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Abstract—Smart inverters (SIs) with local volt-var droop
functions are effective in maintaining voltage and reactive power
on the distribution feeders. Volt-var optimization (VVO) is
generally carried out using distribution grid optimal power flow
(DOPF)-based model that provides set point for the inverters
and/or legacy grid devices. However, the existing works do not
consider volt-var droop settings in the VVO framework, making
the inverter dispatch solutions unsuitable at the local inverter
controller level. Therefore, in this work, we propose the inclusion
of SIs’ local volt-var droop functions (as per the IEEE-1547) as
constraints in the VVO formulation. We adopt a well-known
second-order cone programming (SOCP) version of DOPF and
with the inclusion of SIs’ droop functions, the resulting VVO
renders an efficient mixed-integer SOCP (MISOCP) problem.
The efficacy of the proposed model is shown on a 33-node
distribution feeder with 4 SIs having volt-var droop functions
set as per the IEEE-1547.

Index Terms—Distribution grid modeling, smart inverter,
optimal power flow, volt-var, droop, second-order cone

I. INTRODUCTION

Large-scale deployment of distributed photovoltaic (PV)
generation in active distribution networks (ADN) brings
both operational challenges and opportunities to the system
operations. The potential impacts that PV could have on
distribution systems is studied extensively in the literature
[1]. The foremost technical issue with the incorporation
of PVs on distribution networks is the voltage rise due
to significant active power injection [2]. Traditionally,
distribution feeder voltage is maintained by legacy devices
including fixed/switched capacitor banks, load-tap changers
and voltage regulators, which operate at a slow timescale [3],
[4]. However, these legacy devices tend to make excessive
switching operations to cope with rapid voltage fluctuations
caused by high PV penetration, resulting in wear and tear
associated with the degradation of the devices [5].

An alternative to the use of these legacy devices for dealing
with fast voltage fluctuations is to utilize the active and reactive
power injection/absorption capability of the distributed PVs
through the control of the inverters. Smart inverters (SI) are
power electronic devices with a capability to not only convert
active DC power to AC power but also to inject and absorb
reactive power. This reactive power support from the inverters
is becoming indispensable for the economic operation of the
ADN, as the reactive power support from the inverters help
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to reduce active power curtailment from the PVs to mitigate
over voltage issues on the feeders.

Volt-var optimization (VVO) is an advanced function that
distribution system operator routinely uses to dispatch the
active and reactive power set points of dispatchable PVs
with (or without) the control of legacy grid devices to
optimally manage the voltage and reactive power profile
on the distribution networks. In this context, the VVO can
be cast as a distribution grid optimal power flow (DOPF)
problem. Centralized DOPF-based VVO schemes have been
proposed in [6], [7], where the inverter reactive power set
points are determined centrally and dispatched to the inverters.
In [8], a DOPF model and solution method considering the
control of legacy devices and SIs are considered. A distributed
VVO coordinating PV inverter dispatch is proposed in [9].
In [10], different shapes of P-Q capability curve of the
inverters are integrated to a DOPF model. While the optimal
inverter dispatch, as in [6]-[10], is an important problem to
consider, the SIs should operated based on the local droops as
defined in the IEEE-1547 [11]. Thus, the dispatch solution
obtained from the methods as in [6]-[10], may not lie on
the local droop settings of the SIs, which makes the DOPF-
based solution unsuitable at the local inverter controller level.
Moreover, the set points obtained from [6]-[10] may violate
the interconnection standards.

Although there has been recent interest in modelling volt-
var droop functionalities, i.e., Q(V), and determining their
optimal settings [12], [13], these works are mainly focused
on designing the optimal configurations of the Q(V) and no
work exists in the literature that assesses the performance of
the Q(V) integrated VVO in a network-wide optimization
framework. Integration of Q(V) droop function within an
DOPF framework is challenging as the DOPF in its original
form is nonlinear and nonconvex problem, and Q(V) also
being nonconvex brings additional computational challenges.
In addition, the existing convex DOPF formulations mostly
use square of voltage magnitude terms or product of voltage
variables, while Q(V) modeling requires first-order voltage
as an argument. One can propose to utilize fully-linearized
DOPF formulations, which uses first order voltage term, as a
base DOPF model; however, linearized DOPF formulations are
obtained by ignoring the nonlinear loss term, which limits its
usefulness for loss optimization type of studies. Considering
the recent literature, integrating the mathematical model of
Q(V) to an efficient convex DOPF framework is likely to
have advantages in terms of improving the computational and



modeling accuracy for Q(V) droop integrated DOPF.

This paper presents an efficient DOPF model that
incorporates SIs’ Q(V) droop settings as constraints of the
DOPF problem. The two major challenges in the proposed
approach are: the integration of piecewise droop functions of
SIs in the DOPF formulation, and approximation of first order
voltage term from the squared of the voltage magnitude used
in the convex DOPF formulation. We propose to use a novel
mixed-integer linear reformulation of piecewise Q(V) droop
settings. The mixed-integer Q(V') model is then integrated as
constraints to a well-known second-order cone programming
(SOCP) version of the DOPF model. The first order voltage
approximation is tested with five different approximation
methods. The resulting formulation then becomes mixed-
integer SOCP (MISOCP). We adopted SOCP DOPF as
underlying base model and formulated the proposed model as
MISOCP, as MISOCP is computationally more tractable than
mixed-integer non-linear programming (MINLP) counter part
[14], while mixed-integer linear programming (MILP) exhibits
large errors on the solution accuracy [15].

The structure of this paper is organized as follows. Section
IT describes the mathematical model of volt-var droop of
SIs. Section III presents the base DOPF model used in
this study. Section IV explains the proposed approximation
methods. Section V presents the volt-var integrated DOPF
model. Section VI presents the case studies. Conclusion and
future work are summarized in Section VIIL.

II. MODELING OF VOLT-VAR DROOP SETTINGS

A. Reactive Power Capability of Smart Inverters

SIs can help improve PV hosting capacity of a feeder by
controlling the reactive power. Thus, oversizing the inverter
allows room for the inverter to produce inductive or capacitive
reactive power as needed. Fig. 1 illustrates the reactive power
capability of an inverter. With an apparent power rating
(Srating) that is greater than the real power rating (Prating)
of the inverter, the PV systems would have the capability
of injecting (capacitive) /absorbing (inductive) reactive power
even if the PVs are operated at the maximum active power
rating.
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Fig. 1. Reactive Power Capability of SIs.

B. Piecewise Linear Model of Volt-Var Droop Settings

The volt-var curve is modelled as piecewise linear function,
operating in full capacitive mode at low voltages and full
inductive mode at high voltages, with a slope that describes
the rate of change of the reactive power output with respect
to change in the voltage at the point of connection of the PV.
The curve centers around the nominal voltage with a dead
band region in the middle. Fig. 2 depicts a typical SI’'s Q(V)
curve with five piecewise linear segments. Depending on the
configuration of the break points, the available operating range
of the voltage is partitioned into multiple segments which
define the reactive power control actions of the SIs within
maximum inductive and capacitive reactive power available.

Fig. 2. A typical 5-segment Q(V') droop curve of SIs [11], [16].

In order to integrate the Q(V) droop curve of SIs into the
DOPF framework, it has to be modelled analytically. Thus,
one can utilize elegant integer-linear modelling techniques to
model the piecewise linear nature of Q(V). The mathematical
representation of Q(V) droop curve can be written as the
following piecewise function,

+Q, VI<V, <Vio
Vv Vit Bty Vi < Vi< Vig
Qi(Vi) = 0, Via<Vi<Via (D
v Vit Vv Vi< Vi< Vi
—Q, Vis <V; <V

where 7 represents the node index to which SI is connected; V;
denotes the voltage at node ¢ whose lower and upper bounds
are given as V' and V" respectively. Vi2 through V; 5 are
the break points of voltage V;. Q"®* is the maximum reactive
power rating of the SI. The active segment with respect to
the node voltage V; can be selected through the use of binary
variables, i.e., d;1,...,0;5 € {0,1}, and Q;(V;) function can
be collectively written as,

Qi(Vi) = dip (+Q"™)
iz <V13 —Vio Vit Vis—Vio
+0;,3(0) 2
- Qi Vi
67 K3 Z 1 )
o <Vi,5 —Via Vit Vis = Via
+6i5 (—Q7)




where only one binary variable has to be activated to enable
one segment of Q;(V;), while disabling the other segments.
This is achieved by enforcing the following logical constraint,

5
> Gim =1 3)
m=1

Using big-M modelling approach [17], the binary variables
are combined with the lower bound, upper bound, and break
points of voltage on each segment of @), (V;), which is enforced
with the following set of inequalities,

—(1=81) M+VH <V, < Vio+(1—6i1) M
—(1=0i2) M4+Via <V;< Vig+(1—-62) M
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Although the set of equations (2)-(4) defines the piecewise
nature of the Q;(V;) curve, (2) is nonlinear because of
the bilinear terms, which are products of binary variable
§; and continuous variable Vj, particularly for the 2"¢ and
4*h segments where the Q;(V;) curve has slope. Hence, we
apply an exact linearization method to the bilinear terms
in (2). Consider two new variables W;o = §;2V; and
Wi 4 :=6; 4 V. Then, (2) is reformulated as following,
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where new variables are coupled with existing segment bounds
with a modified set of inequalities as,
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Equations (3), (5), and (6) define the analytical integer-linear
Q(V) droop curve representation.

III. BASE DISTRIBUTION GRID OPF MODEL

We use the well-known branch power flow based second-
order cone relaxation [18] version of distribution OPF
model (SOCP-DOPF). A radial distribution network can be
represented as a directed graph, G = (N, &), where N is
node set and £ is the branch set. The SOCP-DOPF can be
mathematically formulated as,
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where ¢, j indicate nodes on the feeder. v; is the magnitude
squared node voltage, i.e., v; = |V;|*> and &j is magnitude
squared of branch current, i.e., {;; = |I; 2. pj (q]) and pj
(qj) are the real (reactive) power generation and demand
respectively at node j. P;; and ();; represent the sending-
end real and reactive power respectively flowing on the line
(1,7). N" is the set of nodes excluding the substation node.
Nbpy represents the nodes which have PV generation.

In the formulation, (7) denotes the objective function in the
form of total active power loss, nodal real and reactive power
balance are given by (8) and (9) respectively, voltage drop
equations for each line segment is given by (10). Second-order
cone constraint is given by (11), which relates the node voltage
and branch current with branch power flow variables. (12) and
(13) define the limits on PV generation based on the solar
irradiance and inverter apparent power rating. The reactive
injection/absorption limit is defined by (14). The coupling
between real and reactive power output of inverter is defined
by convex constraint (15). The real and reactive generation
limits are set by (16) at non-PV nodes, 0-upper and O-lower
bounds are enforced for the buses which do not have any
generation. Voltage bounds are defined in (17).

IV. FIRST ORDER VOLTAGE APPROXIMATION

The main challenge in integrating @;(V;) in the base SOCP-
DOPF is that the droop settings in Q;(V;) uses the first
order of voltage magnitude V;, whereas the base SOCP-DOPF
model uses squared of the voltage magnitude, i.e., v;. Hence,
the relationship of v; = V;? needs to be modelled in the
DOPF formulation when the Q;(V;) curve is integrated to the
base SOCP-DOPF model. However, enforcing this quadratic
relationship as a constraint makes the overall formulation
nonlinear in nature and defeats the purpose of using base



SOCP-DOPF model. Since the @Q;(V;) formulation as in
3), (5), and (6) require integer variables to model, so
then the natural choice would be to formulate the resulting
DOPF model as a MISOCP formulation. Thus, reformulating
constraint v; = V;? as linear or mixed-integer linear constraint
would fit with the modeling structure of the MISOCP.

Next, we explain five approximation methods to represent
v; = V2 in linear or mixed-integer linear form in order
to combine base SOCP-DOPF model with the Q(V) droop
model.

A. Taylor Series Expansion (TSE)

The quadratic voltage relationship can be approximated by
Taylor series expansion around an operating point a as
following,

vi = a® +2a(V; —a) + (V; —a)?, Vi€ Npy

where a € [V}, V%]. If the quadratic term in (18) is ignored,
it can be approximated as the following linear model,

<‘/iQ>TSE = a2 + 2@(‘/1 — CL), Vi € NPV

(18)
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where the elimination of quadratic term leads to an error whose
value depends on the choice of parameter a.

B. McCormick Relaxation (M)

The standard McCormick relaxation, also known as
McCormick envelopes [19], provides a linear relaxation
of a bilinear term. In this approach, the general bilinear term
x;x; is replaced with a new variable w;;, and the formal
relation of the new variable and the existing variables are
constructed with a set of four linear inequalities.

The magnitude squared term in SOCP-DOPF model can
be viewed as a bilinear (v; = V;Q = V;V;) term and can be
relaxed using the standard McCormick relaxation as following,

vi = VIV + VIV = V]

v > VIV VRV = Vv
vi S VIVi+ VAV, = VIV
vi S VIV VIV, =V VY

(VM = Vi€ Noy (20)

where the first two inequalities are underestimators while
the last two are the overestimators. Depending on the types
of the variables in bilinear term, it is possible to have less
number of inequalities. For example, in this particular case of
representation the overestimators are duplicating. Hence, only
one overestimator is sufficient.

C. Piecewise McCormick Relaxation (PW-M)

The standard McCormick relaxations might not always provide
tight convex envelope representation. Hence, the concept
of piecewise McCormick relaxation via partition-dependent
bounds has been proposed in [20]-[22] to obtain tighter convex
envelop computation, which leads to improved accuracy

compared to the standard McCormick relaxation. In order to
strengthen the relaxation, the available range of the variable(s)
(z',2%) in the bilinear term x; x; can be partitioned into N
segments. The partitioning can be done for one of the variables
(univariate) or both variables (bivariate), uniformly or non-
uniformly. In this study, we choose to use bivariate piecewise
McCormick relaxation via uniform partitioning, which results
in the following mixed-integer formulation,

v > 25:1 (Vzln Vin + Vzln Vin — Vl mem
i > S0 (Vi Vi + Vi Vi — Vi mem
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N .
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U l (‘/zu — ‘/zl) n
Vin = Vi + N
where V;,, denotes the variable for partition n, which can
only take values within partition bounds [V}, V%], binary
variable y;, € {0,1} denotes the status of the each partition
whether it is enabled (binary-1) or disabled (binary-0), (21)
defines under- and over-estimators as a sum of mixed-integer
linear form, (22) ensures only one partition will be enabled,
(23) constraints the value of each partition variable, enabled
partition variable is coupled with the variable V; by (24).
Equations (25) and (26) set partition lower and upper bounds,
respectively.

D. Quadratic Relaxation (QR)

The magnitude squared voltage term can be relaxed using
its convex envelope as in [23], which can be represented
mathematically using two linear inequality constraints as,

v; > V2
v < (V*+ V) Vi = ViV

,Vne{l,... ,N}Vi € Npy (26)

(V)@ = Vie Npy (27)

E. Piecewise Quadratic Relaxation (PW-QR)

Similar to the piecewise McCormick relaxation, piecewise
version of QR can be derived as following,

vi < o (Vi 4+ V) Vi = ViV yin)
Vi € Npy (28)
(26) 29)

The formulated approximation models can be collected in
the set A = {TSE, M ,PW-M ,QR,PW-QR}.

<V2>PW7QR _

Equations (22) -



V. VOLT-VAR INTEGRATED DOPF

A DOPF model integrating base SOCP-DOPF model and
Q(V) droop model of SIs is formulated as,

o i Y e Tl GO
Vi, Vin, Yins Wik, Sk
Subject to :
Constraints (8) - (17) 3D
SI droop model : (3), (5), (6) , Vi€ Npy  (32)
Approximation model € A, Vie Npy  (33)
yin € {0, 1}, VYn e {1,...,N}, Vi € Npvy (34)
S e {01}, Vke{l,...5LVieNw (35

The above formulation is MISOCP in nature.

VI. CASE STUDIES
A. Test Feeder

Simulations are carried out on a modified 33-node feeder
[24] shown in Fig. 3. In the network, 4 PV generation sites
of 1.5 MVA each are connected to the MV feeder through
the smart inverters equipped with Q(V) droop functionality.
We use the same line parameters and peak loads as the
original network in [24]. We further generate time-series load
profiles for each node by properly scaling the peak loads. The
total time-series load and PV generation profiles used for the
simulations are shown in Fig. 4.

Substation
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Fig. 3. Modified 33-node [24] feeder with 4 PV generation sites.
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Fig. 4. Time-series load and PV generation profile.

A MacOS based machine with core-i5 2.9 GHz processor
and 8 GB of RAM is used to carry out the simulations. Gurobi
is chosen as an optimization solver and 0.01% of optimality
gap limit is set in the solver.

B. Evaluation of Accuracy Order

Approximation Methods

of First Voltage
We compare the accuracy of the first order voltage
approximation proposed in Section IV. The Q(V) integrated
DOPF formulation given by (30)-(35), is solved for every 15-
min (96 intervals in total for one day) with each voltage
approximation model in A. Since the formulation has two
decision variables ,/v; and V;, for the PV connected nodes, the
approximation model used introduces some amount of error
in the solution. The difference between /v; and V; can be
quantified with the average relative error calculated over all
the PV connected nodes for daily simulation as following,

! Vi Vi 100 (%),vte T (36)
e = —— _— ,
t |NPV| i€Npy \/Ff )

where ¢ denotes the time interval index, and 7 = {1,...,96}
represents the time interval index set. Furthermore, we obtain a
compact error metric by averaging all e; over the optimization

horizon as, .
Err=—= ey
=2
teT

(37

In the simulation, we consider V! = 0.9 and V* = 1.1 p.u.
Taylor series parameter is set to a = (V! +V;*) /2. We consider
two sets of voltage break points: {0.9, 0.92, 0.95, 0.96, 1.05,
1.1} p.u. and {0.9, 0.92, 0.98, 1.02, 1.08, 1.1} p.u. in Q;(V)
droops. We use 7 uniform voltage segments for PW-M and
PW-QR. Q"% is set to 1.5 MVAr. Table I and II summarize
the average approximation errors for each methods in A for
the two Q(V) droop configurations. The piecewise methods
(i.e., PW-M and PW-QR) result in less errors compared to
other approaches; however, both piecewise approaches are not
dominating each other as the approximation accuracy is also
dependent on the Q(V) droop configuration, i.e., the break
points.

TABLE I
AVERAGE APPROXIMATION ERRORS (%) OF EACH METHOD IN A,
Q(V) CONFIGURATION OF {0.9, 0.92, 0.95, 0.96, 1.05, 1.1} p.U.

TSE M QR PW-M PW-QR
006 042 045 0.0042  0.0045
TABLE I

AVERAGE APPROXIMATION ERRORS (%) OF EACH METHOD IN A
Q(V) CONFIGURATION OF {0.9, 0.92, 0.98, 1.02, 1.08, 1.1}p.U.

TSE M
0.03 0.46

PW-M
0.0067

QR
0.41

PW-QR
0.0048

Fig. 5 and Fig. 6 show the accuracy of the proposed
approaches on the voltage at node-25 for the corresponding
droop configurations. It can be observed that piecewise
relaxations provide good approximation between ./v; and
Vi, compared to the non piecewise methods. Note that
Taylor series expansion can also provide decent approximation



accuracy considering it requires less number of variables and
no integer variables to approximate V; from v,.
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Fig. 5. Comparison of voltage approximation performance at node-25 with
Q(V) configuration of {0.9, 0.92, 0.95, 0.96, 1.05, 1.1}p.u.
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Fig. 6. Comparison of voltage approximation performance at node-25 with
Q(V) configuration of {0.9, 0.92, 0.98, 1.02, 1.08, 1.1}p.u.

C. Comparison of Loss Reduction Performance

The loss reduction performance is highly dependent on
the configuration of Q(V) droop settings. Tables III and IV
show average active power loss values over 96-interval for

two different Q(V) droop curve configurations with proposed
approximation approaches. It can be observed that non-
piecewise relaxations (M and QR) result in lower loss values
for both droop configurations; however, considering their poor
voltage approximation accuracy from Tables I and II, it reveals
that there is an obvious trade off between loss reduction and
voltage approximation accuracy for these methods.

Average power loss reduction performance of TSE
and piecewise relaxation approaches (PW-M and PW-QR)
result in close loss values for both droop configurations
although the piecewise relaxations are slightly better in loss
reduction performance. Among piecewise relaxations PW-QR
marginally outperforms PW-M.

TABLE III
AVERAGE POWER LOSs (KW) BY EACH METHOD IN A, WITH Q(V)
CONFIGURATION OF {0.9, 0.92, 0.95, 0.96, 1.05, 1.1}pP.U.

TSE M QR PW-M  PW-QR
7897 7245 7239  71.85 77.72
TABLE IV

AVERAGE POWER LOSS (KW) BY EACH METHOD IN A WITH Q(V)
CONFIGURATION OF {0.9, 0.92, 0.98, 1.02, 1.08, 1.1}P.U.

PW-M
47.74

TSE M
48.04  45.32

QR
45.65

PW-QR
47.68

D. Reactive Power Dispatch on Q(V) Droop

Next we present the effectiveness of the mixed-integer
reformulation of Q(V) droops and how the reactive power
dispatch solution using proposed DOPF model (30) - (35) lies
on the Q(V) droops. The results presented in this part are
obtained by using PW-QR approximation as it provides more
accurate voltage performance over other proposed methods.
Fig. 7 and 8 show the reactive power dispatch values (for
96-intervals and 4 PVs) and the Q(V) droops. The dispatch
solutions in both figures exactly follow the mathematical
model of the droop settings. Unlike the DOPF models in [6]-
[10], our proposed approach abide the IEEE-1547.
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Fig. 7. Comparison of reactive dispatch and Q(V') droop with configuration
of {0.9, 0.92, 0.95, 0.96, 1.05, 1.1}p.u.

Fig. 9 and Fig. 10 provide more insights on the accuracy
of the solution. The reactive power dispatch obtained by the
proposed DOPF and the reactive power calculated by plugging
in the voltage solution into the Q(V) droops match for both
Q(V) configurations.
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method. It can be observed that DOPF for all intervals can
be solved in less than 0.4 sec by using each method. The
piecewise relaxation methods (PW-M and PW-QR) tend to
take more time compared to TSE and M as they include integer
partition variables for voltage approximation in .4. However,
solution time with QR appears to be more dispersed compared
to the other methods. Table V summarizes the number of
continuous and integer variables required to build the model
for each voltage approximation method in A.
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Fig. 11. Solution time of Q(V') integrated DOPF.

TABLE V
NUMBER OF CONTINUOUS AND INTEGER VARIABLES USED IN EACH
VOLTAGE APPROXIMATION METHOD IN A.

Method in A Continuous Variables Integer Variables

Reactive Power (MVAT)

Reactive Power (MVAr)
(=]

0.45
0.97

0.975 0.98
Voltage (pu)

0.985

-0.1
0.94 0.945 095 0955 0.96

Voltage (pu)

TSE 207 20
M 207 20
QR 207 20
PW-MC 235 48
PW-QR 235 48

Fig. 9. Reactive power dispatch with Q(V') droop of {0.9, 0.92, 0.95, 0.96,

1.05, 1.1}p.u.
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E. Computational Performance of Q(V) Droop Integrated
DOPF

Fig. 11 shows the statistical properties of solution time for
each time interval obtained using the various approximation

F. Tightness of the Solutions

Tightness is an important characteristic measure of accuracy
of the solutions which can be evaluated as the error on branch
flows, i.e., ASin = |P22J + ij — £;;v;]. The smaller value
means the solution is tighter. Since Q(V) droop integrated
DOPF is based on underlying SOCP relaxation, the tightness
evaluation with each voltage approximation method in A gives
an idea how accurate the solution is (not to be confused
with the optimality gap set in the solver). Fig. 12 shows the
tightness evaluations over the each branch for each voltage
approximation method in A, which is obtained less than
1.5 x 1072, This means the obtained solutions are tight.

VII. CONCLUSION AND FUTURE WORK

This paper presented a volt-var droop integrated DOPF
for optimal dispatch of smart inverters in active distribution
networks. The proposed DOPF model is an MISOCP, which
is based on well known BFM-based SOCP-DOPF and
exact mixed-integer linear formulation of volt-var droop
curve of smart inverters. In addition, we proposed a set
of approximation methods to couple the first order voltage
term used in volt-var droop model to the squared voltage
magnitude used in SOCP-DOPF model. The adopted MISOCP
formulation is tested on a modified 33-node feeder with
proposed approximation methods in terms of approximation
(coupling) accuracy, power loss reduction, and computational
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performance. We showed that the proposed mathematical
model is tractable and can provide good quality solutions,
which makes the model promising for practical-sized feeders.
The proposed model can readily be combined with an
optimization framework which configure not only the volt-var
droop functionality of the smart inverters but also volt-watt
and P(Q) droop as defined in the IEEE-1547. Hence, the
proposed droop-integrated DOPF model can further improve
loss reduction and voltage performance. As a future work, we
are working on testing the scalability of the proposed method
on larger networks and designing a dynamic optimization
framework of optimal volt-var droop settings in order to obtain
the best individual droop configuration of each smart inverters
for daily operation.
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