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From mass extinction to cell death, complex networked systems often exhibit abrupt
dynamic transitions between desirable and undesirable states. Such transitions are of-
ten caused by topological perturbations, such as node or link removal, or decreasing link
strengths. The problem is that reversing the topological damage, namely retrieving the lost
nodes/links or reinforcing the weakened interactions, does not guarantee the spontaneous
recovery to the desired functional state. Indeed, many of the relevant systems exhibit a
hysteresis phenomenon, remaining in the dysfunctional state, despite reconstructing their
damaged topology. To address this challenge, we develop a two-step recovery scheme: first
- topological reconstruction to the point where the system can be revived, then dynamic
interventions, to reignite the system’s lost functionality. Applied to a range of nonlinear
network dynamics, we identify a complex system’s recoverable phase, a state in which the
system can be reignited by a microscopic intervention, i.e. controlling just a single node.
Mapping the boundaries of this newly discovered phase, we obtain guidelines for our two-

step recovery.

Complex systems, biological, social or technological, often experience perturbations and disturbances,
from overload failures in power systems'™ to species extinction in ecological networks®™. The impact
of such perturbations is often subtle, the system exhibits a minor response, but continues to sustain its
global functionality 819, However, in extreme cases, a large enough perturbation may lead to a large-scale
collapse, with the system abruptly transitioning from a functional to a dysfunctional dynamic state!'~'6.
(Fig. la-d). For instance, in cellular dynamics, genetic knockouts, beyond a certain threshold, lead to
cell death!7-'8; in ecological systems, changes in environmental conditions may, in extreme cases, cause
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5719 and in infrastructure networks, a cascading failure, at times, results in a major

mass-extinction
blackout 2%, When such collapse occurs, the naive instinct is to reverse the damage, retrieve the failed
nodes and reconstruct the lost links. Such response however is seldom efficient, as (i) we rarely have
access to all system components??, limiting our ability to reconstruct the perturbed network; (ii) even if
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we could reverse the damage, due to hysteresis , in many cases, the system will not spontaneously

regain its lost functionality 2°.

To address this challenge, we consider here a two-step recovery process:

Step I. Restructuring (Fig. le). Retrieving the network topology and weights to a point where

the system can potentially regain its functionality.



Step II. Reigniting (Fig. 1f). Introducing dynamic interventions to steer the system back to
functionality.

The challenge in Step II is that in most practical scenarios we lack direct control over the dynamic activity
of the majority of the nodes. Hence we seek to reignite the system via micro-interventions, i.e. controlling
just a small number of components, typically - just a single or, at most, few nodes. We, therefore, need
to characterize the conditions under which such single-node reigniting can be achieved, representing the
primary focus of the current contribution. Along the way, we expose a new dynamic phase of complex
systems - the Recoverable phase, a state in which the system can be driven towards functionality by
controlling a microscopic set of nodes.

Unlike the classic controllability challenge2% 32, formulated in the context of linear dynamics, in recover-
ability we benefit from the nonlinear nature of the interactions. Indeed, when reigniting we do not aim
to steer the system to a general arbitrary state, as done in the control theoretic setting, but rather to-
wards one of its naturally occurring fixed-points - a problem of different nature, relying on fundamentally
distinct mathematical tools?!.

The challenge of irreversible collapse

Consider a complex system of N components (nodes), linked through A;;, a sparse, binary and random
network with arbitrary degree distribution P(k). In A;; the links represent dynamic interactions, whose
nature depends on context. For instance, in a social system A;; = 1 captures an acquaintance, and hence
a potentially infectious interaction between individuals ¢ and j, whereas in a sub-cellular network it may
represent a regulatory interaction between gene i and gene j. To account for these dynamic distinctions
we denote each node’s activity by z;(t), quantifying, e.g., individual i’s probability of infection or gene

i’s instantaneous expression level. We then track the dynamics of the system via33-3°

N
= Mo(m:) +w Y Ay M (z;) Ms(z;), (1)

Jj=1

dl’i
dt

a general equation, characterized by three potentially nonlinear functions My(z), M;(z) and Ma(x). The

first function, My(z;) captures node #’s self-dynamics, describing mechanisms such as protein degrada-

37,38 (epidemic) or birth/death processes® (population dynamics).

9,17,40

tion3% (cellular), individual recovery

The product M (z;)Ms(x;) describes the 4, j interaction mechanism, e.g., genetic activation , infec-

tion373® or symbiosis?!. The mean strength of these interactions is governed by the weight w. In the
context of recoverability, we seek to revive the activity of all nodes by activating a selected set of nodes,
hence we focus on constructive interactions, in which nodes positively contribute to each others activity.
This is expressed in Eq. (1) through wM;(z)Mz(z) > 0 (see Supplementary Section 1). Such conditions
naturally arise in many relevant applications, social, biological or ecological, as exemplified in Figs. 3a
and 4a,f.

Setting the derivative on the left hand side of (1) to zero, we obtain the system’s fixed-points, x, =
(xa,l,...,xayN)T, which, if dynamically stable, represent different states, desirable or undesirable, in
which the system can naturally reside. Transitions between these states often result from perturbations
to A;; and w, such as node/link deletion or weight change. When this occurs, it is often difficult to
reverse the unwanted transition, since the system fails to spontaneously recover, even if we retrieve the

lost nodes, links or the weights. To illustrate this difficulty we refer to a concrete example below.

Example 1. Cellular dynamics (Fig. 3). As our lead example we consider gene-regulation, captur-
ing activation interactions between genes. Such genetic activation is often modeled within (1), using

Michaelis-Menten dynamics® (Fig. 3a). Under this framework M(x;) = —Bx¢, describing degradation



(a = 1), dimerization (a = 2) or a more complex bio-chemical depletion process (fractional a), occurring
at a rate B; below we set B = 1. The activation interaction is captured by a Hill function of the form
Mi(z;) = 1, Ma(zj) = a:;l/(l + x;l), a switch-like function that saturates to Ma(z;) — 1 for large x;,
representing j’s positive, albeit bounded, contribution to i’s activity x;(t).

For sufficiently dense A;; or large w the system exhibits an active state x;, in which all nodes have
positive activity (x1,; > 0 for all i), representing a living cell. However, perturbations to the network
topology, such as link/node removal or weight reduction can cause a sharp transition to the inactive
state xo = (0,...,0)T, in which all nodes have zero activity, i.e. cell death. To track this transition
systematically we measured the average activity Z, = (1/N) vazl Ta,i, Which follows T, > 0 for a =1
and Z, = 0 for a = 0, as we subject it to increasing levels of topological stress : removing a ¢-fraction of
nodes (Fig. 3b); deleting a g-fraction of links (Fig. 3d) or reducing w by a factor ¢ (Fig. 3c). In all cases
we observe a sudden transition, as the perturbations exceed a critical threshold g., from Z, > 0 (green),

representing the active state a = 1, to T, = 0 (red), representing the inactive state a = 0.

To drive the system back to the desired x;, the instinctive approach is to reverse the topological per-
turbations, namely reconstruct the deleted nodes/links or push the weight w to its original strength. In
Fig. 3f we do precisely that, finding that the system fails to recover. The reason is that while x; is only
stable above ¢., x¢ is always stable - both below and above the critical point. This leads to a hysteresis
phenomenon that causes the system to remain inactive, despite the reversal of the perturbation, e.g.,

recovering the original weight w.

Example 1, above, while representing a specific scenario, illustrates the family of challenges that we tackle
here: system’s with irreversible topologically driven transitions, e.g., from a desired x; to an undesired
Xg. To revive such systems, we must dynamically reignite them by exerting external control over the
activities z;(t), in order to drive them back towards the basin of attraction of x; (Fig. 1h).

Recoverability - single-node reigniting

After restructuring A;;,w, the most natural way to reignite the system is to drive all activities z; towards
an initial condition from which the system will naturally recover to the desired x,. Namely, we must
steer the system into x,’s basin of attraction (Fig. 1h)

B, = {x(t ~0) \ x(t = 00) = xa} 2)

which comprises all initial conditions x(¢t = 0) from which Eq. (1) converges to x(t — 00) = x,. The
problem is that such level of control over the dynamics of all nodes is seldom attainable, hence we seek
to recover the system’s functionality by driving just a microscopic fraction f — 0 of forced nodes.

To achieve this, we consider the limit of f ~ 1/N, in which case our reigniting is attempted through,
typically, a single, randomly selected source node s. To reignite the system we artificially set s’s activity
to zs(t) = A > 0, namely we externally hold its activity, forcing it to equal A. The remaining N — 1 nodes
continue to follow the natural system dynamics, i.e. Eq. (1), responding to the s-forcing. In technical
terms, the failed state of the system, xg, captures Eq. (1)’s initial condition, and the forced node imposes

a strict boundary condition at s.

In a recoverable system, after some time, the activities will enter 981, at which point we can cease our
external control and allow the system to naturally transition to x;, based on its internal dynamics. This
captures a successful reigniting of the system’s activity. If, however, the system is non-recoverable, such
single-node reigniting is insufficient, the system remains at the basin B¢, and once we discontinue our
external forcing, it relaxes back to xg, a failed reigniting.

To analytically track the system’s response to our forcing at s, we divide the rest of the network into



shells K4(1) = {j | Lsj =1}, comprising all nodes located at distance ! from s (Fig. 2a). In this notation
K,(0) = {s}, K,(1) is the group of s’s nearest neighbors, K,(2) its next neighbors, and so on. Then,
starting with x4(t) = A, we track the average activity of nodes in K,(l), via

1
=) 2, O Y

where |K(1)| represents the number of nodes in K(I). The shells adjacent to the source, i.e. small I, will
be forced to respond to s’s activation A, exhibiting a gain in their activity 4(l,¢). However, such response
may, under certain conditions, decay as [ is increased, leaving the distant shells almost unaffected, and
therefore still within the basin %B(. Under these conditions, upon termination of our A-forcing, all shells

retreat back to xg, rendering the system unrecoverable. Successful reigniting, therefore, requires that

z5(l = 00,t = 00) € By, (4)

capturing a state in which the forcing at s was able to penetrate the network and impact the state of even
the most distant nodes at K(I — o). This represents a recoverable system that will naturally revert to

x7 once the forcing A is deactivated.

In Supplementary Section 2.1 we use Eq. (1) to derive a direct set of equations for the shell states x4(l, )

in (3), providing

25(0,t) = A
t

dxsdigv) = Mo (zs(1,1)) + wMy (24(1,t)) (MQ (zs(1 = 1,1)) + kMo (2s(1 + 1, t)))

; ()

a set of continuous time discrete space differential equations, with a set boundary condition at [ = 0,
capturing our s-forcing. The functions My(x), M1 (z), M2(x) and the weight w in (5) are taken from Eq.
(1), and the parameter « is extracted from A;; via

N N

,{:%Z%ZA”I%—L (6)
i=1 " j=1

1 .
capturing the average neighbor’s residual degree!®42. Starting from an initial condition, where x (I, =
0) € By for all I > 0, Eq. (5) helps us track the response of the initially failed system to our reigniting.

To extract insight from (5), we seek its steady state x5(l) = z4(I, — o0), by setting the derivatives
on the left hand side to zero. We show that we can approximate this state via the recurrence relation
(Supplementary Section 2.3)

z5(0) = A,

F(ms(l)) = M, (ﬂUs(l -1)),

where
F(z) = %R(z) — kM, (R_l (wMg(x) + wrM2(Xo), )), (8)

R(z) = —My(z)/M;(z) and R™1(z) is its inverse function. The parameter Xq in the right hand side of
(8) represents the mean activity of nodes in K (I > 1) under the failed state xo. Hence, we arrive at a



direct equation for the l-shell steady states zs(l) under any given forcing A.

Equations (7) and (8) represent our key result. They reduce the recoverability of (1), a multidimensional
nonlinear dynamic equation, into a manageable first order recurrence relation. This recurrence takes
the system’s topology and weights (w, %) and its nonlinear dynamic mechanisms (My(z), M;(z), M2(z)
and hence R(x)) as input, and predicts the system’s recoverability as output. For any given forcing A,
the recurrence (7) either leads to zs(I — oo) € By, satisfying the recoverability condition (4), or to

x5(l = 00) € By, and hence indicating a failed recovery.

To obtain z4(I — 00), and observe whether it is in By or B, we seek the potential fixed-points of the

recurrence equation (7). These points can be extracted from the solutions of

F(x) = My(x), (9)

capturing stationary states in which z4(l) = z4(I—1)*>**. Therefore, to analyze the system’s recoverabil-
ity we extract the intersections of the two functions F'(z) and My(z) in (9), observing two characteristic
behaviors (Fig. 2): if, for example, F'(z) and Mz (z) have only a single intersection x € By, then the series
inevitably converges to that point (Fig. 2¢). This represents a non-recoverable system, that, regardless
of the magnitude of A, resorts back to xg. If, on the other hand the functions have several intersections,
then its convergence depends on the boundary condition x4(0) = A. For A < A, it will approach B, a
failed reigniting, and for A > A, it will reach 9, capturing a successful reigniting (Fig. 2d,e; see also
Supplementary section 2.3). Therefore, our formalism predicts both whether the system is recoverable
or not, and in case it is - it predicts the required critical forcing A, for reigniting. Most crucially, the
patterns of intersection of (9) depend on the values of x and w in (8). This means that the system can
transition between the recoverable and the non-recoverable phases following appropriate manipulations
of w and k - precisely the desired guidelines for the restructuring step, which must be carried out prior
to reigniting.

Next we demonstrate our framework on a range of relevant systems, starting from gene regulation (Ex-
ample 1), then advancing to neuronal and ecological dynamics. We show that tracking the [ — oo limit

of Eq. (7) can help us obtain direct insights into reviving collapsed systems, specifically:
e Recoverability. Given the state of the network, i.e. k,w, we predict whether the system can be
revived by single-node reigniting or not.

e Reigniting force. In case the system is recoverable, we obtain the minimal magnitude of the forcing
A > A, required for recovery.

e Restructuring. If non-recoverable, the equations offer guidelines on relevant structural interventions

affecting the topology/weights, to steer w and x towards the recoverable phase.

Applications

Cellular dynamics (Fig. 3; see also Supplementary Section 3.1). As our first application we return to
Example 1, regulatory dynamic, where My(z) = —2%, My (x) = 1 and My (z) = 2" /(1+2"), and therefore
R(z) = 2% and R~!(z) = 2'/*. Equation (9) becomes

- 10)
h h’ (
x%—l—w‘ (l—l—mh)“ l1+z

whose roots (z) determine the potential fixed points of the reignited system. Clearly, = 0 represents a
solution to (10), capturing the fact that the failed state xo = (0,...,0)T € By is always stable. Hence,



the question is, under what conditions do we observe a second solution = > 0, representing a potential
convergence to B1. To answer this, we first note that while the right hand side of Eq. (10) is independent
of the network topology, its left hand side, F'(z), is affected by A;; through x and by its link weights
through w. Therefore, in Fig. 3f,h we plot Ma(z) vs. z (yellow) and observe its intersections with F(z)
(purple) as we vary the values of these two structural parameters. This allows us to observe, graphically,
the potential convergence of the system to By or 9B;.

First we consider w = 0.8, x = 4 (Fig. 3g), conditions under which the system is bi-stable, and hence, in
principle, can reside both in x¢ or x;. Despite this bi-stability, we find that (10) exhibits only one solution,
represented by the single intersection at x = 0. This guarantees that (7) converges to zs(I — o0) = 0,
independently of A. Consequently, the system is non-recoverable, regardless of the strength of our forcing.
The meaning is, that even though the system can potentially feature a stable x1, it cannot be reignited
from an xg initial condition by single-node activation. Indeed, this prediction is confirmed in Fig. 3h,
which indicates that the system fails to recover, despite the forcing A at s.

Increasing the network density to k = 7, however, changes the picture, as now (10) features three
intersection points (Fig. 3i): an unstable intermediate point (grey) and the two stable points at x = 0
(red) and at 2 > 0 (green), representing convergence to B and B, respectively. This predicts a critical
forcing A, (vertical grey dashed line), above which all z; reactivate to 981, and below which they remain
within By. If A > A, the system will be successfully reignited by controlling just a single node, as all
shells will, eventually be driven into 98;, and then naturally converge to the desired x;. Fig. 3j shows

just that, as now the system responds to our forcing, and, as predicted, recovers its lost functionality.

The results above uncover the existence of a novel, previously overlooked, dynamic phase. Indeed, the
regulatory system of Fig. 3a has been previously shown to follow two phases, inactive, where only xq is
stable vs. bi-stable where both x¢ and x; are stable, depending on initial conditions (Fig. 3b-d). Our
analysis here uncovers a third phase: recoverable, a subspace of the bi-stable phase, in which the system
can be reignited from x to x; by controlling a microscopic set of nodes, here just one single node. The
parameters driving this three state phase space are w, x and A, which together determine the existence
(and if exists - the value) of the critical forcing required to revive the inactive system. In Fig. 3k we
show these phases in the w, k space, as obtained from numerically simulating the states of the system for
~ 10 different combinations of w and & (Supplementary Section 4.3). The white solid line represents
our theoretical prediction, based on analyzing the intersections of (10), indicating that the boundaries of
recoverability can be well-approximated by our analytical framework. We also present the w, A and x, A

phase diagrams, further indicating the agreement between simulation and theory (Fig. 31,m).

To further test our predictions in an empirical setting, we collected data on two real biological networks,
capturing protein interactions in Human*® (x = 21.7) and Yeast*® (k = 10.7) cells. In these networks
the interaction topology A;; is extracted from empirical data, but the average weight w, determining the
interaction rates can change due to environmental conditions. We, therefore set, for each network, two
different weights (Fig. 3n): for Human we set w; = 0.2 (Human UR orange) and we = 1 (Human R blue),
the former in the unrecoverable phase, and the latter - recoverable. Similarly, for Yeast we set wy = 0.4
(Yeast UR, orange, unrecoverable) and wy = 1 (Yeast R, blue, recoverable). As predicted, we find in Fig.
3n,0 that, indeed, Yeast UR and Human UR remain inactive under reigniting. This is while Yeast R and
Human R, both predicted to reside in the recoverable phase, can be successfully revived via single-node

reigniting.

Neuronal dynamics (Fig. 4a-e, Supplementary Section 3.2). As our second example we consider the
Cowan-Wilson neuronal dynamics®*”4®, in which (1) follows the form shown in Fig. 4a. The system
naturally exhibits three dynamic phases. The inactive state xg, in which all activities are suppressed, is
obtained when the network is extremely sparse, i.e. small k,w. The active x1, in which x; are relatively

large, is observed when w, k are high. In between these two extremes the system features a bi-stable phase,



in which both x¢ and x; are potentially stable. In Fig. 4b,c we observe these phases on a a set of random
networks with varying w, obtaining two critical points w1 < we 2 (dashed grey lines), in which the system
transitions between active, inactive and bi-stable. This phase-space predicts a hysteresis phenomenon: if
w is driven below w1 and the system fails, it will not spontaneously recover unless we retrieve w to be

above w 2.

Our formalism, however, predicts an additional, previously unknown dynamic phase, in which the system
is recoverable. This phase, shown in Fig. 4d (blue) represents a sub-space of the bi-stable regime, in
which the failed system, if untouched, remains at xg as per the above hysteresis. Yet, under single-node
reigniting, it can be forced back towards activity (x1). To demonstrate this we collected data on the
structure of a human brain network®? to construct 4;; (k = 6.6), and simulated neuronal dynamics using
w1 = 2, in the unrecoverable phase (Brain UR, orange), and wy = 4, which is recoverable (Brain R, blue).

Indeed, Fig. 4e confirms that Brain UR remains inactive, while Brain R’s activity is successfully revived.

Mutualistic population dynamics (Fig. 4f-j, Supplementary Section 3.3). As our final example we ex-
amine symbiotic interactions in ecological networks, such as plant-pollinator relationships®. Once again,
we find a window of recoverability, in which one can steer a collapsed system towards activity via single-
node reigniting. Here we used an empirical plant-pollinator network®!', Eco, to examine recoverability
(Fig. 4i,j), a low w unrecoverable Eco UR (orange) and an increased w recoverable Eco R (blue).

Taken together, these examples demonstrate the predictive power of our framework, which allows to
systematically map the conditions for recoverability. Next, we show how to use the obtained recoverability
maps to provide direct insights into our proposed two-step recovery, extracting guidelines for reviving a

collapsed network.

Restructuring guidelines

To successfully reignite a failed system we must first steer it from the non-recoverable to the recoverable
phase. This can be achieved through appropriate restructuring interventions to impact w or k, for
instance, increasing weights or adding nodes/links. The phase diagrams of Figs. 3k-m and 4d,i can
provide guidelines for such restructuring, as, indeed, they indicate what interventions can potentially

push us closer to the recoverable phase.

To illustrate this, in Fig. 5a-d we simulate a cellular network (Yeast) that has been driven towards
inactivity due to major topological perturbations, such as node or link deletion (grey nodes/links). Some
of the removed components are inaccessible (red), and hence when restructuring we cannot retrieve them.
To revive the system, under these constraints, we incorporate our proposed two-step recovery:

e Step I. Restructuring. First we conduct topological interventions, to bring the system to the
recoverable phase. As explained above, certain nodes or links are inaccessible to us (red), hence
our potential interventions are restricted. The challenge is, therefore, to design a set of accessible
interventions that will enable us to revive the system’s dynamic activity. As recoverability is driven
by two relevant parameters, £ and w, we map all potential intervention to their effect on these two
parameters (Fig. 5e). Indeed, a sequence of such interventions represents a path in the k,w space.
Therefore, in the restructuring step we seek paths of accessible interventions originating in the
present state of the system, and delivering the network into the bounds of the recoverable phase
(Fig. 5f). Our goal, we emphasize, is not to simply retrieve the lost nodes and links, but to achieve
recoverability. This designates, not a single point, but rather an entire sub-space in x,w (Fig. 5f,
blue), affording us some level of restructuring flexibility. As a result, despite the constraints imposed
by the network’s irretrievable components, we are able to design three distinct restructuring paths,
all originating in the current state of the failed system (Yeast perturbed, white), but leading to
different destinations - Net 1,2 or 3 - within the recoverable sub-space.



e Step II. Reigniting. Once in the recoverable phase we can revive the system via single-node
reigniting, and retain its lost activity, as shown in Fig. 5g for the three restructured networks Net
1,2 and 3.

This example illustrates how the phase diagrams of recoverability provide direct guidelines for restruc-
turing. For example, in Fig. 5f path 1 builds mainly on controlling the interaction strength (w), but
assumes little freedom to add nodes or links (k). In contrast path 3 involves a significant component of
adding nodes/links to A;;, affecting not just w but also x. The optimal restructuring path is, therefore,
determined by the nature of our constraints, for example, the relative difficulty in adding weights as in
path 1, vs. adding nodes/links, a la path 3. The crucial point is, that, knowing the phase-boundaries
of recoverablity, we were able to set different end-points for each path (Net 1,2,3), providing us with a
spectrum of potential interventions - either focusing on w, and hence aiming for end-point 1, or focusing
on k, and thus seeking to reach end-point 3. Such flexibility, enabled thanks to our phase-diagrams, is
crucial for real-world restructuring.

While the potential space of structural interventions in Step I is incomprehensibly vast, our phase dia-
grams reduce this space into just two relevant control parameters - x, characterizing A;;’s density, and
w, capturing its link weights. This allows us to asses the contribution of all potential interventions by
quantifying their effect on these two parameters - enabling to seek optimal pathways for crossing the
recoverability phase boundary.

Interestingly, our phase diagrams indicate that x and w may play unbalanced roles: for example Fig. 5f
shows that the phase boundary from unrecoverability to recoverability in the k,w space becomes almost
flat in the limit of large x (white solid line). This implies that while it may only require a small change in
w, t.e. pushing the system in the vertical direction, to transition a network towards recoverability, doing
so through k, along the horizontal axis, is by far more difficult. Indeed, in Supplementary Section 3.1.3
we show that in the limit of large h in Fig. 3a, the phase boundary becomes almost independent of x, and
the effect of increasing w becomes dominant. Hence, under cellular dynamics, increasing weights, when
possible, is a preferred strategy over adding links. This offers a quite general restructuring guideline, that

can help design efficient k,w-paths in our two-step recovery scheme.

Discussion and outlook

While the structure of complex networks has been deeply investigated over the years, our understanding
of their dynamics is still emerging. The challenge is often focused on prediction, aiming to foresee a
network’s dynamic behavior. Here, we go a step further, and focus on influence, showing how to steer a
system towards a desired behavior.

At first glance, this challenge seems to be associated with network controlability. There are, however two
crucial distinctions between recoverability and controlability: (i) Control theory revolves around linear
dynamics, and is therefore fully characterized by the network structure/weights (A;;,w). Recoverability,
in contrast, is tailored for nonlinear systems within the form (1), hence driven by the interplay of this
structure with the system’s intrinsic dynamics. Indeed, the phase boundaries of recoverability strongly
depend on the system’s interaction mechanisms Mo(z), M1 (), Ma(x), as observed in Figs. 3k-m and 4d,i.
(ii) On the other hand, while controlability aspires to drive a system between any two arbitrary states, an
unsolved challenge under nonlinear dynamics, recoverability is limited to the system’s naturally occurring

fixed-points.

The main advantage of item (ii) above, is that it allows us to revive a failed system using an extremely
simple control signal, namely the constant forcing A. Had we needed a more delicate fine-tuned input,
our strategy would have likely been too sensitive and impractical. Fortunately in recoverability, one only

needs to kick the system out of its undesired basin, then let it relax to x; independently?' (Fig. 1h).



Such crude level of control, we find, is possible even under the rather broad conditions captured by Eq.
(1).

The microscopic behavior of complex networks is driven by countless parameters, from the fine-structure
of A;; to the specific rates of each node’s dynamic processes. Our analysis, however, shows, that their
large-scale functionality can be traced to a manageable set of relevant parameters, e.g., k,w and A. Such
dimension reduction is the fundamental premise of statistical physics, allowing to analyze systems with
endless degrees of freedom using a limited set of statistical entries. We believe, that a similar approach
to network dynamics, can help us understand, predict, and ultimately influence the behavior of complex

multi-dimensional systems.
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Figure 1: Reviving a failed network. (a) The components of our modeling framework: The network topology
is captured by the adjacency matrix A;; and the link weights w (grey terms); the interaction mechanisms, i.e.
the dynamics, are captured by the nonlinear functions My(z), Mi(z), M2(z) (orange terms). (b) Depending on
the dynamics - e.g., cellular, neuronal or ecological - the system exhibits distinct fixed-points, active (x1, green)
or failed (xo, red); intermediate unstable points are marked by grey dashed lines. The transitions between these
states are driven by perturbations to the topology (A;j,w). (c¢) Under the unperturbed topology the system
resides in the functional state x;, in which all nodes are active, i.e. x; > 0. In this presentation, which we also
use throughout the paper, the network nodes are laid out on the z,y plane, and their activities x; are captured
by the z coordinate. Hence, an active system has all nodes spread out along the positive z-axis, while a failed
network is laid out around z = 0. We also use color coding from red (small z;) to blue (large x;) as visual
aid. (d) Perturbations to the topology, such as node/link removal or weight reduction, result in a collapse to the
inactive xo, here having all activities vanish (z = 0). (¢) Restructuring. To revive the failed system we must
first restructure its topology to a point where it can recover, namely a point where x; is potentially stable. This,
however, is insufficient, as often the system will not spontaneously retain its lost activity. (f) Reigniting. After
restructuring we reignite the active state x; by controlling a microscopic set of nodes, here the single node s. The
controlled node is forced to sustain a constant activity z(t) = A. This activating force then spreads to impact all
other nodes in the network and push them towards x;. (g) The state of the network in three different time-points
following single-node reigniting, forcing z(t) = A (black node at center). The reigniting force gradually impacts
the network, until the system’s activity x; is restored. (h) In this process we use the natural basin structure of
our dynamics. The basin B, captures all initial states, from which the system (1) converges to the fixed-point
Xao. Therefore, to reignite x; we seek to steer the system from By (red) to any point within B; (green). Once in
B1, we can cease our forcing, and the system will spontaneously transition to the desired x; (dashed arrows).
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Figure 2: Can a system be reignited by a single node? (a) During reigniting we select a single source
node s and, for a limited time, we artificially force it to sustain a permanent activity A. To track the system’s
response to such forcing, we divide the network into shells K,(l) comprising all nodes at distance [ from s. (b)
The reignited activity xs() of all nodes at K,(1) is tracked via the recurrence relation of Eq. (7), starting from our
forcing at s (top equation), and tracking its propagation as it penetrates the network shells (bottom equation).
Successful reigniting requires zs(I — 00) € B1, i.e. that the distant shells were driven towards the desired basin.
(c) - (e) We can track the convergence of the recurrence relation graphically by plotting F'(z) (purple) and Ma(x)
(yellow). The forcing A determines our initial starting point, and the recurrence can be tracked via the red or green
trajectories. The final state zs(I — 00) is reached when the two functions, F'(z) and M»(z), intersect. We observe
three potential scenarios (Supplementary Section 2.3): Case 1. F((z) and M2 (z) have a single intersection point in
Bo (red). Under these conditions, regardless of the initial value (A) the recurrence converges to xs(I — 00) € Bo,
and hence the system is unrecoverable. Case 2. F(z) and M>(z) exhibit two intersections, corresponding to the
system’s two stable fixed points xo (red) and z1 (green); the intermediate intersection (grey) is unstable. Here,
for A < A, the system converges to By, i.e. unrecoverable (red trajectory), while for A > A, it approaches
$B1 - hence it is recoverable (green trajectory). Case 3. In case F(z) is non-monotonic the critical forcing A,
is determined by F'(z)’s local maximum point (grey dashed lines), see Supplementary Section 2.3 for a detailed
analysis of Case 3.
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Figure 3: Recoverability of cellular dynamics. (a) Gene regulation as modeled via the Michaelis-Menten
dynamics. (b) - (d) The average steady-state activity Z as obtained from cellular dynamics following topological
perturbation: deletion of a g-fraction of nodes; factor g reduction of weights and removal of a g-fraction of links.
While the active x; is only stable for ¢ < g. (green), the inactive xo is always stable (red). Hence the system
undergoes an irreversible collapse at ¢ = ¢.. (e) We track three specific states, capturing the steady-state activities
x; under varying levels of weight loss g. When ¢ is small (left) all z; are positive and the system is in the active
state x1. x; gradually decline as ¢ increases (center), until the system collapses into the inactive state xo, in
which all x; vanish (right). (f) Reversing the perturbation does not revive the system. Here we retrieve the
lost weights, however, since x¢ is always stable, the system remains in the collapsed state, avoiding spontaneous
recovery. To revive the failed system we apply single-node reigniting: (g) The functions F(z) (purple) and M(x)
(yellow) as obtained from the left/right hand sides of Eq. (10), setting x = 4,w = 0.8. The system follows Case
1 of Fig. 2c, exhibiting a single intersection (Bo, red), and hence it is unrecoverable. (h) Indeed, forcing node
s to a permanent A activity (black node), the remaining shells fail to reignite. (i) Under a denser A;; with
r = 7 the function F(z) takes a different form and the system now follows Case 3. It is now recoverable if
the forcing A > A. = 0.9 (vertical dashed line). (j) As predicted, now the system is successfully activated via
single-node reigniting. (k) The phase diagram in the k,w plane (Supplementary Section 4.3). We observe the
three predicted phases: inactive (red), where only xq is stable, unrecoverable (yellow), where x; is potentially
stable, but unattainable via single-node reigniting, and recoverable (blue), where the system can be revived by
a single node. The theoretical prediction obtained from the roots of Eq. (10) is also shown (white solid line).
(I) The phase diagram in the w, A space. Here, for w < 0.9 the system is never recoverable. Above that, the
higher is w the smaller is the forcing A required for reigniting. Our theoretical prediction is also shown (white
solid line). (m) The &, A phase diagram. The slight discrepancy between theory (white solid line) and simulation
(yellow-blue transition) is likely due to the discrete nature of . (n) To examine our prediction in an empirical
setting we used the human protein interaction network®® (x = 21.7) to construct A;; under two values of w:
Human UR with w = 0.2, in the unrecoverable phase, and Human R, with w = 1, which is recoverable (see panel
k, orange vs. blue squares). Indeed, while Human UR cannot be revived (top), Human R is successfully reignited
by a single node (bottom). (o) Similar results are observed also for the Yeast network*® (s = 10.7, orange vs.
blue circles in panel k) under w = 0.4 (Yeast UR, unrecoverable) and w = 1 (Yeast R, recoverable).
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Figure 4: Recoverability of neuronal and ecological dynamics. (a) We model neuronal interactions via
the Cowan-Wilson dynamics. (b) The system exhibits three phases: An inactive state xo (red) when k,w are
small, and an active state x1 (green) under large k,w. Between these two extremes we observe a bi-stable state
(center, grey shaded) in which the system can reside in both x¢ and xi1. (¢) The x,w phase diagram, featuring
the three states, inactive (red), bi-stable (grey) and active (green). (d) Our analysis predicts a new fourth phase,
splitting the bi-stable state into two distinct dynamic phases - unrecoverable (yellow) vs. recoverable (blue).
Simulation results (yellow-blue transition) are in good agreement with our theoretical prediction (white solid
line). To test our prediction in an empirical setting we used our Brain network*?, diluted to reside in the bi-
stable phase (Supplementary Section 4.4). The resulting network with x = 6.6 was simulated under two values
of w: Brain UR with w = 2, which is unrecoverable (orange circle), and Brain R with w = 4 - recoverable (light
blue circle). (e) Indeed, we find that Brain UR fails to reignite (top), while Brain R is successfully reactivated
(bottom). Ecological dynamics. (f) We consider symbiotic ecological interactions. The self-dynamics is captured
by migration (F') complemented by logistic growth and the Alley effect; the interaction follows the Lotka-Volterra
response function®! (Supplementary Section 3.3). (g) The system exhibits two phases: The active x; (green)
when k,w are large, and bi-stability of x; and x¢ (red) when «,w are reduced (grey shaded). (h) The k,w phase
diagram. In the active phase (green) the system is guaranteed to reside in x1, however in the bi-stable phase (grey)
it can be in both states, and hence, within this phase, once collapsed, the system will not recover spontaneously.
(i) Once again, our analysis shows that the bi-stable phase is split, giving rise to our new recoverable phase (blue).
To further support this we used an empirical plant-pollinator network®! (Eco, x = 11.1, Supplementary Section
4.4) with two different weights: Eco UR (w = 0.15, unrecoverable, orange) and Eco R (w = 0.3, recoverable, light
blue). (j) As predicted, Eco UR remains in xo (top), while Eco R is successfully reignited (bottom).
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Figure 5: Two-step recovery for reviving a failed system. (a) The unperturbed Yeast protein interaction
network. For visibility we focus on the circled sub-network. (b) The dynamic states z; of all nodes. As expected,
the unperturbed network is in the active state xi, hence all z; > 0. (c) - (d) Following extensive perturbation
in which 30% of nodes and 30% of links (grey and red) were deleted the state of the network collapses to the
inactive xo, 7.e. all z; = 0. The challenge is that some of the deleted components (nodes/links) are inaccessible,
and hence cannot be retrieved (red). This captures the restructuring constraints that are, indeed, inevitable in
realistic scenarios. Circle at center - we focus on the same sub-network shown in (a), the unperturbed network
components are highlighted, the deleted nodes links appear in grey and red. (e) Step I. Within the given
constraints we restructure the network by reintroducing nodes/links or strengthening link weights. Such structural
interventions can be mapped to their impact on the two relevant control parameters x (blue) and w (orange).
Here we track a sequence of restructuring steps. For illustration, we show the highlighted sub-network in (c) as it
restructures, acquiring nodes, links and increased weights (sub-networks along the z-axis). (f) Each such sequence
of restructuring steps can be mapped into a path in the s, w phase diagram. A successful restructuring path must
lead the network from the collapsed phase (red) into the recoverable phase (blue). Our predicted phase diagram
helps us design several alternative paths, affording us the flexibility to, e.g., focus mainly on increasing weights w
(Net 1, light blue path) or also on enhancing network density x (Net 3, purple path), all depending on the nature
of our constraints. The resulting networks Net 1 - 3 may differ from the original unperturbed network, as indeed,
our goal is not to simply reverse the damage, but to revive the system’s dynamic activity. (e) Step II. Once the
network is brought to the recoverable phase, we can revive it via single-node reigniting, demonstrated here on
each of our restructured networks, Net 1 - 3.
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1 Steady-state analysis

While this is not the focus of the current contribution, as a prerequisite to discussing re-
coverability, we must first map the natural state-space of our systems, namely the dynamic
state transitions that can be observed absent our reigniting interventions. To achieve this we
use the theoretical framework published recently in Ref. [1], which incorporates mean-field
analysis to predict (i) the potential states of the system x,, and (ii) the critical transition
points between them. This framework allows a rather general treatment of a broad model
family of dynamic models, under the assumption of weak degree correlations. Other formu-
lations for steady-state analysis can be equally relevant, if, e.g., degree correlations cannot
be neglected.

We consider a class of systems captured by

N
dl’i
a = Mo(xl) +w;Aile(fEi)Mg($]’), (].1)
where x;(t) is node i’s dynamic activity (i = 1,..., N) and the nonlinear functions My(x),

M, (x), Msy(z) describe the system’s intrinsic dynamics, i.e. its self-dynamics (M,) and
its interaction mechanisms (M, Ms). The patterns of connectivity between the nodes are
captured by the network A;;, a binary N x N adjacency matrix, which we take to follow
the configuration model framework, namely a random network with an arbitrary degree
distribution, P(k). The average strength of all interactions is governed by the weight w.
Focusing on constructive interactions, in which nodes positively impact each others activity,
we take wM;(z) > 0 and My(x) > 0 and monotonous, excluding, e.g., negative interactions
or oscillatory coupling functions.

The steady-states Xo = (Za.1,.-.,Tan) of Eq. (1.1) are obtained by setting its derivative
on the left hand side to zero and satisfying linear stability. We focus here on systems with
at least two steady-states, i.e. &« = 0,1, one of which is desirable (« = 1) and the other -
undesirable (aw = 0). These states provide an N-dimensional descriptions of the system, cap-
turing the stable activity z,; of all nodes ¢ = 1,..., N. To obtain a macroscopic map of the
different dynamic states of the system we use the mean-field approach described in Ref. [1].
This approach accounts for the potential diversity between individual nodes, i.e. P(k), but
assumes their neighborhoods are statistically similar. Hence it captures the often encoun-
tered observation that real-world networks exhibit extreme levels of degree-heterogeneity,
yet, based on the configuration model framework, it assumes negligible degree-correlations.
This assumption, while approximate, has little impact on our observed results. Indeed,
in our application in the main text, we examined our prediction on real-world networks
(Eco, Brain, PPI), some which have been shown to feature measurable degree-correlations.
Still, we find that our predictions are insensitive to these correlations, confirming that their
secondary role in the context of recoverability, as they have no discernible impact on our
observed results.

Using this mean-filed approach, we can now track the state of the system by its average
nearest neighbor residual degree [1]
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This captures the degree of a typical neighbor, and hence the average degree of each node’s
immediate interacting partners. We emphasize again, that while the number of direct neigh-
bors of a node may be potentially diverse, often scale-free, the residual degree, obtained not
from a single, but from a sample of nodes, is typically more homogeneous, and therefore
succumbs to mean-field treatment.

T

(3

N
> Ajk; -1, (1.2)
2

We can now track the state of the system, by the average neighbor activity

(A
X = NZEZAijxj7 (1.3)
=1 7=1
which using Eq. (1.1) follows

= = My(x) + BM, (%) Ma(%), (1.4)

where

B=(r+ 1w (1.5)

is the average neighbor’s weighted degree. While the detailed derivation of (1.4) is provided
in Ref. [1], the reader can intuitively observe that it captures the typical behavior of a node
with degree f3, i.e. a typical nearest neighbor.

The steady-state solutions of (1.4), denoted by X,, characterize the different fixed-points of
the system. Hence, while the state x, provides the complete N-dimensional description of
the system’s steady-state activity, X, in (1.3) reduces that into a single averaged quantity.
The stability of each potential fixed-point is obtained from linear stability analysis, requiring

= (M) + 0 (0 V()|

1.
= <0, (1.6)

Xa

a negative derivative, ensuring that deviations from x,, decay exponentially. Satisfying (1.6),
for a given state X,, depends on the value of 3, and hence on A;; and w through (1.2) and
(1.5). Equation (1.6), therefore, exposes the range of 5 values (if any) under which each
fixed-point X, is stable, linking the system’s topology, A;;,w, to its observed dynamic states.

In Box I we demonstrate this analysis on cellular dynamics, obtaining the potential states
and transitions of the gene-regulation, a specific system within our general Eq. (1.1). Cellular
dynamics, we find, can sustain a stable active state only if A;; is sufficiently dense (large &)
or if the link weights are sufficiently strong (large w), together satisfying

f=(k+1w>2. (1.12)

More broadly, this example illustrates the fundamental premise of our present analysis e The



potential states of the system and the critical transitions between them, i.e. the system’s
phase diagram, are determined by its intrinsic dynamics My(z), M;(z) and Ms(z) @ The
specific state of a given system, however, i.e. where it resides along that phase diagram,
is predicted by the weighted network topology via A;;, as encapsulated within x (1.2),
and via w, as appears in (1.1) e Transitions between these states can occur as a result of
perturbations to A;; or w. When such transitions occur, they are often irreversible, as we
discuss below.

Irreversibility. The structure of the Eq. (1.7)’s stability diagram (Fig. 3b) indicates that
it is prone to irreversible collapse. Consider a system residing at the desirable x; state,
then driven towards xq through a series of topological perturbations that resulted in 5 < 2.



The intuitive approach is to recover the system’s topology and return the system to g > 2.
However, since X is always stable, regardless of the value of 3, the system will remain in xq
even after such topological reconstruction. Its recoverability, therefore, mandates dynamic
intervention or reigniting, as we derive in Sec. 2. Hysteresis phenomena, such as this, where
systems avoid spontaneous recovery, arise quite commonly in dynamics within the form
(1.1). We therefore, seek to characterize our ability to dynamically reignite a failed system
via parsimonious dynamic interventions.

Basins of attraction. In the bi-stable phase, the state of the system x( or x; depends on
the initial condition z;(¢ = 0). This splits the N-dimensional state space of the system x
into basins

B, = {X(t =0) ‘ x(t — o0) = Xa} (1.13)

which comprise all initial conditions from which Eq. (1.1) converges to the fixed-point X,.
In Fig. 3b we show the projection of the two relevant basins 8, and 2B8; onto the one-
dimensional space of X. Here an initial conditions in which X > X, (grey dashed-line) will
converge to X; (up pointing arrows), while X < X, will lead to Xy (down pointing arrows).
Reigniting a system’s failed dynamics, therefore, translates to steering it from the state xq
to the basin B.



2 Recoverability

2.1 Modeling single-node reigniting

Consider a system of the type discussed above, characterized by two stable states - an
undesirable x¢ and a desirable x;. Let us further assume that the system is in the bi-stable
phase, presently at the undesirable x3. We seek dynamic interventions, preferably minimal
in nature, that will help us drive the system towards x;. To achieve this we assign a selected
set of nodes F - the forced nodes - whose dynamics we externally control. This, effectively,
changes the system’s dynamics (1.1) into

r = fi(t) 1€ F

dz, : (2.1)

dt

= My(z;) + WZAile(f[i)M2(xj) i¢F

J=1

in which nodes in F are forced to follow the external control function f;(¢), while the
remaining N — |F| nodes continue to evolve via the system’s natural interaction dynamics.
In a realistic reigniting scenario we require |F| < N and f;(t) to be described by preferably
simple functions, capturing the fact that often we have limited access or control over the
dynamic behavior of the majority of the nodes. Taken to the limit, we choose

F = {s}, (2.2)

a single forced source node, and

a time-independent forcing function.

Such single node reigniting is, in principle, no different than reigniting by few nodes, since,
for a large network, the immediate neighborhoods of each two randomly selected nodes have
negligible overlap. Therefore, the impact of one node’s forced activity has little interference
with that of the other. In other words, for a randomly selected microscopic set of nodes,
the group F will be, most probably, spread throughout the network, comprising an isolated
set of reigniting focal points, each impacting only its local neighborhood (Fig. 1a). Under
these conditions, the forcing of more than one node does not significantly contribute to the
reigniting, and only begins to take effect if the recovered neighbors from one forced node
overlap with those of another. Such overlap occurs only if each of the forced nodes has by
itself reignited a large fraction of inactive nodes, which, in principle depicts an independent
set of single-node reigniting instances. Therefore reigniting via |F| < N is, asymptotically
identical to reigniting via |F| = 1 - a single forced activity focal point that must penetrate
the network and impact its distant neighbors towards the basin 8;.

To evaluate the impact of s’s forcing we track the response of the shells

() = {z €(1,...,N)|Lix = z}, (2.4)

5
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Figure 1: How a single node impacts the network. (a) Reigniting by two nodes s1, so
(or any microscopic fraction of nodes) introduces two focal points of reactivation into the
network. For a large network, the adjacent shells around s; and sy have little overlap, hence
each only impacts its local neighborhood. Under these conditions s;’s forcing does not
meaningfully reinforce that of so, and each behaves as an independent single-node reigniting
source. In case s; is able to excite the distant shells, to the extent that its impact interferes
with that of so, this indicates that s;’s activation had a non-local impact. This is the case
where s; indeed successfully reignites the entire system. Therefore, we find that reigniting
by a microscopic random of nodes is, in effect, no different that reigniting with a single
node. (b) The impact of our reigniting at s on a node i € K,(I) is mediated by i’s direct
neighborhood K;(1) (red). In a large random network, whose structure is locally tree-like,
this neighborhood has typically a single node in K(I — 1), closer to the source, and k nodes
in K (I + 1), farther away from the source. This allows us to evaluate ¢, in (2.16), and
obtain the recurence relation of Eq. (2.18).

comprising all nodes whose shortest path to s, Ljs, is of length I. We have K (0) = {s},
K4(1) = s’s group of direct neighbors, K(2) its second neighbors, etc. The average activity
in K(l) is captured by

1
xs(l,t) = .0 Z xi(t), (2.5)

allowing us to evaluate the impact of the forcing z4(t) = A at any distance [ from s.

Being initially at the undesired state we begin with x4(l,t = 0) = X for all [ > 0; for { =0
we set x4(l = 0,t) = A, as per our forcing intervention. In a non-recoverable system the
s-forcing fails to reignite the system, its impact remains local, and hence the distant shells
continue to be in the undesired state’s basin of attraction, namely

zs(l = 00, t — 0) € By. (2.6)

Conversely, if the system is recoverable, s’s forcing penetrates the network to impact the
entire system, thus leading to

zs(l = 00, t — 00) € By, (2.7)

in which the distant shells have been successfully reignited. Under these conditions we can



terminate our forcing, to allow s’s local neighborhood, whose state is frozen by our external
intervention, to also transition to x; via the system’s natural, undisturbed, dynamics.

To obtain a direct set of equations for z4(l, ) in (2.5), we write

dag(l,t) 1 da;

which using (1.1) to express the r.h.s. derivative provides

dxsd(tl,t) _ ’Ksl(l)\ Z (Mo(xi) +wZAijM1(:cZ-)M2(a:j)>, (2.9)

ieKs(l) j=1

To approximate the summations over My(x;) and M;(z;) we use a mean-field approach,
writing

D M,y(xi(t) ~ My (x4(1,1)) (2.10)

| K (0)] i€k (1)

for ¢ = 0,1, namely we take (M, (z)) ~ M,((x)). This approximation is exact if at least one
of the following two conditions applies: (i) My(z) and M, (z) are linear; (ii) x;(¢) are uniform
within the shell K,(I). Clearly, these conditions are not guaranteed, however, under many
practical scenarios, they represent a sufficient approximation, designed to detect the macro-
scale behavior of the system - as fully corroborated by our numerical examination. Indeed,
while Eq. (1.1) is, generally, nonlinear, its components, My(z), M;(x), in many of the useful
models, are often sub-linear, linear or weakly super-linear, ¢.e. involving powers that are
not much higher than unity. This satisfies, approximately, condition (i). In other cases we
may observe strong nonlinearities in My(z) and M;(z), e.g., in our ecological dynamics, but
in such cases, we often have bounded activities z;(¢). This ensures a narrow distribution
of x;(t), roughly satisfying condition (ii). We further elaborate on the relevance of these
condition in the appropriate sections, where we analyze each of our specific dynamic systems
(Sec. 3). Using approximation (2.10), we rewrite (2.9) as

da,(l,t 1
d<t>:Mo(xsa,t))le(xs(z,t))'KS(m Yo Myfxy), 1)

1€Ks(l) jeK;(1)

where we have also replaced the original summation notation Zjvzl A by > K)o A
summation of i’s nearest neighbors K;(1).

Consider the group K;(1) in the summation of (2.11). It involves all nodes j that are nearest
neighbors of a node i € K4(). Therefore, by definition, we have j in either K (I — 1), K (I)
or K (I + 1), namely

je | Ki+n). (2.12)

n=-—1

We denote the fraction of nodes in each of these three shells, I — 1, [ and [ 4+ 1, by [3]



1 |K;(1) N Ky (L +n)
€n = : (2.13)
0,2 R
where n = —1,0,1. This captures, for the average node i € K(I), how many of its direct

neighbors, K;(1), are in the K (I—1), K(I) or K(I+1) shells (Fig. 1b). We can now express
the sum over j € K;(1) in (2.11) as

+1

> My(ay) = Y e Ki(1)| M (zi(1+ n,1)), (2.14)

JER() n=-1

splitting the terms among the three groups in K (I +n), each with its respective fraction €,
We, once again, used the mean-field approximation to introduce the averaged x4(l + n,t)

into the function Ms(x). An elaborate and rigorous derivation of (2.14) can be found in Ref.
3].

For a large random network, ¢.e. configuration model, the topology is known to be locally
tree-like, featuring a vanishing number of loops [4]. Under these conditions, the average
node i in K,(l) has, typically, a single link to a node in K(I — 1) and no links to any nodes
in K,(1) itself, such that all its remaining |K;(1)| — 1 links reach nodes in K (I + 1). Also
within this model, nodes in any shell K,(l), [ > 0, follow the residual degree distribution,
and hence, on average, their degree is k + 1, with k taken from (1.2), namely

1
S K1) =r+1. (2.15)
KOl &)
Together, this predicts that (Fig. 1b)
1 K

€1 = =0, € (2.16)

k—+1’ Tkt 1

a result, once again, derived in detail in Ref. [3]. We now use (2.15) and (2.16) to substitute
(2.14) into (2.11), obtaining

daxs(l,t)
dt

= Mo(2(1, 1)) + WM (2.(1, 1)) (MQ(xs(l — 1,8)) + kM (2ol + 1, t)). (2.17)

Equation (2.17) expresses the dynamics of the average activity in the [-shell, as driven by
the system’s internal dynamic mechanisms My(z), M;(x) and My(x). It uses the tree-like
structure of the network shells to reduce the detailed network topology A;; in (2.1) to a
simplified form, focusing on the average node in K(l), which, typically, interacts with a
single node in K (I — 1) and & residual nodes in K,(I + 1). This equation is valid for all
shells K(1) at I > 0; for K(0) we use the first equation of (2.1), providing z4(0,¢) = A.
Together we arrive at Eq. (5) of the main text



zs(0,t) = A

dxs(,i(tl,t) = Mo(zs(1,t)) + wM (zs(L, 1)) (M2 (zs(1 — 1,8)) + &My (z,(1 + 1,75))>

9

(2.18)

capturing the time evolution of nodes at distance [ from the forced s; the initial condition
is set to zs(l,t = 0) = X, for all [ > 0.
2.2 Steady-state analysis

To expose the long term behavior of (2.18) we seek its steady-state, obtained by setting the
derivative on its left hand side to zero, namely

zs(0) = A
(2.19)
0 = My (w,(1)) + wMy (w,(0) (Ma (0 = 1)) + kM (2,1 + 1))

Note that we have now omitted the term ¢ from z4(l, t), focusing on the steady-state

zs(l) = zs(l,t — 0), (2.20)

i.e. the system’s final, long term, activity patterns. To isolate z(l) we rewrite the second
equation in (2.19) as

R(z,(1)) = wMs(zs(1 — 1)) + wrMs(z(1 + 1)), (2.21)
where
_ Mo(2)
R(z) = My (2 (2.22)

This, by inversion, provides

wo(l) = B (M (2,1 = 1) + wrdba (2,1 1)) (2.23)

a direct expression of x4(l) in function of its two neighboring terms, x4(l 4 1).

We can now substitute (2.23) into the second equation in (2.19) to transform it into a second
order recurrence relation, obtaining

zs(0) = A
(2.24)
zs(l) = R (wMQ (zs(1 = 1)) + wrMy (21 + 1)))

The challenge is that the recurrence (2.24) is ill-defined, as we only have one boundary

9



condition, z4(0) = A, instead of the two anchoring points required to obtain a unique
solution. Hence, in and of itself, Eq. (2.24) cannot predict the final shell states x(l),
and therefore it is insufficient to determine if our reigniting is successful or not. Next, we
introduce an approximate approach that allows us to track the desired fixed-points of (2.24).

2.3 Predicting the final shell states

While in general (2.24) is under-determined, we can use our prior knowledge on the states
of Eq. (1.1) to constrain its potential solutions. Indeed, knowing that our system has
potentially two stable fixed-points, xo and x;, we assume that our forcing at z4(0) can lead,
asymptotically, to only two outcomes: successful reigniting, in which

zs(l — 00) € By, (2.25)

or unsuccessful reigniting, where

(I = 00) € By, (2.26)
Therefore, we do not need to solve the recurrence relation fully, just to determine whether
it assumes the asymptotic solution (2.25) or (2.26).
We begin by expressing (I + 1) in (2.24) as

vl +1) =R (wMQ (z5(1)) + wrMs(zs(1 + 2))) : (2.27)

obtained by substituting [ by [ + 1 in the recurrence relation. This allows us to rewrite the
recursive series as

zs(0) = A

z,(l) = R} (wMQ(:ES(l — 1)) + wkM, (R—l (wMg (z5(1)) + wrMa (s (L + 2)))))

(2.28)

expressing the term x4(l + 1) in (2.24) via Eq. (2.27). This step provides z4(l) in terms
of z4(I — 1), z4(l) and z4(l + 2). Consequently, the average activity at K,(l) is impacted
by the state of the directly neighboring shell K¢(I — 1), by the equidistant nodes at K(l)
itself, and by the indirectly interacting second neighbors at K (I+2). Our main assumption
is that of these three effects - the first two, which represent K4(l)’s direct neighborhood,
supersede that of the third xs(l+2) term. Indeed, this term captures the state of the distant
shell K(I+ 2) whose impact on x4(l) is marginal as compared to the other two terms. We
therefore approximate this term by

zs(l + 2) = X, (2.29)

assuming this distant shell has not been significantly impacted by our reigniting, hence still

10



at its initial state xg, having on average activity Xo. The activity Xy can be obtained from
Eq. (1.4) as explained in Sec. 1. This discrepancy, we expect, will have little impact on the
accuracy of x4(l), as it only applies to I’s distant neighbors. Using (2.29) to rewrite (2.28)
we now have

ry(l) = R7" (wMQ (zs(1 = 1)) + wrMy (R_l (wMg (zs(D) + CUH)MQ()_(())>>> , (2.30)
from which we can extract z,(l) as

L R (1)) — kM (Rl (o), 1)) + meg(io))) CMy(a(-1).  (231)

w
Finally, our recurrence relation (2.28) converges to the form of Egs. (7) and (8) of the main
text, providing

zs(0) = A
: (2.32)
F(2(D)) = Ma (1 - 1))
where
1 -1 S
F(x) = —R(x) = kM, (R (wMa(z) + me2(x0))) . (2.33)

These equations approximate the original second order recurrence of Eq. (2.24), by an ap-
proximate first order recurrence relation, now solvable using standard tools for analyzing
recurrence relations, as outlined in the main text. First, we extract the fixed points of the
recursion via [5]

F(z) = My(x). (2.34)

Maintaining consistency with the original dynamics (1.1), from which (2.32) is derived, the
fixed point obtained via (2.34) must, by definition coincide with the intrinsic fixed-points X,
of the system. Indeed, our reigniting may either fail, leading to Xg, or succeed, arriving at
x1. It cannot, however, lead to any other points, which are not within the potential states
intrinsic to (1.1). Hence the condition (2.34) may have only two outcomes: the system is
non-recoverable if (2.34)’s only stable fixed-point is Xo. However, if it also features a stable
X1, then we can use the structure of F'(z) and Ms(z) to obtain the critical A. above which
(2.32) converges to X1, and hence successfuly reignites. Hence, analyzing the intersection/s
of F'(z) and Ms(x) we can predict the system’s recoverability, and if recoverable, the required
critical forcing.

Cobweb plots (Fig. 2). We solve the recurrence relation of (2.32) using cobweb plots [6].
Starting from an initial setting of x4,(0) = A we track the evolution of the recurrence.
First obtaining My(A) (vertical path), then shifting horizontally to F(z), extracting x4(1).
Continuing the process we observe weather the recurrence converges to 8, or to B;. In case
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the function F(z) is non-monotonic, this process may lead to convergence ambiguity, as
illustrated in Case 3 of Fig. 2¢, with both red and green pathways enabled. Such ambiguity
is, of course, a mathematical artifact, as the real system in (1.1) will indeed follow only one
of the potential tracks, not both. In reality , as we employ our reigniting from an initial
condition which is in By, the system, under any such instance of ambiguity, will converge
back to B, namely, it will select the red path and not recover. To remove this duality we use
the construction of Fig. 2d, in which we introduce a plateau along the non-monotonic range
in F'(x). The corrected F(x) (solid purple line) is now monotonic and we can unambiguously
analyze it via the proposed cobweb plots.

(a) Case 1 (b) Case 2

F(x) Acg

BO T

Case 3
(c) (d)

B T B,

Figure 2: Solving the recurrence relation via cobweb plots. To solve (2.32) we begin
at x,(0) = A, then track the recurrence by following the value of My(x) (vertical steps)
and equating this with F(x) (horizontal steps), as per the second equation in (2.32). (a)
Case 1. Regardless of the starting point A, the system unconditionally converges to B,
and hence it is unrecoverable (red path). (b) Case 2. For A > A, the system reaches B,
i.e. recoverable (green path). (c) Case 3. In case F'(x) is non-monotonic we encounter dual
solutions, in which both the red and green pathways coexist. The real system, i.e. Eq. (1.1,
however, will only follow the red path of the failed reigniting, as its initial condition is of
all nodes residing in By. (d) To treat this ambiguity we reconstruct F'(x) by introducing
a plateau over the non-monotonic range, leading to the monotonic F'(z) (purple solid line)
instead of the original function (purple-dashed line).
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3 Dynamic models

To demonstrate our framework we examined the recoverability of three dynamic systems
within the form of Eq. (1.1). Below we detail the analytical treatment of each of these
systems, starting from the free system, in which we examine the states of the system absent

our forcing A, then treating the reignited system, in which we introduce our single-node
activation.

(a) > dX' N X/l
L _ a - J
) Cellular o = B+ w;AU i
(b) Free system () Reigniting
B=x4(1+x7") F(xs(D) = My(xs(1 — 1))
Unrecoverable Recoverable
_ K=5 Aci K=5
X1 w=0.7 : w=1
F) :
% : |
[ T 1 NG
X J---o_ ; A alils |
ﬁcﬂ B0 T %0 T 231
(d) (Free system (h - ) (e) Reigniting (h > o)
0=—x*+p0(X—1) F(xs(D)/w = 8(xs(1—1) — 1)
Unrecoverable Recoverable
- =07 A =13
X { k=13

Figure 3: Cellular dynamics. (a) The Michaelis-Menten model for gene-regulation. (b)
The fixed-point, inactive (red), vs. active (green), as obtained from Eq. (3.4), top. When
[ < 2 the system undergoes an irreversible collapse. (c¢) The system recoverability depends
on the intersection points of F'(z) and Ms(z). Hence we plot F(x) as appears in (3.11) for
different values of w and x (purple), and My(z) = z"/(1 + 2"), for h = 1 (yellow). For
w = 0.7 the plot follows the pattern of case 1 - unrecoverable, while for w = 1 it transitions
to case 2 - recoverable. (d) - (e) The same analysis for the case h — oo. In this limit the
activation function Ms(z) behaves as a step function. We find that here the structure of
F(z), and hence the recoverability of the system, is independent of x, affected solely by w.
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3.1 Cellular dynamics

We consider gene-regulatory dynamics, as captured by the Michaelis-Menten model [2, 7],
for which (1.1) takes the form

A g oS A, 1
i~ B e A .
7j=1 J
Under this framework M(x;) = —Buz{, describing degradation (a = 1), dimerization (a = 2)

or a more complex bio-chemical depletion process (fractional a), occurring at a rate B [8].
For simplicity, in our simulations we set B = 1. The activation interaction is captured by
a Hill function of the form M (x;) = 1, My(x;) = x /(1 + ), a switch-like function that
saturates to Ms(z;) — 1 for large z;, representing j’s positive, albeit bounded, contribution
to i’s activity x;(t).

3.1.1 Free system

First we seek the natural fixed-points of (3.1), by mapping it to the one dimensional space
of x via Eq. (1.4). We arrive at

dx x"
— =X — 2
- X T (32)
whose fixed-points, obtained by setting dx/dt¢ = 0, follow
}_(0 - O, (33)
the inactive state, and
f=x2 (1 + )‘c;h> : (3.4)

whose solutions provide the potentially active and intermediate states. For a = 1,h = 2,
the system we examine in the main text, Eqgs. (3.3) and (3.4) provide the three solutions
shown in Fig. 3b (see also Box 1): an always stable X, (red), and a stable x; (green) for
B > (.. The basins of attraction of Xy and X; are separated by the intermediate unstable
state X, (grey dashed line).

To obtain the critical point . we analyze the stability of X; using condition (1.6). At
criticality we replace the inequality by an equality, obtaining

h—hfl
R Y B ) (3.5)
(1+ %)

Together with Eq. (3.4) we arrive at the solution
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(3.6)

a/h—1

ﬁc = ﬁ <h - 1) )
a a

capturing the bifurcation in Fig. 3b, where the active state (green) emerges as a stable
fixed-point at g > ..

Setting a = 1, h = 2, the parameters used in the main-text simulations we obtain

X.=1
Bc:2a

precisely the transitions observed in Fig. 3b. Therefore, the free system exhibits an inactive
phase for § < 2, and a bi-stable regime (grey shaded) for § > 2, where both X, and x; are
potentially stable.

(3.7)

3.1.2 Reigniting

To examine the behavior of our cellular dynamics (3.1) under reigniting we seek to construct
the recurrence relation (2.32), and specifically the function F(z) in (2.33). First we write

R(z) = za° (3.8)
RY(z) = 2 (3.9)
Ms(z) = (14:L‘1$h)’ (3.10)

where we used (2.22) to obtain R(x). Setting a = 1, we can now collect all the terms to
construct F'(z), providing us with

T T 1
(27) w RiVig (W 2($)) w Hl +w—h(1 + J}_h)h

(3.11)

a function whose shape depends on the topological parameters x and w. Note that here
Xo = 0, and hence M(Xo) = 0 on the r.h.s. of (2.33). Equation (3.11) maps to F'(x) of Eq.
(10) in the main text under a = 1. Varying x and w we can observe the recoverability of
our system as F'(z) transitions from case 1 to case 3 of Fig. 2. Two specific examples are
presented in Fig. 3b and c¢. The first with x = 5 and w = 0.7 falls under case 1, and therefore
it is unrecoverable, and the second, in which the weight is increased to w = 1 follows case
3, i.e. recoverable.

To obtain the complete phase diagram and hence the boundaries of the recoverable phase,
as we do in Fig. 3k - m of the main text, we systematically plot F'(x) in (3.11) for a range
of k,w values, seeking for each x the critical w in which F(z) transitions to the form of

15



case 3. These critical transition points provide the theoretical phase boundaries (Fig. 3k -
m, white solid lines). At the same time we tested numerically, for each xk,w combination
whether single-node reigniting indeed reactivates the system (yellow vs. blue shaded areas).

3.1.3 The role of the Hill coefficient

The Hill coefficient h in (3.1) determines the saturation rate of the activation function
Ms(x). A small h captures a mild activation, in which M, (z) increases gradually with z,
while h — oo describes an effective step-function of the form

142t

A@@pig&< o ):9@_1) (3.12)

being Ms(z) = 1 (activation) if x > 1 and Ms(z) = 0 otherwise; 0(x) is the Heaviside
step-function. Taking this limit in (3.11) we obtain

hlim F(z) =x/w— kf(w—1)0(z — 1). (3.13)
—00
For w < 1 we have
F(x) = & (3.14)
T) = wx, .

a linear function whose slope is 1/w > 1. This function has a single intersection My(z) =
O(x—1) at © = 0, therefore rendering the system unrecoverable (Fig. 3e, left). In case w > 1
Eq. (3.13) becomes

F@):éw—ﬁﬂx—D, (3.15)

having two intersections with My (), describing a recoverable system for A > 1 (Fig. 3e,
right).

This describes a limit in which s plays no role in recoverability, and reigniting is driven
solely by w, as discussed in the main text under Restructuring guidelines.

3.2 Neuronal dynamics

We consider the Cowan-Wilson model [9, 10] for excitation in neuronal networks, writing

dx; N 1

=1

which we examine under y =5 and § = 1.
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Figure 4: Neuronal dynamics. (a) The Cowan-Wilson model. (b) Z vs. § as obtained
from Eq. (3.18) with 4 = 5,0 = 1. The system exhibits two potential states Xy (red) and
X; (green), separated by a bi-stable phase (grey shaded). (¢) F'(z) (purple) from (3.22) and
My (z) (yellow) from (3.21) for an unrecoverable system (w = 3.82, left) and a recoverable
one (w = 4.5, right).

3.2.1 Free system

To obtain the fixed-points of the system we use the mapping of (1.4) to reduce (3.16) into

dx 1
- S 1
dt X+61+eu76’<’ (3.17)
whose fixed-points follow
B =%o(1 + et 0%), (3.18)

Plotting x vs. # (Fig. 4b) we obtain the dynamic phases of the system - the inactive state
xo (red), in which all activities are suppressed, is obtained when the network is extremely
sparse, i.e. small 3; the active x; (green), in which z; are relatively high, is observed when
B is large. In between these two extremes the system features a bi-stable phase, in which
both x, and x; are potentially stable. These phases are separated by two critical points
Be1 < PBe2, predicting a hysteresis phenomenon: if 5 was driven below 3.; and the system
has failed, it will not spontaneously recover unless we retrieve 3 to be above ... Hence,
we seek the sub-space within the bi stable regime, 3.1 < 8 < .2, in which the system can
reignited.

3.2.2 Reigniting

The relevant functions to construct F'(z) (2.33) are
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R Yz) = =, (3.20)
My(z) = (Hiu—éx)’ (3.21)

from which we obtain
Fugzg_ﬁMﬂpM%m+wm&@@y (3.22)

Once again we arrive at a function which depends on k and w, sometimes following the
unrecoverable case 1 (Fig. 4c, left), and sometimes following the recoverable case 3 (Fig. 4c,
right).

3.3 Mutualistic population dynamics

We examine symbiotic interactions in ecological networks, such as plant-pollinator relation-
ships captured by

d:z:i
dt

N
Z;

j=1

The self dynamics describes migration at a rate F' coupled with logistic growth at rate B,
with the system carrying capacity set to C', and the Alley effect with strength K. The
mutualistic interaction follows the Lotka-Volterra form z;z;. In our simulations we set
F=5 B=09, C=3and K =10.

3.3.1 Free system

Using Eq. (1.4) we write

dx VS A L
th+Bx<1 C)(x K) + px*, (3.24)

obtaining the fixed-points from

_ —FC+ Bx(x - C)(x - K)

& Cx?

(3.25)
In Fig. 5b we plot X vs. # as obtained from Eq. (3.25) finding two phases. For g < . we

observe two fixed-points, X (red) and X; (green), a bi-stable phase, and for 5 > [, a single
active state x;.
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Figure 5: Ecological dynamics. (a) Our mutualistic population dynamics model. (b)
vs. § as obtained from Eq. (3.25). The system features a bi-stable phase (grey shaded),
then at § > . transitions to a single active fixed-point. (¢) R(x) vs. x (purple) as obtained
from (3.27). The function is non-monotonic and hence R~'(z) (yellow) is ill-defined. The
dual range in which R~!(z) admits ambiguous solutions (grey shaded) is directly related
to the bi-stable phase of the system via Eq. (3.29). The relevant branch is only the lower
one, associated with the failed state of the system, on which we employ our reigniting. (d)
We preserve only the lower branch by replacing the original R(z) (purple dashed line) with
a monotonous fm’(x), in which we introduce a plateau instead of the non-monotonic range
(purple solid line). The resulting function can now be unambiguously inverted (yellow).
(e) F(x) (purple) from (3.30) and Ms(z) (yellow) from (3.26) for an unrecoverable system
(w = 0.2, left) and a recoverable one (w = 0.3, right).

3.3.2 Reigniting

Here the functions comprising F'(z) in (2.33) are
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My(z) = z, (3.26)

and

R(x) = —5 - B <1 - g) ( — K). (3.27)
The challenge is that in order to construct F'(z) we must invert R(z), which as indicated in
Fig. 5c is non-monotonic and hence, in principle, non-invertible. The result is that R~!(z)
is ill-defined for a certain range of x, matching potentially two values for the same z. This
ambiguity is directly related to the bi-stability of Ty and X; in the range § < .. Indeed,
Eq. (3.25) can be written in the form

px = R(X), (3.28)

from which is follows that

x = R7(Bx), (3.29)

in which the ambiguous value of R™!(8x) for 3 < f3, is precisely to root of the observed
bi-stability. It, therefore, follows that of the two branches in R7!(x) the relevant branch is
the one associated with Xy, as, indeed, the reigniting is applied on the failed state. Hence,
to correct for this ambiguity we use a similar construction to the one shown in Fig. 2d when
treating the non-monotonic F'(x), namely, we eliminate the non-monotonic range of the
function by replacing it with a constant plateau. This leads to the corrected f?(az) shown in
Fig. 5d, in which the original function (dashed-line) is replaced by a corrected monotonic
R(z) (solid line). Its inverse R~'(x) is now well-defined, and, most importantly, suitable to
predict the system’s response to reigniting from a failed initial condition. We can now use
this corrected function to construct F(z) in (2.33) providing

F(z) = Rc(f) — KR! (wx + wm’co). (3.30)

We can now systematically use our cobweb plots to assess the system recoverability for
different combinations of w and x (Fig. 5e).
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4 Numerical analysis

4.1 Numerical integration

To numerically test our predictions we constructed Eq. (1.1) for each of the systems in
Sec. 3, using the appropriate A;; (Scale-free, Erdés-Rényi, empirical, etc.). We then used
a second-order Runge-Kutta stepper (Matlab’s ode23) to numerically solve the resulting
equations. Starting from a pre-selected initial condition z;(t = 0), i = 1,..., N we allowed
the system to reach steady-state by waiting for &; — 0. To numerically realize this limit we
implemented the termination condition

ztn - itnf
| 20) = ()

=1 Atn

<e, (4.1)

where t,, is the time stamp of the nth Runge-Kutta step and At,, = ¢, —t,_1. As the system
approaches a steady-state, the activities x;(¢,) become almost independent of time, and
the numerical derivative &; = (z;(t,) — z;(t,—1))/At, becomes small. The condition (4.1)
guarantees that the maximum of &; over all activities x;(t,) is smaller than the pre-defined
termination variable . In our simulations, across the different dynamics we tested, we set
€ <1072 to ensure that our system is sufficiently close to the true steady-state.

In case of bi-stability we examined the convergence of the system from multiple initial
conditions. For example, setting x(¢ = 0) to a low value in B, ensures convergence to X, in
case Xy is stable; setting it in 287 ensures convergence to X1, in case x; is also stable. If only
one of the states is stable - all initial conditions will converge to that single fixed-point.

4.2 Reigniting

To simulate reigniting we set the system at the initial condition to x(t = 0) = xo. We then
select a random node s, decouple it from the remaining N equations and set its state to
zs(t) = A. Together with the remaining N — 1 equations of (1.1) we arrive at Eq. (2.1),
which takes the form

zs(t) = A

du; (4.2)

dt

= M()(I'Z) +WZA”M1(.IZ)MQ(.IJ) 1 7& S

J=1

Integrating this equation until reaching steady-state, i.e. condition (4.1), we find the final
state Xporced Of the forced system. We then relax our forcing, re-couple x4(t) to the remaining
N —1 equations, and allow the system to reach its final state. This is achieved by setting the
new initial condition to x(t = 0) = Xporced, and numerically solving Eq. (1.1) until reaching
steady-state. In case Xpoced € B1, a successful reigniting, the system will reach x;. If,
however, our reigniting failed, and Xgoceq Temains in By, the system, after forcing ceases,
will revert to the undesired xq.
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4.3 Constructing the phase diagrams in Figs. 3-5

We used the Erdés-Rényi random network model with different connection probabilities p
to construct a set of 150 networks with N = 10* nodes each, spanning a range of residual
degrees k, as detailed in Table 1. Together, for each system we examined 15 different values
of k, with 10 independent realizations for each value. For example, in our Cellular dynamic
we first set p = 3 x 1074, which, on average, for an Erdés-Rényi random network, provides
k =~ 3. We then constructed 10 such networks, to gain several realizations of the same
random graph. Repeating the process for higher p values we arrive at 10 x 15 networks,
comprising 10 realizations of 15 different x values.

Next, we matched each of these networks with different weights w whose range is shown in
Table 1. These ranges of x,w is selected in each system to best portray the different phases.
Gradually increasing w for each of the 150 networks we observed the critical transition
points between active, inactive, bi-stable, recoverable and non-recoverable states. Together
this process examined a repository of thousands of different networks with varying x and w.
For each of these networks we obtained the steady-state/s as explained in Sec. 4.1, observing
whether they are in the active, inactive or bi-stable regime. We then also tested whether
they are recoverable via single-node reigniting, following Sec. 4.2. As explained each data
point (k,w) in the resulting phase-diagrams is obtained from averaging over 10 independent
realizations. In each realization we selected randomly the source node for reigniting.

4.4 Model and empirical networks

We used model and real networks, as summarized below:

ER. Erdés-Rényi random networks with N = 10* nodes and varying connection probability
p, to inspect the range of k values. The phase diagrams were formed using this set of model
networks.

PPI Yeast (Regulatory). The yeast protein-protein interaction network, an empirical scale-
free consisting of 1,647 nodes (proteins) and 5,036 undirected links, representing chemical
interactions between proteins [11].

PPI Human (Regulatory). The human protein-protein interaction network, a scale-free
network, consisting of N = 2,035 nodes (protein) and L = 13,806 protein-protein interac-
tion links [12].

Brain (Neuronal). Mapping the physical fiber bundle connections between 998 brain re-
gions, as measured using diffusion tensor imaging techniques [13]. The empirical network is
relatively dense, having x = 41.91, rendering naturally deep in the right hand side of the
phase diagram (Fig. 4d, main text). In this limit the recoverable phase is practically un-
observable, as the system transitions directly from the unrecoverable phase (yellow) to the
spontaneously active phase (green). Therefore, to observe the recoverability, we examined
reigniting on a perturbed Brain network in which we randomly deleted 83.9% of the links,
bringing our network to x = 6.61. Under these conditions we can construct two networks -
one unrecoverable with small w (Fig. 4d, orange dot), and the other recoverable with larger
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System Model Parameters  Networks Kk Range w Range

N —
% dx; B x]'-l B=1 ER
Cellular @ —Bxj +wZAi,7h a=1 PPl Yeast 3<Kk<30 0.03<w<5
> = h=2 PPI Human
N
dx; 1 n=>5 ER
—=—x; Aj————— . <2 <w<
Neuronal at xl+wZ U g%, 5=1 el 3<k 5) 0<w<8
j=
N F=5
%5 Ecological %:F+Bx-(1—ﬁ)(x-—KHwZA.-x-x. B=0.09 ER 4<K<40 0.09<w< 2
@ cologica T i c) Wi Z, ijXiXj c=3 Eco
/ K=10

Table 1: Summary of models and parameters. For each system we show the relevant
dynamic equation (Model), and the parameters we used in our simulations. Each system
was examined on a set of relevant networks. When construction the phase-diagrams of Fig.
3 - 5 of the main text, we use Erdds-Rényi networks with a range of x and w values, as
shown in the two rightmost columns.

w (Fig. 4d, light blue dot).

ECO (Ecological). To construct the mutualistic ecological networks we collected data on
symbiotic interactions of plants and pollinators in Carlinville Illinois from [14]. The resulting
456 x 1,429 network M,,, is a bipartite graph linking the 456 plants (n = 1,...,456)
with their 1,429 pollinators (m = 1,...,1,429). When a pair of plants is visited by the
same pollinator they mutually benefit each other indirectly, by increasing the pollinator
population. Similarly pollinators sharing the same plants also share an indirect mutualistic
interaction. Hence we can collapse Mj;, to construct either the pollinator of the plant
network. Here we used the larger 1,429 x 1,429 pollinator network

1 if max (MyMyy) >0
k=1

Aij = (4.3)

0 if max (M) =0,

which prescribes a link (A4;; = 1) between pollinators ¢ and j if they share at least one
mutual plant. This process potentially allows us to have isolated components, e.g., single
disconnected nodes. The state of these isolated nodes is decoupled from the state of the
rest of the network, and hence in our analysis we only focused on the giant connected
component of A;;, comprising only 1,044 pollinators, eliminating 385 isolated pollinators in
A;;. Similarly to the Brain networks, also here we examine reigniting on a sparse network,
in which we removed 50.11% of the links, setting x to 11.13, in the area that allows us to
examine the window of recoverability (Fig. 4i, main text).
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