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Climate pacing of millennial sea-level change
variability in the central and western
Mediterranean
Matteo Vacchi 1,2✉, Kristen M. Joyse3, Robert E. Kopp 3, Nick Marriner 4, David Kaniewski5 &
Alessio Rovere 6

Future warming in the Mediterranean is expected to significantly exceed global values with

unpredictable implications on the sea-level rise rates in the coming decades. Here, we apply

an empirical-Bayesian spatio-temporal statistical model to a dataset of 401 sea-level index

points from the central and western Mediterranean and reconstruct rates of sea-level change

for the past 10,000 years. We demonstrate that the mean rates of Mediterranean industrial-

era sea-level rise have been significantly faster than any other period since ~4000 years ago.

We further highlight a previously unrecognized variability in Mediterranean sea-level change

rates. In the Common Era, this variability correlates with the occurrence of major regional-

scale cooling/warming episodes. Our data show a sea-level stabilization during the Late

Antique Little Ice Age cold event, which interrupted a general rising trend of ~0.45 mm a−1

that characterized the warming episodes of the Common Era. By contrast, the Little Ice Age

cold event had only minor regional effects on Mediterranean sea-level change rates.
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C limate and sea-level reconstructions for the pre-industrial
period (i.e., before 1850 CE) provide context for current
and future changes1–3. Determining the rates, mechan-

isms, and geographic variability of relative sea-level (RSL) change
following the Last Glacial Maximum (LGM) is relevant to gau-
ging how climatic forcing may influence the rates of future sea-
level change3,4. Compilations of sea-level proxies have facilitated
the quantification of the response of the solid Earth and geoid to
ice-mass redistribution5–7 and provided constraints for statistical
and geophysical models used to project future sea-level rise8. The
Mediterranean Sea is a semi-enclosed basin lying in a transition
zone between mid-latitude and subtropical atmospheric circula-
tion regimes and is characterized by strong land-sea contrasts9.
For this reason, it is considered a hotspot of current climate
change9–11, and future warming in the Mediterranean area is
expected to exceed global rates by ∼25%12. This may result in
high sea-level rise rates compared to global averages, leading to
significant losses in the environmental, cultural and economic
values of Mediterranean coasts13. Furthermore, semi-closed
basins are poorly resolved by the ~1° resolution typical of glo-
bal climate models included in CMIP5/6, which are generally
used to drive projections of local dynamic sea-level change14.
Finally, offset between data and glacio-isostatic adjustment (GIA)
models were recently highlighted by extended sea-level records15.
This adds complexity to defining the magnitude and spatial
variability of the isostatic component, which affects both current
and future sea-level changes.

The increasing availability of continuous and high-resolution
Holocene and Common Era Mediterranean relative sea-level
(RSL) reconstructions15,16 provides the opportunity to explore
the role of climatic factors in mediating sea-level variability in the
Holocene (i.e., the last 11.7 ka). These data are of major impor-
tance because regional climatic forcing can lead to significant
departures from global mean sea-level projections10.

Here, we applied an empirical-Bayesian spatio-temporal sta-
tistical model17 (see “Methods”) to a dataset of 401 sea-level index

points (SLIPs), defining the discrete position of past RSL in space
and time18. We focus our analysis on the central and western
Mediterranean (Fig. 1), which are less affected by neotectonic
processes19 than the eastern part. The results of our analysis
constitute the first basin-scale assessment of sea-level variability
in the Mediterranean for the last 10,000 years and represent the
natural and geological backgrounds against which modern
Mediterranean sea-level rise should be quantified.

Results and discussion
Millennial variability of sea-level change rates. The SLIPs
database (Supplementary Table 1) is composed of (i) 391
radiocarbon-dated geological samples from transitional brackish
environments, fossil intertidal bioconstructions, beachrocks, and
(ii) 12 archeologically dated marine structures whose relationship
with the contemporary mean sea-level is robustly defined20. The
spatial distribution of the SLIPs covers a large portion of the
central and northern sectors of the central and western Medi-
terranean basin, while in the southern sector the available data are
restricted to the coasts of Malta and the Gulf of Gabes (Fig. 1).
The SLIPs database allowed us to reconstruct the rates of RSL
change in 48 sub-regions clustered according to their geographic
proximity (Supplementary Fig. 1a). The average vertical accuracy
of the different SLIPs is ±0.7 m (max ±1.3 m, min ±0.2 m) while
the average age error is ±0.15 ka (max 0.62 ka, min 0.025 ka). All
errors are reported at ±1σ. The age of the SLIPs spans the whole
Holocene period (Supplementary Fig. 1b). 10.3% of the SLIPs
date to the early Holocene (−10,000 to −6000 CE), 32.4% to the
mid-Holocene (−6000 to −2000 CE), and 57.3% to the late
Holocene (−2000 to 1950 CE). Virtually uncompressible samples
(see “Methods”) represent 36.5% of the entire record, while 39.4%
of the SLIPs dates between −5000 and 1950 CE (Supplementary
Fig. 1b).

The spatio-temporal model allowed us to reconstruct sea-level
change rates since −8000 CE. There is a paucity of SLIPs for the

Fig. 1 Spatial distribution of the central and western Mediterranean sea-level index points (SLIPs) used for this analysis. Br is the Balearic Sea; Li is the
Gulf of Lion; Lg is the Ligurian Sea; nTy is the northern Tyrrhenian Sea; sTy is the southern Thyrrenian Sea; Gb is the Gulf of Gabes; Io is the Ionian Sea; nAd
is the northern Adriatic; sAd is the southern Adriatic Sea; Sr is Sardinia Island; Cr is Corsica Island; Si is Sicily Island.
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period −10,000 to −8000 CE. From the model, it was possible to
calculate the “central and western Mediterranean Sea-Level”
(Med-SL), which represents the common signal found at all sites
included in the model runs (Fig. 2a and Supplementary Table 2).
The Med-SL, which is uniform over the entire central and
western Mediterranean, absorbs a majority of the sea-level signal,
whereas the regional signals (Fig. 2b, Supplementary Fig. 2)
explain the variability we can observe at the basin scale. The
model also estimates RSL for locations and times where there are
no direct observations because it recognizes that an observation
associated with a single point in space and time is informative
about sea-level at proximal locations and times.

Med-SL estimates (Fig. 2a) indicate that the central and western
Mediterranean sea-level rise decreased from 8.7 ± 0.9mm a−1 to
3.1 ± 0.8 mm a−1 during the period −8000 to −5000 CE. The
slowdown continued over subsequent millennia, with average
rates of 1.5 ± 0.8mm a−1 between −5000 and −2000 CE, 0.5 ±
0.7mm a−1 between −2000 and 0 CE, and 0.45 ± 0.7mm a−1 in
the last 2000 years. This stabilization trend reflects the general
decrease in rates of global sea-level change consistent with the
final phase of North American deglaciation and the consequent
sudden reduction of meltwater input and with the stabilization of
global mean surface temperature7,21. Between −2000 and 1850
CE, the ice-equivalent meltwater input is either zero or
minimal21,22. During this period, Med-SL rise rates ranged
between 0.30 ± 0.7mm a−1 and 0.55 ± 0.6mm a−1, while in the
industrial-era (e.g., post 1850 CE) rates increased up to 1.05 ±
0.6mm a−1 (Fig. 2a, Supplementary Table 2). This acceleration
closely mirrors post-industrial warming observed in several

Mediterranean climatic proxies12 and is consistent with the data
extracted from the longest central and western Mediterranean
tide-gauge data, which indicate sea-level rise rates of about
1.2–1.3 mm a−1 23,24 for the period 1880–2012 CE. Even higher
rates (1.7–1.8mm a−1) are observed for the second part of the
last century, indicated by a larger dataset of tidal gauges and
satellite altimetry25,26. This indicates that, at the basin scale, the
mean estimate of industrial-era sea-level rising rate has no
equivalent analog during the last 4000 years and that the rate of
central and western Mediterranean industrial-era sea-level rise is
unlikely (~25% probability) to be a random occurrence (Supple-
mentary Fig. 3).

Our analysis highlights significant variability in the regional
rates of sea-level change (Fig. 2b, Supplementary Fig. 2), which
resulted in contrasting sea-level rising trends in the different
portions of the Mediterranean basin analyzed in this study.
Between −8000 and −5000 CE, faster sea-level rise rates were
observed in the mid-western portion of the basin (<~10° E) with
rates of 8.0 ± 0.4 mm a−1 (Fig. 3). During the same period, sea-
level rose much slower in the eastern portion of the basin (>~10°
E) with rates that did not exceed 5.0 ± 0.5 mm a−1 (Fig. 3). We
then observed an inversion in this rising pattern after sea-level
stabilized around −5000 CE. Since that period, rates of sea-level
rise were always slower in the western portion of the basin (<~5°
E) compared to the mid-eastern part (>~5°E, Fig. 3). These
differences are particularly significant between −5000 and −2000
CE when low average rise rates (0.5 ± 0.2 mm a−1) are recorded in
the Balearic Sea while high average rates (2.0 ± 0.3 mm a−1)
characterize the Ionian Sea. In the last 4000 years, we observed a
progressive decrease in the spatial variability of the rising with
maximum average rates (0.8 ± 0.2 mm a−1) still recorded in the
Ionian Sea, while minimal average rates (0.2 ± 0.2 mm a−1) are
recorded both in the Balearic Sea and in the Gulf of Gabes
(Fig. 3). We remark that the Gulf of Gabes, in Tunisia, represents
a unique setting within the Mediterranean, as it is the only
Mediterranean region where a purely isostatic mid-Holocene
highstand is recorded, mediated by continental levering effects27.

Sediment compaction and tectonics may have a role in
controlling the observed spatial variability of sea-level change
rates among regions. However, these components were mini-
mized in our SLIPs database by prioritizing samples that are
virtually incompressible or less prone to compaction, and by
excluding data from regions that are significantly affected by co-
seismic or volcano-tectonic vertical ground motions (see
“Methods”). For this reason, much of the observed spatial
variability of sea-level change rates is related to glacio- and hydro-
isostatic adjustment (GIA), which has been the dominant process
influencing the Mediterranean RSL evolution since the global
mean sea-level stabilization of the mid-Holocene7,23. Our data
indicate a general eastward increase of the GIA component in the
central and western Mediterranean basin with minimal isostatic-
driven subsidence recorded along the Spanish coast and in the
Balearic Islands and maximum rates recorded in the Ionian Sea.
This pattern differs from the one proposed by the available GIA
models7,28 which predict the maximal GIA-related sea-level
change, with comparable magnitude, in the Ionian Sea and in the
area comprising the Balearic, Sardinia and Corsica islands
(Supplementary Fig. 3). The offset between the data and models
is probably related to lateral variations in mantle viscosity and/or
in the thickness of the lithosphere, which are currently not taken
into account by Mediterranean GIA models15,29. Lateral hetero-
geneity of the Earth’s mantle may significantly affect the Earth’s
response to deglaciation30,31. Our results can thus be employed
for an improved tuning of geophysical predictions of RSL
evolution in the basin, which is characterized by significant
variability in lithospheric thickness and complex mantle

Fig. 2 Rates of relative sea-level change for the central and western
Mediterranean region in the last 10,000 years. a Common sea-level
signal (Med-SL). The inlet graph shows the Med-SL variation in the last
4000 years. The solid line and shaded envelope denote the model mean
and the 1σ uncertainty (see Supplementary Table 2). b variability of relative
sea-level (RSL) change rates in the 48 central and western Mediterranean
regions included in the analysis. The solid line and shaded envelope are the
model mean and 1 s uncertainty.
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structure19. Nonetheless, it should be noted that our analysis has
some geographic limitations due to the absence of SLIPs along
much of the African coast and near the Gibraltar Strait.

Regional climatic influence on sea-level rise rates. Notwith-
standing regional differences, our spatio-temporal analysis shows
that the central and western Mediterranean regions were char-
acterized by several sea-level oscillations in the last 6 millennia
(Supplementary Fig. 2). Looking for the source of these sea-level
oscillations, isostatic processes can be excluded. Isostasy is, by
definition, a progressive and slow viscoelastic response of the
Earth to the redistribution of ice and ocean loads32,33. GIA
modeling is unable to resolve the scale of sea-level fluctuations

observed, and the oscillatory patterns observed have a period that
is too short to be influenced by glacio-isostatic processes. The fact
that these fluctuations were observed across all regions would also
exclude potential local tectonic influences and compaction-
related subsidence. Instead, we suggest that regional climatic
forcings are the most likely mechanism driving the variability in
the sea-level change data.

In effect, while it is known that large ice melting was minimal
after −2000 CE21,34, much less is known about the responses to
shorter-term Mediterranean climatic changes35,36 such as the
Roman Warm Period (RWP, ~−500 CE to ~500 CE), the Late
Antique Little Ice Age (LALIA, ~536 to ~660 CE), the Medieval
Climate Anomaly (MCA, ~860 to ~1250 CE) and the Little Ice

Fig. 3 Spatial and temporal variability of relative sea-level (RSL) changes and their uncertainties across the central and western Mediterranean basin
in the time periods 2000 to −2000 CE, −2000 to −5000 CE, and −5000 to −8000 CE. Note the changes of scale for the different time intervals.
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Age (LIA, ~1250 to ~1850 CE). In the Common Era, Med-SL rise
rates varied within a range of ~0.9 mm a−1 (Supplementary
Table 2, Fig. 4). Rise rates up to 0.5 ± 0.7 mm a−1 characterized
the warmer episode occurring at the RWP while we observed a
deceleration of the sea-level change rates (0.3 ± 0.7 mm a−1)
during the LALIA (Fig. 4). The LALIA is recognized as one of the
most important cooling episodes of the Common Era36. This
cooling event is found in different proxies (Fig. 4) such as
temperature anomalies in Europe37, and specifically in the central
and western Mediterranean38,39 and the European Alps36. During
this period, we also observe a decrease in sea-surface tempera-
tures (SSTs) in the western Mediterranean40, as well as the
exceptional seventh-century solar minimum41.

The rising trend only returned to values similar to the pre-
LALIA (0.45 ± 0.7 mm a−1) during the MCA which was char-
acterized by warmer climatic conditions (Fig. 4) and remained at
similar values for much of the LIA (1250–1600 CE) suggesting a
negligible influence of this cooling episode on central and western
Mediterranean sea-level rise rates. In the remaining part of the
pre-industrial period (1600 and 1800 CE) rates rose to 0.6 ± 0.6
mm a−1 while we observed a progressive acceleration of sea-level
rise in the industrial-era, with rates up to 1.05 ± 0.6 mm a−1

(Fig. 4), which are significantly faster than any warm climatic
episode of the Common Era.

Our spatio-temporal analysis shows a strong relationship
between Mediterranean temperatures and the rate of sea-level rise

Fig. 4 Reconstructed variability of common sea-level signal (Med-SL) for the central and western Mediterranean region in the Common Era. Solid line
and shaded envelope are the model mean and 1 s uncertainty. Med-SL is compared with a European Temperature anomalies37, b central Mediterranean
cooler climate pollen data38, c summer (JJA) temperature anomalies in the European Alps36, d total solar irradiance41, e sea-surface temperatures (SSTs)
in the western Mediterranean40. Temporal extension of the Roman Warm Period (RWP), the Late Antique Little Ice Age (LALIA), the Medieval Climate
Anomaly (MCA), the Little Ice Age (LIA), and the Industrial period are from refs. 35,36. The graded bar is the Med-SL model mean.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24250-1 ARTICLE

NATURE COMMUNICATIONS | ��������(2021)�12:4013� | https://doi.org/10.1038/s41467-021-24250-1 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


confirming, at the basin scale, the results locally obtained in the
northwestern Adriatic Sea42. These oscillations are thus con-
trolled by the differential response of Mediterranean sea-level to
cooling/warming episodes, as demonstrated by the variability of
sea-level rise rates observed in the Common Era.

Therefore, our findings suggest that a deeper exploration of the
regional climatic parameters, controlling the variability of rise
rates, is required to produce robust predictions of Mediterranean
sea-level evolution in a changing climate. Regionally, global
predictions of sea-level rise may be worsened by the expected
increased warming of the Mediterranean9. This may have major
implications for the near-future resilience of both natural and
human-modified Mediterranean coasts, characterized by a
narrow littoral area with high concentrations of people and
assets and by rapid demographic, social, economic, and
environmental change43,44.

Methods
SLIPs database. We collated a database of SLIPs following the most recent
standards in sea-level studies18,45. The analysis of a wide range of geological and
archeological proxies46–133 resulted in a database of 401 SLIPs (Supplementary
Table 1) that identify the position of former RSL in the central and western
Mediterranean coasts from 12 ka to present (Supplementary Fig. 1b). Mediterra-
nean SLIPs are commonly derived from cores on coastal and alluvial plains, coastal
marshes, and lagoons. For these samples, the definition of the indicative meaning is
based on paleoecology and, in particular, on the macro-and micro-faunal assem-
blages (i.e., malacofauna, foraminifera, and ostracod assemblages). Furthermore,
fossil intertidal bioconstructions (e.g., vermetids and Lithophyllum byssoides rims)
and beachrocks have also yielded SLIPs for the Mediterranean region15,16. Finally,
we produced SLIPs using maritime archeological structures whose functioning
height is related to the former mean sea level such as fishtanks20 or when found
covered by fossil biological encrustations which clearly define the relationship with
the former tidal frame134. We did not include samples from sectors manifesting
major evidence for co-seismic land-level changes and/or crustal movements con-
trolled by volcanic activity135,136, which can generate significant departures from
climatic-driven sea-level changes. Sediment compaction can be an important issue
because it can lower the SLIP relative to the initial depositional elevation, resulting
in an overestimation of the sea-level rise18,137. In the database compilation, we
prioritized “base of basal” samples, e.g., those recovered from sedimentary units
overlying incompressible substrates such as Pleistocene sands/gravels or rocky
basements. These samples are, therefore, less prone to compaction6. Where basal
samples were not available, we used intercalated samples which are derived from
facies of low-density, organic-rich sediment within a sequence of higher density,
clastic units18,137, and are, therefore, susceptible to compaction. However, in the
presence of two or more coeval intercalated SLIPs in the same region, we excluded
those found at lower elevation as being affected by post-depositional
compaction137. This procedure was of particular importance for the Rhone, Ebro,
and Tiber deltas, for Venice lagoon, and for the Romagna and Versilia coastal
plains. This practice allowed us to significantly reduce the effects of compaction on
the SLIPs dataset. The fossil intertidal bioconstructions, beachrocks, and arche-
ological structures are not subject to compaction. To perform a high-resolution
assessment of variability in sea-level rise rates we clustered the data into 48 sub-
regions, based on SLIPs collected no more than ~50 km apart (Supplementary
Fig. 1a).

Spatio-temporal statistical model. We employed an empirical spatio-temporal
hierarchical model16 to reconstruct the common sea-level change across the central
and western Mediterranean Basin, sub-regional variability in RSL changes, and
spatial-temporal variability patterns in rates of RSL change across the basin over
the last 10 ka. The height and timing (with vertical and temporal errors) of paleo-
RSL from the 401 SLIPs from 48 sub-regions in the central and western Medi-
terranean database were fed into the model. Additional model inputs came from
tide-gauge records taken from the Permanent Service for Mean Sea Level (PSMSL)
(see Kopp et al.3 for more details). Spatio-temporal variabilities of RSL change and
their uncertainties (Fig. 3) are calculated through a linear transformation of the
RSL predictions.

The hierarchical model has three levels: (i) a process level, which models RSL
through space and time; (ii) a data level, which models how RSL from the process
model is recorded by geological proxies; and (iii) a hyperparameter level, which
describes the prior expectations for spatial and temporal RSL variability.

The process model represents the RSL field as the sum of three components,
each with a Gaussian Process (GP) prior:

f x; tð Þ ¼ gbðtÞ þ rs x; tð Þ þ rf ðx; tÞ ð1Þ

where x represents a spatial location and t represents time. The three components
that comprise the RSL field are gb, which is the common Med-SL signal; rs(x, t),

which represents the sub-regionally varying, slow, and temporally non-linear SL
field; and rf(x, t), which represents the sub-regionally varying, fast and temporally
non-linear SL field. As in Kopp et al.3, the data model represents observations (yi)
as:

yi ¼ f xi; ti
! "

þ w xi; ti
! "

þ y0 xi
! "

þ εyi ð2Þ

where xi and ti are the location and time, respectively, of observation i, w(x, t) is a
white noise term that captures sub-decadal changes in RSL and vertical errors
beyond those nominally represented in the database, and yo(xi) is a site-specific
datum offset. εyi represents errors in sea-level observations, and the term for time ti
is the sum of the mean observed age and an error term for time. As in Kopp et al.3,
geochronological uncertainties are incorporated using the noisy-input GP
method138, which translates errors in the independent variable into comparable
errors in the dependent variable.

Hyperparameters that define prior knowledge of the amplitude and spatio-
temporal scales for sea-level in each term of the process model were optimized via
maximum likelihood. Optimized prior standard deviations for the common, slow,
fast, and white noise terms were 10.4 m, 1.72 m, 2 cm, and 7 mm, respectively. The
optimized temporal scales for the common, slow, and fast components were 12200,
3590, and 14.1 years, respectively, while the optimized spatial scales for the slow
and fast components were 14° and 2° angular distances, respectively.

Data availability
Data related to this article can be found in Supplementary Table 1 (SLIP database) and
Supplementary Table 2 (Med-SL rates). The references of the original papers used to
produce the SLIP database are provided at the end of Supplementary Table 1. These data
are available under a CC-BY 4.0 license at the following https://doi.org/10.5281/
zenodo.4737120.

Code availability
The code used for analysis in this article is archived on GitHub (https://github.com/
bobkopp/CESL-STEHM-GP).
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