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Percolation theory is essential for understanding
disease transmission patterns on the temporal
mobility networks. However, the traditional approach
of the percolation process can be inefficient when
analysing a large-scale, dynamic network for an
extended period. Not only is it time-consuming but
it is also hard to identify the connected components.
Recent studies demonstrate that spatial containers
restrict mobility behaviour, described by a hierarchical
topology of mobility networks. Here, we leverage
crowd-sourced, large-scale human mobility data to
construct temporal hierarchical networks composed
of over 175 000 block groups in the USA. Each daily
network contains mobility between block groups
within a Metropolitan Statistical Area (MSA), and
long-distance travels across the MSAs. We examine
percolation on both levels and demonstrate the
changes of network metrics and the connected
components under the influence of COVID-19. The
research reveals the presence of functional subunits
even with high thresholds of mobility. Finally, we
locate a set of recurrent critical links that divide
components resulting in the separation of core
MSAs. Our findings provide novel insights into
understanding the dynamical community structure
of mobility networks during disruptions and could
contribute to more effective infectious disease control
at multiple scales.
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This article is part of the theme issue ‘Data science approaches to infectious disease
surveillance’.

1. Introduction
The unprecedented pandemic of the coronavirus disease 2019 (COVID-19) is affecting more
than 200 countries and infected more than 32 million causing 578 530 deaths in the USA as of
9 May 2021 [1]. In a short one-year period, the USA has experienced two waves of transmissions
[2]. In response to the fast and dynamic transmission of SARS-CoV-2, different levels of
government have employed restricting population movement as a key non-pharmaceutical
intervention (NPI) in limiting contacts and increasing social distancing [3]. These measures have
caused significant changes in people’s mobility patterns [4]. Also, the employment of stay-at-
home orders has substantially reduced long-distance travel as well as local commuting [5].
Indeed, human mobility is both a key driver of and NPI to control COVID-19 [6–8].

Numerous studies have investigated the correspondence between mobility patterns and the
spread of infectious disease such as SARS, influenza and malaria [9–13] as well as COVID-19
in different countries [14–20]. Studies have shown that the early spatial patterns of COVID-19
infection in China correspond to the human mobility fluxes and such correlation drops as some
local control policies were executed [21,22]. Other studies support the finding that regions and
places with high volumes of mobility are contributing to the spread of the deadly virus [15,23–
25]. On the flip side, social distancing and mobility reduction are associated with a decreased level
of transmission of COVID-19 [21,26,27].

Mobility-based networks are constructed to accurately model the transmission of COVID-19
in social networks, but they suffer from a few limitations. First, when building the networks,
compromise on resolution or scale is often necessary to account for both the spatial and temporal
dynamics of mobility networks. Studies have aggregated human mobility on the census block
group or county levels [28–32]. The aggregation removes details and information on other levels
and leads to inaccurate prediction of transmission patterns. Second, previous studies validate the
effectiveness of inter-city travel restrictions in reducing the imported COVID-19 incidence rate
[23,33]. Yet, there is still limited understanding of how local measures and responses could change
the mobility network structure. Specifically, communities may still face challenges from intra-city
mobility, which must be considered in network models. Third, a recent study has discovered the
percolation process and phase transition in human mobility networks on the county level, which
indicates the possibility of devising effective strategies to control mobility flows at critical bridges
and contain the transmission of COVID-19 [31]. However, it is unknown if percolation processes
govern the structural changes in mobility networks with a higher geographical granularity or
multi-level mobility networks.

To address these limitations, here we propose a multilevel approach to capture the hierarchical
and the dynamical property of mobility networks. We construct two-layer hierarchical networks
of 378 Metropolitan Statistical Areas (MSAs) in the USA. Such dynamic multiplex networks
consist of a macro-level and meso-level layer for daily mobility. On the macro level, the MSAs
are nodes, and the travels among the metropolises are links. On the meso level, we treat census
block groups as nodes and the travels between as links. This hierarchical construction allows us
to analyse local and long-range trips simultaneously and examine their interactions. Thus, the
multiplex network supports our effort to uncover the associations between different layers and
node attributes such as COVID-19 incidence rate and collective response metrics.

To understand the structural changes of multiplex networks, we adopt an analytical approach
that originated from percolation theory. As a fundamental concept in network science, percolation
theories are studied extensively, contributing to understanding and conducting materials and
network-based applications [34–36]. Specifically, percolation theory is an essential step for coping
with complex models and dynamical processes occurring on the networks [37–44]. It is a
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crucial approach to identify the hierarchical structure and determine any discontinuous phase
transition within the complex systems. Previous applications in network science include critical
phenomena in urban traffic planning [45–47], epidemic modelling [48,49] and cascading processes
on networks [50,51]. These strengths make the approach effective in better understanding the
hierarchy of dynamic mobility networks and thus unearth variations in mobility stabilization
and emergent structure patterns.

2. Mobility data
We use the Social Distancing Metrics dataset from SafeGraph to quantify the daily travel changes
(see Data availability). The data track the GPS pings of more than 20 million anonymous mobile
devices and records the related information of their daily movements, including travelling
trajectory, home-dwelling time, distance travelled from home, etc. The smallest geological unit
used is the census block group; therefore, a device’s location is spatially joined to the census block
group containing it. Here the home block group of a device is defined as its common nighttime
(18:00–7:00) census block group for 6 consecutive weeks. The mobility network is built based on
the movements between different block groups. The dataset has a field destination_cbgs which is a
dictionary that reports the destination census block groups and the number of devices that visited
them from each home census block group. The dataset ranges from 1 January to 31 December
2020, allowing us to study human mobility patterns before and after the national emergency
declared on 13 March 2020. The data track each device’s daily trajectory among census block
groups in the USA during daytime (7:00–18:00). A human mobility network is formed based on
it, in which a directed link from block group i to block group j is created if a device is detected
living in block group i and travelling to block group j within the same day. The weight is the
number of devices detected travelling from i to j.

3. The hierarchical networks structure of the USA
We build a mobility-based, hierarchical network of 378 Metropolitan Statistical Areas (MSAs) in
the USA (figure 1). Our approach aggregates and normalizes the regional travel flux based on
the number of devices observed in both origin and destination regions on two levels: inter-MSA
(figure 1a,b) and intra-MSA (figure 1c–f ). For the intra-MSA networks, denoted as α-networks,
we take each census block group as a node. A directed link from block group i to block group j is
created if a device is detected living in block group i and travels to block group j within the same
day. The weight is the number of travellers. One issue that needs to be addressed is that human
mobility is significantly different between weekdays and weekends, and yet patterns from both
periods are important and should be considered in this research. Because of this, we average the
data from every 7 consecutive days (3 days before to 3 days after) to construct the networks. This
approach ensures every network includes a set of weekdays and weekends. Thus, it captures a
weekly periodicity of routine mobility and reduces the effects of outliers. The edge weight is the
mean of the weights on the same edge for these 7 days.

For the inter-MSA networks, denoted as ω-networks, we aggregate all block groups in an MSA
and treat it as a node. Therefore, there are 378 nodes in the inter-MSA networks. The weight of a
link is the mean of the normalized number of total travellers between two MSAs for 7 consecutive
days.

To simulate the mobility flow from node i to node j to calculate the probability of a infected
person travelling from i to j, we let population of node i be m, infected population of i be n, and k
people travel from i to j. Thus, we can roughly present the probability of infection for each person
in i be n/m and we can calculate the probability of not spreading COVID-19 to j as a function of
n/m, f (n/m) = 1 − (1 − (n/m))k. Taking its binomial expansion, we have

f
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10 � Wij � 25
25 � Wij � 50
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Houston MSA
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Figure 1. Inter- and intra-MSA mobility networks before and after the national emergency declaration. In (a,b), the nodes
represent MSAs before and after the national emergency declaration. The colours of the links demonstrate the number of 7-day
average flux normalized by the device count between MSAs. Panel (c,d) demonstrates the intra-MSA networks of Los Angeles
MSA and HoustonMSA before the national emergency declaration. The nodes are census block groups and the colours are based
on the numbers of 7-day average normalized influx between pairs of nodes. (Online version in colour.)

Since the infected population at any particular time point is relatively small compared with
total population of that area, we can consider n/m � 1 and terms in this binomial series are
converging to 0 rapidly. Thus, the value from this function is largely determined by the first term
nk/m and the rest of the terms can be ignored. Since the infected population, n, is an inaccurate
constant for various reasons (i.e. false-negative rate, asymptomatic individuals), we use k/m to
represent the weight of links. Therefore, we develop a normalized weighting approach using
device count to mitigate the biases of mobility flow:

Wij = Rij

Di
+ Rji

Dj
,

where Rij is denoted as the number of people travelling from node i to j, and Di is the device
count of node i on the same day. The constructed hierarchical networks simultaneously examine
local mobility flows within MSAs and long-distance travel between MSAs. The construction also
enables systematic exploration of the interactions between the two levels.

To show the computational advantage of the hierarchical network model compared with
traditional ones, we run the percolation process on both the hierarchical model and the
traditional model with the same day of data from our data set. The average time of analysing
the percolation process of one-day data is about 30 min for the hierarchical model and
about 10 h for the traditional model using the same computer. The processing time of the
traditional model cannot support real-time mobility analysis, and thus the hierarchical model is
necessary.

Figure 1 shows significant changes in mobility flows before and during COVID-19. Figure 1a
shows the ω-network structure in the week of 1 February, and figure 1b in the week of 1 June.
As the weight of the edge gets larger, the colours of the links in graphs get darker. Comparing
figure 1a,b, we observe that edge weights of most links decrease substantially. Therefore, fewer
people travel between MSAs and the entire network becomes sparser. Figure 1c,d shows the
intra-MSA network (i.e. α-network) structure of Los Angeles and Houston in the week of
1 February and figure 1e,f the one in the week of 1 June. The ω- and α-networks display
similar geographical distributions even though the networks become sparser due to a decline in
mobility.
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Figure2. Percolationprocess ofmobility networks in LosAngeles andHoustonMSAs. Panel (a) shows the two largest connected
components(αGC andαSGC) with the change ofαqc in the week of 29 January to 4 February 2020 in Los Angeles MSA. Panel
(b) shows its network when the weight of edges equalsαqc in the week of 29 January to 4 February 2020. Panel (c) showsαGC
with the change ofαqc in theweek of 29 January 29 to 4 February 2020 inHoustonMSA. Panel (d) shows the network of Houston
MSA when the weight of edges equalsαqc in the week of 29 January to 4 February 2020. (e) shows the two largest connected
components with the change ofαqc in Los Angeles MSA size in the week of 29May to 4 June 2020. Panel (f ) shows the network
with the change ofαqc in Los Angeles MSA in the week of 29May to 4 June 2020. Panel (g) shows the network with the change
ofαqc in Houston MSA in the week of 29 May to 4 June 2020. Panel (h) shows the network map of Houston when the threshold
of the weight of edges equalsαqc in the week of 29 May to 4 June 2020. (Online version in colour.)

4. Intra-MSA percolation
We apply a percolation-based approach to analyse the connected components of both the α- and
ω-networks and study their phase transitions. We first set the threshold of the edge weight 0 and
increase it by a stepsize after each iteration. With each increase, the edges with weights lower
than the threshold are removed from the graph and a new graph is generated with the remaining
edges and nodes. The method is adapted from other research such as a traffic study in Beijing
which removes less crowded to more crowded routes [45] and a study on the regional structure
of Britain by adding edges to cities sorted by distancing between them from nearest to furthest
[52]. After each update, we calculate the connected components, especially the largest, i.e. the
giant, component (GC), and the second-largest, i.e. the second giant, component (SGC). Figure 2a,c
shows that the size of αGC of an intra-MSA network declines and αSGC increases. At the critical
point of αqc, the largest component experiences a sudden drop and αSGC simultaneously reaches
its maximum size.

The observed change aligns with results reported in [31], showing that mobility networks on
different scales, i.e. county and block groups, experience similar percolation processes. It also
indicates that the intra-MSA α-network experiences a phase transition at αqc. After the transition,
the network becomes sparser, and components are more likely to disconnect from each other.

Besides αqc, we also examine a second critical point αqc2, at which αSGC is the largest before
αqc. Thus, αqc and αqc2 indicate that the network experiences hierarchical phase transitions
[31,45].

The percolation approach allows us to examine networks in different MSAs. We analyse the
mobility data from 29 January to 4 February 2020 in Los Angeles MSA and find the critical
point at αqc = 6 (red line in figure 2a). At this point, the second-largest component experiences a
significant increase, and its size reaches 1001 with a total of 8211 census block groups which is at
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its maximum. Simultaneously, about the same amount of nodes disconnects from αGC, indicating
that αSGC separates from the largest one.

It is worth noting that the network becomes sparse at αqc (red line in figure 2a) where
the largest possible component other than αGC is disconnected from αGC. At this point, αGC
experienced the most significant decrease throughout the whole process and constitutes only a
small portion, 33.13% (2720 out of 8211 block groups), of the original network. Thus, the network
lost most of its connectivity and cannot effectively spread COVID-19 inside the MSA. In other
words, COVID-19 is more likely to spread within each subcomponent without transmitting to
other ones. Another finding is that prior to αqc, we discover a less significant phase transition at
αqc2 (yellow line in figure 2a) where the MSA can also be partitioned into subcomponents. The
same patterns are observed in Houston MSA (figure 2c).

After identifying the critical points, i.e. αqc and αqc2, we locate the critical links whose
elimination causes αSGC to disconnect from the largest one. Figure 2b shows the network of Los
Angeles MSA in the week of 29 January when the threshold is αqc. The dark blue component
is αGC, the light blue one is αSGC, and the orange the rest. The critical link is marked in red
(figure 2b) with the weight of αqc. The link connects αGC in the east MSA Los Angeles and αSGC
in the west. Similarly, in Houston MSA (figure 2d), the critical link separates αGC in the North and
αSGC in the South. The findings align with a previous study on the county level [31] and suggest
that local mobility networks have bottlenecks when going through the percolation process.

Figure 2e–h demonstrates the same percolation process after the state emergency declaration
(29 May 29 to 4 June 2020). Comparing figure 2a,e, we find that the sizes of both αGC and
αSGC are similar. However, αqc and αqc2 are smaller than those before the national emergency
declaration. A similar pattern is observed in Houston MSA (see figure 2c,g). Thus MSAs are
less robust after the national emergency declaration and they could be broken into isolated
clusters with smaller sacrifices to effectively contain COVID-19 within a small area. At the qcs,
the locations of αGC and αSGC in Los Angeles MSA almost remain the same as before (figure 2b)
and after (figure 2f ). The similarity is also observed in Houston MSA (figure 2d,h). However, local
mobility decreases substantially after the state emergency declaration, and thus the components
become more sparse. A sparse network means that mobility networks could be disconnected
and controlled more easily. Also, the weights of edges decline in a similar proportion and the
patterns of major clusters at qc are almost the same before and after the national emergency
declaration. Thus, it is feasible to devise effective measures in controlling the spread of COVID-19
locally.

5. Intra-MSA correlation ofαqc with other attributes
We compute daily αqcs of all MSAs from 1 January to 31 December 2020 and examine these
values with MSA attributes. Figure 3a shows αqcs in different MSAs before and after the national
emergency declaration. The values are positively related. Then we explore a few attributes of the
MSAs and their correlations with αqc to better understand network structures. Three attributes are
tested, and their regression trendlines are shown in figure 3b–d. Figure 3b shows the correlation
between αqc and the sizes of the largest components in the MSAs. As αqc increases, the sizes of
the largest components at critical points quickly decrease. Comparing the critical points before
and after the national emergency declaration, we find that the sizes of the largest components at
critical points remain consistent. Yet, αqcs during the pandemic are larger than the ones before.
Figure 3c shows the correlation between αqc and total flux. It is found that the total flux of an MSA
increases as αqc increases. Also, the total flux after the national emergency declaration is smaller
by comparing points before and after. The change is caused by the decline of local mobility due
to the stay-at-home order. Also, median edge weight and αqc are positively correlated (figure 3d).
There has been no substantial change in the linear correlation magnitude between median edge
weight and αqc before and after the national emergency declaration. However, the scatter plot in
figure 3d suggests a reduction of the median edge weights for αGCs after the declaration with
about 50% decrease across most MSAs.
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Figure 3. The relationship between αqc and MSA attributes before (29 January to 4 February) and after (29 May to 4 June)
national emergency declaration. (a) αqc before the national emergency declaration versus αqc after. Panel (b–d) shows αqc
versus the size ofαGC atαqc , total flux, andmedian edgeweight of eachMSA before and after national emergency declaration,
respectively. (Online version in colour.)

6. Inter-MSA percolation
After analysing the intra-MSA network, we examine the percolation process of the inter-MSA
network (i.e. ω-network) in the USA. In figure 4, we control two parameters: αqc for each intra-
MSA network and the edge weights between MSAs. As the threshold for weight increases (rows
in figure 4), the number of edges decreased, especially for the long-distance links. As the threshold
for αqc increases (columns in figure 4), fewer nodes remain and the network becomes sparser. By
comparing the corresponding graphs at the same thresholds for edge weight and αqc before and
after the national emergency declaration, i.e. figure 4a,g, we found that αqc for each MSA is smaller
in most cases. Also, most long-distance edges in the inter-MSA network before the national
emergency declaration disappear in the one after. The changes indicate that while human mobility
substantially decreased under the influence of COVID-19, long-distance travels are particularly
excluded from people’s travel behaviours. The behaviour changes divide the ω-network into
isolated clusters. Also, people are more likely to travel locally under the influence of the pandemic
since more edges appear in the local networks, especially in the southeastern region, after the
national emergency declaration. While this could indicate strengthened social bonding during
the difficult time, the increase could also be a factor contributing to the fast growth of infection
cases in these regions.

By applying our percolation approach used in the intra-MSA networks, we obtain a similar
phase transition pattern for inter-MSA networks. In figure 5a, we found that when thresholds
reach 4, the size of ωSGC increases abruptly to 80 out of the 378 MSAs. This means nearly 1

5
of MSAs disconnected from ωGC when the edge weight is 4. At the critical point, the size of
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Figure 4. Inter-MSA networks before (i.e. 29 January to 4 February, (a–f )) and after (i.e. 29 May to 4 June, (g–l)) the national
emergency declaration. The networks are controlled by two parameters: αqc for each MSA, and the edge weights between
MSAs. (Online version in colour.)

ωSGC decreases to less than 100 nodes (figure 5a,b), and the inter-MSA network loses its strong
connectivity to spread COVID-19 effectively.

We observe a similar phase transition during the pandemic (in figure 5d). There is an abrupt
decrease in the inter-MSA ωGC and an increase in the intra-MSA ωSGC. However, both ωqc and
ωqc2 after the national emergency declaration are smaller than the ones before. The decreases
demonstrate people are less likely to travel long-distance under the influence of pandemic and
travel restriction.

Figure 5b shows the inter-MSA network map at its critical point before the national emergency
declaration and figure 5e shows one after. By comparing the inter-MSA maps at their critical
points, we find several subcomponents in ωGC or ωSGC, including: west region, midwestern
region, northeast region, southeast region and south region. The comparison shows that the
critical link usually connects these regions. While internal connections within each region remain
stable even during the pandemic, cutting off the critical links can effectively disconnect the
regions.

The CCDF plot in figure 5c shows the difference of distribution edge weight and in figure 5f
shows the difference of distribution edge distance between two nodes in these two inter-
MSA networks. The total numbers of edges of the two networks are the same since there are
travellers in any pair of MSAs every day. However, the distribution becomes more heavy-tailed
after the national emergency declaration, suggesting more centralized low weight edges and
short-distance edges in the ω-networks during the pandemic.
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Then we expand our percolation process to two-level thresholds, αqc as each intra-MSA
network and ω weight as the normalized weight of edges between MSAs, to take the robustness of
different MSAs into consideration. In figure 6, we control these two parameters and create a heat
map for both ωGC and ωSGC before and after the national emergency declaration. We observe
that before and after the national emergency declaration, both ωGC and ωSGC get smaller as αqc

or ω weight get larger. By comparing the same components at different times (ωGC in figure 6a,b
and ωSGC in figure 6c,d), we can see that both are more centralized in lower αqc and ω weight after
the national emergency declaration than before. Thus besides ω weight as we showed, mobility is
also more sensitive to αqc after the national emergency declaration.

7. Time series of percolation threshold predictability
Next, we investigate the chronological progression of αqc and measure the predictability with
various features for all intra-MSA networks. Figure 7a captures the time series of descriptive
statistics of αqc for each MSA. We find that before the national emergency declaration, the αqc

remains stable, with a median value of 8.5. The Interquartile Range (IQR) spans between 7 and
11 with longer tails near the upper quantiles. Right ahead of the declaration, the median value
witnessed a sudden increase and reached 10 followed by an abrupt and blunt drop to 5 by the
end of March. It is notable that during this sharp decrease, the variance between different MSAs
shrank remarkably to less than 1. The reduced variance indicates the universality of perturbation
from the emergency declaration across different regions. After the downward trend hitting the
lowest point at mid-April, the median value of intra-MSA αqcs gradually increased back to 7
around early June and remains stable again.

Figure 7b compares the predictive strength of αqc with a different set of features over time.
The baseline for the predictors includes the 7-day mobility fluxes with both mobility influx (the
total number of travellers from other MSA), outflux (the total number of travellers to other
MSA), and intra-flux (the total number of travellers between each pair of census block groups
within MSA). We then append different sets of features using the social distancing metrics from
SafeGraph, 7-day COVID-19 incremental infection rate, and socio-demographic characteristics.
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29 May to 4 June 2020. (Online version in colour.)

All the attributes, including αqc, are obtained as 7-day rolling average except the COVID-19
incremental infection rate, which is computed by 7-day case increase divided by the total
population. To mitigate the multicollinearity effect from a high level of correlations between
these features, we use principal component analysis (PCA) to ensure the orthogonality before
the configuration of the regression models. Given the varying correlation between input features
across different days, we apply a uniform threshold of 95% variance to determine the number
of principal components being used for prediction. Such a threshold guarantees a minimum of
95% of variance explained across all MSAs on different days. We tested both R2 and adjusted
R2 to consider the change of the number of predictors each day, and the increasing predictive
capability over time can be observed for both metrics.

Figure 7b shows the R2 values with different sets of transformed features. We can see that
most combinations of these factors became more predictive of the percolation threshold during
the mobility falloff except using mobility flux solely. The overall predictive strength with mobility
flux is rather low, with R2 values fluctuating around 0.2 over time. With social distancing metrics,
the R2 values jumped to between 0.3 to 0.35 before mid-March and approached 0.4 around early
May. Furthermore, adding the COVID-19 infection rate improves the predictive performance
by increasing the R2 by 0.1 at most times and exceeded 0.5 around early May. Surprisingly,
socio-demographic indicators do not improve the predictive strength and cause even a very
minor decrease, which could be due to the lack of variations of these variables on the MSA
level. Figure 7c,d is the scatter plots of prediction versus actual intra-MSA qcs, where figure 7c
shows the week of 29 January to 4 February 2020 when the R2 is relatively low (0.32) while
figure 7d is for 6 May to 12 May 2020 with an R2 of 0.51. It is notable that for both cases,
the predictions are mostly overestimating the actual outcome. There is also heteroskedasticity
present: the error variance changes across different qcs. In conclusion, the overall predictive

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

22
 F

eb
ru

ar
y 

20
22

 



11

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210116

...............................................................

before

R2 = 0.32

R2 = 0.51

R
2  

fo
r 

pr
ed

ic
tio

n 
of

 q
c

w
ith

 li
ne

ar
 r

eg
ar

es
si

on

ac
tu

al
 a

q c

after

αqc
12

mobility flux only
mobility and social distancing
mobility and social distancing and COVID-19
mobility and social distancing and
COVID-19 and socioeconomics

20.0

17.5

15.0

12.5

10.0

7.5

5.0

2.5

4 6 8 10 12

4 6 8 10 12 14

ac
tu

al
 a

q c

predicted αqc

17.5

15.0

12.5

10.0

7.5

5.0

2.5
0

1 Nov 2020

2 Oct 2020

3 Nov 2020

4 Oct 2020

5 Oct 2020

6 Sep 2020

7 Sep 2020

8 Aug 2020

9 Ju
ly 2020

10 Ju
ly 2020

11 Ju
ne 2020

12 Ju
ne 2020

1 M
ay2021

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

11

10

9

8

7

6

5

4

(c)(a)

(d)(b)

Figure 7. Time series of critical threshold value from 1 January 2020 to 31 December 2020. (a) interquartile range of αqc and
the line represents themedian ofαqc in intra-MSA over time. (b) Times series of R2 for prediction ofαqc with linear regression.
Scatter plots of predicted αqc with linear regression with respect to the actual value with weekly mean of 29 January to 4
February 2020 (before, c) and 6 May to 12 May 2020 (after, d). (Online version in colour.)

strengths of the percolation threshold with linear methods are moderate. The social distancing
behaviour and mobility flow can only partially explain the percolation threshold, while social
distancing has played a progressively crucial role since the beginning of the outbreak.

8. Discussion and conclusion
In this paper, we study the percolation of the human mobility network that includes over 175 000
of the census block groups in the USA. Two block groups have a connection on a day when users
travel between them on that day. If more users travel between them, the weight becomes stronger.
However, analysing its percolation is very time-consuming due to the large size, heterogeneous
weights, and number of networks. Thus, this paper proposes a novel hierarchical structure of
the mobility network to understand human dynamics during the pandemic. In our model, the
inter-MSA network (i.e. ω-networks) is composed of 378 MSAs in the USA. Each MSA comprises
many census block groups, which is the intra-MSA (i.e. α-networks) level. During the percolation
process, we remove the q fraction of the weakest links and measure the giant component of the
network because it is easier to break the weak links than the strong links. We find a critical qc,
and when q > qc, the network breaks down abruptly because the large enough second-largest
component is disconnected from the giant cluster. We compute daily qc for each intra-MSA and
inter-MSA. The analysis allows us to better understand the robustness of each MSA’s connectivity
and interactions between MSAs.

In this paper, our analysis of a network’s vulnerability is based on its percolation processes
and the transition points. The strength of our percolation analysis is that it breaks the network into
isolated clusters with minimum cost. Thus, it can effectively reduce the propagation of COVID-19.
However, the method has several limitations. The first limitation is that the percolation process
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is solely based on the connectivity of a graph [42,43] and thus neglects some essential features
of nodes (i.e. ratio of different races, economic status, etc.) and edges (i.e. purpose of people
travelling on this route). Taking these features into account can help us better understand
the mobility flow and transmission of COVID-19 and develop effective NPI strategies. The
second limitation is that mobility behaviours are incredibly complex and dynamic. Thus mobility
restriction based on percolation approaches should be considered part of holistic solutions with
other NPIs [27]. The third limitation is that results from the percolation process can help contain
COVID-19 within a small cluster at the early stage of the pandemic. However, if large-scale
community transmission has already started, the method obtained by percolation analysis will
be less effective.

The study has three main contributions. The first contribution is the revelation of the
hierarchical structures of the temporal mobility network. Given the underlying principle of the
cluster forming process in classic percolation theory [34,36], we unveil that spatially hierarchical
structure is an essential characteristic of dynamical mobility networks under the impact of
COVID-19. Our finding raises the significance of the interaction between different network layers.
Thus, the construction of the hierarchical networks enables identifying links that could serve as
the critical bridges at different scales, a break of which leads to a disconnection between giant
components and second-largest components. Our numerical results provide opportunities to
mitigate or prevent macro-transmission with strategic mobility controls.

Secondly, we reveal the universality of phase transition of mobility networks at critical points
using percolation theory from statistical physics. Although previous research has demonstrated
that the percolation process governs the mobility networks on the county level [31], here we
show the percolation process controls the phase transitions in these networks on different
levels (i.e. block groups and inter-MSAs) universally. It is supported by the resemblance of
functions between the largest components sizes and the percolation threshold across all levels
of granularity. The universality demonstrates the possibility of predicting mobility patterns
regardless of geographical regions and scales.

Furthermore, the understanding of the association between critical threshold αqc and the
key features and characteristics in local MSAs improves our ability to assess and predict the
vulnerability of mobility networks. Previous studies show that topological and hierarchical
properties of mobility networks and heterogeneous local shocks determine the critical threshold
and the emergence of vital adaptive links [31,45]. Here, we quantify the association with various
data sources and find that local social distancing metrics are critical factors in predicting the
percolation features for time-dependent mobility networks. Surprisingly, despite socio-economic
heterogeneities observed from COVID-19’s incidence rate [30], we do not find socio-economic
characteristics to be deterministic of the percolation patterns. Future research is needed to help
identify other key features and support public health authorities and policymakers to assess the
potential local transmission risk.

There are still some limitations in our hierarchical network model, promoting new research
directions in the future. First, the data are from device trajectory within a day; thus, some cases
are not captured, i.e. people without smartphones, and some are overly counted, i.e. people with
multiple devices. Second, we use the partition rule that treats each MSA as a node representing a
‘local network.’ The assumption is that mobility with MSAs is self-containing, i.e. routine travel
happens mostly inside MSAs. The drawback of this partition rule is that some rural areas (i.e. vast
mid-west region with few MSAs) with low population are not considered in this model, which
may cause it to lose some accuracy.
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