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POLICY OPTIMIZATION FOR #H, LINEAR CONTROL
WITH Ho ROBUSTNESS GUARANTEE:
IMPLICIT REGULARIZATION AND GLOBAL CONVERGENCE*

KAIQING ZHANGT, BIN HUf, AND TAMER BASAR'

Abstract. Policy optimization (PO) is a key ingredient for modern reinforcement learning. For
control design, certain constraints are usually enforced on the policies to optimize, accounting for
stability, robustness, or safety concerns on the system. Hence, PO is by nature a constrained (non-
convez) optimization in most cases, whose global convergence is challenging to analyze in general.
More importantly, some constraints that are safety-critical, e.g., the closed-loop stability, or the Hoo-
norm constraint that guarantees the system robustness, can be difficult to enforce on the controller
being learned as the PO methods proceed. In this paper, we study the convergence theory of PO for
Ha linear control with Hoo robustness guarantee. This general framework includes risk-sensitive lin-
ear control as a special case. One significant new feature of this problem, in contrast to the standard
Ha linear control, namely, linear quadratic regulator problems, is the lack of coercivity of the cost
function. This makes it challenging to guarantee the feasibility, namely, the Hoo robustness, of the
iterates. Interestingly, we propose two PO algorithms that enjoy the implicit regularization property,
i.e., the iterates preserve the Hoo robustness automatically, as if they are regularized. Furthermore,
despite the nonconvexity of the problem, we show that these algorithms converge to a certain globally
optimal policy with globally sublinear rates, without getting stuck at any other possibly suboptimal
stationary points, and with locally (super)linear rates under additional conditions. To the best of
our knowledge, our work offers the first results on the implicit regularization property and global
convergence of PO methods for robust/risk-sensitive control.
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1. Introduction. Recent years have seen tremendous success of reinforcement
learning (RL) in various sequential decision-making applications [40] and continuous
control tasks [26]. Interestingly, most successes hinge on the algorithmic framework of
policy optimization (PO), umbrellaing policy gradient (PG) methods [41], actor-critic
methods [24], trust-region methods [39], etc. This inspires an increasing interest in
studying the convergence theory, especially global convergence to optimal policies, of
PO methods; see recent progress in both classical RL contexts [1, 6], and continuous
control benchmarks [10, 15, 29, 47].

In general, PO methods solve RL problems under the framework of constrained
optimization mingex J(K), where K is the parameter of the policy /controller, J(K)
is the cost function the agent needs to minimize, and K denotes the feasible set of
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K.' For instance, in the standard continuous control task, linear quadratic regu-
lator (LQR), the controller is parameterized as u; = —Kux, the cost is J(K) :=
Yo Elz] Qui+uf Ruy), and K is the set of K such that the system is stabilizing un-
der K. Such a constrained optimization problem is generally nonconvex, even for the
simple LQR problems [10, 15]. To ensure the feasibility of K on the fly as PO meth-
ods proceed, projection of the iterates onto K seems to be natural. However, such
a projection may not be computationally efficient or even tractable. For example,
projection onto the stability constraint in LQR problems can hardly be computed, as
the set K therein is well known to be nonconvex [15]. Fortunately, such a projection
is not needed when PG-based methods are used to solve LQR, as J(K) therein has
a coercive property, i.e., the cost grows up to infinity as K approaches the boundary
of K [10]. Hence, the intuition behind this avoidance of projection is that, as long
as the cost is decreased along the iteration, the iterates stay in K and remain stabi-
lizing. Such a result is algorithm-agnostic, in the sense that it is independent of the
algorithms adopted, as long as they follow any descent directions of the cost.

Besides the stability constraint, another commonly used one in the control liter-
ature is the Ho.-norm constraint, which plays a fundamental role in robust control
[2, 14, 48] and risk-sensitive control [16, 44]. Such a constraint can be used to guaran-
tee robust stability/performance of the closed-loop systems when model uncertainty is
present. Compared with LQR under the stability constraint, control synthesis under
the Hoo constraint leads to a fundamentally different optimization landscape, which
has not been fully investigated yet. In this paper, we take an initial step towards
understanding the theoretical aspects of policy-based RL methods on robust /risk-
sensitive control problems with such a constraint. Specifically, we establish a conver-
gence theory for PO methods on Hs linear control problems with H., constraints,
referred to as mized Ha/Hoo state-feedback control design in the robust control lit-
erature [16, 22, 23]. As the name suggests, the goal of mixed design is to find a
robust stabilizing controller that minimizes an upper bound for the Hs-norm, subject
to that the Hoo,-norm on a certain input-output channel is less than a prespecified
value. This general framework also includes risk-sensitive linear control, modeled as
linear exponential quadratic Gaussian (LEQG) [21, 44] problems as a special case. In
addition, this framework is also closely related to maximum-entropy Ho control [16]
and zero-sum linear quadratic (LQ) dynamic games [4].

Two challenges exist in the analysis of PO methods for mixed design problems.
First, by definition, the Ho.-norm constraint is defined in the frequency domain, and
is hard to impose by directly projecting onto I, especially when the system model is
unknown in RL. Nevertheless, preserving the H..-norm constraint as the controller
updates is critical in practice, as the violation of it can be catastrophic for real systems.
Second, more importantly, compared to LQR, the cost of mixed design is no longer
coercive, as illustrated in Figure 1(b) (and formally established later). Therefore, the
decrease in cost cannot guarantee the feasibility of the iterate, as the cost remains
finite around the boundary of L. There may not even exist a constant step size that
induces global convergence to the optimal policy. In this paper, we show that two
PO methods can indeed preserve the robustness constraint along the iterations, and
enjoy global convergence guarantees.

I Hereafter, we will mostly adhere to the terminologies and notational convention in the control
literature, which are equivalent to, and can be easily translated to, those in the RL literature, e.g.,
cost versus reward, control versus action, etc.
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(a) LQR (b) Mixed Hz/Hoo Control

Fi1c. 1. Comparison of the landscapes of LQR and mized Ha/Hoo control design that illustrates
the difficulty of analyzing the latter. The dashed lines denote the boundaries of the constraint sets K.
For (a) LQR, K is the set of all linear stabilizing state-feedback controllers; for (b) mized Ha/Hoo
control, IC is set of all linear stabilizing state-feedback controllers satisfying an extra Hoo constraint
on some input-output channel. The solid lines represent the contour lines of the cost J(K). K and
K’ denote the control gain of two consecutive iterates; % denotes the global optimizer.

Contribution. Our key contributions are threefold: First, we study the landscape
of mixed Ha/H design problems, and propose three PG-based methods, inspired by
those for LQR [15]. Second, we prove that two of them (the Gauss—Newton and the
natural PG) enjoy the implicit reqularization property, i.e., the iterates are automat-
ically biased to satisfy the required H., constraint. Third, we establish the global
convergence of those two PO methods to the globally optimal policy with globally
sublinear and locally (super)linear rates under certain conditions, despite the non-
convexity of the problem. In particular, the two policy search directions always lead
convergence to a certain global optimum, without getting stuck at any other possi-
bly suboptimal stationary points/local optima. To the best of our knowledge, our
work appears to be the first studying the global convergence theory of PO methods
for learning for robust/risk-sensitive control. Due to space limitations, we focus on
the discrete-time settings in this paper. We have also established a set of results for
continuous-time settings, and detailed numerical simulations, which can be found in
the companion report [46]. We have included some of the simulation results in the
appendix, to illustrate the computation efficiency of our PO methods. We highlight
the most related literature as follows, and refer to [46] for a more detailed one.

Related work. The history of mixed Ho/Hoo control design dates back to the
seminal works [5, 23] for continuous-time and [22, 31] for discrete-time settings, re-
spectively. A nonsmooth constrained optimization perspective for solving general
output-feedback mixed design problems was adopted in [2], with a proximity control
algorithm designed to handle the constraints explicitly, and convergence guarantees
to stationary-point controllers. Numerically, there also exist other packages for multi-
objective Ha/H o control [3] that are based on nonsmooth nonconvex optimization.
However, in spite of achieving impressive numerical performance, these methods have
no theoretical guarantees for either the global convergence or the #H,,-norm con-
straint violation. It is also not yet clear how these methods can be made model-free.
Mixed Ha/Hoo control can also be unified with risk-sensitive linear control [16, 44],
maximum-entropy Heo control [16], and zero-sum dynamic games [4, 21]. Recently,
first-order optimization methods have also been applied to finite-horizon risk sensi-
tive nonlinear control, but the control inputs (instead of the policy) are treated as
decision variables [37]. Convergence to stationary points was shown therein. Besides
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these direct controller/policy search methods, general mixed Ha/H o, control can also
be tackled via Youla-parameterization-based approaches [8, 12, 36, 38], which lead to
convex programming problems that can be solved numerically. However, actual im-
plementation of these approaches either requires a finite-horizon truncation of system
impulse responses, which loses optimality guarantees [8], or require solution of (a large
enough sequence of [12, 36]) semidefinite programs or linear matrix inequalities with
lifted dimensions [12, 36, 38], which may not be computationally efficient for large-
scale dynamical systems. More importantly, it is not yet clear how to implement these
approaches in the data-driven regime, without identifying the model. In contrast, the
direct search methods can easily be made model-free; see, e.g., the methods in [15, 29]
for LQR. Another related line of work is on PO for LQR, which stemmed from the
adaptive policy iteration algorithm in [9]. Lately, studying the global convergence of
PG-based methods for LQR [10, 15, 17, 29, 30, 43] has drawn increasing attention.
Starting from the seminal work [15], where the optimization landscape was studied,
[29, 30] have improved the sample complexity of [15]. However, no robustness was
concerned in these LQR (#H2 control) formulations. More recently, [17, 43] have ex-
tended the work to the case with multiplicative noises, as one way to improve the
controller’s robustness.

2. Preliminaries. We first formulate mixed Ha/Hoo control with a single input-
output channel as a constrained PO problem. We note that this problem covers risk-
sensitive linear control [21] as a special case [16]. We provide some new results on
this connection in [46, sect. 2]. Consider the linear system

(21) Tiy1 = A(Et + But + Dwt, Zt — Cl’t + Euh

where z; € R™,u; € R? denote the states and controls, respectively, w; € R™ is
the disturbance, z; € R’ is the controlled output, and A, B,C, D, E are matrices of
proper dimensions. It has been shown in [22] that a linear time-invariant (LTT) state-
feedback controller (without memory) suffices to achieve the optimal performance
of mixed Hz/Hoo design under this state-feedback information structure.? Hence,
it suffices to consider only a stationary state-feedback controller parameterized as
u; = —Kx;. With this parameterization, the transfer function from the disturbance
w; to the output z; can be represented as

A—-BK | D
C-EK|0 |
In common with [4, 16, 23], we make the following assumption on (A, B,C, D, E).

Assumption 2.1. There exists some R > 0 such that ET[C E]=[0 R].

Assumption 2.1 is fairly standard, which clarifies the exposition substantially by
normalizing the control weighting and eliminating cross-weightings between control
signal and state [4]. Hence, the transfer function in (2.2) has the equivalent form? of

(2.2)

(2.3) T(K) :=

A— BK \ D
(CTC+ KTRK)Y? | 0

2For discrete-time settings, if both the (exogenous) disturbance w; and the state z; are available,
i.e., under the full-information feedback case, LTI controllers may not be optimal [22]. Interestingly,
for continuous-time settings, LTI controllers are indeed optimal [23].

3Strictly speaking, the transfer functions for (2.2) and (2.3) are equivalent in the sense that the
values of 7™~ (K)T (K) are the same for all the points on the unit circle.
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Hence, robustness of the designed controller can be guaranteed by the constraint
on the Hoo-norm, ie., |T(K)|cw < 7 for some v > 0. The intuition behind the
constraint, which follows from the small gain theorem [45], is that the constraint on
I7(K)|s implies that the closed-loop system is robustly stable in that any stable
transfer function A satisfying |Al|¢,—e, < 1/ may be connected from z; back to w,
without destablizing the system. For more background on H., control, see [4, 48].
For notational convenience, we define the feasible set of mixed Ha/Hoo control design
as

(2.4) K:={K|p(A—BK) <1, and |T(K)|e <7}

We note that the set K may be unbounded.

In addition to the constraint, the objective of mixed Hao/Hoo design is usually
an upper bound of the Hs norm of the closed-loop system. Let J(K) be the cost
function of mixed design. Then the common forms of J(K) include [31]

(2.5) J(K) =Te(PxDDT),
J(K) = —~*logdet(I —y 2PxDD"),
J(K)=Tr [D"Px(I -~ ?DD"Px)'D],

where Py is the solution to the following Riccati equation

(2.8) (A—BK)"Pg(A—BK)+CTC+K'RK —Pg =0
with ]5K defined as

(2.9) P := P + PxD(*I — D" Pg D) 'D" Pg.

All three objectives in (2.5)—(2.7) are upper bounds of the Hp-norm [31]. In par-
ticular, cost (2.5) has been adopted in [5, 18], which resembles the standard Hz/LQG
(linear quadratic Gaussian) control objective, but with Pk satisfying a Riccati equa-
tion instead of a Lyapunov equation. Cost (2.6) is related to maximum entropy
Hoo-control; see the detailed relationship between the two in [32]. In addition, cost
(2.7) can also be connected to the cost of LQG using a different Riccati equation
[31, Remark 2.7]. As v — oo, the costs in all (2.5)—(2.7) reduce to the cost for LQG,
i.e., Hy control design problems.

In sum, the mixed Ha/H control design can be formulated as

(2.10) m}%n J(K) st. Kek

with J(K) and K defined in (2.5)-(2.7) and (2.4), respectively.

A key element of the above formulation is the feasibility constraint (2.4), which
is characterized in the frequency domain and hence hard to directly enforce over K
in PO. Interestingly, by using a significant result in robust control theory, i.e., the
bounded real lemma [4, Chapter 1], [35, 48], constraint (2.4) can be related to Riccati
equation/inequality as follows.

LEMMA 2.2 (bounded real lemma). Consider a discrete-time transfer function
T(K) defined in (2.3), then the following three conditions are equivalent:
e The controller K lies in K defined in (2.4), i.e., p(A—BK) < 1 and || T (K)|loo <
.
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e The Riccati equation (2.8) admits a unique stabilizing solution Px > 0 such
that (1) I —y2DTPxD > 0; (ii) (I — v 2PxkDDT)~"(A — BK) is stable.
e There exists some P > 0, such that

(2.11) I-~"2D"PD >0,
(A—BK)'P(A-BK)-P+C'C+K'"RK <0,

where P := P + PD(y2I — DTPD)"'DTP.

The three conditions in Lemma 2.2 will be frequently used in the ensuing analysis.
Note that the unique stabilizing solution to (2.8) for any K € K, is also minimal, if
the pair (A — BK, D) is stabilizable; see [34, Theorem 3.1]. This holds here since any
K € K is stabilizing. More comments on Lemma 2.2 are provided in section A.1.

3. Landscape and algorithms. In this section, we investigate the optimization
landscape of mixed Hz/Hoo control design, and develop PO algorithms for solving
(2.10) provably. In particular, we focus on the representative example cost J(K)
in (2.6), as it coincides with the objective of LEQG, a fundamental setting in risk-
sensitive control (cf. [46, sect. 2]). Although we focus here on the LEQG cost function,
the techniques and most of the results below apply to other types of costs as well; see
the brief discussions in later sections, and more detailed ones in [46].

3.1. Optimization landscape. We start by showing that the mixed-design
problem in (2.10) lacks convexity and coercivity.

LEMMA 3.1 (nonconvexity and no coercivity). The discrete-time mized Ho/Hoo
design problem (2.10) is nonconvex. Moreover, the cost functions (2.6) is not coercive.
Particularly, as K — 0K, where OK is the boundary of the constraint set IC, the cost
J(K) does not necessarily approach infinity.

The proof of Lemma 3.1 is deferred to section A.2. Note that the results above
also apply to the other two objectives, (2.5) and (2.7), the proofs of which are not
included here due to page limitation, and can be found in [46, Lemmas 3.1, 3.2]. In
particular, we show nonconvexity by an easily constructed example that the convex
combination of two control gains K and K’ in £ may no longer lie in K. Similar
nonconvexity of the constraint set also exists in LQR problems [10, 15], and has been
recognized as one of the main challenges for solving PO via gradient-based methods.

More importantly, we have also constructed a simple example to show the lack
of coercivity for (2.10). Note that the landscape of LQR has the desired property
of being coercive [10, Lemma 3.7], which played a significant role in the analysis of
PO methods for LQR. The intuition for this result is that for given K € K, the
policy evaluation equation for mixed design problems is a Riccati equation (see (2.8)
(a quadratic equation of Pk in a l-dimensional case), while for LQR, the policy
evaluation equation is a Lyapunov equation, which is essentially linear. Hence, some
additional condition on K is required for the existence of the solution, which can be
more restrictive than the conditions on K and Pk that yield a finite J(K). In this
case, the existence condition of the solution characterizes the boundary of K, which
leads to a well-defined Pk, and thus a finite value of J(K), even when K approaches
the boundary 0K.

The lack of coercivity turns out to be the main challenge when analyzing the
stability /feasibility of PO methods here, in contrast to LQR problems. Detailed
discussion on this is provided in section 4.1. The illustration in Figure 1 in section 1
of the landscapes of two problems was actually based on Lemma 3.1. We then show
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the differentiability of J(K) at each K within C, and provide the closed form of the
PG.

LEMMA 3.2 (PG expression). The cost J(K) defined in (2.6) is differentiable in
K for any K € IC, and the PG has the following form:

VJ(K) =2[(R+ B" PgB)K — B PxA] Ak,

where A € R™*™ js a matriz given by

Ay = i (I —~"2PxDD")"T(A - BK)|'D(I —4 2D PxD)"'D"
t=0
(3.1) (A= BK)T(I = 72PxDDT) ],

and Py is defined in (2.9).

The proof of Lemma 3.2 is provided in section A.3. Similar expressions for PG
can also be derived for the other two objectives (2.5) and (2.7), with only the form
of Ak being different, e.g., see our LQ zero-sum game paper [47], where the cost
used was essentially the one in (2.5) in the trace form. Note that Lemma 3.2 also
implies some property on the landscape of J(K). Specifically, if Ax > 0 is full rank,
then VJ(K) = 0 admits a unique solution K = (R + BT PxB)"'BT Pg A, which
corresponds to the unique global optimum. Otherwise, if Ax > 0 is not full rank,
there can be multiple stationary points. Yet, one global optimum is still of the same
form. We formally establish this in the following proposition proved in section A.4.

PROPOSITION 3.3. Suppose that the discrete-time mized Hao/H~ design admits
a global optimal solution K* € K; then, one such solution has the form of K* =
(R + B Pg«B)"'B" P+ A, Additionally, if the pair (I — v 2PxDDT)"T(A —
BK), D) is controllable at some stationary point of J(K) such that VJ(K) = 0, then
this is the unique stationary point, and corresponds to the unique global optimizer K*.

We note that the landscape result above can also be shown for the other two
objectives (2.5) and (2.7). In fact, the key in proving Proposition 3.3 is to show that
Py« is matrizwise minimal in the positive semidefinite sense for all P with K € K.
Note that since the objectives (2.5) and (2.7) are both monotonically nondecreasing
in the eigenvalues of Pk, one can verify that K* is also the global optimizer. Besides
(2.5) and (2.7), such an argument also applies to other objectives nondecreasing in
the eigenvalues of Pg. Note that K* may not be the unique global minimizer without
the controllability assumption. Although the controllability assumption is standard
[31], and is also satisfied automatically by LEQG problems (see our [46, sect. 3]), we
will show next that our PO methods can find the global optimum K* even without
this assumption.

3.2. PO algorithms. Consider three PG-based methods as follows. For sim-
plicity, we define

(3.2) Ex = (R+ B"PxB)K — B' PgA.

We also suppress the iteration index, and use K and K’ to represent the control gain
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before and after one-step of the update.

(3.3) PG: K =K —yVJ(K) = K — 20Ex A,
(3.4) Natural PG: K' =K - nVJ(K)AR' = K — 2nEk,

Gauss—Newton: K'=K —n(R+ B PkB) 'VJ(K)AL
(3.5) = K —2n(R+ B' PxB) 'E,

where 1 > 0 is the step size. The updates are motivated by the PO updates for
solving LQR problems [10, 15], but with Pk therein replaced by Pgx. The natural
PG update is related to the gradient over a Riemannian manifold, while the Gauss—
Newton update is one type of quasi-Newton update; see [10] for further justifications
on the updates. In particular, with n = 1/2, the Gauss-Newton update (3.5) can be
viewed as the policy iteration update for infinite-horizon mixed Hs/Ho, design. To
enable a model-free RL update rule, the (natural) PG directions can be estimated
by sampling the trajectories of the system, as well as the cost functions, without
estimating system parameters; see examples in [15, 29, 47]. More discussions on the
model-free versions of these updates can be found in [46, sects. 3 and 6].

4. Theoretical results. In this section, we study the convergence of the PO
methods proposed in section 3.

4.1. Implicit regularization. The first key challenge in the convergence analy-
sis for PO methods, is to ensure that the iterates remain feasible as the algorithms
proceed, hopefully without the use of projection. This is especially significant in mixed
design problems, as the feasibility here means robust stability, the violation of which
can be catastrophic in practical online control design. We formally define the concept
of implicit reqularization to describe this feature.

DEFINITION 4.1 (implicit regularization). For mized Ho/Hoo control design prob-
lem (2.10), suppose an iterative algorithm generates a sequence of control gains { K, }.
If K, € K for alln > 0, this algorithm is called regularized; if it is reqularized without
projection onto IKC for any n > 0, this algorithm is called implicitly regularized.

One possible way for the iterates to remain feasible is to keep shrinking the step
size, whenever the next iterate goes outside I, following for example the Armijo
rule. However, as the cost J(K) is not necessarily smooth (see Lemma 5.1 and its
discussion later), it may not converge within a finite number of iterations [20, Theorem
3.2]. Another option is to project the iterate onto K. Nonetheless, it is challenging
to perform projection onto the H,,-norm constraint set in a data driven manner.

For LQR problems, due to the coercivity of the cost that as K approaches the
boundary of the stability/feasibility region {K € R?™™|p(A — BK) < 1}, i.e., as
p(A — BK) — 1, the cost blows up to infinity, and due to the fact that the cost is
continuous with respect to K, the lower-level set of the cost is compact [28] and is
contained within the stability region. Hence, there is a strict separation between any
lower-level set of the cost and the set {K € R¥™|p(A — BK) > 1}. There thus
exists a constant step size such that as long as the initialization control is stabilizing,
the iterates along the path remain stabilizing and keep decreasing the cost.

In contrast, for mixed Hs/H o, design problems, lack of coercivity invalidates the
argument above, as the control approaching the robustness constraint boundary 0K
may incur a finite cost, and the descent direction may still drive the iterates out of the
feasibility region. In addition, there may not exist a strict separation between all the
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lower-level sets of the cost and the complementary set K¢. This difficulty has been
illustrated in Figure 1 in the introduction. Interestingly, we show in the following
theorem that the natural PG and Gauss-Newton methods in (3.4)—(3.5) enjoy the
implicit regularization feature, with certain constant step sizes.

THEOREM 4.2 (implicit regularization property). For any control gain K € K
with || K| < oo, suppose that the step size n satisfies the following:
e Natural PG (3.4): n < 1/(2|R+ BT PgB|));
o Gauss—Newton (3.5): n < 1/2.
Then the K' obtained from (3.4)—(3.5) also lies in K. Equivalently, K' is stabilizing,
i.e., p(A—BK') < 1, and satisfies that (i) there exists a solution Px+ > 0 to the Riccati
equation (2.8); (ii) I—y~2D" Pg:D > 0; (iii) p((I—y2Pxg:DD")"T(A-BK')) < 1.

Proof sketch. The general idea, contrary to the coercivity-based idea that works
for any descent direction, is that we focus on the feasibility of K’ after an update
along certain directions: either (3.4) or (3.5). By the bounded real lemma, i.e.,
Lemma 2.2, the feasibility condition for K’, if K’ is stabilizing, is equivalent to the
existence of P > 0 such that the linear matrix inequalities (LMIs) in (2.11) hold for
K'. Moreover, it is straightforward to see that such a P > 0, if it exists, satisfies
(A— BK')TP(A - BK') — P < 0, which can be used to show that K’ is stabilizing
[7]. Thus, it now suffices to find such a P.

To show this, we first study the case with step sizes being the upper bound
in the theorem, i.e., n = 1/2 for Gauss-Newton and n = 1/(2||R + B" Pk B||) for
natural PG. As the solution to the Riccati equation (2.8) under K, Px > 0 satisfies
I —~y2DTPgD > 0, the first LMI in (2.11). Hence, it may be possible to perturb
Pk to obtain a P > 0 such that the equality in (2.8) becomes a strict inequality of
the second LMI in (2.11), while preserving the first LMI. Moreover, if K’ is not too
far away from K, such a perturbed Py should also work for K’. Such an observation
motivates the use of P as the candidate of P for the LMIs in (2.11) under K.

Indeed, it can be shown that substituting P = Py makes the second LMI in (2.11)
under K’ nonstrict, namely, the left-hand side (LHS) < 0; see (5.5) in the detailed
proof. To make it strict, consider the perturbed P = Py + P for some a > 0, where
P > 0 is the solution to some Lyapunov equation

(41) (A=BK)"(I -~ DD "Px) " "P(I-~2DD"Px)Y(A—BK)—-P=—1I.
Such a Lyapunov equation (4.1) always admits a solution P > 0, since K € K implies
that (I — vy 2DDT Px)~'(A — BK) is stable. The intuition of choosing (4.1) is as
follows. First, the LHS of the second LMI in (2.11) under K’ can be separated as

(4.2)

(A—BK'\TP(A—BK')—P+C'C+ K'"RK'

=[(A-BK)TP(A—BK')— (A— BK)"P(A— BK)|+ K'"RK' — K" RK
©)
+(A—BK)'P(A-BK)—P+C'C+K'RK.
@
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By some algebra, the first term (D is of order o(«a). Since for small a,
P=Px+(I—~2PxkDD") " (aP)(I —~v 2DD" Px)~" + o(a),

this, combined with the Riccati equation (2.8) and (4.1), makes the second term 2 =
—al + o(a). Hence, there exists small enough o > 0 such that D + @ < 0, ensuring
that the updated K’ is feasible. Last, by the linearity of LMIs, any interpolation of
K’ with a smaller step size is also feasible/robustly stable, completing the proof. O

The detailed proof of Theorem 4.2 is deferred to section 5.1. Recall from Lemma
3.2 that for the other two objectives (2.5) and (2.7), the only difference of the PG form
is in the form of Ag. Notice that our update rules of natural PG and Gauss—Newton
are independent of this A . Hence, the implicit regularization results in Theorem 4.2,
in terms of ensuring K € IC, also apply to the other objectives. Note that theoretically,
it is not clear yet if vanilla PG enjoys implicit regularization. It is possible that vanilla
PG does not preserve the robustness constraint. Hence, hereafter, we only focus on
the global convergence of natural PG method (3.4) and Gauss—Newton method (3.5).

4.2. Global convergence. The term global convergence here refers to two no-
tions: (i) the convergence performance of the algorithms starting from any feasible
initialization point Ky € K; (ii) convergence to the global optimal policy under certain
conditions. We formally establish the results for the natural PG (3.4) and Gauss—
Newton (3.5) updates in the following theorem.

THEOREM 4.3 (global sublinear convergence). Suppose that Ko € K and || Kol <
oo. Then, under the step size choices* as in Theorem 4.2, both updates (3.4) and (3.5)
converge to the global optimum K* = (R + BTISK*B)_lBT]SK*A in that the average
of {||Ex, ||%} over iterations converges to zero with O(1/N) rate.

The proof of Theorem 4.3 is detailed in section 5.2. The key idea is to first quan-
tify the difference in Pg (both its upper and lower bounds) for any two control gain
matrices K and K’ (cf. Lemma 5.1). Essentially it delivers some “almost smoothness”
of Pg: the leading terms in both upper and lower bounds depend on ||K’ — K| with
the remaining terms being on the order of o || K’ — K]|) if K’ is close to K. Then, by
substituting two consecutive iterates K’, K’ and the upper bound in Lemma 5.1, the
sublinear global convergence follows similarly to the analysis of smooth nonconvex
optimization using the descent lemma [11, 33]. Note that the luxury of conducting
this analysis is attributed to the implicit regularization result in Theorem 4.2, which
already ensures that the next iterate is always robustly stable. This is the key dif-
ference from any smooth nonconvex optimization and LQR analysis. Similarly to the
discussion after Theorem 4.2, the global convergence results also apply to the other
two objectives (2.5) and (2.7), as the update rules natural PG and Gauss—Newton, as
well as the performance metric (the average of {|| Ek, ||%}), are all independent of A .

We note that the controllability assumption made in Proposition 3.3 is not re-
quired for the global convergence here. Remarkably, there might be multiple station-
ary points such that VJ(K) = 0, while the two specific search directions (3.4) and
(3.5) provably avoid the other local minima, and always converge to the global opti-
mum K* that minimizes Pk in the positive semidefinite sense. This can be viewed
as another implication of implicit regularization, in that (3.4) and (3.5) always bias
the iterates towards a certain global optimal solution, without getting stuck at other
stationary points that are possibly suboptimal. The key reason is that, without using

4In fact, for natural PG (3.4), it suffices to require n < 1/(2||R + BTﬁKOBH) for the initial K.
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the curvature information in Ay, these two PO methods can converge to the specific
and optimal stationary point such that EFx = 0, instead of an arbitrary one. In con-
trast to the results for LQR [15], only globally sublinear O(1/N), instead of linear,
convergence rates can be obtained so far. This O(1/N) rate of the (iteration average)
gradient norm square matches the global convergence rate of gradient descent and
second order algorithms to stationary points for nonconvex problems [11].

We can obtain faster local (super)linear rates, and this is formalized as follows.

THEOREM 4.4 (local (super)linear convergence). Suppose that the conditions in
Theorem 4.3 hold, and additionally DDT > 0 holds. Then, under the step size choices
as in Theorem 4.3, both updates (3.4) and (3.5) converge to the optimal control gain
K* with locally linear rate, in the sense that the objective {J(Ky)} defined in (2.6)
converges to J(K*) with a linear rate. In addition, if n = 1/2, the Gauss—Newton
update (3.5) converges to K* with a locally Q-quadratic rate.

Proof of the above theorem is deferred to section 5.3. Key to the locally faster
rates is that the property of gradient dominance [33] holds locally around the global
optimum, which can be proved by substituting the lower bound of two consecutive
Px’s in Lemma 5.1. Note that this lower bound only holds locally. The gradient
dominance property has been shown to hold globally for LQR problems [15], and also
hold locally for zero-sum LQ games [47]. The Q-quadratic rate mirrors the rate of
Gauss—Newton with n = 1/2 (essentially policy iteration) for LQR problems [10, 19].

5. Proofs of the main results. Now we provide proofs for the main results.
5.1. Proof of Theorem 4.2. To show that K’ lies in I, we first argue that it
suffices to find some P > 0 such that
(5.1) I-~y2D"PD >0, and
(5.2) (A—= BK)TP(A—BK') =P+ C"C+ (K')TRK' <0,

where P := P + PD(y2I — DTPD)"'DTP. By the Schur complement, showing
(5.1)—(5.2) is also equivalent to showing

(5.3)
(A-BK)TP(A-BK')-P+C"C+ K'"RK' (A-BK')"PD

DTP(A— BK') —t21-pTpp) | <©

We denote the LHS of (5.2) by —M. Thus, (5.1) and (5.2) imply
(A-BK'\TP(A-BK')-P=-M-C'C - (K')TRK' — (A— BK")"PD
-(y*I-D"PD)'D"P(A- BK') < -M <0,

which shows that K’ is stabilizing, i.e., p(A — BK’) < 1 [7]. Thus, Lemma 2.2 can be
applied to K’. Then, (5.1) and (5.2) are identical to (2.11), which further shows that
IT(K")||so <~ and hence K" € K. Hereafter we will focus on finding such a P > 0.

We first find such a P for the Gauss-Newton update (3.5) with step size n = 1/2.
Specifically, we have

(5.4) K' =K —(R+B'"PxB)'Ex = (R+ B"PxB) 'B' Pk A.

Since Pk > 0 satisfies the conditions (i)—(iii), and K and K’ are close to each other,
we can choose Pk as a candidate for P. Hence, by the Riccati equation (2.8), the
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LHS of (5.2) can be written as

(5.5)

[A— B(R+ B PxB) 'BT Px A" Px[A— B(R+ BT PgkB) 'BTPx Al — Px +CTC
+[(R+ BTPgkB) 'BTPx A|TR[(R+ BT PxB) " 'BT Px Al

= —[(R+BTPxB) 'BTPxA—K]'
(R+B"PgB)[(R+B"PxB)'B"PxA— K] <0,

where we substitute K’ from (5.4), and the last equation is by completing the squares.

Now we need to perturb Pk to obtain a P such that (5.5) holds with a strict
inequality. To this end, we define P > 0 as the solution to the Lyapunov equation

(5.6) (A—BK)"(I -y >DD"Py)""P(I -~y >DD"Py)"'(A— BK)— P =—I,

and let P = Pg 4+ P > 0 for some a > 0. By Lemma 2.2, (I -y 2DD" Pg)~'(A -
BK) is stable, and thus the solution P > 0 exists. For (5.1) to hold, we need a small
a > 0 to satisfy

(5.7) aD'"PD < ~*I — D" Py D.

Also, the LHS of (5.2) can be written as in (4.2), with O, @ being defined therein.
We aim to find some a > 0 such that ) + @ < 0. Note that P can be written as

(5.8)
P=[I -~y %(Px +aP)DD"]"*(Px + aP)
=[I-~2PxkDD") ' +(I—-~"2PxkDD") (ay ?PDD")(I — v 2PxkDD")~*
+0(a)](Px + aP) = Pg + (I =y 2Px DD ") (aP)(I — v "2DD" Px) ™! + o(«),

where the first equation follows by definition, and the second one uses the fact that
(X+Y) ! =X"1-X"'YX~1 4+ 0o(]]Y]), for a small perturbation Y around the
matrix X. Thus, D can be written as

(5.9)

MD=-K"B"PA-ATPBK'+ K'"(R+B"PB)K' + K'B"PA+ AT PBK
~K"(R+B"PB)K
<—-K'"B"PA—A"PBK'+ K'"(R+ B"PB)K'+ ATPB(R+B' PB)"'B' PA
— [(R+B"PB)'B"PA-K'|"(R+B"PB)[(R+B"PB)'BTPA-K'],

where the inequality follows by completing squares. By substituting in K’ from (5.4),
we further have

D<[(R+BTPB)'B"PA— (R+ BT PxB)"'BT PxA] ' (R+ BT PB)
(5.10) [(R+BTPB)'BT"PA—(R+ B"PxB) 'B" PxAl.
®
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Note that by (5.8), we have

®=[(R+B"PxB)™' —(R+B"PxkB) 'B"(I —~ *PxkDD") "(aP)(I —~ *DD" Pg)™"
“B(R+ BT PxB) " +o0(a)]B" [Pk + (I =y *PxkDD") " (aP)(I -y DD " Px)™"
+o(a)]A = (R+ B PxB)"'B" Pk A+ O() + o(a),

which can be combined with (5.10) to show @ = o(«).
Moreover, by (5.8), @ can be written as

(511) @ = (A— BK) [Pk + (I =4 2PgkDDT) " (aP)(I —y 2DD Px)~"
+0(@)|](A-=BK)-P+C'C+K'RK
=(A-=BK)"(I -~y 2PxkDD") Y (aP)(I -y 2DD" Pg)~!
(A - BK) — aP + o(«)
= —al + o(a),

where the first equation uses (5.8), the second one uses the Riccati equation (2.8),
and the last one uses (5.6). Therefore, for small enough a > 0 such that DO+® <0,
and it also satisfies (5.7), there exists some P > 0 such that both (5.1) and (5.2) hold
for K’ obtained with step size n = 1/2. On the other hand, such a P also makes the
LMI (5.3) hold for K, i.e.,

(A-BK)"P(A-BK)-P+C"C+K"RK (A-BK)"PD

(5.12) DTP(A - BK) —(y*I - D" PD)

)

as now (D in (4.2) is null, and the same « above makes @) < 0. For n € [0,1/2], define
K, = K +2n(K' — K). By linearity, convexity of the quadratic form, and combining
(5.3) and (5.12), one can show that (5.12) also holds for K, for any n € [0,1/2]. Thus,
K, satisfies the conditions (i)—(iii) in the theorem.

Now we prove a similar result for the natural PG update (3.4). Recall that

(5.13) K' = K —23[(R+ BT PxB)K — BT Pg Al.
As before, we first choose P = Pg. Then, the LHS of (5.2) under K’ is written as
(A— BK')"Pg(A— BK')— Pk +C'C + K'TRK’
= (K' - K)"(R+ B"PgB)[K' — (R+ BT PxB)'BT Px A
(5.14) +[K - (R+ BT PxB) 'BT PxA]" (R+ BT PxB)(K' — K),
where the equation holds by adding and subtracting [K — (R+ BT PxB)"'BT P AT
(R+ B"PxB)[K' — (R+ B" PxB) ' BT Pg A]. Substituting (5.13) into (5.14) yields
(5.15)
(A= BK')TPg(A— BK') — Px +CTC + K'"RK’
= —2[(R+ B"PxB)K — BT PxA]"[(R+ BT Px B)K — BT Px Al
+ 47’ (R+ B"PxkB)K — B"Pg A" (R+ B"PgB)[(R+ B' PxB)K — B Px A]
—2[(R+ BT PxB)K — BT Pk A" [(R+ BT Px B)K — BT Pic Al.
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By requiring the step size 1 to satisfy
1

5.16 n < = )
(5.16) 2||R + BT Pk B]|

we can bound (5.15) as

(A— BK')"Pg(A— BK')— Pk +C'C + K'TRK’
(517) < -2n-[(R+B'PxB)K — BT PxA]"[(R+ B' Px B)K — BT P A] <0,
namely, letting P = Pk leads to the desired LMI that is not strict.
Now suppose that P = Pg + aP for some « > 0, where P > 0 is the solution to

(5.6). Note that « still needs to satisfy (5.7). Also, the LHS of (5.2) can be separated
into @ and @ as in (4.2). From the LHS of the inequality in (5.9), we have

@D = -2n[(R+ BT PxB)K — BT Px A]"[(R+ BTPB)K' — BT PA]
—29[(R+ B"PB)K — BT PA]"[(R+ B Px B)K — B! Px Al
< —29[(R+ B"PgkB)K — BT Pg A]T[(R+ B PxB)K — BT Pg A]
—2an[(R+ BT Pk B)K — B' P A]T[(BT PB)K' — B' PA|
—2an[(B" PB)K — BT PA|"[(R+ B" Pk B)K — B P A],

where the first step follows by adding and subtracting [(R + BTPB)"'BTPA-K]T
(R+ BTPB)[(R+ BTPB)"'BTPA — K'], and the definition of K’ in (5.13). The
second step follows by separating P as Px + oP in a similar manner, and by using
(5.16), (5.15), and (5.17). Moreover, notice that

—2an[(R+ B PxB)K — B' Pg A" [(B"PB)K' — B' PA] — 2an[(B" PB)K — B' PA]"
-[((R+ B"PxkB)K — B" PgA]
<2[(R+ B"PxB)K — B"PxA]"[(R+ B' Px B)K — B Px A] + 20°n[(B" PB)K’
—B"PA"[(B"PB)K' — B"PA] — 4an*|(R+ B Px B)K — B' PxA]" (B' PB)
‘[(R+ B"PxkB)K — B" P Al.
Therefore, we can finally show

(5.18) @D <2a*y[(B"PB)K' — BT PA]T[(B"PB)K' — BT PA].

By assumption ||K|| < oo and Px > 0 exists; we know that Pk is bounded, and so
is K’ obtained from (5.13) using a finite step size 7. Also, P has a bounded norm.
Thus, D in (5.18) is o(«) and there exists a small enough « > 0 such that O+@®) < 0,
since from (5.11), @ = —al + o(«). In other words, there exists some P > 0 such
that (5.3) holds for K’ obtained from (5.13) with step size satisfying (5.16). This
completes the proof of the first argument. Last, by Lemma 2.2, we equivalently have
that the conditions (i)—(iii) in the theorem hold for K, which completes the proof. 0O

5.2. Proof of Theorem 4.3. We first introduce the following lemma that can
be viewed as the counterpart of the cost difference lemma in [15]. Unlike the equality
relation given in the lemma in [15], we establish both lower and upper bounds for
the difference of two matrices Pxs and Pgx. The proof of the lemma is provided in
section A.5.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



POLICY OPTIMIZATION FOR MIXED H2/Ho CONTROL 4095

LEMMA 5.1 (cost difference lemma). Suppose that both K, K' € K. Then, we
have the following upper bound:

Pxr — Pk <Y [(A=BE')"(I -y 2P DD") '~ (K - K")TEx — Eje(K — K')
t>0

(5.19) +(K -~ K" (R+ B PgB)(K — K")][(I -y 2Px:DD")~"(A - BK")]",

where Ex is defined in (3.2). If additionally p((A— BK')T(I—y"2PxkDDT)™') < 1,

then we also have the lower bound:

Pxr —Px > [(A=BK")'(I =y 2Pk DD ") "' = (K — K')T Ex — Ef(K — K')
t>0

(5.20) +(K — K'Y (R+ B PxkB)(K — K")][(I -+ 2PxDD")~" (A - BK')]".

Now we show the global convergence of two PO updates.

NGauss—Newton: Recall that for the Gauss—Newton update, K’ = K — 2n(R +
BT PgB) 'Ex. By Theorem 4.2, K’ also lies in K if < 1/2. Then, by the upper
bound in (5.19), we know that if n € [0,1/2],

Py — P <(—4n+47°) > [(A— BK') (I -y 2P DD")~']"
t>0

(5.21) : [E}(R + BTﬁKB)‘lEK} (I —~4~2PrDDT)~T(A - BK")] <0,

which implies the monotonic decrease of Px (matrix wise) along the update. Since
Py is lower bounded, such a monotonic sequence of { P, } along the iterations must
converge to some Px_ € K. Now we show that this Px__ is indeed Pg~. By mul-
tiplying both sides of (5.21) with any matrix M > 0, and then taking the trace, we
have that if n € [0,1/2],

Tr(Pg: M)— Tr(Pg M) < (—4n + 4n*) Tr { Z[(A —BK')"(I =~y 2P M) Yt
t>0

: {E]T((R + BTﬁKB)*lEK} (I =~y 2P/ M)~ T (A~ BK’)VM}

< -2y Tr [Ef(R+ B PxB) ' ExM]
=210 min (M)

Omax (R + BT]SKB)
_277‘7min(M)

Omax(R + BT Pk, B)

<

Tr(Ej Ex)

(5.22) Tr(EfEx),

IN

where the second inequality follows by keeping only the first term in the infinite sum-
mation of positive definite matrices, the third one uses that Tr(PA) > omin(A) Tr(P),
and the last one is due to the monotonic decrease of Px, and the monotonicity of ﬁK
with respect to Px with Ky € K being the initialization of K at iteration 0. From
iterations n = 0 to N — 1, replacing M by I, summing over both sides of (5.22), and

dividing by N, we further have

N-1 Tp
1 O’maX(R+ B' Py, B) . [TI‘(PK ) — TI(PK )]
— Y T(EL Ek,) < - . =
N ’r;) ( Kn Kn) — 2,,7.N ’
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namely, the sequence {K,} converges to the stationary point K such that Ex = 0
with O(1/N) rate. By Proposition 3.3, this stationary point corresponds to one global
optimum K*.

Natural PG: Recall that the natural PG update follows K’ = K — 2nEg. By
Theorem 4.2, K’ also lies in K if n < 1/(2|R + BT PxB||). By the upper bound
(5.19), this step size yields that

Pyr— P <> [(A= BK")"(I =y 2P DD") Y [~4nE Ex + 2nEj Ex|
>0
(5.23) (I =4 2Pg:DDT)"T(A - BK")]' <0,
which also implies the matrixwise monotonic decrease of Py along the update. Sup-

pose the convergent matrix is Pg_ . As before, multiplying both sides of (5.23) by
M > 0, and taking the trace, yields

(5.24) Tr(Prr M) — Tr(PrM) < —2nTr (EEx M)

for any M > 0, where the inequality follows by only keeping the first term in the
infinite summation. Letting M = I, summing up (5.24) fromn =0ton = N — 1,
and dividing by N, we conclude that

N-1
1 TI‘(PK )7 TI‘(PK )
~ Y Tr(Eg, Ek,) < 0 S
N & H(Bx, Pre,) = om- N ’

namely, {K,,} converges to the stationary point K such that Ex = 0 with an O(1/N)
rate, which is also the global optimum. In addition, since {Pk, } is monotonically
decreasing, it suffices to require the step size n € [0,1/(2||R + B Pk, B||)]- 0

5.3. Proof of Theorem 4.4. To ease the analysis, we show the convergence
rate of a surrogate value Tr(Px DDT). This is built upon the following relationship
between the objective value J(K) and Tr(PxDDT).

LEMMA 5.2. Suppose that both K, K' € K, and Px > Pg+. Then, it follows that
J(K)—J(K") <||I-~"D"PxD)™ |- [Tx(Px DD ") — Tr(Px DD )]
Proof. First, by Sylvester’s determinant theorem, J(K) can be rewritten as
J(K) = —y?logdet(I —y 2Pk DD") = —y?logdet(I — v 2D Pg D).

By the mean value theorem, for any (A, B) with det(A),det(B) > 0, we have
logdet(A) = logdet(B) + Tr[(B + 7(A — B))"'(A — B)] for some 0 < 7 < 1. This
leads to
J(K) = TJ(K') = —y*logdet(I — v 2D" Pg D) +v*logdet(I — v~ 2D ' Py D)

= Te[XD' (Px — Px/)D)]

< |IX|| - [Tx(DT P D) = Te(D Py D)] = |[X| - [Te(Pk DDT) = Te(Pi DD )],
where X = (I =y 27D " Pg:D —y72(1 — 7)DT Pg D)1, and the inequality uses the
facts Px > Pk and Tr(PA) < ||A]| - Tr(P) for any real symmetric P > 0. Note that
by PK > PK’?

X <(I-97?D"PgD)"' = | X| < (I -+72DT PxD)”".

This completes the proof. 0
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Lemma 5.2 implies that in order to show the convergence of J(K), it suffices to
study the convergence of Tr(PxDDT), as long as ||(I — vy 2D T P D)™!|| is bounded
along the iterations. This is indeed the case since by (5.21) and (5.23), Pk is monotone
along both updates (3.4) and (3.5). By induction, if Ky € K, i.e., =y 2D" Pg, D > 0,
then I — vy 2D" Py, D > I — v 2DT Py, D > 0 holds for all iterations n > 1. This
further yields that for all n > 1, |(I — v 2D " Pk, D)7 || < |(I =y 2D T Pg,D)71|,
namely, ||(I — v~ 2D Pg D)~ is uniformly bounded.

Now we show the local linear convergence rate of Tr(PxDDT). By (5.20), for
any K’ such that (I —y 2PxDD")~T(A — BK’) is stabilizing, we have

Pyr— P > > [(A=BK")"(I =y 2Pk DD") Y[ - E(R+ B PxB) ™' Ex]
t>0
(5.25) (I =4 2PgkDD")~T(A - BK")],

where the inequality follows from completion of squares. By taking traces on both
sides of (5.25), and letting K’ = K*, we have

Te(PxDDT) — Te(Pg-DDT) < Tr [E}(R + BTJBKB)‘IEK} Wk k-

.
(520 < B e,
where W g+ is defined as
Wk K~
=Y [(I-yPkDD")"T(A~ BK")|'DD"[(A— BK*)" (I -y P DDT)"']".
t>0

Note that K* € K and thus (I — v 2Pg-DD")~T(A — BK*) is stabilizing. Let
e:=1—p((I =y 2Pg-DD")"T(A— BK")), and note that ¢ > 0. By the continuity
of Pk, and that of p(-) [42], there exists a ball B(K*,r) C K, centered at K* with
radius 7 > 0, such that for any K € B(K*,r),

(5.27) p((I—~2PxkDD")"T(A—BK*)) <1-¢/2<1.

Gauss—Newton: By Theorem 4.3, { K, } approaches K*. Thus, there exists some
K, € B(K*,r). Let K = K, and thus K’ = K,;. Replacing M in (5.22) by
DDT > 0 and combining (5.26), we have

Tr(Px:DD'") — Tr(PxDDT)
_2770mi11 (DDT)Umin(R)
- Umax(R + BTISKUB)”WK,K* ||
which further implies that
Tr(Pg:DD") — Tr(Pg-DD")

[Tr(PgDD") — Tr(Pg-DD )],

QT]Jmin(DDT)O'min(R)
Jmax(R + BTPKOB)”WKJ(* ”
(5.28) shows that the sequence {Tr(Pk,, DD ")} decreases to Tr(Px-DDT) starting

from some K,, € B(K*,r). By continuity, there must exist a close enough K, , such
that the lower-level set {K | Tr(PxDDT) < Tr(K,+,DD")} C B(K*,r). Hence,

(5.28) < (1 - ) [Tr(PgDDT) — Tr(Px-DDT)].
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starting from K,,1,, the iterates will never leave B(K*,r). By (5.27), Wk i+, as the
unique solution to the Lyapunov equation

(I =~y 2PxkDD")" (A — BK")|Wk i+ [(I =y 2PxDD")"T(A - BK*)]+ DD
= WK,K*?

must have its norm bounded by some constant W, > |[DDT|| for all K € B(K*,r).
Replacing |Wk k+| in (5.28) by W, gives the uniform local linear contraction of
{Tr(Pk, DD ")}, which gives the local linear rate of {7 (K,)} by Lemma 5.2.

In addition, by the upper bound (5.19) and Ex~ = 0, we have

(5.29)
Tr(Pg:DD") — Tr(Pg-DD")
<Tr { > (A= BK)T(I—42PxDD") ' [(K' = K*)" (R + B" Px-B)
t>0
(K" = K)|[(I =y 2P DDT)" T (A - BK')]fDDT}.
For n = 1/2, suppose that some K = K, € B(K*,r). Then, K' = K, =
(R+ BT PgB) 'BT Pg A yields that
K'— K* = (R+ B PxB) 'B"(Pgx — Pg-)B(R+ B Px-B)"'B' Pxc A
+[(R+ BT Pg-B)"'BT (Px — Px-)A].
Moreover, notice that
(5.30) Pg — Pg» = (I — v 2Pgk DD ) 'Px — (I — v 2Px-DD ")~ ' Pg-.
= (I —~y2Px-DD") 'y 3(Px — Pg+-)DD" (I —y 2PxDDT)™!
+ (I =y ?*Pg-DD ") (Py — P-),
which, combined with (5.3), gives
(5.31) IK' = K*||r < ¢ ||Pk — Pr+|lr
for some constant ¢ > 0. Combining (5.29) and (5.31) yields
Tr(Pg/DD") — Tr(Px-DD ") < ¢ - [Te(PxDD") — Tr(Pg-DDT))?

for some constant ¢’. Note that from some p > 0 such that K, 4+, onwards never
leaves B(K*,r), the constant ¢’ is uniformly bounded, which proves the Q-quadratic
convergence rate of {Tr(Px, DD ")}, and thus the rate of {7(K,)}, around K*.

Natural PG: Replacing M in (5.24) by DD > 0 and combining (5.24) and (5.26)
yield

QUUmin(R)

Tr(Pg:DD") — Tr(Pg~DDT) < (1 —
Wk k- ||

) [Tr(PgDD") — Tr(Px-DD ).

Using a similar argument as above, one can establish the local linear rate of {J(K,)}
with a different contracting factor. This concludes the proof. ]
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6. Conclusions. In this paper, we have investigated the convergence theory of
policy optimization methods for Hs linear control with H..-norm robustness guaran-
tees. Viewed as a constrained nonconvex optimization, this problem was addressed
by policy optimization methods with provable convergence to the global optimal pol-
icy. More importantly, we showed that the proposed policy optimization methods
enjoy the implicit regularization property, despite the lack of coercivity of the cost
function. We expect the present work to serve as an initial step toward further under-
standing of RL algorithms on robust/risk-sensitive control tasks. Interesting future
research directions include developing the sample complexity of the proposed methods
in the model-free setting, investigating the implicit regularization property of other
policy optimization methods, extending the results to the settings beyond linear time-
invariant systems and state-feedback controllers, and studying the policy optimization
landscape for Ho, control synthesis.

Appendix A. Supplementary proofs.

A.1. On the proof of Lemma 2.2. This lemma just states a variant of the
well-known bounded real lemma, and we omit the details here. The only subtlety
worth mentioning is that the second condition automatically ensures that K is a
stabilizing controller due to the well-known fact that one can perturb the solution Pk
to obtain a solution for the strict matrix inequality in the third condition.

A.2. Proof of Lemma 3.1. Due to space limitation, we refer to [46, sect. 3.1]
for a proof of nonconvexity of the problem, with an easily constructed example.

Note that || K|| may be unbounded for K € K. We show via counterexamples that
for K with ||K|| < oo, the cost does not necessarily go to infinity as K approaches
the boundary of K. Suppose DD T > 0 is full rank. For cost J(K) of form (2.5), it
remains finite as long as Pk is finite. By Lemma 2.2, I — v 2DT P D > 0 always
holds for K € K. Thus, Aynax(Pk) also has to be finite.

For cost J(K) of the forms (2.6) and (2.7), with DD > 0, it is finite if both Pk
is finite and I — y~2D T Pg D > 0 is nonsingular. The first condition is not violated
as already shown above. We now show via a 1-dimensional example that the second
condition is not violated either as K — OK. In fact, the Riccati equation (2.8) that
defines Pk becomes a quadratic equation for the 1-dimensional case:

(A1)  D?PE —[y?— (A— BK)*y* + (C* + RK?)D?| Pk + (C? + RK?)7* = 0.

Thus, it is possible that the condition for the existence of solutions to the quadratic
equations is more restrictive than the conditions on Pk in the bounded real lemma.
Specifically, the solutions have the following form:

7= (A— BK)?>y?+ (C? + RK?*)D?

N 2D?

VI = (A= BE)2y% + (C2 + RK?) D2 — AD*(C2 + RK2)72
2D? '

Py

(A.2) +
Denote the discriminant of (A.1) by 4, and let 4 = 0 admit solutions. Note

1—(A—- BK)?>+~72(C?+ RK?)D? N YL )
2 2

1+ (A-BK)*> 7 ?(C*+RK?*)D? N 72/¢

2 2 2

1—~72D?Pg =1-—
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which, as 4 — 0, can be greater than 0 with small enough D and large enough . Addi-
tionally, if the choices of A, B, C, D, R, ensure that (A— BK)(1 -~y 2PxD?)~1 < 1,
then such a K € K. This way, as K approaches the boundary of {K |4 > 0}, it
is also approaching 9K, while the value of Py approaches [y?> — (A — BK)?*y? +
(C? + RK?)D?]-(2D?)7 1, a finite value. The above argument can be verified numer-
ically by choosing A =2.75, B=2,C? =1, R=1, D? = 0.01, v = 0.2101. In this
case, 1 — v 2D%Pr — 0.2354 > 0 and (A — BK)(1 — v 2PgD?)71 — 0.9998 < 1
if K — 1.2573, which is the value that makes 4 — 0. However, the corresponding
Pg — [y?—(A—BK)?>y?+(C?+ RK?)D?)-(2D?)~! = 3.3752 > 0, a finite value that
also satisfies 1 — y~2D? Pk > 0. Hence, both the costs in (2.6) and (2.7) approach a
finite value, which completes the proof of Lemma 3.1. ]

A.3. Proof of Lemmas 3.2. Note that J(K) defined in (2.6) is differentiable
with respect to Py, provided that det(I — v 2PxDDT) > 0. This holds for any
K € K since by Lemma 2.2

I -~ D"PxD > 0= det(I —y 2D" PxD) = det(I — v 2PxDD") > 0,

where we have used Sylvester’s determinant theorem that det(/+ AB) = det(I+BA).
Thus, it suffices to show that Pk is differentiable with respect to K.
Recall that

(A3)  Px=Px+PxD(y’I — D PxD) "D Px = (I -5 *PxDDT) " P,

where the second equation uses the matrix inversion lemma, and define the operator
P - RMXm Rde S RMXM ag

U(Pg,K):=C"C+K'"RK + (A — BK)" Px(A — BK).

Note that ¥ is continuous with respect to both Py and K, provided that v2I —
DT PgD > 0. Also note that the Riccati equation (2.8) can be written as

(A.4) U(Pg,K) = Pk.

Notice the fact that for any matrices A, B, and X with proper dimensions,
(A.5) vec(AXB) = (B" ® A)vec(X).

Thus, by vectorizing both sides of (A.4), we have

(A.6)  vec(¥(Pk,K)) = vec(CTC + K" RK) + vec((A — BK)' Pg(A — BK))
=vec(C'C+ K "RK)+ [(A-—BK)" @ (A— BK)"]
-vec((I =y 2PxgDD ") Py) = vee(Pg).
By defining T : R™ xRI™ — R™ as anew mapping such that T (VeC(PK), Vec(K)) =
vec(¥(Pk, K)), the fixed-point equation (A.6) can be rewritten as
(A7) U (vec(Pr), vec(K)) = vec(P).

Since vec is a linear mapping, it now suffices to show that vec(Py) is differentiable
with respect to vec(K). To this end, we apply the implicit function theorem [25] on
the fixed-point equation (A.7). To ensure the applicability, we first note that the set
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KC defined in (2.4) is an open set. In fact, by Lemma 2.2, for any K € K, there exists
some P > 0 such that the two LMIs in (2.11) hold. Since the inequality is strict, there
must exists a small enough ball around K such for any K’ in the ball, the LMIs still
hold. Hence, the set K is open by definition.

Moreover, by the chain rule of matrix differentials [27, Theorem 9], we know that

dvec((I =~y 2Px DD 7)1 Pg)
OvecT (Pk)
Ovec[(I — vy 2PxkDDT)~1]
dvecT (Pk)

(A.8) =(Px®I)- +1® (I -y 2PgkDD")!,

where I denotes the identity matrix of proper dimension.
Now we claim that

dvec[(I — v 2PxkDDT)~Y
OvecT (Pk)
—[(v?DD") - (I~ 7P DD & (I -y~ 2PxDDT)""

(A.9)

To show this, we compare the element at the [(j—1)m+i|th row and the [(I—1)m+k]|th
column of both sides of (A.9) with 4,5, k,1 € [m], where both sides are matrices of
dimensions m? x m2. On the LHS, notice that

d(I — y~2PxDDT)"!
0[Pk |k,

, 9(y2PxDDT)

=(I—~"2PgkDD") (I —~y72PxkDDT)7!,

I[Pk,
which follows from (F~1) = —F~!F'F~! for some matrix function F. Also,
“2pDDT 0
Oty "PxDD ) =y 2|[DD"];1 --- [DDT]m| ¢ kth row,
I[Pk I ’

where only the kth row is nonzero and is filled with the Ith row of DDT. Due to these
two facts, we have

Dvec(I — V‘QPKDDT)‘H] Ol —~?PxDDT)
ovecT (Pr) (G—1)ym—+i,(I—1)m+k O Pl
(A10)  =~[I =y *PgkDDT) ik Y [DDT]1q- [(I =y *PxDD") g
qg=1

On the right-hand side of (A.9), we have
[[(7*DDT)- (I =47*PxDDT) @ (I =y *PxDDT) 7]

(A.11)
=[(y*DD")- (I =4 *PxDD") "] ; - [(I =Pk DD ") i1,

(7—1)m+i,(I-1)m+k

due to the definition of the Kronecker product and the fact that the matrix
(A.12) (y2DD")- (I =4 2Pk DD") ' = D(*I — D" PgD) D"

is symmetric. Thus, (A.10) and (A.11) are identical for any (i, j, k, 1), proving (A.9).
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By substituting (A.9) into (A.8), we have
dvec((I =y 2PxgDD")"'Pg)
OvecT (Pk)
=[I+ (v ?PxkDD")(I -~ 2PxkDD") Y@ (I -~y 2PxkDD")™!
= ~~*PkDD")" @ (I -y *PxkDDT)™,

where the first equation uses the facts that (A ® B)(C ® D) = (AC) ® (BD) and
(A® B)+ (C® B) = (A+ () ® B, and the last one uses the matrix inversion lemma.
By (A.8), we can thus write the partial derivative of W (vec(Pg), vec(K)) as

ov (vece(Pr), vec(K)) dvec((I —yPxDD")~1Pg)
dvecT (Pk) OvecT (Pk)
=[(A-BK)"(I-yPxkDD") 'l ® [(A— BK)"(I —yPxDD")™"].

=[(A-BK)"®(A-BK)"]-

Therefore, the partial derivative

3[@ (vec(Pk), vec(K)) — vec(Px)]
dvec T (Pk)
=[(A-BEK)"(I-~y?PxkDD") '@ [(A—BK)"(I -~y 2PxkDD")" '] - I

)

which is invertible, since the eigenvalues of [(A — BK)'(I — v 2PxkDD")"!] ®
[(A— BK)"(I —y 2PxDDT")~!] are the products of the eigenvalues of (A — BK)"
(I — v 2PgkDD")~!, and the matrix (A — BK)' (I — 4y 2PgDD")~! has spectral
radius less than 1 for all K € K. Also, since \T/(vec(PK),vec(K)) — vec(Pg) is con-
tinuous with respect to both vec(Pk) and vec(K), by the implicit function theorem
[25], we know that there exists an open neighborhood around vec(Pg) and vec(K)
(thus including vec(Pg) and vec(K)), so that vec(P) is a continuously differentiable
function with respect to vec(K), and so is Px with respect to K, in the neighborhood.
Note that this holds for any K € K. This proves the differentiability of J(K) at all
K eK.

Now we establish the form of the PG. By Lemma 2.2, we know that for any K € K,
(A—BK)"(I —v2PxDDT)"! is stable and I —y~2DT PgD > 0. Therefore, the
expression Ak in (3.1) exists, and so does the expression for VJ(K). We then verify
the expressions by showing the form of the directional derivative Vg J(K), i.e., the
derivative with respect to each element K;; in the matrix K. By definition of J(K)
in (2.6), we have

(A13) Vg, J(K)=-*Te{(I-~2PxDD") T [Vk, (I -~ 2PxDDT)|"}

=Tr[(I -+ ?PxkDD") 'V, (PxkDD")],
where the first equality follows from the chain rule and the fact that Vx logdet X =
X~T, and the second one follows from the fact that Tr(ATBT) = Tr(BA)T =
Tr(BA) = Tr(AB). Furthermore, since DD is independent of K, and Tr(ABC) =
Tr(BCA), we obtain from (A.13) and (A.12) that

Vi, J(K)=Tr[(I -y ?PxDD") 'V, Px-DD']

(A.14) =Tr Vg, Px-D(I—~?D"PxD)"'D"].
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Now we establish the recursion of Vg, J(K) using the Riccati equation (2.8).
Letting M := D(I — v 2D"PgD)™ DT, we have from (2.8), (A.3), and (A.14) that
Vi, J(K)=Tr (Vk,, Pk - M)

(A.15)
= (2RKM);; — [2B” Pc(A = BK)M], + Tt [(A = BK)" (Vi Px)(A — BK)M],

where on the right-hand side (RHS) of (A.15), the first term is due to that
Vi Tr(KTRKM) = 2RKM for any positive definite (and thus symmetric) matrix
M, the second term is the gradient with Px fixed, and the third term is the gradient
with A — BK fixed.
In addition, by taking the derivative on both sides of (A.3), we have
Vi, Px = (I~ 2PgDD")"'V, Py -y 2DD"(I -y 2PxDD") ' Py
+ (I -~ ?PgkDD") 'V, Pk
= =~y ?PxkDD") 'V, Pk - [D(v’I — D" Pg D) 'D" P + I
(A16) =(I—-~?PgkDD")™' Vg, Px-(I-~>DD"Pg)",
where the first equation uses the fact that Vy(P~!) = —P~1.VxP- P!, the second

one uses (A.12), and the last one uses the matrix inversion lemma. Notice that
(I =y 2DDTPg)™' = (I =~y 2PxDDT)~T. Thus, (A.16) can be written as

(A.17) Vi, Px =~y 2PgDD")™' -V, Px- (I —~y2PxDD")"".
Substituting (A.17) into (A.15) yields the following recursion:
Vi, J(K) = (2RKM);; — [2B" Px(A — BK)M] y

+Tr [Vk, Pk - (I =y ?PxkDD")""(A— BK)M(A—BK)"(I -y 2PxkDD")™'].

My

By performing a recursion on Tr (V K, P Ml), and combining all the 7, j terms into
a matrix, we obtain the form of the gradient given in Lemma 3.2. a

A.4. Proof of Proposition 3.3. The proof is based on a game-theoretic per-
spective on the problem. First, for any K € K, by [4, Theorem 3.7], with A, B, D, Q,
R, 7 therein being replaced by A—BK, 0, D, Q+K "RK, R, v here, we obtain that
the Riccati equation in (2.5) corresponds to the generalized algebraic Riccati equation
(3.52b) in [4], for this auxiliary game. By Lemma 2.2, the solution Px > 0 satisfies
(3.53) in [4]. Recall that Pk is the unique stabilizing solution to (2.5), and is thus
also minimal if (A — BK, D) is stabilizable [34, Theorem 3.1], which is indeed the case
since K € K is stabilizing. Hence, by [4, Theorem 3.7(ii), (iv)], the controller and the
disturbance that attain the upper value of the game have, respectively, the forms of
u; = 0 and wy = (v2I — DT Px D)"'DT Pg(A — BK)z; for all t. This shows that in
the original game with A, B, D, @, R, v (as defined in [4, Chapter 3.7]), and with
a fixed K € K, the maximizing disturbance has the form w; as above, and the value
under the pair (K, —(v2I— DT Px D) 'DT P (A— BK)) is indeed x] Px (. By again
applying [4, Theorem 3.7] to the original game, we know that the value is ] Pg~zo,
and is achieved by the optimal controller u;y = —K*x; and the maximizing disturbance
wi = [(v2I = D" Px«D) D" Pg (A — BK*)|x; with K* being defined in the propo-
sition. By the definition of the value of the game, we know that = Pxxo > x4 Px+To
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for any K € K. As the above arguments hold for any xg, we know that Px > Pk-. Fi-
nally, notice that for K, K* € K,0 < I -y 2D"PxD < I—~v"2D" Pg-D (cf. Lemma
2.2). By det(I =y 2PxDDT) = det(I —y 2D T Pg D), we know that J(K) > J(K*)
for any K € K. This completes the proof for the first half of the proposition.

For the second half of the proposition, note that Ax > 0since I—y 2D T PgD > 0
for any K € K by Lemma 2.2. Also, since (I —y 2DTPgD)~! > I, we know that

(A.18)
oo
Ax 2 [(I-y*PxkDDT) (A= BK)|'DD" [(A~ BK)"(I -y *PxDD") ™",
t=0
By [48, Lemma 21.2], the RHS of (A.18) is always positive definite, since
(I =y 2PxgDD")~T(A - BK), D) is controllable, i.e.,
(A-BK)"(I-~2P¢kDD")"',DT)

is observable. Thus, Ak > 0 is full rank. By the optimality condition V.7 (K) = 0, it
follows that K* = (R + B Pg-B) BT Px+ A is the unique stationary point, which
is thus the unique global optimizer. This completes the proof of Proposition 3.3. 0O

A.5. Proof of Lemma 5.1. We start with the following helper lemma.

LEMMA A.1. Suppose that K, K' € K. Then we have that I — y 2P/ DD s
invertible, and

(A19) (I —~52Pg:DD") " (Px —~y 2Px:DD " P/ )(I — 4 2DD " Pg) ™ < Pyg.

Proof. First, since K, K’ € IC, by Lemma 2.2, I — v~ 2D T Pg,D > 0 is invertible.
Thus, det(I — v 2Px:DDT") = det(I — v 2D Pg/D) # 0, namely, [ —y 2P DDT
is invertible. Then the desired fact is equivalent to

Px — 7 2Pi/DD " Pgr < (I =y 2P DD )Pg (I — v DD Pr)
= Py — vy 2P/ DD " Py — v 2P DD P + v P DD Py DD Py
which can be further simplified as
(Px — Px) — v 2P/ DD P =y 2Px DD P/ + v 2P DD Py
(A.20) +~y 4P DD P DD Py, > 0.
By Px = (I — v 2Pk DDT) ' P and (A.12), we have
v 2Py/DD" Px =~y 2Pg/:DD" (I — 4 2PxkDD") ' Px = P D(v*I — D" Pxk D) 'D" Px.
Thus, it follows that
(Px — Px) —~ 2Px/DD" P — v 2P DD Py

= (Px — Px)D(y*1 — D" P D) D" (Px — Px/) — P D(Y*I — D" P D) 'D " P

Therefore, (A.20) is equivalent to

(Px — Pi/)D(*1 — D" Px D) 'D" (Px — Px/) — P/ D(y*I — D" P D) 'D " Py
+~ 2P/ DD Prer + 4 * Py DD Pk DD " Py > 0.
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Given the fact 421 > DT Px D and another fact that

(A.21)
—Pi'D(y*I = D" P D) 'D" Pgs + v 2P DD Pxs + v *Pg:DD " P DD Py = 0,

we know that the above inequality holds and hence our lemma is true. To show that
(A.21) holds, it suffices to apply the matrix inversion lemma, i.e.,

(VI =D "PgkD) ' =72 T+ 4 *D (= 2P DD + 1) ' PxD =21+~ *D" PxD,
where the first equation uses the matrix inversion lemma. The proof is complete. 0O

By the definition of Py in (2.9) and the Riccati equation (2.8), we have
(A.22)
Prr = (A= BK') Pg/(A— BK')+C"C + (K')"RK’
=(A—BK') (I =4 2Px:DD") Y (Px — v 2Py DD " Pgc!)(I — v 2P/ DD )~ T
(A=BK")+(A—BK"Y' (I =y 2P DD" )" Y (P, — Pg)(I — v 2P, DD ")~ "
(A-BK')+C"C+ (K')"RK'.
By (A.19) in Lemma A.1, we further have
Pgr — P <CTC+ (K')TRK' 4+ (A— BK')" Px(A— BK') — Px
+(A—=BK")T(I —~"2Px.DD") Y (Px/ — Pg)(I — v 2P, DDT)"T(A — BK').
By induction, we can apply the above inequality iteratively to show that
(A.23)

Pxr — Px <Y [(A=BK')"(I -y 2P DD")"'[CTC + (K') " RK’
t>0

+ (A~ BK")"Px(A— BK') — Pg|[(I =y 2PxDDT)~T (A - BK")]".
On the other hand, we have
(A.24)
CTC+ (K'Y "RK' + (A— BK')" Pgx(A— BK') — Px
=CTC+(K'-K+K)'R(K' - K+ K)+ (A- BK — B(K' — K))" Px(A - BK
- B(K' - K)) — Px

= (K"~ K)" ((R+ BT PxB)K - BT PxA)
+ ((R+ BT PxB)K - BT15KA)T (K' - K)
+(K'— K)(R+ BT PgB)(K' — K),

which can be substituted into (A.23) to obtain the upper bound in (5.19).
For the lower bound (5.20), note that the conditions in Lemma A.1 also hold here
when the roles of K and K’ are interchanged. Thus, we have

(I =y 2PxkDD") Y (Px/ — v 2Pk DD Pg)(I — v 2DD" Pi) ' < Py,
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which gives a lower bound on the RHS of (A.22) directly as
(A.25)

Py — Pg = (A— BK') Pg/(A— BK') — Px + CTC + (K')T RK’
> (A—BK")T[(I =y 2PxDD") (P —y 2Pk DD Px)(I =y 2DD" Pg)™!]
(A-BK') - Px +C"C+ (K')'RK’
=(A-BK')" [(I -y ?PxkDD") Y (Px — v ?Pxk DD " Px)(I — v 2DD" Px)~?]

Pk
(A= BK') — Px + (A= BK")T [(I =y ?PxDD ") "(Px: — Px)(I
~~v?DD"Px)'|(A- BK')+CTC + (K')TRK'.

Continuing unrolling the RHS of (A.25) and substituting into (A.24), we obtain the
desired lower bound in (5.20), which completes the proof. ad

Appendix B. Simulations. We present some simulation results to illustrate the
effectiveness of our PO methods, by comparing them with several existing Ho/Hoo
mixed control solvers, including the HIFOO package [3], the systune function [2],
and the h2hinfsyn function [13] in MATLAB’s robust control toolbox. We note that
HIFOO and h2hinfsyn can only handle continuous-time settings, while systune and
our PO methods can handle both continuous- and discrete-time settings. To make
the comparison fair, we compare all four algorithms in the continuous-time setting,
even though this paper focuses on the theory for the discrete-time one. Details of the
simulation setups and theory for the continuous-time setting can be found in [46], and
we expect any comparison in the discrete-time setting to lead to similar conclusions.
We summarize the following findings observed from Table 1, based on solving Case 3
in [46, sect. 7.3]:

e (PO methods return competitive Ho-norm performance, and globally optimal
J(K)). In terms of the Ho-norm, our PO methods can achieve competitive
performance. Note that the Hs performance of our PO methods is almost
identical to that of h2hinfsyn, since the latter also optimizes J (K'), an upper
bound of the actual Ho-norm |7 (K)||2, but based on an LMI-based proce-
dure [13]. This in turn verifies the global optimality of our PO methods as
proved, as the LMI-based approach can find the global optimum of J(K) di-
rectly. Also, compared to the other two methods, which directly optimize the
Ho-norm, the Ho-performance achieved by minimizing J(K) is reasonably
good. Moreover, in contrast to the global convergence we established for PO
methods, HIFOO does not have convergence guarantees, and systune only
has convergence guarantees to local optimum [2]. But still, the local optimum
returned by systune can have lower Hy-norms, especially when v is small,
e.g., v = 0.54. This shows the advantages of systune in the setting with
stringent H..-norm constraints.

e (PO methods provably preserve Hoo-norm constraint). For all choices of ~,
our PO methods consistently preserve the || 7 (K)||s < 7 constraint during
the optimization process, validating our theoretical findings. However, for
the cases of v = 5,1,0.54, there are 5%, 22%, 90%, 100% of the HIFOO tri-
als that violate the |7 (K)| s-constraint during optimization. We note that
|7 (K)||co-constraint violation information is not available or not applicable
when using h2hinfsyn and systune. Moreover, a smaller 7, even for v = 0.54
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TABLE 1

Awverage statistics over 100 trials for HIFOO, h2hinfsyn, systune, and two proposed PO meth-
ods, for solving Case 3 in [46, sect. 7). An entry for “|T(K)| s violation,” e.g., m% (n), represents
the || T(K)||loo constraint was violated in m% of the trials with an average violation of n. The data
in the rows of “||T(K)|2 reached,” “J(K) reached,” “|T(K)|oo reached” are averaged over trials
with no ||7(K)| co-constraint violation. The columns “systune w/ Init” and “NPG/GN w/ Init”
display the total runtime used by the optimization processes after a feasible Ko is given. We feed
the same Ko used in our PO methods into the initialization of systune. In contrast, HIFOO and
h2hinfsyn use in-house methods for algorithm initialization.

Case 3 with vy =5 HIFOO h2hinfsyn | systune w/ Init | NPG/GN w/ Init
Runtime (s) 0.4569 0.0305 0.0857 0.0084/0.0095
IT(K)|l2 reached 0.9810 0.9811 0.9810 0.9811
J(K) reached 0.9699 0.9699 0.9699 0.9699
17 (K)o reached 1.0229 1.0126 1.0229 1.0124
|7 (K)||oo violation | 5% (2.3092) n.a. n.a. 0% (0)
Case 3 with v =1 HIFOO h2hinfsyn | systune w/ Init | NPG/GN w/ Init
Runtime (s) 1.8370 0.0351 0.1959 0.0064,/0.0071
7 (K)|z reached 1.0876 1.0037 0.9812 1.0038
J(K) reached 1.8506 1.2082 1.4962 1.2082
7 (K)o reached 1.0000 0.8145 0.9929 0.8143
|17 (K)||oo violation | 90% (2.0772) n.a. n.a. 0% (0)
Case 3 with v = 0.54 HIFOO h2hinfsyn | systune w/ Init | NPG/GN w/ Init
Runtime (s) 1.1163 0.0363 0.3959 0.0050/0.0051
|7 (K)|l2 reached NaN 2.2174 2.0915 2.2174
J(K) reached NaN 9.3070 10.7198 9.3070
7 (K)|[~ reached NaN 0.5397 0.5400 0.5397
|T(K)||oo violation | 100% (2.3708) n.a. n.a. 0% (0)

(very close to v* = 0.53 in Case 3 in [46, sect. 7]), does not prevent systune
from returning a solution that has no constraint violation. However, the H .-
norms of the returned controllers, which are almost binding for small v (e.g.,
~v =1 or 0.54), are consistently larger than those returned by h2hinfsyn and
our PO methods. In other words, the controller returned by h2hinfsyn and
our PO methods can be more robust.

e (PO methods have competitive, if not much faster, runtimes). In terms of
computation runtime, our PO methods are competitive, and even much faster
than some existing methods, when a feasible initial point is available.

More numerical results for large-scale systems can be found in the extended ver-
sion [46, sect. 7.3]. The overall observation is that, given the same feasible initializa-
tion, the higher the system dimension is, the faster our PO methods are, compared
to the other solvers. That being said, the advantage does not come for free, as for
high-dimensional systems, finding a feasible (robustly stable) initialization becomes
more challenging. This is one limitation of our policy search methods. We have left
it as our future work to find a robustly stable initialization efficiently.
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