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A B S T R A C T   

Lightning strikes pose a severe threat to the United States (US) National Airspace System (NAS). Although the US 
Federal Aviation Administration (FAA) implements lightning protection practices and procedures to protect 
personnel, electronic equipment, and structures within the NAS, many lightning-induced outages still occur. To 
date we found that most research on lightning-induced facility outages has focused on understanding the 
physical processes of lightning strike effects on aircraft and airport ramp operations. Very little research has been 
done on examining the overall patterns and characteristics of such hazards to aviation from a geo-spatial 
standpoint. To bridge this gap, we analyze nationwide lightning strike spatiotemporal data and FAA airport 
facility outage records from 2009 through 2020 and apply innovative pattern recognition methods to identify key 
characteristics of lightning strike hazards. Our results uncover the complexities of lightning strike hazard impact 
patterns to NAS facilities, identifying five distinct typologies with climatological signatures critical to creating 
better hazard mitigation strategies.   

1. Introduction 

As a global leader in the air transportation industry, the United States 
(U.S.) has carried the highest number of passengers for many decades 
(The World Bank Group, 2021). In addition, the U.S. operates one of the 
most complex air transportation systems world-wide, and the safety and 
efficiency of its air traffic operations depend on the reliability of 
equipment and facilities that compose the National Airspace System 
(NAS). The Federal Aviation Administration (FAA) is responsible for 
maintaining and operating over 40,000 NAS facilities and equipment, 
installed at approximately 6,000 locations across the U.S. (FAA, 2016). 
These NAS facilities and equipment are critical enablers of airspace 
surveillance, weather monitoring, aircraft navigation, and airport 
ground operations. A major impediment to air traffic reliability is the 
frequency at which the communication, navigation and surveillance 
(CNS) systems, air traffic control towers, and other infrastructure sys
tems experience failures due to electrical power interruptions (Bates, 
Seliga, & Weyrauch, 2001). These failures are most often associated with 
power system transients that result from the occurrence of lightning 

strikes in the vicinity of airport facilities. Based on the FAA’s system 
outage database, lightning strike hazard is one of the top three envi
ronmental causes for power interruptions of airport facilities, respon
sible for over 14% of natural hazard-triggered outages, making it one of 
the most frequent threats to critical equipment and operations at air
ports (ICF International, 2016). Lightning strikes can cause severe 
damage to airport equipment and facilities such as localizers, airport 
surveillance radars, runway lights, air traffic control towers, and 
communication lines. They can also injure ground personnel on aircraft 
parking aprons and ramps, air traffic controllers and technicians, and 
boarding or deplaning staff and passengers (Tarimer, Kuca, & Kisiele
wicz, 2012). 

Lightning strikes are initiated by large electric fields either between 
cloud and earth, between clouds (inter-cloud) or within clouds (intra- 
cloud). A high electrically-conductive plasma channel is generated when 
this electric field reaches 25–30 kilovolt per meter (kV/m) (Ma, Wang, 
Chen, Wang, & Xu, 2020; Wang et al., 2020), which could lead to a 
discharge current of in excess of 200 kiloampere (kA) (Uman, 2001). 
One entire discharge, i.e., a lightning flash, is usually made up of several 

* Corresponding author at: 412 Wurster Hall, Berkeley, CA 94720, United States. 
E-mail address: yiyi_he@berkeley.edu (Y. He).  

Contents lists available at ScienceDirect 

Computers, Environment and Urban Systems 

journal homepage: www.elsevier.com/locate/ceus 

https://doi.org/10.1016/j.compenvurbsys.2021.101735 
Received 29 April 2021; Received in revised form 6 October 2021; Accepted 9 November 2021   

mailto:yiyi_he@berkeley.edu
www.sciencedirect.com/science/journal/01989715
https://www.elsevier.com/locate/ceus
https://doi.org/10.1016/j.compenvurbsys.2021.101735
https://doi.org/10.1016/j.compenvurbsys.2021.101735
https://doi.org/10.1016/j.compenvurbsys.2021.101735
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compenvurbsys.2021.101735&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computers, Environment and Urban Systems 91 (2022) 101735

2

shorter discharges, i.e., single lightning strokes, which last less than a 
millisecond and repeat rapidly. Lightning flashes possess strong 
destructive capacity and high hazard potential that may cause serious 
damage to aircraft (Abdelal & Murphy, 2017; Fisher & Plumer, 1977; 
Gagné & Therriault, 2014), airport infrasturcture (Bejleri et al., 2004) 
and airspace facilities (Ding & Rakas, 2015; He, Lindbergh, Rakas, & 
Graves, 2019), either directly through thermal ablation or indirectly 
through electromagnetic interference (Ma et al., 2020). Direct thermal 
ablation originates from the interaction of the non-steady lightning 
plasma channel discharging an electric current, inducing a severe heat 
flux at the surface of facilities and results in pitting, melt-through and 
erosion of equipment materials (Wang & Zhupanska, 2015). The indirect 
effects of lightning are caused primarily by earth-voltage increase, 
which occur during and after lightning discharge and by the intense 
electromagnetic field associated with the flash. These fields and earth- 
voltage rises have enough energy to cause damage a kilometer or 
more outwards through air or ground, where electromagnetic fields can 
penetrate significant depths downwards from the actual strike (Rabbani 
& Oo, 2019). Strikes, on or near overhead conductors, can also cause 
current and voltage surges, which, independent of distance from the 
strike, may be transferred along circuit lines and damage connected 
equipment in the subsystem (Panteli & Mancarella, 2015). 

Current climate model projections suggest an intensification of pre
cipitation and convective storm activities in the United States (Lend
erink & van Meijgaard, 2008; Liu et al., 2017; Prein et al., 2017a; Prein 
et al., 2017b) and the temporal frequency, spatial density and severity of 
lightning strikes are likely to increase in the future (Romps, Seeley, 
Vollaro, & Molinari, 2014). To climate-proof aviation infrastructures 
from environmental hazards, especially lightning strikes, the FAA has 
allocated its resources to improve lightning protection systems. The FAA 
puts forth standards for Lightning and Surge Protection, Grounding, 
Bonding, and Shielding (LPGBS) for NAS facilities. Aligned with industry 
standards for lightning hardening from the Electronic Industries Alli
ance (EIA), the National Fire Protection Association (NFPA), the Insti
tute of Electrical and Electronic Engineers (IEEE) and others, the FAA 
standards provide minimum requirements for procurement, design, 
installation, implementation, operation, and maintenance of LPGBS 
systems. These industries, led by the FAA, also assign responsibilities for 
the protection of people, sensitive electrical and electronic equipment, 
and structures of the NAS operational facilities (FAA, 2018). Although 
standards and procedures for hardening NAS facilities and infrastructure 
have significantly improved over time, lightning-induced outages still 
occur across the NAS. Research on lightning threats to structures on the 
ground, traditionally developed within electrical and electronic engi
neering communities, follows national and international standards on 
lightning protection. However, climatological lightning hazard param
eters are restricted to two basic parameters: occurrence and density. 

Past approaches to the assessment of climatological patterns asso
ciated with lightning hazard and the damage caused by lightning strikes 
are mainly qualitative or semi-quantitative, relying mostly on expert 
judgment (Necci et al., 2014). Recent studies on lightning hazard and 
risk assessment show lightning intensity (i.e. peak current) (He, Lind
bergh, Graves, & Rakas, 2020; Shindo & Suda, 2008) along with its 
occurrence pattern (Tovar, Aranguren, López, Inampués, & Torres, 
2014) as predominant climatological hazard characteristics. Few studies 
incorporated other lightning climatological hazard characteristics such 
as polarity, average lightning intensity, average steepness of the front 
impulse current (Yu & Ren, 2014), cumulative value of lightning current 
(Ishimoto, Asakawa, & Shindo, 2017), multiplicity (He et al., 2019; He 
et al., 2020), and action integral (i.e. specific energy) (Rakov, 2010). 
Even fewer studies examined in detail how major climatological light
ning hazard parameters might explain lightning-induced outages at 
large spatial and temporal scales. A comprehensive understanding of the 
complex lightning hazard impact patterns to NAS facilities is still absent 
in current aviation research. We bridge this gap through ‘dissecting’ 
lightning strike hazard impact patterns to NAS facilities in the 

contiguous United States (CONUS) by combining spatiotemporal data of 
lightning strike records from the National Lightning Detection Network 
(NLDN) and facility outage data created and maintained by the FAA. Our 
study assessed 5,565 lightning-induced facility outages and their 
respective lightning strike occurrences impacting 111 types of NAS fa
cilities in the last 11 years. Our results specify, for the first time, 
spatiotemporal characteristics of NAS-outage related lightning intensity 
at the CONUS scale which can be generalized to airports suffering from 
lightning impacts worldwide. In addition, the results show that five ty
pologies, or specific combinations of lightning intensity (i.e. maximum 
peak current), multiplicity1, spatial proximity to the impacted facility, 
and temporal proximity to outage occurrence, better depict climato
logical hazard parameters of lightning strikes to aviation infrastructure. 

2. Methods 

2.1. Lightning flash time series clustering 

Past research in time series clustering falls into 3 main categories: 
shape-based (raw-data-based) (Faloutsos, Ranganathan, & Man
olopoulos, 1994; Golay et al., 1998; Liu, Maharaj, & Inder, 2014; Sakoe 
& Chiba, 1978; Vlachos, Kollios, & Gunopulos, 2002; Zhang, Wu, Yang, 
Ou, & Lv, 2009), model-based (Aßfalg et al., 2006; Chen, Nascimento, 
Ooi, & Tung, 2007; Corduas & Piccolo, 2008; Minnen, Isbell, Essa, & 
Starner, 2007; Panuccio, Bicego, & Murino, 2002; Smyth, 1996; Xiong & 
Yeung, 2002) and feature-based (Chan & Fu, 1999; Guo, Jia, & Zhang, 
2008; Keogh, Chakrabarti, Pazzani, & Mehrotra, 2001; Keogh & Paz
zani, 1998; Möller-Levet, Klawonn, Cho, & Wolkenhauer, 2003; Popi
vanov & Miller, 2002; Zhang, Ho, Zhang, & Lin, 2006). Shape-based 
approaches cluster time series by applying modified similarity/distance 
measure on raw time series that are stretched or contracted along the 
time axis. Model-based approaches fit time series with parametric 
models which then translate into model parameters. These parameters 
are then fed into a clustering algorithm with suitable model distance 
which yields final partitioning results (Warren Liao, 2005). Feature- 
based approaches extract a low-dimensional feature vector from each 
time-series, followed by a conventional clustering algorithm usually 
with Euclidean distance measurement (Aghabozorgi, Seyed Shirkhor
shidi, & Ying Wah, 2015; Hautamaki, Nykanen, & Franti, 2008). Unlike 
previous approaches, which are either sensitive to noise in data or 
subject to heavy model assumptions, feature-based methods are more 
robust to noise, require no user assumptions and can be easily tailored to 
incorporate specific research objectives. We therefore adopt a unique 
feature-based clustering approach to identify distinct typologies in 
lightning flash time series. 

In this study, we extract 1,509 lightning flash time series directly 
associated with NAS facility outages (outage code: 85-32) for 279 air
ports over the past 11 years (January 1st, 2009 to June 30th, 2020) from 
publicly available records provided in the NLDN database based on 
spatial and temporal criteria. Spatially, lightning flashes within the 15 
nautical mile3 (NM) radius area around the Air Traffic Control Towers 
(ATCTs) of airports are retrieved. According to the statistical model 
developed by Vidal and Rakas (Vidal and Rakas, 2010), the 15 NM 
radius is a spatial window that represents the maximum area in which a 
strike can be considered as a potential trigger to an NAS outage. 
Temporally, lightning flashes that occurred <1 h prior to the time of an 
outage (code 85-3) are retrieved. Each lightning flash time series X 

1 Number of lightning strokes within a lightning flash.  
2 The FAA outage data used in the analysis were manually gathered on-site by 

NAS maintenance technicians. A coded system is used to identify the airport to 
which each NAS facility belongs and to classify the outages based on their 
cause. Code 85-3 refers to lightning strike induced facility outages.  

3 A nautical mile is a unit of length used in air, marine, and space navigation. 
One nautical mile is defined as exactly 1,852 meters (6,076 ft; 1.151mi). 
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contains multiple lightning flash records xi, each with 5 raw attributes: 
time of occurrence, polarity, multiplicity, peak current, and geographic 
location. Leveraging information about the locations of the airports’ 
ATCTs, we are able to calculate the distance of each flash to the ATCT 
and add it to the existing list of attributes. Here, the distance to ATCT is 
used as an approximation to the distance between a lightning flash and 
an individual facility. We also estimate the action integral (Gamerota, 
Elismé, Uman, & Rakov, 2012; Hirano, Katsumata, Iwahori, & Todoroki, 
2010), i.e. energy per unit resistance at the strike point. The equation 
used to calculate action integral is 

∫
i2dt where i is the lightning current. 

We assume a standardized lightning waveform that is compliant with 
the U.S. military standard (MIL-STD-464C (DOD, 2010)) based on which 
the duration of one strike is approximately 500 microseconds. For 
lightning flashes with a multiplicity greater than one, we assume that 
the peak current of the first lightning stroke equals the value of the peak 
current attribute of the entire flash Pmax, and the peak current of the 
subsequent strokes is Pmax

2 due to attenuation in the electrical current of 
lightning waveforms. Moreover, we measure the time gap (in seconds) 
from the time of each flash xi to the time of the NAS outage. In total, we 
summarized 6 unique attributes characterizing each lightning flash time 
series: polarity, peak current, multiplicity, distance to ATCT, action in
tegral, and time to the outage; i.e. X = [x1,x2,…,xn], xi ∈ ℝ6. 

Each lightning flash xi can be mapped into a 6-dimensional space as a 
point based on its attributes. All lightning flash time series (containing 
multiple lightning flashes) can therefore be represented as a set of points 
in the same 6-dimensional space. To identify interpretable attribute 
combinations in the multidimensional feature space and create a uni
form analytical framework for time series with variable lengths, we 
propose an innovative “grid-based” approach to transform multivariate 
time series data into N-dimensional vectors. This is achieved through 
dividing each of the dimensions/attributes into multiple bins recording 
the counts of lightning flashes under a multidimensional unit (see also 
Supplementary Table 2). Formally, let us denote Ai the ith attribute, Di 

the number of bins for attribute i, and Aij the jth bin of attribute Ai. The 
resulting feature space would be a cross product of all attributes, and the 

new feature space has a total of 
∏6

i=1
Di = 5400 dimensions. This process 

transforms each time series into a 5400-D vector, X ∈ ℝ5400, which is 
then fed into the pattern recognition stage. 

2.2. Pattern recognition 

We perform unsupervised clustering on the 5,400-D vectors to 
identify different lightning hazard impact typologies. It should be noted 
that most, if not all, unsupervised clustering methods (e.g. k-means) do 
not directly yield interpretable results. This occurs partially because the 
clustering outputs are usually determined by all features, making it 
difficult to discern commonalities between points of the same cluster 
(Moshkovitz, Dasgupta, Rashtchian, & Frost, 2020). In the field of ma
chine learning, the decision tree is recognized as a canonical example for 
best model interpretability. Similar to previous works (Frost, Moshko
vitz, & Rashtchian, 2020; Moshkovitz et al., 2020), we perform 
explainable unsupervised clustering in order to provide explicable pat
terns in lightning time series that are directly associated with NAS 
outages of the lightning strikes that result in outages. 

First, we perform vanilla k-means (MacQueen, 1967) clustering on 
the processed dataset. Given a set of observations (X1, X2, …, Xn), where 
each observation is a D-dimensional vector, vanilla k-means aims to 
partition the observations into k (≤n) sets S = {S1, S2, …, Sk} so as to 
minimize the within-cluster sum of squares. Formally, the objective is to 
find: 

arg min
S

∑k

i=1

∑

X∈Si

⃦
⃦X − μi

⃦
⃦2

2 (1)  

where μi is the mean of points (i.e. centroid/cluster center) in Si, and ‖∙‖
represents the ℓ2norm of the vector. To decide the optimal value for 
parameter k, we calculate the Inertia value and the Silhouette Score. 
Inertia evaluates the internal coherence of clusters by calculating the 
sum of squared distances between each instance and its assigned 
centroid: 

∑n
j=1Xj − μyj , where yj is the index of the closest cluster center 

to Xj, i.e. yi = argmin
1≤j≤k

⃦
⃦Xi − μj

⃦
⃦2

2. Smaller inertia values suggest better 

clustering outcomes. Intuitively, larger k yields smaller inertia yet the 
resulting clusters shrink in size as well as in between-cluster dissimi
larity. The elbow method is often applied in practice to determine the 
smallest k with diminishing returns in terms of inertia decrease. 
Silhouette Coefficient (Rousseeuw, 1987) is defined as p− q

max(p,q)
, where q is 

the mean distance to the other instances in the same cluster and p is the 
mean distance to the instances of the next closest cluster. After inertia 
and Silhouette Score calculation, k = 5 is chosen as the optimal number 
of clusters and μ1, μ2, …, μk represent cluster centers after applying 
vanilla k-means. 

Second, we build a decision tree top-down with binary splits. A tree 
structure is particularly useful in high-dimensional space since the 
number of clusters is much smaller than the input dimension (5 ≪ 
5,400). The tree consists of a root node, k leaves and multiple internal 
nodes, each containing a single decision feature and an associated 
threshold value. Each decision node (the root node and all internal 
nodes) partitions the input space into 2 hyper-rectangular cells with no 
overlaps. Starting at the root node, an initial feature i with a threshold is 
selected such that it produces the least mistakes when parsing input data 
through the node. A mistake occurs when a data point Xj and its corre
sponding cluster center μyj are partitioned into different cells at the 
decision node. With dynamic programming, we search for the optimal 
splitting rule (i,τ) efficiently (Eq. (2)). Next, if 2 or more cluster centers 
fall within the same cell, another split is legitimized. All data points 
whose cluster centers lie outside of the cell are intentionally left out 
since they are considered as mistakes in the previous splits. This process 
is performed recursively on the left and right children until each leaf 
node is pure (i.e., contains only one cluster center). 

i, τ = argmin
i,li≤τ≤ri

∑m

j=1
mistake

(
Xj, μyj

, i, τ
)
,

mistake
(

Xj, μyj
, i, τ

)
=

⎧
⎨

⎩

1
(
Xj

i ≤ τ
)

∕=
(

μyj

i ≤ τ
)

0 else
(2) 

It should be noted that the true representation space of individual 
clusters are not necessarily hyper-rectangular. The approach to creating 
a binary tree above is likely to introduce large bias in classification re
sults. In other words, data points are systematically misclassified due to 
the rigid decision boundary of the binary tree classifier that has few leaf 
nodes. To balance the bias-variance tradeoff in this approach, we use 
ExKMC (Frost et al., 2020) to allow more flexibility to the previous 
decision tree. We expand the original binary tree with k leaf nodes to one 
with k′ nodes (k′ ≥ k) based on a surrogate cost and associate/classify 
each of the k′ leaves with one of the cluster centers i. The surrogate cost 
is defined as follows: given k cluster centers M = [μ1,μ2,…,μk], and a 

binary tree T which defines clustering 
(

Ĉ
1
, Ĉ

2
,…, Ĉ

k′ )
, the surrogate 

cost c̃ostM
(T) =

∑k′

j=1
∑

x∈Ĉ
j

⃦
⃦
⃦x − μcj

⃦
⃦
⃦

2

2
, where cj = argmini∈[1,k]

∑

x∈Ĉ
j
‖x − μi‖

2
2. 

For each leaf node nleaf with associated samples Xleaf, the gain by split
ting nleaf is calculated as (Eq. (3)), where XL = {x ∈ X|xi ≤ τ} and XR = {x 
∈ X|xi > τ}. Finally, we split the leaf node with the largest gain into two 
child nodes nnewL and nnewRand compute gain(nnewL) and gain(nnewR) 
respectively. This expansion process is repeated recursively until the 
tree has exactly k′ leaf nodes. In our analysis, k′ = 2k = 10 is chosen as 
the optimal value for all experiments in this study based on sensitivity 

Y. He et al.                                                                                                                                                                                                                                       



Computers, Environment and Urban Systems 91 (2022) 101735

4

testing. 

gain
(
nleaf

)
= c̃ostM (

Xleaf
)

− c̃ostM
(XL) − c̃ostM

(XR), (3)  

2.3. Critical feature identification 

Due to the non-deterministic characteristic of the above unsuper
vised clustering method, the resulting clusters may not accurately 
describe the semantic structure of the input lightning flash time series. 
To mitigate the randomness and capture the semantic structure more 
robustly, we propose to repeat the clustering process on the lightning 
dataset m times (m is set to 10,000 in this study), and assemble the 
clustering results into a fully connected graph. 

Formally, let’s denote the set of lightning flash time series as X =
{
X1,X2,…,Xn}

, and m clustering models as M = {M1,M2,…,Mm}, in 
which Mi(Xj) returns the cluster label of time series sample Xj in the ith 

cluster model. Combining X and M, we build a weighted complete 
graph G = {V, E}, where each node nj represents a lightning time series 
Xj and an edge (ni,nj) denotes that ni and nj are in the same cluster. 
Theoretically, this complete graph has n nodes and n(n− 1)

2 edges, with 
edge weight wij which corresponds to the number of times (out of m) that 
Mi(Xi) and Mi(Xj) returns the same cluster label i.e. wij = ∣ {m : m ∈ M,m 
(Xi) = m(Xj)}∣. An edge (ni,nj) with large weight suggests a closer rela
tionship between Xi and Xj since they are often grouped into the same 
cluster. After the graph is created, we prune edges with smaller weights 
with a specific threshold, i.e., (ni,nj) is removed from G if wij < τ, where τ 
is the threshold hyper-parameter. We test the effect of different values 

(from small to large) on pruning results and discover that the resulting 
graph G′ is relatively stable even when taking on larger values such as 
5,000. After pruning, we identify k cliques/connected components 
within G′to arrive at the final clustering result. 

To pinpoint a subset of features (among 5,400 total) that best ex
plains the key characteristics of time series that share the same cluster 
label, a critical feature identification process is developed to evaluate 
the importance of features. Leveraging information of the decision nodes 
in binary trees created beforehand, we record the number of occurrences 
Ci when a feature is identified to be associated with a decision node Ci =

[Ci1,Ci2,…,CiD ], where D = 5,400. Then we compute the cumulative 
count over all decision trees: Cacc =

∑

i
Ci = [C1,C2,…,CD] and sort out 

top 10 features with higher Cacc (see Supplementary Table 3 for details). 

3. Results 

3.1. Beyond the peak current 

Peak current, or lightning intensity, is shown to be highly correlated 
with thermal and mechanical damage typologies to infrastructure that 
are exposed to lightning hazards in empirical studies (Ma et al., 2020; 
Millen, Murphy, Catalanotti, & Abdelal, 2019; Muñoz et al., 2014). We 
first explore spatiotemporal characteristics of NAS outage-related 
lightning strike peak current and go beyond to show how specific 
combinations of different climatological lightning hazards parameters 
can become better indicators of lightning damage potential to NAS 

Fig. 1. Lightning strike time series extracted from NLDN. a. Distribution of the total number of lightning flash time series extracted for airports in CONUS and spatial 
criterion for lightning flash time series extraction using Morristown Airport (MMU) as an example. All flashes within 15 NM radius from the location of MMU’s ATCT 
are included in initial consideration. b–d. 3D scatter plots of combinations of lightning flash attributes (polarity, peak current, multiplicity, distance to airport, action 
integral, and time to the outage) using one lightning flash time series at MMU airport. 
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facilities. In this study, a total of 1,509 lightning strike time series 
directly associated with NAS facility outages (cause code 85-3) were 
extracted from the NLDN database over the past 11 years for a total of 
284 distinct airports in the CONUS (Fig. 1a). Each time series contains 
multiple lightning flash records with attributes indicating the location 
where the flash occurred, peak current of the first stroke, polarity, and 
multiplicity (Fig. 1b–d). A spatiotemporal screening criterion was 
applied to include lightning flashes that occurred within 15 NM radius of 
the airports’ air traffic control tower (ATCT) and 1 h time window to the 
NAS outages (see Methods for details). The spatial distribution of these 
time series reveal a heterogeneous lightning hazard impact pattern with 
more lightning-induced outage occurrences in Northeastern, South
eastern and Midwestern states than Western and Southwestern states. 
Airports, namely Savannah/Hilton Head International Airport (SAV), 
Duluth International Airport (DLH), Tri-Cities Airport (TRI), Chatta
nooga Airport (CHA), and Charleston International Airport (CHS) have 
the highest outage occurrences of all-28, 28, 27, 26 and 25 respectively 
(see also Supplementary Table 1 for more details). 

Our spatiotemporal assessment of the maximum peak current dis
tribution of NAS outage-related lightning strikes in the CONUS (Fig. 2) 
shows that the kernel density curve of the maximum peak current values 
of all time series peaks around 100 kA with a minimum of 20.2 kA and a 
maximum of 427.6 kA (Fig. 2a). To investigate the spatial distribution of 
maximum peak current values, we grouped the lightning strikes 
maximum peak current values by airport and extracted the maximum 
and minimum values of the maximum peak current. The 75th percentile 
of the maximum values is 187.85 kA, which suggests that the majority of 
the maximum peak current observed at airports is below this threshold. 
The minimum values exhibit a unique distribution with 66.25 kA as the 
50th percentile and 47.77 kA as the 25th percentile (Fig. 2b). This sug
gests that for some airports, lightning strikes with relatively lower 
maximum peak current could still induce NAS outages. Fig. 2c shows the 
spatial distribution of the maximum and minimum values of the 
maximum peak current at each airport overlaid on a kernel density 
estimation map of NAS facility outages in the past 11 years. We can 
observe that the variation in minimum values across the CONUS is 

Fig. 2. Maximum peak current distribution across all airports in the CONUS. a. Density, box and scatter plots of the maximum peak current values of all lightning 
strike time series. b. Histograms of maximum and minimum values of the maximum peak current of the lightning time series grouped by airport. c. Maximum and 
minimum values of the maximum peak current grouped by airport overlaid on kernel density estimation plot based on the number of 85-3 outages from 2009 
through 2020. 
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smaller than that of the maximum values. The disparity between mini
mum and maximum values are more obvious in the Eastern states and 
spatially coincides with areas where more NAS facility outages are 
observed. In general, lightning time series with a higher maximum peak 
current is more likely to induce facility outages. This pattern can be 
observed in areas near Chicago, Boston, and southern Florida. However, 
areas near southern Indiana, Huston and Philadelphia display con
trasting patterns which indicate that the underlying lightning hazard 
impact pattern is complex and spatially heterogeneous. The subsequent 
sections will discuss distinct patterns in lightning time series that are 
associated with NAS facility outages. 

3.2. New climatological lightning hazard typologies 

Our analysis identifies five distinct typologies of lightning strike 
hazard patterns that are directly associated with NAS outages. The first 
typology (T1) involves occurrence(s) of one or more lightning flashes 
with high peak current within 5 kilometers (km) from the ATCT of the 
airport (Fig. 3 first column). The peak current values for the majority of 

lightning flash time series in this typology concentrates in the 70–100 kA 
range with a minimum of 34 kA (Palm Beach International Airport 
(PBI)) and a maximum of 371 kA (Northwest Arkansas National Airport 
(XNA)). In general, lightning flash time series in the T1 category can be 
characterized as high lightning intensity with close distance to airports 
(Fig. 3b and c). The flashes in these time series carry a large amount of 
electromagnetic energy and usually occur right before the time of the 
outage. This typology aligns well with general assumptions about 
lightning hazard impact patterns reflected in dominant lightning pro
tection and hardening standards. According to the FAA’s standard for 
lightning and surge protection, grounding, bonding, and shielding re
quirements for facilities and electronic equipment, NAS facilities are 
required to install lightning protection systems to provide preferred 
paths for lightning discharges to enter or leave the earth without causing 
damage to facility or equipment or injury to personnel. Our results show 
that in areas with frequent lightning activity and high lightning flash 
intensity, such hazard typology still plays a dominant role in inducing 
facility outages. At Northeast, Mid-Atlantic and Southeastern state air
ports and airports in cities such as the New York City, T1 is the dominant 

Fig. 3. Distribution of sum of flash multiplicity for five lightning flash time series typologies, respective bivariate kernel density estimate of lightning flash attributes 
and examples. Each column (e.g. a, b, c) consists of three visualizations of lightning flash time series attributes that belong to a specific typology (e.g. T1) and an 
specific airport example. The first row (a, d, g, j, m) are histograms of the number of the lightning flash time series that fall into 10 distance ranges (minimum: 0, 
maximum: 30, step: 3). The second and third rows are 2-D kernel density contour plots of 2 combinations of three key lightning flash attributes: peak current, time to 
outage and distance to airport. For each typology, we extract the lightning flash with maximum peak current value for all lightning flash time series and find 
corresponding distance to airport and time to outage attributes. Each extracted lightning flash is represented as a black dot in the contour plots based on which the 
bivariate kernel density estimations are generated. The last row contains examples of each typology at airports. The three letter identification code of the airport is 
labeled on the top left corner of the subplots. Each dot in the subplot represents the occurrence of a lightning flash color-coded by the time of its occurrence. Dark red 
indicates that the flash occurred right before the outage whereas dark blue indicates otherwise. For more examples please see Supplementary Fig. 1. 
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lightning hazard pattern that causes outages (Fig. 4a). 
The second typology (T2) can be characterized by higher occurrences 

of lightning flashes at further distances (10–20 km or, in some cases, 
nearly 30 km) from the ATCT with high peak current. Adjacent to the 
airport T2 typology presents absence or low lightning activity (Fig. 3 
second column). Our pattern signature identification also shows com
parable results indicating that longer distances to ATCT (e.g. 10, 20, and 
30 km thresholds) are strong features in characterizing such lightning 
strike hazard patterns. Bivariate kernel density estimate results show 
that the time of high intensity lightning flash occurrence from these time 
series is generally closer to the time of outage (Fig. 3f). Current LPGBS 
requirements, as well as the latest revisions of the National Fire Pro
tection Association Standard for the Installation of Lightning Protection 
Systems (NFPA 780), put much focus on protecting facilities that are 
located within the airport boundary focusing on ATCT, air terminals, 
and conductors. Facilities beyond the airport boundary and/or infra
structure (that are not owned by the FAA) are often neglected for 
lightning hazard assessment. The International Air Transport Associa
tion (IATA) recommends airports to issue lightning alerts when light
ning strikes are detected at 8 km from the airport boundary, and stop 
high risk operations when they are detected at 5 km. They suggest using 
a 5 km critical radius and resuming operations once the lightning ac
tivity has moved beyond this radius (IATA, 2021; Earth Networks, 2021). 
Our results suggest that lightning flash occurrences further away from 
airports (20–30 km) could also induce NAS outages. This typology is 
more evident in Midwestern and Southeastern states where it would be 
desirable to review the critical radius for certain high risk operations 
(Fig. 4). The physical and cyber interconnections and interdependencies 
between facilities within the airport boundary and infrastructures in its 
vicinity and/or beyond could offer one explanation for this 
phenomenon. 

The third typology (T3) can be summarized by large quantities of 
lightning flash occurrences both adjacent and far away from the ATCT 
with relatively low peak current (Fig. 3 third column). This typology is 
relatively rare compared with other typologies with a total of 11 light
ning flash time series samples covering 8 airports: Jack Brooks Regional 
Airport (BPT), Fort Smith Regional Airport (FSM), Groton-New London 
Airport (GON), Hagerstown Regional Airport (HGR), Morristown 
Airport (MMU), Dane County Regional Airport (MSN), South Bend In
ternational Airport (SBN), and Toledo Express Airport (TOL). Spatially, 
these airports are located in Northeastern states as well as Southwestern 
states, namely Texas and Oklahoma. Aside from peak current intensity 

and distance, this lightning hazard typology points to the importance of 
considering the chronic impact of lightning flashes with high multi
plicity and lower intensity strikes. Recognizing and acknowledging that 
low intensity and high multiplicity lightning flashes can help better 
characterize lightning hazard to NAS facilities in the context of airport 
facility reliability, is essential for a successful LPGBS program. Lightning 
hazard protection of buildings and other safety recommendations are 
well documented and have precise technical standards such as those 
referred by the NFPA 780. Such protection measures have proven to 
reduce the probability of outages from lightning strike occurrence, but 
residual risk remains (He et al., 2019). 

The fourth (T4) and fifth (T5) typologies are both related to the 
temporal pattern of the lightning flash occurrences. The key feature that 
differentiates T4 from the previous three typologies is early occurrence 
(Fig. 3 fourth column). Lightning flashes that took place as early as 1 h 
prior to the time of the reported outage could induce NAS facility fail
ures. This result aligns well with our critical feature identification results 
which highlights time of occurrence as a key feature in differentiating 
lightning hazard patterns. In terms of spatial distribution, T4 is domi
nant in states such as Michigan, Oklahoma, Texas, New Jersey, and 
Florida. T5 can be considered as the multiplication between T2 and T4. 
Lightning flash time series that belong to T5 are often distant from the 
airport ATCT both spatially and temporally (Fig. 3 fifth column). This 
typology is shown to be most notable in Southern states such as Ten
nessee, Oklahoma, and Northern states such as Massachusetts. The wide 
geographical distribution and common occurrence of T4 and T5 calls for 
a review of temporal thresholds of early warning systems at airports to 
improve organizational preparedness to potential operational impacts. 
The current lightning warning systems provide two levels of warning: an 
alert, indicating that lightning may develop or move into the area of 
protection in the near future, and an alarm, indicating that lightning has 
been detected in the immediate vicinity or is expected to develop at any 
moment. While there are no universally recognized standards for issuing 
alerts or alarms for airport operations, the American Meteorological 
Society and the National Oceanic and Atmospheric Administration 
(NOAA) have endorsed the “30–30 rule” which states that operations 
should be limited or curtailed whenever there has been a lightning strike 
detected within 6 miles (approximately 9.6 km) (based on 30 s between 
an observed flash and the sound of the thunder) and within 30 min 
(Heitkemper & Johnson, 2008). The fourth and fifth typologies identi
fied in our analysis, however, in part contradict this recommendation 
and call for lightning warning thresholds for longer time periods and 

Fig. 4. Spatial distribution of typologies in the CONUS. The spatial distribution of the mode of lightning strike hazard pattern at the national scale. The size of the 
circle/dot represents the frequency of the corresponding typology. Refer to Supplementary Fig. 2 for individual distribution plots for each typology. 
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greater spatial distances. This could potentially induce organizational 
shifts in early warning systems with the creation of a “pre-alert phase” 
where operational procedures seek to mitigate the risk of facility outages 
due to lightning strikes. 

4. Conclusion 

The impact of lightning strike hazard in the vicinity of, and on, 
airport operating areas has long been recognized by airport and airline 
operators as both a safety and an operational challenge. The cost to the 
flying public of lightning induced outages (which in turn cause delays 
and cancellations) can be almost five times the cost of retrofitting an 
existing facility (Ding & Rakas, 2015; He et al., 2020). Our analysis 
identifies new lightning strike hazard impact patterns on NAS facilities 
based on historical facility outage records maintained by the FAA and a 
nationwide spatiotemporal lightning strike dataset from NLDN over the 
past 11 years. Our findings shed new light into the design of lightning 
detection and warning systems at airports and LPGBS at NAS facilities. 

Airports are high reliability organizations (Roberts, 1989) where 
safety goals override performance goals, but it is difficult to incorporate 
higher restrictions on operations due to lightning activity. For airport 
business continuity, there is a delicate balance between preventive 
lightning procedures and operational reliability, but our results show 
how airport operators can be better prepared to deal with potential 
lightning-induced outages. Four of the five distinct lightning flash time 
series typologies (T2-5) help identify airports with atypical hazard 
impact patterns (Fig. 5) and unique risk profiles that may benefit from 
distinct lightning hazard mitigation strategies. Airport operators can 
benefit from new insights into how lightning strikes damage their fa
cilities and employ more accurate lightning observation and detection 
technology to develop robust operational management procedures. 
Airports presenting more atypical typologies have a higher motivation 
to revisit their operational management systems including thresholds for 
early warnings based on the onset and duration of lightning. Current 
aviation lightning protection and prevention policies employed at U.S. 

and other exposed airports worldwide can be improved using spatial and 
temporal lightning detection thresholds uncovered in this study. New 
lightning impact patterns detected here help prioritize investment de
cisions and present new and low cost alternatives for airport safety 
managers to improve current procedures and policies for lightning strike 
resilience beyond traditional infrastructure hardening. 

5. Discussion 

It should be noted that our results are more robust for T1, T2, T4 and 
T5 where samples are relatively abundant. T3 typology is rarer and 
therefore we have less information on the distribution and occurrence 
frequencies locally at airports and throughout the United States. In 
addition, airports categorized with the same hazard typology do not 
necessarily translate to the same lightning hazard impact mechanism. 
Other important attributes of NAS facilities that should be considered 
are: NAS facility type, location, age, fault tolerance and infrastrucutre 
connectivity, along with existing lightning protection requirements and 
operational procedures at place. Since all lightning-induced outages are 
recorded manually by FAA field technicians, it is likely that the total 
number of outages (and associated lightning strike hazard typologies) 
are underestimated (He et al., 2019). In other words, there might exist 
additional climatological lightning hazard typologies beyond the five 
typologies identified in this article. 

Lightning strike hazard not only impacts the NAS facilities but also 
interconnected critical infrastructure systems such as the electricity grid 
(Maruyama Rentschler, Obolensky, & Kornejew, 2019). The impact of 
lightning strikes on humans in airports usually involves personnel 
operating sensitive equipment in buildings without lightning protection, 
grounding, bonding, and shielding (Ding & Rakas, 2015; World News, 
2014) and especially personnel working outdoors (Steiner, Deierling, 
Ikeda, Nelson, & Bass, 2014; Steiner, Deierling, & Johnson, 2012). In 
contrast to the greatly improved knowledge of lightning occurrences, 
the distribution of lightning-related human fatalities and injuries is not 
well characterized in many regions, especially in lesser-developed 

Fig. 5. Distribution of climatological lightning hazard typologies at airports. a. The distribution of typical (T1) and atypical (T2-5 and others) typology counts at 
airports overlaid on kernel density contours. Airports in the top right corner of the graph have more atypical than typical hazard typologies. b-e. The distribution T1 
and T2, T3, T4 and T5 typology counts at airports respectively. The location of points in these scatter plots are offset by adding a random number from 0 to 0.5 to 
avoid overlaps. The color of the points corresponds to the value of the variable plotted as the vertical axis. 
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nations (Dewan, Hossain, Rahman, Yamane, & Holle, 2017) where 
outdoors workers are highly impacted (Adhikari, 2021; Holle et al., 
2019). In developed countries, lightning fatalities have been greatly 
reduced during the last century thanks to economic advances that pro
vide lightning-safe structures and dwellings as well as transitions in 
industrial structure (Holle, 2016). In developing countries, however, the 
impact of lightning strike hazard is heavily underestimated and the 
majority of the population continues to be engaged in subsistence 
agriculture for long periods, live in lightning-unsafe dwellings, and work 
in lightning-unsafe structures (Dlamini, 2009). The pattern recognition 
methods proposed in this study can be adapted to facilitate the identi
fication of other impact typologies involving injuries and fatalities, 
especially in developing countries where such research is scarce. Similar 
spatiotemporal thresholds applied to human impact patterns could 
hence be applied to create or update early warning systems which 
directly mitigate the risk of injury or fatalities. 
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