(A.21)

we know that the above inequality holds and hence our lemma is true. To show that
(A.21) holds, it suffices to apply the matrix inversion lemma, i.e.,

(\gamma 2I  - D\top PKD) - 1 = \gamma  - 2I + \gamma  - 4D\top ( - \gamma  - 2PKDD\top + I) - 1PKD = \gamma  - 2I + \gamma  - 4D\top \widetilde PKD,

where the first equation uses the matrix inversion lemma. The proof is complete.

By the definition of \widetilde PK in (2.9) and the Riccati equation (2.8), we have

PK\prime = (A - BK \prime )\top \widetilde PK\prime (A - BK \prime ) + C\top C + (K \prime )\top RK \prime 
(A.22)

= (A - BK \prime )\top (I  - \gamma  - 2PK\prime DD\top ) - 1(PK  - \gamma  - 2PK\prime DD\top PK\prime )(I  - \gamma  - 2PK\prime DD\top ) - \top 

\cdot (A - BK \prime ) + (A - BK \prime )\top (I  - \gamma  - 2PK\prime DD\top ) - 1(PK\prime  - PK)(I  - \gamma  - 2PK\prime DD\top ) - \top 

\cdot (A - BK \prime ) + C\top C + (K \prime )\top RK \prime .

By (A.19) in Lemma A.1, we further have

PK\prime  - PK \leq C\top C + (K \prime )\top RK \prime + (A - BK \prime )\top \widetilde PK(A - BK \prime ) - PK

+ (A - BK \prime )\top (I  - \gamma  - 2PK\prime DD\top ) - 1(PK\prime  - PK)(I  - \gamma  - 2PK\prime DD\top ) - \top (A - BK \prime ).

By induction, we can apply the above inequality iteratively to show that

(A.23)

PK\prime  - PK \leq 
\sum 
t\geq 0

[(A - BK \prime )\top (I  - \gamma  - 2PK\prime DD\top ) - 1]t
\bigl[ 
C\top C + (K \prime )\top RK \prime 

+ (A - BK \prime )\top \widetilde PK(A - BK \prime ) - PK

\bigr] 
[(I  - \gamma  - 2PK\prime DD\top ) - \top (A - BK \prime )]t.

On the other hand, we have

C\top C + (K \prime )\top RK \prime + (A - BK \prime )\top \widetilde PK(A - BK \prime ) - PK

(A.24)

= C\top C + (K \prime  - K +K)\top R(K \prime  - K +K) + (A - BK  - B(K \prime  - K))\top \widetilde PK(A - BK

 - B(K \prime  - K)) - PK

= (K \prime  - K)\top 
\Bigl( 
(R+B\top \widetilde PKB)K  - B\top \widetilde PKA

\Bigr) 
+

\Bigl( 
(R+B\top \widetilde PKB)K  - B\top \widetilde PKA

\Bigr) \top 
(K \prime  - K)

+ (K \prime  - K)(R+B\top \widetilde PKB)(K \prime  - K),

which can be substituted into (A.23) to obtain the upper bound in (5.19).
For the lower bound (5.20), note that the conditions in Lemma A.1 also hold here

when the roles of K and K \prime are interchanged. Thus, we have

(I  - \gamma  - 2PKDD\top ) - 1(PK\prime  - \gamma  - 2PKDD\top PK)(I  - \gamma  - 2DD\top PK) - 1 \leq \widetilde PK\prime ,
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which gives a lower bound on the RHS of (A.22) directly as

(A.25)

PK\prime  - PK = (A - BK \prime )\top \widetilde PK\prime (A - BK \prime ) - PK + C\top C + (K \prime )\top RK \prime 

\geq (A - BK \prime )\top 
\bigl[ 
(I  - \gamma  - 2PKDD\top ) - 1(PK\prime  - \gamma  - 2PKDD\top PK)(I  - \gamma  - 2DD\top PK) - 1

\bigr] 
\cdot (A - BK \prime ) - PK + C\top C + (K \prime )\top RK \prime 

= (A - BK \prime )\top 
\bigl[ 
(I  - \gamma  - 2PKDD\top ) - 1(PK  - \gamma  - 2PKDD\top PK)(I  - \gamma  - 2DD\top PK) - 1

\bigr] \underbrace{}  \underbrace{} \widetilde PK

\cdot (A - BK \prime ) - PK + (A - BK \prime )\top 
\bigl[ 
(I  - \gamma  - 2PKDD\top ) - 1(PK\prime  - PK)(I

 - \gamma  - 2DD\top PK) - 1
\bigr] 
(A - BK \prime ) + C\top C + (K \prime )\top RK \prime .

Continuing unrolling the RHS of (A.25) and substituting into (A.24), we obtain the
desired lower bound in (5.20), which completes the proof.

Appendix B. Simulations. We present some simulation results to illustrate the
effectiveness of our PO methods, by comparing them with several existing \scrH 2/\scrH \infty 
mixed control solvers, including the HIFOO package [3], the systune function [2],
and the h2hinfsyn function [13] in MATLAB's robust control toolbox. We note that
HIFOO and h2hinfsyn can only handle continuous-time settings, while systune and
our PO methods can handle both continuous- and discrete-time settings. To make
the comparison fair, we compare all four algorithms in the continuous-time setting,
even though this paper focuses on the theory for the discrete-time one. Details of the
simulation setups and theory for the continuous-time setting can be found in [46], and
we expect any comparison in the discrete-time setting to lead to similar conclusions.
We summarize the following findings observed from Table 1, based on solving Case 3
in [46, sect. 7.3]:

\bullet (PO methods return competitive \scrH 2-norm performance, and globally optimal
\scrJ (K)). In terms of the \scrH 2-norm, our PO methods can achieve competitive
performance. Note that the \scrH 2 performance of our PO methods is almost
identical to that of h2hinfsyn, since the latter also optimizes \scrJ (K), an upper
bound of the actual \scrH 2-norm \| \scrT (K)\| 2, but based on an LMI-based proce-
dure [13]. This in turn verifies the global optimality of our PO methods as
proved, as the LMI-based approach can find the global optimum of \scrJ (K) di-
rectly. Also, compared to the other two methods, which directly optimize the
\scrH 2-norm, the \scrH 2-performance achieved by minimizing \scrJ (K) is reasonably
good. Moreover, in contrast to the global convergence we established for PO
methods, HIFOO does not have convergence guarantees, and systune only
has convergence guarantees to local optimum [2]. But still, the local optimum
returned by systune can have lower \scrH 2-norms, especially when \gamma is small,
e.g., \gamma = 0.54. This shows the advantages of systune in the setting with
stringent \scrH \infty -norm constraints.

\bullet (PO methods provably preserve \scrH \infty -norm constraint). For all choices of \gamma ,
our PO methods consistently preserve the \| \scrT (K)\| \infty < \gamma constraint during
the optimization process, validating our theoretical findings. However, for
the cases of \gamma = 5, 1, 0.54, there are 5\%, 22\%, 90\%, 100\% of the HIFOO tri-
als that violate the \| \scrT (K)\| \infty -constraint during optimization. We note that
\| \scrT (K)\| \infty -constraint violation information is not available or not applicable
when using h2hinfsyn and systune. Moreover, a smaller \gamma , even for \gamma = 0.54
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Table 1
Average statistics over 100 trials for HIFOO, h 2hinfsyn, systune, and two proposed PO meth-

ods, for solving Case 3 in [46, sect. 7]. An entry for ``\| \scrT (K)\| \infty violation,"" e.g., m\% (n), represents
the \| \scrT (K)\| \infty constraint was violated in m\% of the trials with an average violation of n. The data
in the rows of ``\| \scrT (K)\| 2 reached,"" ``\scrJ (K) reached,"" ``\| \scrT (K)\| \infty reached"" are averaged over trials
with no \| \scrT (K)\| \infty -constraint violation. The columns ``systune w/ Init"" and ``NPG/GN w/ Init""
display the total runtime used by the optimization processes after a feasible K0 is given. We feed
the same K0 used in our PO methods into the initialization of systune. In contrast, HIFOO and
h 2hinfsyn use in-house methods for algorithm initialization.

Case 3 with \gamma = 5 HIFOO h2hinfsyn systune w/ Init NPG/GN w/ Init
Runtime (s) 0.4569 0.0305 0.0857 0.0084/0.0095

\| \scrT (K)\| 2 reached 0.9810 0.9811 0.9810 0.9811
\scrJ (K) reached 0.9699 0.9699 0.9699 0.9699

\| \scrT (K)\| \infty reached 1.0229 1.0126 1.0229 1.0124
\| \scrT (K)\| \infty violation 5\% (2.3092) n.a. n.a. 0\% (0)

Case 3 with \gamma = 1 HIFOO h2hinfsyn systune w/ Init NPG/GN w/ Init
Runtime (s) 1.8370 0.0351 0.1959 0.0064/0.0071

\| \scrT (K)\| 2 reached 1.0876 1.0037 0.9812 1.0038
\scrJ (K) reached 1.8506 1.2082 1.4962 1.2082

\| \scrT (K)\| \infty reached 1.0000 0.8145 0.9929 0.8143
\| \scrT (K)\| \infty violation 90\% (2.0772) n.a. n.a. 0\% (0)

Case 3 with \gamma = 0.54 HIFOO h2hinfsyn systune w/ Init NPG/GN w/ Init
Runtime (s) 1.1163 0.0363 0.3959 0.0050/0.0051

\| \scrT (K)\| 2 reached NaN 2.2174 2.0915 2.2174
\scrJ (K) reached NaN 9.3070 10.7198 9.3070

\| \scrT (K)\| \infty reached NaN 0.5397 0.5400 0.5397
\| \scrT (K)\| \infty violation 100\% (2.3708) n.a. n.a. 0\% (0)

(very close to \gamma \ast = 0.53 in Case 3 in [46, sect. 7]), does not prevent systune
from returning a solution that has no constraint violation. However, the \scrH \infty -
norms of the returned controllers, which are almost binding for small \gamma (e.g.,
\gamma = 1 or 0.54), are consistently larger than those returned by h2hinfsyn and
our PO methods. In other words, the controller returned by h2hinfsyn and
our PO methods can be more robust.
\bullet (PO methods have competitive, if not much faster, runtimes). In terms of
computation runtime, our PO methods are competitive, and even much faster
than some existing methods, when a feasible initial point is available.

More numerical results for large-scale systems can be found in the extended ver-
sion [46, sect. 7.3]. The overall observation is that, given the same feasible initializa-
tion, the higher the system dimension is, the faster our PO methods are, compared
to the other solvers. That being said, the advantage does not come for free, as for
high-dimensional systems, finding a feasible (robustly stable) initialization becomes
more challenging. This is one limitation of our policy search methods. We have left
it as our future work to find a robustly stable initialization efficiently.

REFERENCES

[1] A. Agarwal, S. M. Kakade, J. D. Lee, and G. Mahajan, Optimality and approximation with
policy gradient methods in Markov decision processes, J. Mach. Learn. Res., 125 (2020),
pp. 64--66.

[2] P. Apkarian, D. Noll, and A. Rondepierre, Mixed \scrH 2/\scrH \infty control via nonsmooth opti-
mization, SIAM J. Control Optim., 47 (2008), pp. 1516--1546.

[3] D. Arzelier, D. Georgia, S. Gumussoy, and D. Henrion, H2 for HIFOO, in International
Conference on Control and Optimization with Industrial Applications, 2011.

[4] T. Ba\c sar and P. Bernhard, H-infinity Optimal Control and Related Minimax Design Prob-
lems: A Dynamic Game Approach, Birkh\"auser, Boston, 1995.



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

4108 KAIQING ZHANG, BIN HU, AND TAMER BA\c SAR

[5] D. S. Bernstein and W. M. Haddad, LQG control with an \scrH \infty performance bound: A Riccati
equation approach, IEEE Trans. Automat. Control, 34 (1989), pp. 293--305.

[6] J. Bhandari and D. Russo, Global Optimality Guarantees for Policy Gradient Methods, pre-
print, arXiv:1906.01786, 2019.

[7] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in
System and Control Theory, Stud. Appl. Numer. Math., 15, SIAM, Philadelphia, 1994.

[8] S. P. Boyd, V. Balakrishnan, C. H. Barratt, N. M. Khraishi, X. Li, D. G. Meyer, and
S. A. Norman, A new CAD method and associated architectures for linear controllers,
IEEE Trans. Automat. Control, 33 (1988), pp. 268--283.

[9] S. J. Bradtke, B. E. Ydstie, and A. G. Barto, Adaptive linear quadratic control using policy
iteration, in IEEE American Control Conference, IEEE, Piscataway, NJ, 1994, pp. 3475--
3479.

[10] J. Bu, A. Mesbahi, M. Fazel, and M. Mesbahi, LQR Through the Lens of First Order
Methods: Discrete-time case, preprint, arXiv:1907.08921, (2019).

[11] C. Cartis, N. I. M. Gould, and Pn. L. Toint, On the complexity of steepest descent, Newton's
and regularized Newton's methods for nonconvex unconstrained optimization problems,
SIAM J. Optim., 20 (2010), pp. 2833--2852.

[12] X. Chen and J. T. Wen, A linear matrix inequality approach to the general mixed \scrH 2/\scrH \infty 
control problem, in IEEE American Control Conference, IEEE, Piscataway, NJ, 1995,
pp. 1443--1447.

[13] M. Chilali and P. Gahinet, \scrH \infty design with pole placement constraints: An LMI approach,
IEEE Trans. Automat. Control, 41 (1996), pp. 358--367.

[14] G. E. Dullerud and F. Paganini, A Course in Robust Control Theory: A Convex Approach,
Texts Appl. Math. 36, Springer, New York, 2000.

[15] M. Fazel, R. Ge, S. M. Kakade, and M. Mesbahi, Global convergence of policy gradient
methods for the linear quadratic regulator, in International Conference on Machine Learn-
ing, Curran Associates, Red Hook, NY, 2018, 380.

[16] K. Glover and J. C. Doyle, State-space formulae for all stabilizing controllers that satisfy
an \scrH \infty -norm bound and relations to relations to risk sensitivity, Systems Control Lett.,
11 (1988), pp. 167--172.

[17] B. Gravell, P. M. Esfahani, and T. Summers, Learning Robust Controllers for Linear Qua-
dratic Systems with Multiplicative Noise Via Policy Gradient, preprint, arXiv:1907.03680,
2019.

[18] W. M. Haddad, D. S. Bernstein, and D. Mustafa, Mixed-norm \scrH 2/\scrH \infty regulation and
estimation: The discrete-time case, Systems Control Lett., 16 (1991), pp. 235--247.

[19] G. Hewer, An iterative technique for the computation of the steady state gains for the discrete
optimal regulator, IEEE Trans. Automat. Control, 16 (1971), pp. 382--384.

[20] M. Hintermuller and J. Von Neumann Haus, Nonlinear Optimization, manuscript.
[21] D. Jacobson, Optimal stochastic linear systems with exponential performance criteria and

their relation to deterministic differential games, IEEE Trans. Automat. Control, 18
(1973), pp. 124--131.

[22] I. Kaminer, P. P. Khargonekar, and M. A. Rotea, Mixed \scrH 2/\scrH \infty control for discrete-time
systems via convex optimization, Automatica, J. IFAC, 29 (1993), pp. 57--70.

[23] P. P. Khargonekar and M. A. Rotea, Mixed \scrH 2/\scrH \infty control: A convex optimization ap-
proach, IEEE Trans. Automat. Control, 36 (1991), pp. 824--837.

[24] V. R. Konda and J. N. Tsitsiklis, Actor-critic algorithms, in Advances in Neural Information
Processing Systems, MIT Press, Cambridge, MA, 2000, pp. 1008--1014.

[25] S. G. Krantz and H. R. Parks, The Implicit Function Theorem: History, Theory, and
Applications, Springer, New York, 2012.

[26] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wier-
stra, Continuous Control with Deep Reinforcement Learning, in International Conference
on Learning Representations, 2016.

[27] J. R. Magnus and H. Neudecker, Matrix differential calculus with applications to simple,
Hadamard, and Kronecker products, J. Math. Psych., 29 (1985), pp. 474--492.

[28] P. Makila and H. Toivonen, Computational methods for parametric LQ problems---A survey,
IEEE Trans. Automat. Control, 32 (1987), pp. 658--671.

[29] D. Malik, A. Pananjady, K. Bhatia, K. Khamaru, P. Bartlett, and M. Wainwright,
Derivative-free methods for policy optimization: Guarantees for linear quadratic systems,
in International Conference on Artificial Intelligence and Statistics, 2019, pp. 2916--2925.

[30] H. Mohammadi, A. Zare, M. Soltanolkotabi, and M. R. Jovanovi\'c, Convergence and sam-
ple complexity of gradient methods for the model-free linear quadratic regulator problem,
IEEE Trans. Automat. Control, to appear.



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

POLICY OPTIMIZATION FOR MIXED \scrH 2/\scrH \infty CONTROL 4109

[31] D. Mustafa and D. S. Bernstein, LQG cost bounds in discrete-time \scrH 2/\scrH \infty control, Trans.
Inst. Measure. Control, 13 (1991), pp. 269--275.

[32] D. Mustafa and K. Glover, Minimum entropy \scrH \infty control, Lect. Notes Control Inf. Sci. 146,
Springer, Berlin (1990).

[33] Y. Nesterov and B. T. Polyak, Cubic regularization of Newton method and its global per-
formance, Math. Program., 108 (2006), pp. 177--205.

[34] A. Ran and R. Vreugdenhil, Existence and comparison theorems for algebraic Riccati equa-
tions for continuous- and discrete-time systems, Linear Algebra Appl., 99 (1988), pp. 63--
83.

[35] A. Rantzer, On the Kalman-Yakubovich-Popov lemma, Systems Control Lett., 28 (1996),
pp. 7--10.

[36] H. Rotstein and M. Sznaier, An exact solution to general four-block discrete-time mixed
\scrH 2/\scrH \infty problems via convex optimization, IEEE Trans. Automat. Control, 43 (1998),
pp. 1475--1480.

[37] V. Roulet, M. Fazel, S. Srinivasa, and Z. Harchaoui, On the convergence of the iterative
linear exponential quadratic Gaussian algorithm to stationary points, in American Control
Conference, IEEE, Piscataway, NJ, 2020, pp. 132--137.

[38] C. W. Scherer, Multiobjective \scrH 2/\scrH \infty control, IEEE Trans. Automat. Control, 40 (1995),
pp. 1054--1062.

[39] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, Trust region policy opti-
mization, in International Conference on Machine Learning, 2015, Curran Associates, Red
Hook, NY, pp. 1889--1897.

[40] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., Mastering the game
of Go with deep neural networks and tree search, Nature, 529 (2016), pp. 484--489.

[41] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, Policy gradient methods
for reinforcement learning with function approximation, in Advances in Neural Information
Processing Systems, MIT Press, Cambridge, MA, 2000, pp. 1057--1063.

[42] E. E. Tyrtyshnikov, A Brief Introduction to Numerical Analysis, Birkh\"auser, Boston, 1997.
[43] H. K. Venkataraman and P. J. Seiler, Recovering robustness in model-free reinforcement

learning, in IEEE American Control Conference, IEEE, Piscataway, NJ, 2019, pp. 4210--
4216.

[44] P. Whittle, Risk-Sensitive Optimal Control, Wiley, Chichester, England, 1990.
[45] G. Zames, On the input-output stability of time-varying nonlinear feedback systems Part one:

Conditions derived using concepts of loop gain, conicity, and positivity, IEEE Trans. Au-
tomat. Control, 11 (1966), pp. 228--238.

[46] K. Zhang, B. Hu, and T. Ba\c sar, Policy optimization for \scrH 2 linear control with \scrH \infty robust-
ness guarantee: Implicit regularization and global convergence, Proc. Mach. Learn. Res.
(PMLR), 120 (2020), pp. 179--190.

[47] K. Zhang, Z. Yang, and T. Ba\c sar, Policy optimization provably converges to Nash equilibria
in zero-sum linear quadratic games, in Advances in Neural Information Processing Systems,
MIT Press, Cambridge, MA, 2019, pp. 11602--11614.

[48] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control, Prentice Hall, Upper
Saddle River, New Jersey, 1996.


	Introduction
	Preliminaries
	Landscape and algorithms
	Optimization landscape
	PO algorithms

	Theoretical results
	Implicit regularization
	Global convergence

	Proofs of the main results
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Theorem 4.4

	Conclusions
	Appendix A. Supplementary proofs
	On the proof of Lemma 2.2
	Proof of Lemma 3.1
	Proof of Lemmas 3.2
	Proof of Proposition 3.3
	Proof of Lemma 5.1

	Appendix B. Simulations
	References



