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From mass extinction to cell death, complex networked systems often exhibit abrupt

dynamic transitions between desirable and undesirable states. Such transitions are of-

ten caused by topological perturbations, such as node or link removal, or decreasing link

strengths. The problem is that reversing the topological damage, namely retrieving the lost

nodes/links or reinforcing the weakened interactions, does not guarantee the spontaneous

recovery to the desired functional state. Indeed, many of the relevant systems exhibit a

hysteresis phenomenon, remaining in the dysfunctional state, despite reconstructing their

damaged topology. To address this challenge, we develop a two-step recovery scheme: first

- topological reconstruction to the point where the system can be revived, then dynamic

interventions, to reignite the system’s lost functionality. Applied to a range of nonlinear

network dynamics, we identify a complex system’s recoverable phase, a state in which the

system can be reignited by a microscopic intervention, i.e. controlling just a single node.

Mapping the boundaries of this newly discovered phase, we obtain guidelines for our two-

step recovery.

Complex systems, biological, social or technological, often experience perturbations and disturbances,

from overload failures in power systems1–4 to species extinction in ecological networks5–7. The impact

of such perturbations is often subtle, the system exhibits a minor response, but continues to sustain its

global functionality8–10. However, in extreme cases, a large enough perturbation may lead to a large-scale

collapse, with the system abruptly transitioning from a functional to a dysfunctional dynamic state11–16.

(Fig. 1a-d). For instance, in cellular dynamics, genetic knockouts, beyond a certain threshold, lead to

cell death17,18; in ecological systems, changes in environmental conditions may, in extreme cases, cause

mass-extinction5–7,19; and in infrastructure networks, a cascading failure, at times, results in a major

blackout11,20. When such collapse occurs, the näıve instinct is to reverse the damage, retrieve the failed

nodes and reconstruct the lost links. Such response however is seldom efficient, as (i) we rarely have

access to all system components21, limiting our ability to reconstruct the perturbed network; (ii) even if

we could reverse the damage, due to hysteresis22–24, in many cases, the system will not spontaneously

regain its lost functionality25.

To address this challenge, we consider here a two-step recovery process:

Step I. Restructuring (Fig. 1e). Retrieving the network topology and weights to a point where

the system can potentially regain its functionality.
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Step II. Reigniting (Fig. 1f). Introducing dynamic interventions to steer the system back to

functionality.

The challenge in Step II is that in most practical scenarios we lack direct control over the dynamic activity

of the majority of the nodes. Hence we seek to reignite the system via micro-interventions, i.e. controlling

just a small number of components, typically - just a single or, at most, few nodes. We, therefore, need

to characterize the conditions under which such single-node reigniting can be achieved, representing the

primary focus of the current contribution. Along the way, we expose a new dynamic phase of complex

systems - the Recoverable phase, a state in which the system can be driven towards functionality by

controlling a microscopic set of nodes.

Unlike the classic controllability challenge26–32, formulated in the context of linear dynamics, in recover-

ability we benefit from the nonlinear nature of the interactions. Indeed, when reigniting we do not aim

to steer the system to a general arbitrary state, as done in the control theoretic setting, but rather to-

wards one of its naturally occurring fixed-points - a problem of different nature, relying on fundamentally

distinct mathematical tools21.

The challenge of irreversible collapse

Consider a complex system of N components (nodes), linked through Aij , a sparse, binary and random

network with arbitrary degree distribution P (k). In Aij the links represent dynamic interactions, whose

nature depends on context. For instance, in a social system Aij = 1 captures an acquaintance, and hence

a potentially infectious interaction between individuals i and j, whereas in a sub-cellular network it may

represent a regulatory interaction between gene i and gene j. To account for these dynamic distinctions

we denote each node’s activity by xi(t), quantifying, e.g., individual i’s probability of infection or gene

i’s instantaneous expression level. We then track the dynamics of the system via33–35

dxi
dt

= M0(xi) + w

N∑

j=1

AijM1(xi)M2(xj), (1)

a general equation, characterized by three potentially nonlinear functions M0(x),M1(x) and M2(x). The

first function, M0(xi) captures node i’s self-dynamics, describing mechanisms such as protein degrada-

tion36 (cellular), individual recovery37,38 (epidemic) or birth/death processes39 (population dynamics).

The product M1(xi)M2(xj) describes the i, j interaction mechanism, e.g., genetic activation9,17,40, infec-

tion37,38 or symbiosis41. The mean strength of these interactions is governed by the weight w. In the

context of recoverability, we seek to revive the activity of all nodes by activating a selected set of nodes,

hence we focus on constructive interactions, in which nodes positively contribute to each others activity.

This is expressed in Eq. (1) through wM1(x)M2(x) ≥ 0 (see Supplementary Section 1). Such conditions

naturally arise in many relevant applications, social, biological or ecological, as exemplified in Figs. 3a

and 4a,f.

Setting the derivative on the left hand side of (1) to zero, we obtain the system’s fixed-points, xα =

(xα,1, . . . , xα,N )>, which, if dynamically stable, represent different states, desirable or undesirable, in

which the system can naturally reside. Transitions between these states often result from perturbations

to Aij and ω, such as node/link deletion or weight change. When this occurs, it is often difficult to

reverse the unwanted transition, since the system fails to spontaneously recover, even if we retrieve the

lost nodes, links or the weights. To illustrate this difficulty we refer to a concrete example below.

Example 1. Cellular dynamics (Fig. 3). As our lead example we consider gene-regulation, captur-

ing activation interactions between genes. Such genetic activation is often modeled within (1), using

Michaelis-Menten dynamics40 (Fig. 3a). Under this framework M0(xi) = −Bxai , describing degradation
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(a = 1), dimerization (a = 2) or a more complex bio-chemical depletion process (fractional a), occurring

at a rate B; below we set B = 1. The activation interaction is captured by a Hill function of the form

M1(xi) = 1, M2(xj) = xhj /(1 + xhj ), a switch-like function that saturates to M2(xj) → 1 for large xj ,

representing j’s positive, albeit bounded, contribution to i’s activity xi(t).

For sufficiently dense Aij or large ω the system exhibits an active state x1, in which all nodes have

positive activity (x1,i > 0 for all i), representing a living cell. However, perturbations to the network

topology, such as link/node removal or weight reduction can cause a sharp transition to the inactive

state x0 = (0, . . . , 0)>, in which all nodes have zero activity, i.e. cell death. To track this transition

systematically we measured the average activity x̄α = (1/N)
∑N
i=1 xα,i, which follows x̄α > 0 for α = 1

and x̄α = 0 for α = 0, as we subject it to increasing levels of topological stress : removing a q-fraction of

nodes (Fig. 3b); deleting a q-fraction of links (Fig. 3d) or reducing ω by a factor q (Fig. 3c). In all cases

we observe a sudden transition, as the perturbations exceed a critical threshold qc, from x̄α > 0 (green),

representing the active state α = 1, to x̄α = 0 (red), representing the inactive state α = 0.

To drive the system back to the desired x1, the instinctive approach is to reverse the topological per-

turbations, namely reconstruct the deleted nodes/links or push the weight ω to its original strength. In

Fig. 3f we do precisely that, finding that the system fails to recover. The reason is that while x1 is only

stable above qc, x0 is always stable - both below and above the critical point. This leads to a hysteresis

phenomenon that causes the system to remain inactive, despite the reversal of the perturbation, e.g.,

recovering the original weight ω.

Example 1, above, while representing a specific scenario, illustrates the family of challenges that we tackle

here: system’s with irreversible topologically driven transitions, e.g., from a desired x1 to an undesired

x0. To revive such systems, we must dynamically reignite them by exerting external control over the

activities xi(t), in order to drive them back towards the basin of attraction of x1 (Fig. 1h).

Recoverability - single-node reigniting

After restructuring Aij , ω, the most natural way to reignite the system is to drive all activities xi towards

an initial condition from which the system will naturally recover to the desired xα. Namely, we must

steer the system into xα’s basin of attraction (Fig. 1h)

Bα =
{

x(t = 0)
∣∣∣ x(t→∞) = xα

}
(2)

which comprises all initial conditions x(t = 0) from which Eq. (1) converges to x(t → ∞) = xα. The

problem is that such level of control over the dynamics of all nodes is seldom attainable, hence we seek

to recover the system’s functionality by driving just a microscopic fraction f → 0 of forced nodes.

To achieve this, we consider the limit of f ∼ 1/N , in which case our reigniting is attempted through,

typically, a single, randomly selected source node s. To reignite the system we artificially set s’s activity

to xs(t) = ∆ > 0, namely we externally hold its activity, forcing it to equal ∆. The remaining N−1 nodes

continue to follow the natural system dynamics, i.e. Eq. (1), responding to the s-forcing. In technical

terms, the failed state of the system, x0, captures Eq. (1)’s initial condition, and the forced node imposes

a strict boundary condition at s.

In a recoverable system, after some time, the activities will enter B1, at which point we can cease our

external control and allow the system to naturally transition to x1, based on its internal dynamics. This

captures a successful reigniting of the system’s activity. If, however, the system is non-recoverable, such

single-node reigniting is insufficient, the system remains at the basin B0, and once we discontinue our

external forcing, it relaxes back to x0, a failed reigniting.

To analytically track the system’s response to our forcing at s, we divide the rest of the network into
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shells Ks(l) = {j | Lsj = l}, comprising all nodes located at distance l from s (Fig. 2a). In this notation

Ks(0) = {s}, Ks(1) is the group of s’s nearest neighbors, Ks(2) its next neighbors, and so on. Then,

starting with xs(t) = ∆, we track the average activity of nodes in Ks(l), via

xs(l, t) =
1

|Ks(l)|
∑

i∈Ks(l)

xi(t), (3)

where |Ks(l)| represents the number of nodes in Ks(l). The shells adjacent to the source, i.e. small l, will

be forced to respond to s’s activation ∆, exhibiting a gain in their activity xs(l, t). However, such response

may, under certain conditions, decay as l is increased, leaving the distant shells almost unaffected, and

therefore still within the basin B0. Under these conditions, upon termination of our ∆-forcing, all shells

retreat back to x0, rendering the system unrecoverable. Successful reigniting, therefore, requires that

xs(l→∞, t→∞) ∈ B1, (4)

capturing a state in which the forcing at s was able to penetrate the network and impact the state of even

the most distant nodes at Ks(l→∞). This represents a recoverable system that will naturally revert to

x1 once the forcing ∆ is deactivated.

In Supplementary Section 2.1 we use Eq. (1) to derive a direct set of equations for the shell states xs(l, t)

in (3), providing





xs(0, t) = ∆

dxs(l, t)

dt
= M0

(
xs(l, t)

)
+ ωM1

(
xs(l, t)

)(
M2

(
xs(l − 1, t)

)
+ κM2

(
xs(l + 1, t)

)) , (5)

a set of continuous time discrete space differential equations, with a set boundary condition at l = 0,

capturing our s-forcing. The functions M0(x),M1(x),M2(x) and the weight ω in (5) are taken from Eq.

(1), and the parameter κ is extracted from Aij via

κ =
1

N

N∑

i=1

1

ki

N∑

j=1

Aijkj − 1, (6)

capturing the average neighbor’s residual degree10,42. Starting from an initial condition, where xs(l, t =

0) ∈ B0 for all l > 0, Eq. (5) helps us track the response of the initially failed system to our reigniting.

To extract insight from (5), we seek its steady state xs(l) = xs(l, t → ∞), by setting the derivatives

on the left hand side to zero. We show that we can approximate this state via the recurrence relation

(Supplementary Section 2.3)





xs(0) = ∆,

F
(
xs(l)

)
= M2

(
xs(l − 1)

)
,

(7)

where

F (x) =
1

ω
R(x)− κM2

(
R−1

(
ωM2(x) + ωκM2(x̄0),

))
, (8)

R(x) = −M0(x)/M1(x) and R−1(x) is its inverse function. The parameter x̄0 in the right hand side of

(8) represents the mean activity of nodes in Ks(l > 1) under the failed state x0. Hence, we arrive at a
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direct equation for the l-shell steady states xs(l) under any given forcing ∆.

Equations (7) and (8) represent our key result. They reduce the recoverability of (1), a multidimensional

nonlinear dynamic equation, into a manageable first order recurrence relation. This recurrence takes

the system’s topology and weights (ω, κ) and its nonlinear dynamic mechanisms (M0(x),M1(x),M2(x)

and hence R(x)) as input, and predicts the system’s recoverability as output. For any given forcing ∆,

the recurrence (7) either leads to xs(l → ∞) ∈ B1, satisfying the recoverability condition (4), or to

xs(l→∞) ∈ B0, and hence indicating a failed recovery.

To obtain xs(l → ∞), and observe whether it is in B0 or B1, we seek the potential fixed-points of the

recurrence equation (7). These points can be extracted from the solutions of

F (x) = M2(x), (9)

capturing stationary states in which xs(l) = xs(l−1)43,44. Therefore, to analyze the system’s recoverabil-

ity we extract the intersections of the two functions F (x) and M2(x) in (9), observing two characteristic

behaviors (Fig. 2): if, for example, F (x) and M2(x) have only a single intersection x ∈ B0, then the series

inevitably converges to that point (Fig. 2c). This represents a non-recoverable system, that, regardless

of the magnitude of ∆, resorts back to x0. If, on the other hand the functions have several intersections,

then its convergence depends on the boundary condition xs(0) = ∆. For ∆ < ∆c it will approach B0, a

failed reigniting, and for ∆ ≥ ∆c it will reach B1, capturing a successful reigniting (Fig. 2d,e; see also

Supplementary section 2.3). Therefore, our formalism predicts both whether the system is recoverable

or not, and in case it is - it predicts the required critical forcing ∆c for reigniting. Most crucially, the

patterns of intersection of (9) depend on the values of κ and ω in (8). This means that the system can

transition between the recoverable and the non-recoverable phases following appropriate manipulations

of ω and κ - precisely the desired guidelines for the restructuring step, which must be carried out prior

to reigniting.

Next we demonstrate our framework on a range of relevant systems, starting from gene regulation (Ex-

ample 1), then advancing to neuronal and ecological dynamics. We show that tracking the l →∞ limit

of Eq. (7) can help us obtain direct insights into reviving collapsed systems, specifically:

• Recoverability. Given the state of the network, i.e. κ, ω, we predict whether the system can be

revived by single-node reigniting or not.

• Reigniting force. In case the system is recoverable, we obtain the minimal magnitude of the forcing

∆ ≥ ∆c required for recovery.

• Restructuring. If non-recoverable, the equations offer guidelines on relevant structural interventions

affecting the topology/weights, to steer ω and κ towards the recoverable phase.

Applications

Cellular dynamics (Fig. 3; see also Supplementary Section 3.1). As our first application we return to

Example 1, regulatory dynamic, where M0(x) = −xa,M1(x) = 1 and M2(x) = xh/(1+xh), and therefore

R(x) = xa and R−1(x) = x1/a. Equation (9) becomes

1

ω
xa − κx

h2

a

x
h2

a + ω−
h
a

(
1 + xh

)h
a

=
xh

1 + xh
, (10)

whose roots (x) determine the potential fixed points of the reignited system. Clearly, x = 0 represents a

solution to (10), capturing the fact that the failed state x0 = (0, . . . , 0)> ∈ B0 is always stable. Hence,
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the question is, under what conditions do we observe a second solution x > 0, representing a potential

convergence to B1. To answer this, we first note that while the right hand side of Eq. (10) is independent

of the network topology, its left hand side, F (x), is affected by Aij through κ and by its link weights

through ω. Therefore, in Fig. 3f,h we plot M2(x) vs. x (yellow) and observe its intersections with F (x)

(purple) as we vary the values of these two structural parameters. This allows us to observe, graphically,

the potential convergence of the system to B0 or B1.

First we consider ω = 0.8, κ = 4 (Fig. 3g), conditions under which the system is bi-stable, and hence, in

principle, can reside both in x0 or x1. Despite this bi-stability, we find that (10) exhibits only one solution,

represented by the single intersection at x = 0. This guarantees that (7) converges to xs(l → ∞) = 0,

independently of ∆. Consequently, the system is non-recoverable, regardless of the strength of our forcing.

The meaning is, that even though the system can potentially feature a stable x1, it cannot be reignited

from an x0 initial condition by single-node activation. Indeed, this prediction is confirmed in Fig. 3h,

which indicates that the system fails to recover, despite the forcing ∆ at s.

Increasing the network density to κ = 7, however, changes the picture, as now (10) features three

intersection points (Fig. 3i): an unstable intermediate point (grey) and the two stable points at x = 0

(red) and at x > 0 (green), representing convergence to B0 and B1, respectively. This predicts a critical

forcing ∆c (vertical grey dashed line), above which all xi reactivate to B1, and below which they remain

within B0. If ∆ > ∆c the system will be successfully reignited by controlling just a single node, as all

shells will, eventually be driven into B1, and then naturally converge to the desired x1. Fig. 3j shows

just that, as now the system responds to our forcing, and, as predicted, recovers its lost functionality.

The results above uncover the existence of a novel, previously overlooked, dynamic phase. Indeed, the

regulatory system of Fig. 3a has been previously shown to follow two phases, inactive, where only x0 is

stable vs. bi-stable where both x0 and x1 are stable, depending on initial conditions (Fig. 3b-d). Our

analysis here uncovers a third phase: recoverable, a subspace of the bi-stable phase, in which the system

can be reignited from x0 to x1 by controlling a microscopic set of nodes, here just one single node. The

parameters driving this three state phase space are ω, κ and ∆, which together determine the existence

(and if exists - the value) of the critical forcing required to revive the inactive system. In Fig. 3k we

show these phases in the ω, κ space, as obtained from numerically simulating the states of the system for

∼ 103 different combinations of ω and κ (Supplementary Section 4.3). The white solid line represents

our theoretical prediction, based on analyzing the intersections of (10), indicating that the boundaries of

recoverability can be well-approximated by our analytical framework. We also present the ω,∆ and κ,∆

phase diagrams, further indicating the agreement between simulation and theory (Fig. 3l,m).

To further test our predictions in an empirical setting, we collected data on two real biological networks,

capturing protein interactions in Human45 (κ = 21.7) and Yeast46 (κ = 10.7) cells. In these networks

the interaction topology Aij is extracted from empirical data, but the average weight ω, determining the

interaction rates can change due to environmental conditions. We, therefore set, for each network, two

different weights (Fig. 3n): for Human we set ω1 = 0.2 (Human UR orange) and ω2 = 1 (Human R blue),

the former in the unrecoverable phase, and the latter - recoverable. Similarly, for Yeast we set ω1 = 0.4

(Yeast UR, orange, unrecoverable) and ω2 = 1 (Yeast R, blue, recoverable). As predicted, we find in Fig.

3n,o that, indeed, Yeast UR and Human UR remain inactive under reigniting. This is while Yeast R and

Human R, both predicted to reside in the recoverable phase, can be successfully revived via single-node

reigniting.

Neuronal dynamics (Fig. 4a-e, Supplementary Section 3.2). As our second example we consider the

Cowan-Wilson neuronal dynamics47,48, in which (1) follows the form shown in Fig. 4a. The system

naturally exhibits three dynamic phases. The inactive state x0, in which all activities are suppressed, is

obtained when the network is extremely sparse, i.e. small κ, ω. The active x1, in which xi are relatively

large, is observed when ω, κ are high. In between these two extremes the system features a bi-stable phase,
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in which both x0 and x1 are potentially stable. In Fig. 4b,c we observe these phases on a a set of random

networks with varying ω, obtaining two critical points ωc,1 < ωc,2 (dashed grey lines), in which the system

transitions between active, inactive and bi-stable. This phase-space predicts a hysteresis phenomenon: if

ω is driven below ωc,1 and the system fails, it will not spontaneously recover unless we retrieve ω to be

above ωc,2.

Our formalism, however, predicts an additional, previously unknown dynamic phase, in which the system

is recoverable. This phase, shown in Fig. 4d (blue) represents a sub-space of the bi-stable regime, in

which the failed system, if untouched, remains at x0 as per the above hysteresis. Yet, under single-node

reigniting, it can be forced back towards activity (x1). To demonstrate this we collected data on the

structure of a human brain network49 to construct Aij (κ = 6.6), and simulated neuronal dynamics using

ω1 = 2, in the unrecoverable phase (Brain UR, orange), and ω2 = 4, which is recoverable (Brain R, blue).

Indeed, Fig. 4e confirms that Brain UR remains inactive, while Brain R’s activity is successfully revived.

Mutualistic population dynamics (Fig. 4f-j, Supplementary Section 3.3). As our final example we ex-

amine symbiotic interactions in ecological networks, such as plant-pollinator relationships50. Once again,

we find a window of recoverability, in which one can steer a collapsed system towards activity via single-

node reigniting. Here we used an empirical plant-pollinator network51, Eco, to examine recoverability

(Fig. 4i,j), a low ω unrecoverable Eco UR (orange) and an increased ω recoverable Eco R (blue).

Taken together, these examples demonstrate the predictive power of our framework, which allows to

systematically map the conditions for recoverability. Next, we show how to use the obtained recoverability

maps to provide direct insights into our proposed two-step recovery, extracting guidelines for reviving a

collapsed network.

Restructuring guidelines

To successfully reignite a failed system we must first steer it from the non-recoverable to the recoverable

phase. This can be achieved through appropriate restructuring interventions to impact ω or κ, for

instance, increasing weights or adding nodes/links. The phase diagrams of Figs. 3k-m and 4d,i can

provide guidelines for such restructuring, as, indeed, they indicate what interventions can potentially

push us closer to the recoverable phase.

To illustrate this, in Fig. 5a-d we simulate a cellular network (Yeast) that has been driven towards

inactivity due to major topological perturbations, such as node or link deletion (grey nodes/links). Some

of the removed components are inaccessible (red), and hence when restructuring we cannot retrieve them.

To revive the system, under these constraints, we incorporate our proposed two-step recovery:

• Step I. Restructuring. First we conduct topological interventions, to bring the system to the

recoverable phase. As explained above, certain nodes or links are inaccessible to us (red), hence

our potential interventions are restricted. The challenge is, therefore, to design a set of accessible

interventions that will enable us to revive the system’s dynamic activity. As recoverability is driven

by two relevant parameters, κ and ω, we map all potential intervention to their effect on these two

parameters (Fig. 5e). Indeed, a sequence of such interventions represents a path in the κ, ω space.

Therefore, in the restructuring step we seek paths of accessible interventions originating in the

present state of the system, and delivering the network into the bounds of the recoverable phase

(Fig. 5f). Our goal, we emphasize, is not to simply retrieve the lost nodes and links, but to achieve

recoverability. This designates, not a single point, but rather an entire sub-space in κ, ω (Fig. 5f,

blue), affording us some level of restructuring flexibility. As a result, despite the constraints imposed

by the network’s irretrievable components, we are able to design three distinct restructuring paths,

all originating in the current state of the failed system (Yeast perturbed, white), but leading to

different destinations - Net 1,2 or 3 - within the recoverable sub-space.
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• Step II. Reigniting. Once in the recoverable phase we can revive the system via single-node

reigniting, and retain its lost activity, as shown in Fig. 5g for the three restructured networks Net

1,2 and 3.

This example illustrates how the phase diagrams of recoverability provide direct guidelines for restruc-

turing. For example, in Fig. 5f path 1 builds mainly on controlling the interaction strength (ω), but

assumes little freedom to add nodes or links (κ). In contrast path 3 involves a significant component of

adding nodes/links to Aij , affecting not just ω but also κ. The optimal restructuring path is, therefore,

determined by the nature of our constraints, for example, the relative difficulty in adding weights as in

path 1, vs. adding nodes/links, a là path 3. The crucial point is, that, knowing the phase-boundaries

of recoverablity, we were able to set different end-points for each path (Net 1,2,3), providing us with a

spectrum of potential interventions - either focusing on ω, and hence aiming for end-point 1, or focusing

on κ, and thus seeking to reach end-point 3. Such flexibility, enabled thanks to our phase-diagrams, is

crucial for real-world restructuring.

While the potential space of structural interventions in Step I is incomprehensibly vast, our phase dia-

grams reduce this space into just two relevant control parameters - κ, characterizing Aij ’s density, and

ω, capturing its link weights. This allows us to asses the contribution of all potential interventions by

quantifying their effect on these two parameters - enabling to seek optimal pathways for crossing the

recoverability phase boundary.

Interestingly, our phase diagrams indicate that κ and ω may play unbalanced roles: for example Fig. 5f

shows that the phase boundary from unrecoverability to recoverability in the κ, ω space becomes almost

flat in the limit of large κ (white solid line). This implies that while it may only require a small change in

ω, i.e. pushing the system in the vertical direction, to transition a network towards recoverability, doing

so through κ, along the horizontal axis, is by far more difficult. Indeed, in Supplementary Section 3.1.3

we show that in the limit of large h in Fig. 3a, the phase boundary becomes almost independent of κ, and

the effect of increasing ω becomes dominant. Hence, under cellular dynamics, increasing weights, when

possible, is a preferred strategy over adding links. This offers a quite general restructuring guideline, that

can help design efficient κ, ω-paths in our two-step recovery scheme.

Discussion and outlook

While the structure of complex networks has been deeply investigated over the years, our understanding

of their dynamics is still emerging. The challenge is often focused on prediction, aiming to foresee a

network’s dynamic behavior. Here, we go a step further, and focus on influence, showing how to steer a

system towards a desired behavior.

At first glance, this challenge seems to be associated with network controlability. There are, however two

crucial distinctions between recoverability and controlability: (i) Control theory revolves around linear

dynamics, and is therefore fully characterized by the network structure/weights (Aij , ω). Recoverability,

in contrast, is tailored for nonlinear systems within the form (1), hence driven by the interplay of this

structure with the system’s intrinsic dynamics. Indeed, the phase boundaries of recoverability strongly

depend on the system’s interaction mechanisms M0(x),M1(x),M2(x), as observed in Figs. 3k-m and 4d,i.

(ii) On the other hand, while controlability aspires to drive a system between any two arbitrary states, an

unsolved challenge under nonlinear dynamics, recoverability is limited to the system’s naturally occurring

fixed-points.

The main advantage of item (ii) above, is that it allows us to revive a failed system using an extremely

simple control signal, namely the constant forcing ∆. Had we needed a more delicate fine-tuned input,

our strategy would have likely been too sensitive and impractical. Fortunately in recoverability, one only

needs to kick the system out of its undesired basin, then let it relax to x1 independently21 (Fig. 1h).

8



Such crude level of control, we find, is possible even under the rather broad conditions captured by Eq.

(1).

The microscopic behavior of complex networks is driven by countless parameters, from the fine-structure

of Aij to the specific rates of each node’s dynamic processes. Our analysis, however, shows, that their

large-scale functionality can be traced to a manageable set of relevant parameters, e.g., κ, ω and ∆. Such

dimension reduction is the fundamental premise of statistical physics, allowing to analyze systems with

endless degrees of freedom using a limited set of statistical entries. We believe, that a similar approach

to network dynamics, can help us understand, predict, and ultimately influence the behavior of complex

multi-dimensional systems.
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Figure 1: Reviving a failed network. (a) The components of our modeling framework: The network topology
is captured by the adjacency matrix Aij and the link weights ω (grey terms); the interaction mechanisms, i.e.
the dynamics, are captured by the nonlinear functions M0(x),M1(x),M2(x) (orange terms). (b) Depending on
the dynamics - e.g., cellular, neuronal or ecological - the system exhibits distinct fixed-points, active (x1, green)
or failed (x0, red); intermediate unstable points are marked by grey dashed lines. The transitions between these
states are driven by perturbations to the topology (Aij , ω). (c) Under the unperturbed topology the system
resides in the functional state x1, in which all nodes are active, i.e. xi > 0. In this presentation, which we also
use throughout the paper, the network nodes are laid out on the x, y plane, and their activities xi are captured
by the z coordinate. Hence, an active system has all nodes spread out along the positive z-axis, while a failed
network is laid out around z = 0. We also use color coding from red (small xi) to blue (large xi) as visual
aid. (d) Perturbations to the topology, such as node/link removal or weight reduction, result in a collapse to the
inactive x0, here having all activities vanish (z = 0). (e) Restructuring. To revive the failed system we must
first restructure its topology to a point where it can recover, namely a point where x1 is potentially stable. This,
however, is insufficient, as often the system will not spontaneously retain its lost activity. (f) Reigniting. After
restructuring we reignite the active state x1 by controlling a microscopic set of nodes, here the single node s. The
controlled node is forced to sustain a constant activity xs(t) = ∆. This activating force then spreads to impact all
other nodes in the network and push them towards x1. (g) The state of the network in three different time-points
following single-node reigniting, forcing xs(t) = ∆ (black node at center). The reigniting force gradually impacts
the network, until the system’s activity x1 is restored. (h) In this process we use the natural basin structure of
our dynamics. The basin Bα captures all initial states, from which the system (1) converges to the fixed-point
xα. Therefore, to reignite x1 we seek to steer the system from B0 (red) to any point within B1 (green). Once in
B1, we can cease our forcing, and the system will spontaneously transition to the desired x1 (dashed arrows).
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Figure 2: Can a system be reignited by a single node? (a) During reigniting we select a single source
node s and, for a limited time, we artificially force it to sustain a permanent activity ∆. To track the system’s
response to such forcing, we divide the network into shells Ks(l) comprising all nodes at distance l from s. (b)
The reignited activity xs(l) of all nodes at Ks(l) is tracked via the recurrence relation of Eq. (7), starting from our
forcing at s (top equation), and tracking its propagation as it penetrates the network shells (bottom equation).
Successful reigniting requires xs(l→∞) ∈ B1, i.e. that the distant shells were driven towards the desired basin.
(c) - (e) We can track the convergence of the recurrence relation graphically by plotting F (x) (purple) and M2(x)
(yellow). The forcing ∆ determines our initial starting point, and the recurrence can be tracked via the red or green
trajectories. The final state xs(l→∞) is reached when the two functions, F (x) and M2(x), intersect. We observe
three potential scenarios (Supplementary Section 2.3): Case 1. F (x) and M2(x) have a single intersection point in
B0 (red). Under these conditions, regardless of the initial value (∆) the recurrence converges to xs(l→∞) ∈ B0,
and hence the system is unrecoverable. Case 2. F (x) and M2(x) exhibit two intersections, corresponding to the
system’s two stable fixed points x0 (red) and x1 (green); the intermediate intersection (grey) is unstable. Here,
for ∆ < ∆c the system converges to B0, i.e. unrecoverable (red trajectory), while for ∆ ≥ ∆c it approaches
B1 - hence it is recoverable (green trajectory). Case 3. In case F (x) is non-monotonic the critical forcing ∆c

is determined by F (x)’s local maximum point (grey dashed lines), see Supplementary Section 2.3 for a detailed
analysis of Case 3.
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Figure 3: Recoverability of cellular dynamics. (a) Gene regulation as modeled via the Michaelis-Menten
dynamics. (b) - (d) The average steady-state activity x̄ as obtained from cellular dynamics following topological
perturbation: deletion of a q-fraction of nodes; factor q reduction of weights and removal of a q-fraction of links.
While the active x1 is only stable for q < qc (green), the inactive x0 is always stable (red). Hence the system
undergoes an irreversible collapse at q = qc. (e) We track three specific states, capturing the steady-state activities
xi under varying levels of weight loss q. When q is small (left) all xi are positive and the system is in the active
state x1. xi gradually decline as q increases (center), until the system collapses into the inactive state x0, in
which all xi vanish (right). (f) Reversing the perturbation does not revive the system. Here we retrieve the
lost weights, however, since x0 is always stable, the system remains in the collapsed state, avoiding spontaneous
recovery. To revive the failed system we apply single-node reigniting: (g) The functions F (x) (purple) and M2(x)
(yellow) as obtained from the left/right hand sides of Eq. (10), setting κ = 4, ω = 0.8. The system follows Case
1 of Fig. 2c, exhibiting a single intersection (B0, red), and hence it is unrecoverable. (h) Indeed, forcing node
s to a permanent ∆ activity (black node), the remaining shells fail to reignite. (i) Under a denser Aij with
κ = 7 the function F (x) takes a different form and the system now follows Case 3. It is now recoverable if
the forcing ∆ ≥ ∆c = 0.9 (vertical dashed line). (j) As predicted, now the system is successfully activated via
single-node reigniting. (k) The phase diagram in the κ, ω plane (Supplementary Section 4.3). We observe the
three predicted phases: inactive (red), where only x0 is stable, unrecoverable (yellow), where x1 is potentially
stable, but unattainable via single-node reigniting, and recoverable (blue), where the system can be revived by
a single node. The theoretical prediction obtained from the roots of Eq. (10) is also shown (white solid line).
(l) The phase diagram in the ω,∆ space. Here, for ω < 0.9 the system is never recoverable. Above that, the
higher is ω the smaller is the forcing ∆ required for reigniting. Our theoretical prediction is also shown (white
solid line). (m) The κ,∆ phase diagram. The slight discrepancy between theory (white solid line) and simulation
(yellow-blue transition) is likely due to the discrete nature of κ. (n) To examine our prediction in an empirical
setting we used the human protein interaction network45 (κ = 21.7) to construct Aij under two values of ω:
Human UR with ω = 0.2, in the unrecoverable phase, and Human R, with ω = 1, which is recoverable (see panel
k, orange vs. blue squares). Indeed, while Human UR cannot be revived (top), Human R is successfully reignited
by a single node (bottom). (o) Similar results are observed also for the Yeast network46 (κ = 10.7, orange vs.
blue circles in panel k) under ω = 0.4 (Yeast UR, unrecoverable) and ω = 1 (Yeast R, recoverable).
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Figure 4: Recoverability of neuronal and ecological dynamics. (a) We model neuronal interactions via
the Cowan-Wilson dynamics. (b) The system exhibits three phases: An inactive state x0 (red) when κ, ω are
small, and an active state x1 (green) under large κ, ω. Between these two extremes we observe a bi-stable state
(center, grey shaded) in which the system can reside in both x0 and x1. (c) The κ, ω phase diagram, featuring
the three states, inactive (red), bi-stable (grey) and active (green). (d) Our analysis predicts a new fourth phase,
splitting the bi-stable state into two distinct dynamic phases - unrecoverable (yellow) vs. recoverable (blue).
Simulation results (yellow-blue transition) are in good agreement with our theoretical prediction (white solid
line). To test our prediction in an empirical setting we used our Brain network49, diluted to reside in the bi-
stable phase (Supplementary Section 4.4). The resulting network with κ = 6.6 was simulated under two values
of ω: Brain UR with ω = 2, which is unrecoverable (orange circle), and Brain R with ω = 4 - recoverable (light
blue circle). (e) Indeed, we find that Brain UR fails to reignite (top), while Brain R is successfully reactivated
(bottom). Ecological dynamics. (f) We consider symbiotic ecological interactions. The self-dynamics is captured
by migration (F ) complemented by logistic growth and the Alley effect; the interaction follows the Lotka-Volterra
response function41 (Supplementary Section 3.3). (g) The system exhibits two phases: The active x1 (green)
when κ, ω are large, and bi-stability of x1 and x0 (red) when κ, ω are reduced (grey shaded). (h) The κ, ω phase
diagram. In the active phase (green) the system is guaranteed to reside in x1, however in the bi-stable phase (grey)
it can be in both states, and hence, within this phase, once collapsed, the system will not recover spontaneously.
(i) Once again, our analysis shows that the bi-stable phase is split, giving rise to our new recoverable phase (blue).
To further support this we used an empirical plant-pollinator network51 (Eco, κ = 11.1, Supplementary Section
4.4) with two different weights: Eco UR (ω = 0.15, unrecoverable, orange) and Eco R (ω = 0.3, recoverable, light
blue). (j) As predicted, Eco UR remains in x0 (top), while Eco R is successfully reignited (bottom).
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Figure 5: Two-step recovery for reviving a failed system. (a) The unperturbed Yeast protein interaction
network. For visibility we focus on the circled sub-network. (b) The dynamic states xi of all nodes. As expected,
the unperturbed network is in the active state x1, hence all xi > 0. (c) - (d) Following extensive perturbation
in which 30% of nodes and 30% of links (grey and red) were deleted the state of the network collapses to the
inactive x0, i.e. all xi = 0. The challenge is that some of the deleted components (nodes/links) are inaccessible,
and hence cannot be retrieved (red). This captures the restructuring constraints that are, indeed, inevitable in
realistic scenarios. Circle at center - we focus on the same sub-network shown in (a), the unperturbed network
components are highlighted, the deleted nodes links appear in grey and red. (e) Step I. Within the given
constraints we restructure the network by reintroducing nodes/links or strengthening link weights. Such structural
interventions can be mapped to their impact on the two relevant control parameters κ (blue) and ω (orange).
Here we track a sequence of restructuring steps. For illustration, we show the highlighted sub-network in (c) as it
restructures, acquiring nodes, links and increased weights (sub-networks along the x-axis). (f) Each such sequence
of restructuring steps can be mapped into a path in the κ, ω phase diagram. A successful restructuring path must
lead the network from the collapsed phase (red) into the recoverable phase (blue). Our predicted phase diagram
helps us design several alternative paths, affording us the flexibility to, e.g., focus mainly on increasing weights ω
(Net 1, light blue path) or also on enhancing network density κ (Net 3, purple path), all depending on the nature
of our constraints. The resulting networks Net 1 - 3 may differ from the original unperturbed network, as indeed,
our goal is not to simply reverse the damage, but to revive the system’s dynamic activity. (e) Step II. Once the
network is brought to the recoverable phase, we can revive it via single-node reigniting, demonstrated here on
each of our restructured networks, Net 1 - 3.
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1 Steady-state analysis

While this is not the focus of the current contribution, as a prerequisite to discussing re-

coverability, we must first map the natural state-space of our systems, namely the dynamic

state transitions that can be observed absent our reigniting interventions. To achieve this we

use the theoretical framework published recently in Ref. [1], which incorporates mean-field

analysis to predict (i) the potential states of the system xα, and (ii) the critical transition

points between them. This framework allows a rather general treatment of a broad model

family of dynamic models, under the assumption of weak degree correlations. Other formu-

lations for steady-state analysis can be equally relevant, if, e.g., degree correlations cannot

be neglected.

We consider a class of systems captured by

dxi
dt

= M0(xi) + ω
N∑

j=1

AijM1(xi)M2(xj), (1.1)

where xi(t) is node i’s dynamic activity (i = 1, . . . , N) and the nonlinear functions M0(x),

M1(x), M2(x) describe the system’s intrinsic dynamics, i.e. its self-dynamics (M0) and

its interaction mechanisms (M1,M2). The patterns of connectivity between the nodes are

captured by the network Aij, a binary N × N adjacency matrix, which we take to follow

the configuration model framework, namely a random network with an arbitrary degree

distribution, P (k). The average strength of all interactions is governed by the weight ω.

Focusing on constructive interactions, in which nodes positively impact each others activity,

we take ωM1(x) ≥ 0 and M2(x) ≥ 0 and monotonous, excluding, e.g., negative interactions

or oscillatory coupling functions.

The steady-states xα = (xα,1, . . . , xα,N)> of Eq. (1.1) are obtained by setting its derivative

on the left hand side to zero and satisfying linear stability. We focus here on systems with

at least two steady-states, i.e. α = 0, 1, one of which is desirable (α = 1) and the other -

undesirable (α = 0). These states provide an N -dimensional descriptions of the system, cap-

turing the stable activity xα,i of all nodes i = 1, . . . , N . To obtain a macroscopic map of the

different dynamic states of the system we use the mean-field approach described in Ref. [1].

This approach accounts for the potential diversity between individual nodes, i.e. P (k), but

assumes their neighborhoods are statistically similar. Hence it captures the often encoun-

tered observation that real-world networks exhibit extreme levels of degree-heterogeneity,

yet, based on the configuration model framework, it assumes negligible degree-correlations.

This assumption, while approximate, has little impact on our observed results. Indeed,

in our application in the main text, we examined our prediction on real-world networks

(Eco, Brain, PPI), some which have been shown to feature measurable degree-correlations.

Still, we find that our predictions are insensitive to these correlations, confirming that their

secondary role in the context of recoverability, as they have no discernible impact on our

observed results.

Using this mean-filed approach, we can now track the state of the system by its average

nearest neighbor residual degree [1]
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κ =
1

N

N∑

i=1

1

ki

N∑

j=1

Aijkj − 1. (1.2)

This captures the degree of a typical neighbor, and hence the average degree of each node’s

immediate interacting partners. We emphasize again, that while the number of direct neigh-

bors of a node may be potentially diverse, often scale-free, the residual degree, obtained not

from a single, but from a sample of nodes, is typically more homogeneous, and therefore

succumbs to mean-field treatment.

We can now track the state of the system, by the average neighbor activity

x̄ =
1

N

N∑

i=1

1

ki

N∑

j=1

Aijxj, (1.3)

which using Eq. (1.1) follows

dx̄

dt
= M0(x̄) + βM1(x̄)M2(x̄), (1.4)

where

β = (κ+ 1)ω (1.5)

is the average neighbor’s weighted degree. While the detailed derivation of (1.4) is provided

in Ref. [1], the reader can intuitively observe that it captures the typical behavior of a node

with degree β, i.e. a typical nearest neighbor.

The steady-state solutions of (1.4), denoted by x̄α, characterize the different fixed-points of

the system. Hence, while the state xα provides the complete N -dimensional description of

the system’s steady-state activity, x̄α in (1.3) reduces that into a single averaged quantity.

The stability of each potential fixed-point is obtained from linear stability analysis, requiring

d

dx̄

[
M0(x̄) + βM1(x̄)M2(x̄)

]∣∣∣∣
x̄α

< 0, (1.6)

a negative derivative, ensuring that deviations from x̄α decay exponentially. Satisfying (1.6),

for a given state x̄α, depends on the value of β, and hence on Aij and ω through (1.2) and

(1.5). Equation (1.6), therefore, exposes the range of β values (if any) under which each

fixed-point x̄α is stable, linking the system’s topology, Aij, ω, to its observed dynamic states.

In Box I we demonstrate this analysis on cellular dynamics, obtaining the potential states

and transitions of the gene-regulation, a specific system within our general Eq. (1.1). Cellular

dynamics, we find, can sustain a stable active state only if Aij is sufficiently dense (large κ)

or if the link weights are sufficiently strong (large ω), together satisfying

β = (κ+ 1)ω > 2. (1.12)

More broadly, this example illustrates the fundamental premise of our present analysis • The
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Box I. Example. Cellular dynamics. As an example we consider gene-regulatory dy-
namics, captured by the Michaelis-Menten model [2], for which (1.1) takes the form

dxi
dt

= −Bxai + ω
N∑

j=1

Aij
xhj

1 + xhj
. (1.7)

This dynamic equation maps into (1.1) through M0(x) = −Bxa, M1(x) = 1 and M2(x) =
xh/(1 + xh). Using the mean-field approximation of (1.4) we write

dx̄

dt
= −Bx̄a + β

x̄h

1 + x̄h
, (1.8)

which, under dx̄/ dt = 0, predicts

β = Bx̄a
(

1 +
1

x̄h

)
, (1.9)

as shown in Fig. 3b. Setting B = 1, a = 1 and h = 2 (see Ref. [1] for a more general
treatment), we extract x̄ from (1.9, predicting three fixed-points (Fig. 3b): The inactive
x̄0 = 0 (undesirable, red) , the active x̄1 = β/2 +

√
(β/2)2 − 1 (desirable, green) , and the

intermediate x̄2 = β/2−
√

(β/2)2 − 1 (grey dashed-line).
Next we test the dynamic stability of each of these three solutions via Eq. (1.6), providing
the stability condition

− aBx̄a−1 + β
hx̄h−1

(
1 + x̄h

)2 < 0. (1.10)

Using our selected parameters B = a = 1, h = 2 condition (3.5) reduces to

−
(
1 + x̄2

)2
+ 2βx̄ < 0, (1.11)

from which we can directly obtain the system’s state phase-diagram. For the inactive x̄0 = 0
we have the left hand side of (1.11) being −1, independently of β, and hence this state is
unconditionally stable. The stability of the other to states is obtained by substituting x̄1

and x̄2 into (1.11), finding that x̄2 is never stable, and hence it does not represent a potential
state of the system, while the desirable x̄1 is stable under the condition that β > 2 (Fig.
3b). Therefore β < 2 forces a collapse on to x0, while β > 2 represents a bi-stable phase,
where the system can reside in both x0 and x1, depending on initial conditions.

potential states of the system and the critical transitions between them, i.e. the system’s

phase diagram, are determined by its intrinsic dynamics M0(x),M1(x) and M2(x) • The

specific state of a given system, however, i.e. where it resides along that phase diagram,

is predicted by the weighted network topology via Aij, as encapsulated within κ (1.2),

and via ω, as appears in (1.1) • Transitions between these states can occur as a result of

perturbations to Aij or ω. When such transitions occur, they are often irreversible, as we

discuss below.

Irreversibility. The structure of the Eq. (1.7)’s stability diagram (Fig. 3b) indicates that

it is prone to irreversible collapse. Consider a system residing at the desirable x1 state,

then driven towards x0 through a series of topological perturbations that resulted in β < 2.
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The intuitive approach is to recover the system’s topology and return the system to β > 2.

However, since x0 is always stable, regardless of the value of β, the system will remain in x0

even after such topological reconstruction. Its recoverability, therefore, mandates dynamic

intervention or reigniting, as we derive in Sec. 2. Hysteresis phenomena, such as this, where

systems avoid spontaneous recovery, arise quite commonly in dynamics within the form

(1.1). We therefore, seek to characterize our ability to dynamically reignite a failed system

via parsimonious dynamic interventions.

Basins of attraction. In the bi-stable phase, the state of the system x0 or x1 depends on

the initial condition xi(t = 0). This splits the N -dimensional state space of the system x

into basins

Bα =
{

x(t = 0)
∣∣∣ x(t→∞) = xα

}
(1.13)

which comprise all initial conditions from which Eq. (1.1) converges to the fixed-point xα.

In Fig. 3b we show the projection of the two relevant basins B0 and B1 onto the one-

dimensional space of x̄. Here an initial conditions in which x̄ > x̄2 (grey dashed-line) will

converge to x̄1 (up pointing arrows), while x̄ < x̄2 will lead to x̄0 (down pointing arrows).

Reigniting a system’s failed dynamics, therefore, translates to steering it from the state x0

to the basin B1.
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2 Recoverability

2.1 Modeling single-node reigniting

Consider a system of the type discussed above, characterized by two stable states - an

undesirable x0 and a desirable x1. Let us further assume that the system is in the bi-stable

phase, presently at the undesirable x0. We seek dynamic interventions, preferably minimal

in nature, that will help us drive the system towards x1. To achieve this we assign a selected

set of nodes F - the forced nodes - whose dynamics we externally control. This, effectively,

changes the system’s dynamics (1.1) into





xi = fi(t) i ∈ F

dxi
dt

= M0(xi) + ω
N∑

j=1

AijM1(xi)M2(xj) i /∈ F
, (2.1)

in which nodes in F are forced to follow the external control function fi(t), while the

remaining N − |F| nodes continue to evolve via the system’s natural interaction dynamics.

In a realistic reigniting scenario we require |F| � N and fi(t) to be described by preferably

simple functions, capturing the fact that often we have limited access or control over the

dynamic behavior of the majority of the nodes. Taken to the limit, we choose

F = {s}, (2.2)

a single forced source node, and

fs(t) = ∆, (2.3)

a time-independent forcing function.

Such single node reigniting is, in principle, no different than reigniting by few nodes, since,

for a large network, the immediate neighborhoods of each two randomly selected nodes have

negligible overlap. Therefore, the impact of one node’s forced activity has little interference

with that of the other. In other words, for a randomly selected microscopic set of nodes,

the group F will be, most probably, spread throughout the network, comprising an isolated

set of reigniting focal points, each impacting only its local neighborhood (Fig. 1a). Under

these conditions, the forcing of more than one node does not significantly contribute to the

reigniting, and only begins to take effect if the recovered neighbors from one forced node

overlap with those of another. Such overlap occurs only if each of the forced nodes has by

itself reignited a large fraction of inactive nodes, which, in principle depicts an independent

set of single-node reigniting instances. Therefore reigniting via |F| � N is, asymptotically

identical to reigniting via |F| = 1 - a single forced activity focal point that must penetrate

the network and impact its distant neighbors towards the basin B1.

To evaluate the impact of s’s forcing we track the response of the shells

Ks(l) =
{
i ∈ (1, . . . , N)

∣∣Lis = l
}
, (2.4)
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(a)

𝑺𝟐𝑺𝟏
𝒔 𝒊

𝐾𝑖 1

𝜿

(b)

Figure 1: How a single node impacts the network. (a) Reigniting by two nodes s1, s2

(or any microscopic fraction of nodes) introduces two focal points of reactivation into the
network. For a large network, the adjacent shells around s1 and s2 have little overlap, hence
each only impacts its local neighborhood. Under these conditions s1’s forcing does not
meaningfully reinforce that of s2, and each behaves as an independent single-node reigniting
source. In case s1 is able to excite the distant shells, to the extent that its impact interferes
with that of s2, this indicates that s1’s activation had a non-local impact. This is the case
where s1 indeed successfully reignites the entire system. Therefore, we find that reigniting
by a microscopic random of nodes is, in effect, no different that reigniting with a single
node. (b) The impact of our reigniting at s on a node i ∈ Ks(l) is mediated by i’s direct
neighborhood Ki(1) (red). In a large random network, whose structure is locally tree-like,
this neighborhood has typically a single node in Ks(l− 1), closer to the source, and κ nodes
in Ks(l + 1), farther away from the source. This allows us to evaluate εn in (2.16), and
obtain the recurence relation of Eq. (2.18).

comprising all nodes whose shortest path to s, Lis, is of length l. We have Ks(0) = {s},
Ks(1) = s’s group of direct neighbors, Ks(2) its second neighbors, etc. The average activity

in Ks(l) is captured by

xs(l, t) =
1

|Ks(l)|
∑

i∈Ks(l)
xi(t), (2.5)

allowing us to evaluate the impact of the forcing xs(t) = ∆ at any distance l from s.

Being initially at the undesired state we begin with xs(l, t = 0) = x̄0 for all l > 0; for l = 0

we set xs(l = 0, t) = ∆, as per our forcing intervention. In a non-recoverable system the

s-forcing fails to reignite the system, its impact remains local, and hence the distant shells

continue to be in the undesired state’s basin of attraction, namely

xs(l→∞, t→∞) ∈ B0. (2.6)

Conversely, if the system is recoverable, s’s forcing penetrates the network to impact the

entire system, thus leading to

xs(l→∞, t→∞) ∈ B1, (2.7)

in which the distant shells have been successfully reignited. Under these conditions we can
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terminate our forcing, to allow s’s local neighborhood, whose state is frozen by our external

intervention, to also transition to x1 via the system’s natural, undisturbed, dynamics.

To obtain a direct set of equations for xs(l, t) in (2.5), we write

dxs(l, t)

dt
=

1

|Ks(l)|
∑

i∈Ks(l)

dxi
dt

, (2.8)

which using (1.1) to express the r.h.s. derivative provides

dxs(l, t)

dt
=

1

|Ks(l)|
∑

i∈Ks(l)

(
M0(xi) + ω

N∑

j=1

AijM1(xi)M2(xj)
)
. (2.9)

To approximate the summations over M0(xi) and M1(xi) we use a mean-field approach,

writing

1

|Ks(l)|
∑

i∈Ks(l)
Mq

(
xi(t)

)
≈Mq

(
xs(l, t)

)
(2.10)

for q = 0, 1, namely we take 〈Mq(x)〉 ≈Mq(〈x〉). This approximation is exact if at least one

of the following two conditions applies: (i) M0(x) and M1(x) are linear; (ii) xi(t) are uniform

within the shell Ks(l). Clearly, these conditions are not guaranteed, however, under many

practical scenarios, they represent a sufficient approximation, designed to detect the macro-

scale behavior of the system - as fully corroborated by our numerical examination. Indeed,

while Eq. (1.1) is, generally, nonlinear, its components, M0(x),M1(x), in many of the useful

models, are often sub-linear, linear or weakly super-linear, i.e. involving powers that are

not much higher than unity. This satisfies, approximately, condition (i). In other cases we

may observe strong nonlinearities in M0(x) and M1(x), e.g., in our ecological dynamics, but

in such cases, we often have bounded activities xi(t). This ensures a narrow distribution

of xi(t), roughly satisfying condition (ii). We further elaborate on the relevance of these

condition in the appropriate sections, where we analyze each of our specific dynamic systems

(Sec. 3). Using approximation (2.10), we rewrite (2.9) as

dxs(l, t)

dt
= M0

(
xs(l, t)

)
+ ωM1

(
xs(l, t)

) 1

|Ks(l)|
∑

i∈Ks(l)

∑

j∈Ki(1)

M2(xj), (2.11)

where we have also replaced the original summation notation
∑N

j=1Aij · · · by
∑

Ki(1) · · · , a

summation of i’s nearest neighbors Ki(1).

Consider the group Ki(1) in the summation of (2.11). It involves all nodes j that are nearest

neighbors of a node i ∈ Ks(l). Therefore, by definition, we have j in either Ks(l− 1), Ks(l)

or Ks(l + 1), namely

j ∈
+1⋃

n=−1

Ks(l + n). (2.12)

We denote the fraction of nodes in each of these three shells, l − 1, l and l + 1, by [3]
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εn =
1

|Ks(l)|
∑

i∈Ks(l)

|Ki(1) ∩Ks(l + n)|
|Ki(1)| , (2.13)

where n = −1, 0, 1. This captures, for the average node i ∈ Ks(l), how many of its direct

neighbors, Ki(1), are in the Ks(l−1), Ks(l) or Ks(l+1) shells (Fig. 1b). We can now express

the sum over j ∈ Ki(1) in (2.11) as

∑

j∈Ki(1)

M2(xj) ≈
+1∑

n=−1

εn|Ki(1)|M2

(
xs(l + n, t)

)
, (2.14)

splitting the terms among the three groups in Ks(l+n), each with its respective fraction εn.

We, once again, used the mean-field approximation to introduce the averaged xs(l + n, t)

into the function M2(x). An elaborate and rigorous derivation of (2.14) can be found in Ref.

[3].

For a large random network, i.e. configuration model, the topology is known to be locally

tree-like, featuring a vanishing number of loops [4]. Under these conditions, the average

node i in Ks(l) has, typically, a single link to a node in Ks(l− 1) and no links to any nodes

in Ks(l) itself, such that all its remaining |Ki(1)| − 1 links reach nodes in Ks(l + 1). Also

within this model, nodes in any shell Ks(l), l > 0, follow the residual degree distribution,

and hence, on average, their degree is κ+ 1, with κ taken from (1.2), namely

1

|Ks(l)|
∑

i∈Ks(l)
|Ki(1)| = κ+ 1. (2.15)

Together, this predicts that (Fig. 1b)

ε−1 =
1

κ+ 1
, ε0 = 0, ε+1 =

κ

κ+ 1
, (2.16)

a result, once again, derived in detail in Ref. [3]. We now use (2.15) and (2.16) to substitute

(2.14) into (2.11), obtaining

dxs(l, t)

dt
= M0

(
xs(l, t)

)
+ ωM1

(
xs(l, t)

)(
M2

(
xs(l − 1, t)

)
+ κM2

(
xs(l + 1, t)

)
. (2.17)

Equation (2.17) expresses the dynamics of the average activity in the l-shell, as driven by

the system’s internal dynamic mechanisms M0(x),M1(x) and M2(x). It uses the tree-like

structure of the network shells to reduce the detailed network topology Aij in (2.1) to a

simplified form, focusing on the average node in Ks(l), which, typically, interacts with a

single node in Ks(l − 1) and κ residual nodes in Ks(l + 1). This equation is valid for all

shells Ks(l) at l > 0; for Ks(0) we use the first equation of (2.1), providing xs(0, t) = ∆.

Together we arrive at Eq. (5) of the main text
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



xs(0, t) = ∆

dxs(l, t)

dt
= M0

(
xs(l, t)

)
+ ωM1

(
xs(l, t)

)(
M2

(
xs(l − 1, t)

)
+ κM2

(
xs(l + 1, t)

)) ,

(2.18)

capturing the time evolution of nodes at distance l from the forced s; the initial condition

is set to xs(l, t = 0) = x̄0 for all l > 0.

2.2 Steady-state analysis

To expose the long term behavior of (2.18) we seek its steady-state, obtained by setting the

derivative on its left hand side to zero, namely





xs(0) = ∆

0 = M0

(
xs(l)

)
+ ωM1

(
xs(l)

)(
M2

(
xs(l − 1)

)
+ κM2

(
xs(l + 1)

)) . (2.19)

Note that we have now omitted the term t from xs(l, t), focusing on the steady-state

xs(l) = xs(l, t→∞), (2.20)

i.e. the system’s final, long term, activity patterns. To isolate xs(l) we rewrite the second

equation in (2.19) as

R
(
xs(l)

)
= ωM2

(
xs(l − 1)

)
+ ωκM2

(
xs(l + 1)

)
, (2.21)

where

R(x) = −M0(x)

M1(x)
. (2.22)

This, by inversion, provides

xs(l) = R−1
(
ωM2

(
xs(l − 1)

)
+ ωκM2

(
xs(l + 1)

))
, (2.23)

a direct expression of xs(l) in function of its two neighboring terms, xs(l ± 1).

We can now substitute (2.23) into the second equation in (2.19) to transform it into a second

order recurrence relation, obtaining





xs(0) = ∆

xs(l) = R−1
(
ωM2

(
xs(l − 1)

)
+ ωκM2

(
xs(l + 1)

)) . (2.24)

The challenge is that the recurrence (2.24) is ill-defined, as we only have one boundary
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condition, xs(0) = ∆, instead of the two anchoring points required to obtain a unique

solution. Hence, in and of itself, Eq. (2.24) cannot predict the final shell states xs(l),

and therefore it is insufficient to determine if our reigniting is successful or not. Next, we

introduce an approximate approach that allows us to track the desired fixed-points of (2.24).

2.3 Predicting the final shell states

While in general (2.24) is under-determined, we can use our prior knowledge on the states

of Eq. (1.1) to constrain its potential solutions. Indeed, knowing that our system has

potentially two stable fixed-points, x0 and x1, we assume that our forcing at xs(0) can lead,

asymptotically, to only two outcomes: successful reigniting, in which

xs(l→∞) ∈ B1, (2.25)

or unsuccessful reigniting, where

xs(l→∞) ∈ B0. (2.26)

Therefore, we do not need to solve the recurrence relation fully, just to determine whether

it assumes the asymptotic solution (2.25) or (2.26).

We begin by expressing xs(l + 1) in (2.24) as

xs(l + 1) = R−1
(
ωM2

(
xs(l)

)
+ ωκM2

(
xs(l + 2)

))
, (2.27)

obtained by substituting l by l + 1 in the recurrence relation. This allows us to rewrite the

recursive series as





xs(0) = ∆

xs(l) = R−1

(
ωM2

(
xs(l − 1)

)
+ ωκM2

(
R−1

(
ωM2

(
xs(l)

)
+ ωκM2

(
xs(l + 2)

)))
)

,

(2.28)

expressing the term xs(l + 1) in (2.24) via Eq. (2.27). This step provides xs(l) in terms

of xs(l − 1), xs(l) and xs(l + 2). Consequently, the average activity at Ks(l) is impacted

by the state of the directly neighboring shell Ks(l − 1), by the equidistant nodes at Ks(l)

itself, and by the indirectly interacting second neighbors at Ks(l+2). Our main assumption

is that of these three effects - the first two, which represent Ks(l)’s direct neighborhood,

supersede that of the third xs(l+ 2) term. Indeed, this term captures the state of the distant

shell Ks(l + 2) whose impact on xs(l) is marginal as compared to the other two terms. We

therefore approximate this term by

xs(l + 2) ≈ x̄0, (2.29)

assuming this distant shell has not been significantly impacted by our reigniting, hence still
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at its initial state x0, having on average activity x̄0. The activity x̄0 can be obtained from

Eq. (1.4) as explained in Sec. 1. This discrepancy, we expect, will have little impact on the

accuracy of xs(l), as it only applies to l’s distant neighbors. Using (2.29) to rewrite (2.28)

we now have

xs(l) = R−1

(
ωM2

(
xs(l − 1)

)
+ ωκM2

(
R−1

(
ωM2

(
xs(l)

)
+ ωκM2(x̄0)

)))
, (2.30)

from which we can extract xs(l) as

1

ω
R
(
xs(l)

)
− κM2

(
R−1

(
ωM2

(
xs(l)

)
+ ωκM2(x̄0)

))
= M2

(
xs(l − 1)

)
. (2.31)

Finally, our recurrence relation (2.28) converges to the form of Eqs. (7) and (8) of the main

text, providing





xs(0) = ∆

F
(
xs(l)

)
= M2

(
xs(l − 1)

) , (2.32)

where

F (x) =
1

ω
R(x)− κM2

(
R−1

(
ωM2(x) + ωκM2(x̄0)

))
. (2.33)

These equations approximate the original second order recurrence of Eq. (2.24), by an ap-

proximate first order recurrence relation, now solvable using standard tools for analyzing

recurrence relations, as outlined in the main text. First, we extract the fixed points of the

recursion via [5]

F (x) = M2(x). (2.34)

Maintaining consistency with the original dynamics (1.1), from which (2.32) is derived, the

fixed point obtained via (2.34) must, by definition coincide with the intrinsic fixed-points x̄α
of the system. Indeed, our reigniting may either fail, leading to x̄0, or succeed, arriving at

x̄1. It cannot, however, lead to any other points, which are not within the potential states

intrinsic to (1.1). Hence the condition (2.34) may have only two outcomes: the system is

non-recoverable if (2.34)’s only stable fixed-point is x̄0. However, if it also features a stable

x̄1, then we can use the structure of F (x) and M2(x) to obtain the critical ∆c above which

(2.32) converges to x̄1, and hence successfuly reignites. Hence, analyzing the intersection/s

of F (x) and M2(x) we can predict the system’s recoverability, and if recoverable, the required

critical forcing.

Cobweb plots (Fig. 2). We solve the recurrence relation of (2.32) using cobweb plots [6].

Starting from an initial setting of xs(0) = ∆ we track the evolution of the recurrence.

First obtaining Ms(∆) (vertical path), then shifting horizontally to F (x), extracting xs(1).

Continuing the process we observe weather the recurrence converges to B0 or to B1. In case
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the function F (x) is non-monotonic, this process may lead to convergence ambiguity, as

illustrated in Case 3 of Fig. 2c, with both red and green pathways enabled. Such ambiguity

is, of course, a mathematical artifact, as the real system in (1.1) will indeed follow only one

of the potential tracks, not both. In reality , as we employ our reigniting from an initial

condition which is in B0, the system, under any such instance of ambiguity, will converge

back to B0, namely, it will select the red path and not recover. To remove this duality we use

the construction of Fig. 2d, in which we introduce a plateau along the non-monotonic range

in F (x). The corrected F (x) (solid purple line) is now monotonic and we can unambiguously

analyze it via the proposed cobweb plots.

𝐹 𝑥

𝑀2 𝑥

Δ Δ

Δ𝑐

(b)

(d)

(a)

𝕭1

𝕭1

𝕭0

𝕭0

𝐹 𝑥

𝑀2 𝑥

Δ

𝕭0

Δ𝑐

𝐹 𝑥

𝑀2 𝑥

Case 1 Case 2

Δ Δ

(c)

𝕭1𝕭0

𝐹 𝑥

𝑀2 𝑥

Case 3

Figure 2: Solving the recurrence relation via cobweb plots. To solve (2.32) we begin
at xs(0) = ∆, then track the recurrence by following the value of M2(x) (vertical steps)
and equating this with F (x) (horizontal steps), as per the second equation in (2.32). (a)
Case 1. Regardless of the starting point ∆, the system unconditionally converges to B0,
and hence it is unrecoverable (red path). (b) Case 2. For ∆ > ∆c the system reaches B1,
i.e. recoverable (green path). (c) Case 3. In case F (x) is non-monotonic we encounter dual
solutions, in which both the red and green pathways coexist. The real system, i.e. Eq. (1.1,
however, will only follow the red path of the failed reigniting, as its initial condition is of
all nodes residing in B0. (d) To treat this ambiguity we reconstruct F (x) by introducing
a plateau over the non-monotonic range, leading to the monotonic F (x) (purple solid line)
instead of the original function (purple-dashed line).
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3 Dynamic models

To demonstrate our framework we examined the recoverability of three dynamic systems

within the form of Eq. (1.1). Below we detail the analytical treatment of each of these

systems, starting from the free system, in which we examine the states of the system absent

our forcing ∆, then treating the reignited system, in which we introduce our single-node

activation.
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Figure 3: Cellular dynamics. (a) The Michaelis-Menten model for gene-regulation. (b)
The fixed-point, inactive (red), vs. active (green), as obtained from Eq. (3.4), top. When
β < 2 the system undergoes an irreversible collapse. (c) The system recoverability depends
on the intersection points of F (x) and M2(x). Hence we plot F (x) as appears in (3.11) for
different values of ω and κ (purple), and M2(x) = xh/(1 + xh), for h = 1 (yellow). For
ω = 0.7 the plot follows the pattern of case 1 - unrecoverable, while for ω = 1 it transitions
to case 2 - recoverable. (d) - (e) The same analysis for the case h → ∞. In this limit the
activation function M2(x) behaves as a step function. We find that here the structure of
F (x), and hence the recoverability of the system, is independent of κ, affected solely by ω.
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3.1 Cellular dynamics

We consider gene-regulatory dynamics, as captured by the Michaelis-Menten model [2, 7],

for which (1.1) takes the form

dxi
dt

= −Bxai + ω

N∑

j=1

Aij
xhj

1 + xhj
. (3.1)

Under this framework M0(xi) = −Bxai , describing degradation (a = 1), dimerization (a = 2)

or a more complex bio-chemical depletion process (fractional a), occurring at a rate B [8].

For simplicity, in our simulations we set B = 1. The activation interaction is captured by

a Hill function of the form M1(xi) = 1, M2(xj) = xhj /(1 + xhj ), a switch-like function that

saturates to M2(xj)→ 1 for large xj, representing j’s positive, albeit bounded, contribution

to i’s activity xi(t).

3.1.1 Free system

First we seek the natural fixed-points of (3.1), by mapping it to the one dimensional space

of x̄ via Eq. (1.4). We arrive at

dx̄

dt
= −x̄a + β

x̄h

1 + x̄h
, (3.2)

whose fixed-points, obtained by setting dx̄/dt = 0, follow

x̄0 = 0, (3.3)

the inactive state, and

β = x̄aα

(
1 + x̄−hα

)
, (3.4)

whose solutions provide the potentially active and intermediate states. For a = 1, h = 2,

the system we examine in the main text, Eqs. (3.3) and (3.4) provide the three solutions

shown in Fig. 3b (see also Box 1): an always stable x̄0 (red), and a stable x̄1 (green) for

β > βc. The basins of attraction of x̄0 and x̄1 are separated by the intermediate unstable

state x̄2 (grey dashed line).

To obtain the critical point βc we analyze the stability of x̄1 using condition (1.6). At

criticality we replace the inequality by an equality, obtaining

− ax̄a−1 + β
hx̄h−1

(
1 + x̄h

)2 = 0. (3.5)

Together with Eq. (3.4) we arrive at the solution
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x̄c =

(
h

a
− 1

)1/h

βc =
h

a

(
h

a
− 1

)a/h−1

,

(3.6)

capturing the bifurcation in Fig. 3b, where the active state (green) emerges as a stable

fixed-point at β ≥ βc.

Setting a = 1, h = 2, the parameters used in the main-text simulations we obtain

x̄c = 1

βc = 2,
(3.7)

precisely the transitions observed in Fig. 3b. Therefore, the free system exhibits an inactive

phase for β < 2, and a bi-stable regime (grey shaded) for β > 2, where both x̄0 and x̄1 are

potentially stable.

3.1.2 Reigniting

To examine the behavior of our cellular dynamics (3.1) under reigniting we seek to construct

the recurrence relation (2.32), and specifically the function F (x) in (2.33). First we write

R(x) = xa (3.8)

R−1(x) = x1/a (3.9)

M2(x) =
xh

(1 + xh)
, (3.10)

where we used (2.22) to obtain R(x). Setting a = 1, we can now collect all the terms to

construct F (x), providing us with

F (x) =
x

ω
− κM2

(
ωM2(x)

)
=
x

ω
− κ 1

1 + ω−h(1 + x−h)h
(3.11)

a function whose shape depends on the topological parameters κ and ω. Note that here

x̄0 = 0, and hence M2(x̄0) = 0 on the r.h.s. of (2.33). Equation (3.11) maps to F (x) of Eq.

(10) in the main text under a = 1. Varying κ and ω we can observe the recoverability of

our system as F (x) transitions from case 1 to case 3 of Fig. 2. Two specific examples are

presented in Fig. 3b and c. The first with κ = 5 and ω = 0.7 falls under case 1, and therefore

it is unrecoverable, and the second, in which the weight is increased to ω = 1 follows case

3, i.e. recoverable.

To obtain the complete phase diagram and hence the boundaries of the recoverable phase,

as we do in Fig. 3k - m of the main text, we systematically plot F (x) in (3.11) for a range

of κ, ω values, seeking for each κ the critical ω in which F (x) transitions to the form of
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case 3. These critical transition points provide the theoretical phase boundaries (Fig. 3k -

m, white solid lines). At the same time we tested numerically, for each κ, ω combination

whether single-node reigniting indeed reactivates the system (yellow vs. blue shaded areas).

3.1.3 The role of the Hill coefficient

The Hill coefficient h in (3.1) determines the saturation rate of the activation function

M2(x). A small h captures a mild activation, in which M2(x) increases gradually with x,

while h→∞ describes an effective step-function of the form

M2(x) = lim
h→∞

(
xh

1 + xh

)
= θ(x− 1), (3.12)

being M2(x) = 1 (activation) if x > 1 and M2(x) = 0 otherwise; θ(x) is the Heaviside

step-function. Taking this limit in (3.11) we obtain

lim
h→∞

F (x) = x/w − κθ(ω − 1)θ(x− 1). (3.13)

For ω < 1 we have

F (x) =
1

ω
x, (3.14)

a linear function whose slope is 1/ω > 1. This function has a single intersection M2(x) =

θ(x−1) at x = 0, therefore rendering the system unrecoverable (Fig. 3e, left). In case ω ≥ 1

Eq. (3.13) becomes

F (x) =
1

ω
x− κθ(x− 1), (3.15)

having two intersections with M2(x), describing a recoverable system for ∆ ≥ 1 (Fig. 3e,

right).

This describes a limit in which κ plays no role in recoverability, and reigniting is driven

solely by ω, as discussed in the main text under Restructuring guidelines.

3.2 Neuronal dynamics

We consider the Cowan-Wilson model [9, 10] for excitation in neuronal networks, writing

dxi
dt

= −xi + ω

N∑

j=1

Aij
1

1 + eµ−δxj
, (3.16)

which we examine under µ = 5 and δ = 1.
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Figure 4: Neuronal dynamics. (a) The Cowan-Wilson model. (b) x̄ vs. β as obtained
from Eq. (3.18) with µ = 5, δ = 1. The system exhibits two potential states x̄0 (red) and
x̄1 (green), separated by a bi-stable phase (grey shaded). (c) F (x) (purple) from (3.22) and
M2(x) (yellow) from (3.21) for an unrecoverable system (ω = 3.82, left) and a recoverable
one (ω = 4.5, right).

3.2.1 Free system

To obtain the fixed-points of the system we use the mapping of (1.4) to reduce (3.16) into

dx̄

dt
= −x̄ + β

1

1 + eµ−δx̄
, (3.17)

whose fixed-points follow

β = x̄α(1 + eµ−δx̄α). (3.18)

Plotting x̄ vs. β (Fig. 4b) we obtain the dynamic phases of the system - the inactive state

x0 (red), in which all activities are suppressed, is obtained when the network is extremely

sparse, i.e. small β; the active x1 (green), in which xi are relatively high, is observed when

β is large. In between these two extremes the system features a bi-stable phase, in which

both x0 and x1 are potentially stable. These phases are separated by two critical points

βc,1 < βc,2, predicting a hysteresis phenomenon: if β was driven below βc,1 and the system

has failed, it will not spontaneously recover unless we retrieve β to be above βc,2. Hence,

we seek the sub-space within the bi stable regime, βc,1 < β < βc,2, in which the system can

reignited.

3.2.2 Reigniting

The relevant functions to construct F (x) (2.33) are
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R(x) = x, (3.19)

R−1(x) = x, (3.20)

M2(x) =
1

(1 + eµ−δx)
, (3.21)

from which we obtain

F (x) =
x

ω
− κM2

(
ωM2(x) + ωκM2(x̄0)

)
. (3.22)

Once again we arrive at a function which depends on κ and ω, sometimes following the

unrecoverable case 1 (Fig. 4c, left), and sometimes following the recoverable case 3 (Fig. 4c,

right).

3.3 Mutualistic population dynamics

We examine symbiotic interactions in ecological networks, such as plant-pollinator relation-

ships captured by

dxi
dt

= F +Bxi

(
1− xi

C

)
(xi −K) + ω

N∑

j=1

Aijxixj. (3.23)

The self dynamics describes migration at a rate F coupled with logistic growth at rate B,

with the system carrying capacity set to C, and the Alley effect with strength K. The

mutualistic interaction follows the Lotka-Volterra form xixj. In our simulations we set

F = 5, B = 0.9, C = 3 and K = 10.

3.3.1 Free system

Using Eq. (1.4) we write

dx̄

dt
= F +Bx̄

(
1− x̄

C

)
(x̄−K) + βx̄2, (3.24)

obtaining the fixed-points from

β =
−FC +Bx̄(x̄− C)(x̄−K)

Cx̄2
. (3.25)

In Fig. 5b we plot x̄ vs. β as obtained from Eq. (3.25) finding two phases. For β < βc we

observe two fixed-points, x̄0 (red) and x̄1 (green), a bi-stable phase, and for β ≥ βc a single

active state x̄1.
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Figure 5: Ecological dynamics. (a) Our mutualistic population dynamics model. (b) x̄
vs. β as obtained from Eq. (3.25). The system features a bi-stable phase (grey shaded),
then at β ≥ βc transitions to a single active fixed-point. (c) R(x) vs. x (purple) as obtained
from (3.27). The function is non-monotonic and hence R−1(x) (yellow) is ill-defined. The
dual range in which R−1(x) admits ambiguous solutions (grey shaded) is directly related
to the bi-stable phase of the system via Eq. (3.29). The relevant branch is only the lower
one, associated with the failed state of the system, on which we employ our reigniting. (d)
We preserve only the lower branch by replacing the original R(x) (purple dashed line) with
a monotonous R̃(x), in which we introduce a plateau instead of the non-monotonic range
(purple solid line). The resulting function can now be unambiguously inverted (yellow).
(e) F (x) (purple) from (3.30) and M2(x) (yellow) from (3.26) for an unrecoverable system
(ω = 0.2, left) and a recoverable one (ω = 0.3, right).

3.3.2 Reigniting

Here the functions comprising F (x) in (2.33) are
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M2(x) = x, (3.26)

and

R(x) = −F
x
−B

(
1− x

C

)
(x−K). (3.27)

The challenge is that in order to construct F (x) we must invert R(x), which as indicated in

Fig. 5c is non-monotonic and hence, in principle, non-invertible. The result is that R−1(x)

is ill-defined for a certain range of x, matching potentially two values for the same x. This

ambiguity is directly related to the bi-stability of x̄0 and x̄1 in the range β < βc. Indeed,

Eq. (3.25) can be written in the form

βx̄ = R(x̄), (3.28)

from which is follows that

x̄ = R−1(βx̄), (3.29)

in which the ambiguous value of R−1(βx̄) for β < βc is precisely to root of the observed

bi-stability. It, therefore, follows that of the two branches in R−1(x) the relevant branch is

the one associated with x̄0, as, indeed, the reigniting is applied on the failed state. Hence,

to correct for this ambiguity we use a similar construction to the one shown in Fig. 2d when

treating the non-monotonic F (x), namely, we eliminate the non-monotonic range of the

function by replacing it with a constant plateau. This leads to the corrected R̃(x) shown in

Fig. 5d, in which the original function (dashed-line) is replaced by a corrected monotonic

R̃(x) (solid line). Its inverse R̃−1(x) is now well-defined, and, most importantly, suitable to

predict the system’s response to reigniting from a failed initial condition. We can now use

this corrected function to construct F (x) in (2.33) providing

F (x) =
R̃(x)

ω
− κR̃−1

(
ωx+ ωκx̄0

)
. (3.30)

We can now systematically use our cobweb plots to assess the system recoverability for

different combinations of ω and κ (Fig. 5e).
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4 Numerical analysis

4.1 Numerical integration

To numerically test our predictions we constructed Eq. (1.1) for each of the systems in

Sec. 3, using the appropriate Aij (Scale-free, Erdős-Rényi, empirical, etc.). We then used

a second-order Runge-Kutta stepper (Matlab’s ode23) to numerically solve the resulting

equations. Starting from a pre-selected initial condition xi(t = 0), i = 1, . . . , N we allowed

the system to reach steady-state by waiting for ẋi → 0. To numerically realize this limit we

implemented the termination condition

N
max
i=1

∣∣∣∣
xi(tn)− xi(tn−1)

∆tn

∣∣∣∣ < ε, (4.1)

where tn is the time stamp of the nth Runge-Kutta step and ∆tn = tn− tn−1. As the system

approaches a steady-state, the activities xi(tn) become almost independent of time, and

the numerical derivative ẋi = (xi(tn) − xi(tn−1))/∆tn becomes small. The condition (4.1)

guarantees that the maximum of ẋi over all activities xi(tn) is smaller than the pre-defined

termination variable ε. In our simulations, across the different dynamics we tested, we set

ε ≤ 10−2 to ensure that our system is sufficiently close to the true steady-state.

In case of bi-stability we examined the convergence of the system from multiple initial

conditions. For example, setting x(t = 0) to a low value in B0 ensures convergence to x0, in

case x0 is stable; setting it in B1 ensures convergence to x1, in case x1 is also stable. If only

one of the states is stable - all initial conditions will converge to that single fixed-point.

4.2 Reigniting

To simulate reigniting we set the system at the initial condition to x(t = 0) = x0. We then

select a random node s, decouple it from the remaining N equations and set its state to

xs(t) = ∆. Together with the remaining N − 1 equations of (1.1) we arrive at Eq. (2.1),

which takes the form





xs(t) = ∆

dxi
dt

= M0(xi) + ω
N∑

j=1

AijM1(xi)M2(xj) i 6= s
. (4.2)

Integrating this equation until reaching steady-state, i.e. condition (4.1), we find the final

state xForced of the forced system. We then relax our forcing, re-couple xs(t) to the remaining

N−1 equations, and allow the system to reach its final state. This is achieved by setting the

new initial condition to x(t = 0) = xForced, and numerically solving Eq. (1.1) until reaching

steady-state. In case xForced ∈ B1, a successful reigniting, the system will reach x1. If,

however, our reigniting failed, and xForced remains in B0, the system, after forcing ceases,

will revert to the undesired x0.
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4.3 Constructing the phase diagrams in Figs. 3-5

We used the Erdős-Rényi random network model with different connection probabilities p

to construct a set of 150 networks with N = 104 nodes each, spanning a range of residual

degrees κ, as detailed in Table 1. Together, for each system we examined 15 different values

of κ, with 10 independent realizations for each value. For example, in our Cellular dynamic

we first set p = 3× 10−4, which, on average, for an Erdős-Rényi random network, provides

κ ≈ 3. We then constructed 10 such networks, to gain several realizations of the same

random graph. Repeating the process for higher p values we arrive at 10 × 15 networks,

comprising 10 realizations of 15 different κ values.

Next, we matched each of these networks with different weights ω whose range is shown in

Table 1. These ranges of κ, ω is selected in each system to best portray the different phases.

Gradually increasing ω for each of the 150 networks we observed the critical transition

points between active, inactive, bi-stable, recoverable and non-recoverable states. Together

this process examined a repository of thousands of different networks with varying κ and ω.

For each of these networks we obtained the steady-state/s as explained in Sec. 4.1, observing

whether they are in the active, inactive or bi-stable regime. We then also tested whether

they are recoverable via single-node reigniting, following Sec. 4.2. As explained each data

point (κ, ω) in the resulting phase-diagrams is obtained from averaging over 10 independent

realizations. In each realization we selected randomly the source node for reigniting.

4.4 Model and empirical networks

We used model and real networks, as summarized below:

ER. Erdős-Rényi random networks with N = 104 nodes and varying connection probability

p, to inspect the range of κ values. The phase diagrams were formed using this set of model

networks.

PPI Yeast (Regulatory). The yeast protein-protein interaction network, an empirical scale-

free consisting of 1, 647 nodes (proteins) and 5, 036 undirected links, representing chemical

interactions between proteins [11].

PPI Human (Regulatory). The human protein-protein interaction network, a scale-free

network, consisting of N = 2, 035 nodes (protein) and L = 13, 806 protein-protein interac-

tion links [12].

Brain (Neuronal). Mapping the physical fiber bundle connections between 998 brain re-

gions, as measured using diffusion tensor imaging techniques [13]. The empirical network is

relatively dense, having κ = 41.91, rendering naturally deep in the right hand side of the

phase diagram (Fig. 4d, main text). In this limit the recoverable phase is practically un-

observable, as the system transitions directly from the unrecoverable phase (yellow) to the

spontaneously active phase (green). Therefore, to observe the recoverability, we examined

reigniting on a perturbed Brain network in which we randomly deleted 83.9% of the links,

bringing our network to κ = 6.61. Under these conditions we can construct two networks -

one unrecoverable with small ω (Fig. 4d, orange dot), and the other recoverable with larger
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System Model Parameters Networks 𝜿 Range 𝝎 Range

Cellular
𝐝𝒙𝒊
𝐝𝒕

= −𝑩𝒙𝒊
𝒂 +𝝎෍

𝒋=𝟏

𝑵

𝑨𝒊𝒋
𝒙𝒋
𝒉

𝟏 + 𝒙𝒋
𝒉

𝑩 = 𝟏
𝒂 = 𝟏
𝒉 = 𝟐

ER

PPI Yeast

PPI Human

𝟑 < 𝜿 < 𝟑𝟎 𝟎. 𝟎𝟑 < 𝝎 < 𝟓

Neuronal
𝐝𝒙𝒊
𝐝𝒕

= −𝒙𝒊 +𝝎෍

𝒋=𝟏

𝑵

𝑨𝒊𝒋
𝟏

𝟏 + 𝒆𝝁−𝜹𝒙𝒋
𝝁 = 𝟓
𝜹 = 𝟏

ER

Brain
𝟑 < 𝜿 < 𝟐𝟓 𝟎 < 𝝎 < 𝟖

Ecological
𝐝𝒙𝒊
𝐝𝒕

= 𝑭 + 𝑩𝒙𝒊 𝟏 −
𝒙𝒊
𝑪

𝒙𝒊 −𝑲 +𝝎෍

𝒋=𝟏

𝑵

𝑨𝒊𝒋𝒙𝒊𝒙𝒋

𝐅 = 𝟓
𝑩 = 𝟎. 𝟗
𝑪 = 𝟑
𝑲 = 𝟏𝟎

ER

Eco

𝟒 < 𝜿 < 𝟒𝟎 𝟎. 𝟎𝟗 < 𝝎 < 𝟐

Table 1: Summary of models and parameters. For each system we show the relevant
dynamic equation (Model), and the parameters we used in our simulations. Each system
was examined on a set of relevant networks. When construction the phase-diagrams of Fig.
3 - 5 of the main text, we use Erdős-Rényi networks with a range of κ and ω values, as
shown in the two rightmost columns.

ω (Fig. 4d, light blue dot).

ECO (Ecological). To construct the mutualistic ecological networks we collected data on

symbiotic interactions of plants and pollinators in Carlinville Illinois from [14]. The resulting

456 × 1, 429 network Mnm is a bipartite graph linking the 456 plants (n = 1, . . . , 456)

with their 1, 429 pollinators (m = 1, . . . , 1, 429). When a pair of plants is visited by the

same pollinator they mutually benefit each other indirectly, by increasing the pollinator

population. Similarly pollinators sharing the same plants also share an indirect mutualistic

interaction. Hence we can collapse Mik to construct either the pollinator of the plant

network. Here we used the larger 1, 429× 1, 429 pollinator network

Aij =





1 if
456

max
k=1

(
MkiMkj

)
> 0

0 if
456

max
k=1

(
MkiMkj

)
= 0,

(4.3)

which prescribes a link (Aij = 1) between pollinators i and j if they share at least one

mutual plant. This process potentially allows us to have isolated components, e.g., single

disconnected nodes. The state of these isolated nodes is decoupled from the state of the

rest of the network, and hence in our analysis we only focused on the giant connected

component of Aij, comprising only 1, 044 pollinators, eliminating 385 isolated pollinators in

Aij. Similarly to the Brain networks, also here we examine reigniting on a sparse network,

in which we removed 50.11% of the links, setting κ to 11.13, in the area that allows us to

examine the window of recoverability (Fig. 4i, main text).
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