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Abstract—A two-staged combined unit-commitment (UC) and
Optimal power flow (OPF) architecture are proposed in this pa-
per based on mixed-integer semi-definite programming (MISDP).
The MISDP problem is then divided into a mixed-integer linear
programming problem and a semidefinite programming problem
to achieve the solution. Different cases have been studied on 6
bus, IEEE 14 bus, and IEEE 118 bus systems to test the efficacy
of the proposed method. It has been observed that the proposed
two-staged combined UC gives very close results (2% differences
in solution differences in comparison with unified approach) for
smaller systems while scalable and feasible for IEEE 118 bus
system where the unified approach fails. The optimal operating
point derived from the two-staged approach is comparable with
the unified approach but the proposed approach performs better
in terms of scalability.

Index Terms—Unit commitment (UC), AC OPF (ACOPF), Con-
vex Optimization, Mixed Integer Programming (MIP), Semidef-
inite Programming (SDP), Two-staged Optimization.

NOMENCLATURE

G Graph of transmission system
rg,t Spinning reserve for generator at bus g at time period t; g

∈ NG

E Set of edges (branches) in G
Gij ,Bij Conductance and susceptance of transmission line between

buses i and j; (i, j) ∈ N
NG Set of generator buses (nodes) in G
N Set of buses (nodes) in G
PG
g,t,QG

g,t Active and reactive power generation at generator bus g at
time period t; g ∈ NG, t ∈ T

Pmin
g ,Pmax

g Upper and lower bound of active power generation at
bus g; g ∈ NG

PD
n ,QD

n Active and reactive power demand of bus n; n ∈ N
Qmin

g ,Qmax
g Upper and lower bound of reactive power generation at
bus g; g ∈ NG

Rt Spinning reserve for the system at time period t; t ∈ T
RUg ,RDg Ramp up and ramp down limit for generator at bus g; g

∈ NG

SUg Startup cost for generator at bus g at time period t; g ∈ NG

T Set of hourly time periods
t Time period index; t ∈ T
ug,t binary variable for generator status at bus g at time period

t; g ∈ NG, t ∈ T
UTg ,UDg Minimum up and down time limit for generator at bus g;

g ∈ NG

V min,V max Upper and lower bound of bus voltage magnitude
vg,t binary variable for generator startup command at bus g at

time period t; g ∈ NG, t ∈ T
Vn Voltage magnitude at bus n; n ∈ N

This work is supported in part by the U.S. Department of Energy’s
Office of Energy Efficiency and Renewable Energy (EERE) under the Solar
Energy Technologies Office Award Number DE-EE0008774, National Science
Foundation grant ECCS-1810174, and National Science Foundation grant
ECCS-2001732. Corresponding Author: Biswajit Dipan Biswas, University
of North Carolina at Charlotte, Email: bbiswas@uncc.edu

wg,t binary variable for generator shutdown command at bus g
at time period t; g ∈ NG, t ∈ T

Yij Admittance of transmission line between buses i an j; (i, j)
∈ N

I. INTRODUCTION

UNIT Commitment (UC) is an important model in the
power system to optimally schedule the generating re-

sources over a horizon of time considering the load changes
and various other factors. UC is a non-convex problem, which
is also discrete. Since the beginning of UC formulation [1],
many types of research have been explored different paths
to formulate UC as a Mixed Integer Linear Programming
(MILP) problem without network constraints [2]–[4]. Various
researches have been conducted over time for the formulation
of this problem that represents the power network in DC
form with or without considering active power losses [5],
[6]. Generator scheduling using such models ignore reac-
tive power dispatch, which should be considered. Various
methodologies have been applied to solve UC problems such
as Dynamic Programming [7], [8], Branch & Bound (B&B)
method [9], and Lagrangian Relaxation Method [10]. Each of
these approaches has its drawbacks, such as B&B and genetic
algorithm approaches are not computationally efficient.

One of the basic properties of the UC problem formulation
is that it considers mostly linear constraints. Also, it overlooks
the losses in the system and other line constraints. Those
constraints are very crucial to get the correct optimal solution.
OPF is another important model for power grid operations
that consider the power flow and power balance constraints
for specific nodes along with other line constraints. However,
OPF is another non-convex, non-linear problem and NP-hard
in nature [11]–[13]. As a result, the combined formulation of
UC with OPF is extremely difficult to solve and poses higher
stress for the solver [14]. There are few works where the UC-
OPF problem is solved in MINLP form [15]–[17]. Albeit, the
formulation for the smaller system may be possible but the
scalability of the MINLP version is an issue. Nasri et al. [18]
and Fu et al. [16] did extensive work on UC formulation
including AC network constraints and security constraints
using Bender’s Decomposition method. To convexify the non-
convex OPF problem various relaxation methods are utilized.
It has been studied that SDP relaxations provide more exact
solutions for mesh networks in transmission systems than the
second-order cone programming (SOCP) relaxation. Though
SDP relaxed problem puts an additional computational burden
on the solver than the SOCP problems, one major advantage is
that SDP relaxed model contains the bus voltage angle while
SOCP models mostly do not. SDP relaxed OPF formulations
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include rectangular representation of power flow equations
[13], [19] or polar representation of the bus voltages [20].

In this paper, a two-stage approach of UC-OPF formulation
is proposed as a combination of the MILP UC problem and
SDP OPF formulation. Comparisons with unified MISDP UC-
OPF formulation have been presented to show the advantage
of the two-staged approach. The contributions of this paper are
fourfold. The approach develops a combined UC-OPF model
a) without leveraging the rounding of the binary variables as
done in the unified formulation b) Includes the active power
loss of the network for power balance constraint in UC c)
Provides close to global solutions and scalable. The rest of
the paper is organized as follows. Section II discusses UC-
OPF preliminaries. Conventional unified and proposed two-
staged UC-OPF formulation is described in Section III. The
numerical studies and comparison are showcased in Section
IV and conclusions and future work is discussed in section V.

II. UC-OPF PRELIMINARIES

A. UC Constraints

The objective of UC is to determine a day-ahead schedule to
minimize the power system operation cost while supplying the
demand and satisfying other constraints. The UC constraints
are briefly explained next.

1) Power Balance: The power balance equation without
considering losses can be represented as

NG∑
g=1

PG
g,t −

N∑
n=1

PD
n,t = 0 (1)

2) Spinning Reserve: The spinning reserve constraint is

rg,t ≤ RUg

G∑
g=1

rg,t = Rt

N∑
n=1

PD
n,t +Rt −

G∑
g=1

ug,tP
max
g = 0 (2)

3) Minimum start-up and shut-down time of units: The
minimum up and down time can be formulated as [21].

t∑
i=t−UTg+1

vg,i ≤ ug,t;∀g ∈ NG,∀t ∈ [UTg + 1, T ] (3)

t∑
i=t−DTg+1

wg,i ≤ 1− ug,t;∀g ∈ NG,∀t ∈ [DTg + 1, T ]

(4)
4) Ramping up and Ramping Down: Further, the ramp-rate

constraints can be represented as

Pg,t − Pg,t−1 ≤ RUg;∀g ∈ NG (5)
Pg,t−1 − Pg,t ≤ RDg;∀g ∈ NG (6)

5) Active and Reactive Power Generation Limit: The active
and reactive power generation of the generating units are
constrained by following boundaries,

Pmin
g ≤ Pg,t ≤ Pmax

g ;∀g ∈ NG (7)

Qmin
g ≤ Qg,t ≤ Qmax

g ;∀g ∈ NG (8)

B. Power Flow Constraints

Let us assume, G = (N,E) represents a undirected graph as
the power transmission network where N is the set of buses
and E is the set of branches. Let, Vi is the voltage of bus
i ∈ N . The power balance of the power network represents the
equality of total incoming power and outgoing power. If, PG

i ,
QG

i , PD
i , QD

i denotes the active and reactive power generation
and active and reactive power demand of bus i ∈ NG and yij
denotes the admittance of line between bus i and j, then the
power balance for the bus i can be written as shown below:

PG
i − PD

i =

N∑
i 6=j

Re[Vi(Vi − Vj)
∗y∗ij ] (9)

QG
i −QD

i =

N∑
i 6=j

Im[Vi(Vi − Vj)
∗y∗ij ] (10)

Here, ∗ denotes the complex conjugate of the parameter. Let
Y ∈CN×N is the admittance matrix of the network, where yij
represents the admittance for the line segment between bus i
and j. Here, Yij = Gij + iBij where, G and B represents
the conductance and susceptance matrices. Also, Gii = gii −∑

i 6=j Gij and Bii = bijj −
∑

i6=j Bij where, gii and bii are
shunt conductance and susceptance of bus i. Now, the bus
voltage, Vi can be written in it’s rectangular form as, Vi =
ai + ibi and similarly, |Vi|2 = a2i + b2i represents the voltage
magnitude squared for that specific bus. With these notations,
the power balance equations can be written as follows:

PG
i − PG

i = Gii(a
2
i + b2i )+

∑
[Gij(aiaj + bibj)

−Bij(aibj − ajbi)] (11)

QG
i −QD

i = −Bii(a
2
i + b2i )+

∑
[−Bij(aiaj + bibj)

−Gij(aibj − ajbi)] (12)
Here, this rectangular formulation of power balance equation
formulates the OPF as a non-linear and non-convex problem.
Non-linearity is coming in the following expressions of vari-
ables, (a2i + b2i ), (aiaj + bibj) and (aibj −ajbi). To get rid of
this non-linearity, following new variables are introduced as,
cii = (a2i + b2i ), cij = (aiaj + bibj) and dij = (aibj − ajbi).
The newly introduced variables are related to each other
through the following equation, c2ij+d2ij = ciicjj . The updated
formulation of power balance constraints then becomes

PG
i − PD

i = Giicii +
∑

[Gijcij −Bijdij ] (13)

QD
i −QD

i = −Biicii +
∑

[−Bijcij −Gijdij ] (14)

where the matrix variables cii, cij and dij are related to each
other as cij = cji, dij = −dji, c2ij + d2ij = ciicjj . If a
Hermitian matrix Z is introduced such as, Z = V V ∗, then
all the variables cii, cij and dij can be mapped in to Z as
shown below

Z =

[
cii (cij + idij)

(cij − idij) cjj

]
(15)

III. UC-OPF FORMULATIONS

A. Unified UC-OPF Formulation

Combined UC-OPF formulation can be written in the
MISDP form as in (2)-(10), (13)-(15). In this approach, the
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problem consists of both mixed integer problem and convex
optimization problem. Since, currently there isn’t much mature
MISDP solvers that can solve large scale complex MISDP
problems, that’s why in this unified approach the binary
variables are initialized as continuous variables and once the
problem is solved then with the help of rounding the values of
unit-commitment variables, the ultimate solution is achieved.
The formulation of the unified UC-OPF problem is as follows:

Min :

T∑
t=1

NG∑
g=1

(ug,tf(P
G
g,t) + vg,tSUg) (16)

Here, f(PG
g ) represents the generating cost function. The other

cost associated is the start up cost of the generator SUg . The
constraints are,

PG
i,t − PD

i,t = Giicii,t +
∑

[Gijcij,t −Bijdij,t] (17)

QG
i,t −QD

i,t = −Biicii,t +
∑

[−Bijcij,t −Gijdij,t] (18)

ui,tP
min
i ≤ PG

i,t ≤ ui,tP
max
i ;∀i ∈ G (19)

ui,tQ
min
i ≤ QG

i,t ≤ ui,tQ
max
i ;∀i ∈ G (20)

N∑
n=1

PD
n +Rt −

NG∑
g=1

ug,tP
max
g = 0 (21)

PG
g,t − PG

g,t−1 ≤ RUg;∀g ∈ NG (22)

PG
g,t−1 − PG

g,t ≤ RDg;∀g ∈ NG (23)
t∑

i=t−UTg+1

vg,i ≤ ug,t;∀g ∈ NG,∀t ∈ [UTg + 1, T ] (24)

t∑
i=t−DTg+1

wg,i ≤ 1− ug,t;∀g ∈ NG,∀t ∈ [UDg + 1, T ]

(25)
ui,t, vi,t, wi,t ∈ {0, 1} (26)
cij = cji (27)
dij = −dji (28)

Z =

[
cii (cij + idij)

(cij − idij) cjj

]
(29)

Z < 0 (30)

(V min)2 ≤ cii ≤ (V max)2;∀i ∈ N (31)
In the MISDP UC problem, the variables u, v, w are binary

variables, but since there are not enough mature solvers that
can solve large scale MISDP problems, so the binary variables
are relaxed to continuous variables. Then, a rounding-off
approach is applied to obtain an integer solution. When the
problem (16)-(30) is solved, the values of the variable u, v, and
w are converted to binary value using the rounding operation.
Then, with those binary values, the OPF problem is solved to
get the generation set-points.

B. Two-staged UC-OPF Formulation

To solve integer recovery as mentioned above, in this paper,
initially, the value of Plosst is an estimated system loss. Once
the OPF problem is solved for the given generator status, and
actual power loss is calculated. In the next iteration, while
the UC problem is to be formulated, that loss is updated in

the power balance equation. This iterative process is continued
until the generator commitment status remains same for two
successive iterations. The MILP UC problem in the two-staged

Algorithm 1 Proposed Two-staged UC-OPF
Step: 1 Initialize network parameters.
Step: 2 Initialize Ploss,1 as x% of PD.
Step: 3 Use eqn 32, 19-26, 33 to formulate UC problem.
Step: 4 From the solution use generator status value to iden-

tify active generator
Step: 5 Use eqn 34, 17-20, 27-30 to formulate OPF problem.
Step: 6 After convergence calculate Ploss, 2.
if Ploss,1 = Ploss,2 then

Update the solution to dispatch generator)

else
Update Pk+1

loss,1 = P k
loss,2

approach can be formulated as,

Min :

T∑
t=1

NG∑
g=1

(ug,tf(P
G
g,t) + vg,tSUg) (32)

Subject to :

Constraints : (19)− (26)

N∑
n=1

PD
n −

NG∑
g=1

PG
g,t + Plosst = 0;∀g ∈ NG (33)

If u∗g,t is obtained from UC solution, then using u∗g,t as
parameter, OPF in two-stage formulation is modeled as,

Min :

T∑
t=1

NG∑
g=1

u∗g,t f(P
G
g,t) (34)

Subject to :

Constraints : (17)− (20), (27)− (30)

IV. NUMERICAL CASE STUDIES

The proposed two-stage approach to solve combined UC-
OPF problem is implemented in YALMIP, an optimization
toolbox for MATLAB. The simulations are conducted on
modified IEEE 6 bus network, IEEE 14 bus, and IEEE 118
bus test networks. The simulation is performed on a Dell
laptop with a 2.5GHz Core i5 processor and 16 GB RAM,
running a 64bit Windows-10 operating system. To test the
approach test systems of three different sizes were selected.
For IEEE 6 bus system, there are 3 generators at bus 1,
2 and 3 of capacity 200MW, 150MW, 800MW respectively
and 3 load buses. A load profile is generated for 24 hours
and used to solve the problem. The maximum capacity of
the generation is 1150 MW. IEEE 14 bus network contains
5 generators and 11 loads. A 24-hour load profile is also
generated based on standard benchmark load conditions. The
base voltage of the system is 230 kV. IEEE 118 bus network
consists of 19 generators, 35 synchronous condensers, 177
lines, 9 transformers, and 91 loads.

A. UC-OPF for 6 bus system
The UC-OPF problem for 6 bus system is solved using both

unified and two-staged approach. The generators’ parameters
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TABLE I
UC PARAMETERS LIMITS FOR 6 BUS SYSTEM

Constraints Gen 1 Gen 2 Gen 3
Ramping Up (MW) 55 50 20
Ramping Down (MW) 55 50 20
Minimum Up Time (Hr) 4 2 1
Minimum Down Time (Hr) 4 3 1

TABLE II
UCOPF SOLUTION FOR 6 BUS SYSTEM

Parameters Unified MISDP Two-staged MISDP
Total Pgen (MW) 5174.474 5174.127
Total Ploss (MW) 22.0738 21.7274
Total Cost 84795.32 86602.04

Fig. 1. Generator status comparison of 6 bus system for unified and two-
staged approaches.
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Fig. 2. Total demand and total generation comparison of 6 bus system for
24-hr time horizon.

are given in Table I. In a unified approach, the binary variables
are initially defined as continuous variables. Once the problem
is solved, the value of those variables is compared with a
threshold value to perform the rounding off operation. Then
the feasibility is checked by solving the OPF problem. The
total cost from this approach for 1-day is $84,795.32. For
the two-stage approach, the total generation cost for the day
is $86,602.04 which can be seen higher than the unified ap-
proach. However, the total active power loss in the two-staged
approach is 21.73 MW, which is lower than the 22.07 MW
from the unified approach (see Table II). The generators’ status
comparison from both approaches are shown in Fig. 1. The
voltage profile comparison between the two approaches for
the time of maximum and minimum loading is shown in
Fig. 5. The total demand and generation comparison on an
hourly basis is shown in Fig. 2. The total generation from the
proposed approach for each time was compared with the same
from the unified approach. The maximum error was 0.038%.
B. UC-OPF for IEEE 14 bus system

In case of IEEE 14 bus system, both the total generation
cost and system active power loss is less in unified approach

TABLE III
UC PARAMETERS LIMIT VALUE FOR IEEE 14 BUS SYSTEM

Constraints Gen 1 Gen 2 Gen 3 Gen 4 Gen 5
Ramping Up (MW) 55 50 50 40 30
Ramping Down (MW) 55 50 50 40 30
Minimum Up Time
(Hr) 4 2 1 2 1

Minimum Down Time
(Hr) 4 2 1 2 1

TABLE IV
UCOPF SOLUTION FOR IEEE14 BUS SYSTEM

Parameters Unified MISDP Two-staged MISDP
Total Pgen (MW) 3898.189 3898.48
Total Ploss (MW) 90.8890 91.183
Total Cost 77963.775 77969.67

than the two-staged approach. The comparison is given in
Table IV. The generator UC parameter data are given in Table
III. The generators’ status in Fig. 3, in unified approach
all the generators have been committed, as the value of the
generator status variable was higher than the threshold value
for all instances, While in two-staged approach, the cheap
generators (e.g., G1, G2) have been committed for all the time
and costly generators (e.g., G3, G4 and G5) are offline for
some periods following the minimum up time. The voltage
profile comparison for the maximum and minimum loading
time is shown in Fig. 5. The demand and generation profile
comparison for the test case is shown in Fig. 4. The maximum
error for total active power generation comparison between the
approaches was 0.014%.
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Fig. 3. Generator status comparison of IEEE 14 bus system for unified and
two-staged approaches.

C. UC-OPF for IEEE 118 bus system

For a large system like modified IEEE 118 bus network, the
unified approach was not solvable as the number of constraints
and variables are large. So, here only the solution from two-
staged approach is presented. This problem is also formulated
for a 24-hr time horizon with a maximum load of around
6,800 MW and the solver could easily solve the problem. The
generators’ cost coefficients for the the system are available
in [22]. The total demand and total generation profile for the
whole time horizon of the network is shown in Fig. 6. The
solution has Pgen (MW) = 132396.31, Ploss (MW) = 4135.41
and Generation cost ($) is 4135.41.
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Unified Approach
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Fig. 4. Total demand and total generation comparison of IEEE 14 bus system
for 24-hr time horizon.

Fig. 5. Voltage profile comparison for maximum and minimum loading hours
in 6 bus and IEEE 14 bus system.
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Fig. 6. Total demand and total generation comparison of IEEE 118 bus system
for 24-hr time horizon.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a two-stage approach for UC-OPF formulation
is proposed. The approach is scalable, accurate with respect to
optimal solutions, and feasible. For example, due to the lack
of availability of mature solvers, the unified UC-OPF problem
in the MISDP form cannot be solved for larger systems, i.e.,
IEEE 118 bus network where the two-staged approach was
able to solve and is scalable for larger networks. The solution
from the two-staged approach may not be the most economic
(we have seen up to 2% difference when compared to the
unified approach) but the scheduling of the generating units
is feasible. Future work includes extending to integrating con-
tingency scenarios and tighter network constraints. Also, the
computational time can be reduced significantly by leveraging
the matrix sparsity for larger networks.
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