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Lightning strikes pose a severe threat to the United States (US) National Airspace System (NAS). Although the US
Federal Aviation Administration (FAA) implements lightning protection practices and procedures to protect
personnel, electronic equipment, and structures within the NAS, many lightning-induced outages still occur. To
date we found that most research on lightning-induced facility outages has focused on understanding the
physical processes of lightning strike effects on aircraft and airport ramp operations. Very little research has been
done on examining the overall patterns and characteristics of such hazards to aviation from a geo-spatial
standpoint. To bridge this gap, we analyze nationwide lightning strike spatiotemporal data and FAA airport
facility outage records from 2009 through 2020 and apply innovative pattern recognition methods to identify key
characteristics of lightning strike hazards. Our results uncover the complexities of lightning strike hazard impact
patterns to NAS facilities, identifying five distinct typologies with climatological signatures critical to creating

better hazard mitigation strategies.

1. Introduction

As a global leader in the air transportation industry, the United States
(U.S.) has carried the highest number of passengers for many decades
(The World Bank Group, 2021). In addition, the U.S. operates one of the
most complex air transportation systems world-wide, and the safety and
efficiency of its air traffic operations depend on the reliability of
equipment and facilities that compose the National Airspace System
(NAS). The Federal Aviation Administration (FAA) is responsible for
maintaining and operating over 40,000 NAS facilities and equipment,
installed at approximately 6,000 locations across the U.S. (FAA, 2016).
These NAS facilities and equipment are critical enablers of airspace
surveillance, weather monitoring, aircraft navigation, and airport
ground operations. A major impediment to air traffic reliability is the
frequency at which the communication, navigation and surveillance
(CNS) systems, air traffic control towers, and other infrastructure sys-
tems experience failures due to electrical power interruptions (Bates,
Seliga, & Weyrauch, 2001). These failures are most often associated with
power system transients that result from the occurrence of lightning
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strikes in the vicinity of airport facilities. Based on the FAA’s system
outage database, lightning strike hazard is one of the top three envi-
ronmental causes for power interruptions of airport facilities, respon-
sible for over 14% of natural hazard-triggered outages, making it one of
the most frequent threats to critical equipment and operations at air-
ports (ICF International, 2016). Lightning strikes can cause severe
damage to airport equipment and facilities such as localizers, airport
surveillance radars, runway lights, air traffic control towers, and
communication lines. They can also injure ground personnel on aircraft
parking aprons and ramps, air traffic controllers and technicians, and
boarding or deplaning staff and passengers (Tarimer, Kuca, & Kisiele-
wicz, 2012).

Lightning strikes are initiated by large electric fields either between
cloud and earth, between clouds (inter-cloud) or within clouds (intra-
cloud). A high electrically-conductive plasma channel is generated when
this electric field reaches 25-30 kilovolt per meter (kV/m) (Ma, Wang,
Chen, Wang, & Xu, 2020; Wang et al., 2020), which could lead to a
discharge current of in excess of 200 kiloampere (kA) (Uman, 2001).
One entire discharge, i.e., a lightning flash, is usually made up of several
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shorter discharges, i.e., single lightning strokes, which last less than a
millisecond and repeat rapidly. Lightning flashes possess strong
destructive capacity and high hazard potential that may cause serious
damage to aircraft (Abdelal & Murphy, 2017; Fisher & Plumer, 1977;
Gagné & Therriault, 2014), airport infrasturcture (Bejleri et al., 2004)
and airspace facilities (Ding & Rakas, 2015; He, Lindbergh, Rakas, &
Graves, 2019), either directly through thermal ablation or indirectly
through electromagnetic interference (Ma et al., 2020). Direct thermal
ablation originates from the interaction of the non-steady lightning
plasma channel discharging an electric current, inducing a severe heat
flux at the surface of facilities and results in pitting, melt-through and
erosion of equipment materials (Wang & Zhupanska, 2015). The indirect
effects of lightning are caused primarily by earth-voltage increase,
which occur during and after lightning discharge and by the intense
electromagnetic field associated with the flash. These fields and earth-
voltage rises have enough energy to cause damage a kilometer or
more outwards through air or ground, where electromagnetic fields can
penetrate significant depths downwards from the actual strike (Rabbani
& 0o, 2019). Strikes, on or near overhead conductors, can also cause
current and voltage surges, which, independent of distance from the
strike, may be transferred along circuit lines and damage connected
equipment in the subsystem (Panteli & Mancarella, 2015).

Current climate model projections suggest an intensification of pre-
cipitation and convective storm activities in the United States (Lend-
erink & van Meijgaard, 2008; Liu et al., 2017; Prein et al., 2017a; Prein
etal., 2017b) and the temporal frequency, spatial density and severity of
lightning strikes are likely to increase in the future (Romps, Seeley,
Vollaro, & Molinari, 2014). To climate-proof aviation infrastructures
from environmental hazards, especially lightning strikes, the FAA has
allocated its resources to improve lightning protection systems. The FAA
puts forth standards for Lightning and Surge Protection, Grounding,
Bonding, and Shielding (LPGBS) for NAS facilities. Aligned with industry
standards for lightning hardening from the Electronic Industries Alli-
ance (EIA), the National Fire Protection Association (NFPA), the Insti-
tute of Electrical and Electronic Engineers (IEEE) and others, the FAA
standards provide minimum requirements for procurement, design,
installation, implementation, operation, and maintenance of LPGBS
systems. These industries, led by the FAA, also assign responsibilities for
the protection of people, sensitive electrical and electronic equipment,
and structures of the NAS operational facilities (FAA, 2018). Although
standards and procedures for hardening NAS facilities and infrastructure
have significantly improved over time, lightning-induced outages still
occur across the NAS. Research on lightning threats to structures on the
ground, traditionally developed within electrical and electronic engi-
neering communities, follows national and international standards on
lightning protection. However, climatological lightning hazard param-
eters are restricted to two basic parameters: occurrence and density.

Past approaches to the assessment of climatological patterns asso-
ciated with lightning hazard and the damage caused by lightning strikes
are mainly qualitative or semi-quantitative, relying mostly on expert
judgment (Necci et al., 2014). Recent studies on lightning hazard and
risk assessment show lightning intensity (i.e. peak current) (He, Lind-
bergh, Graves, & Rakas, 2020; Shindo & Suda, 2008) along with its
occurrence pattern (Tovar, Aranguren, Lopez, Inampués, & Torres,
2014) as predominant climatological hazard characteristics. Few studies
incorporated other lightning climatological hazard characteristics such
as polarity, average lightning intensity, average steepness of the front
impulse current (Yu & Ren, 2014), cumulative value of lightning current
(Ishimoto, Asakawa, & Shindo, 2017), multiplicity (He et al., 2019; He
et al., 2020), and action integral (i.e. specific energy) (Rakov, 2010).
Even fewer studies examined in detail how major climatological light-
ning hazard parameters might explain lightning-induced outages at
large spatial and temporal scales. A comprehensive understanding of the
complex lightning hazard impact patterns to NAS facilities is still absent
in current aviation research. We bridge this gap through ‘dissecting’
lightning strike hazard impact patterns to NAS facilities in the
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contiguous United States (CONUS) by combining spatiotemporal data of
lightning strike records from the National Lightning Detection Network
(NLDN) and facility outage data created and maintained by the FAA. Our
study assessed 5,565 lightning-induced facility outages and their
respective lightning strike occurrences impacting 111 types of NAS fa-
cilities in the last 11 years. Our results specify, for the first time,
spatiotemporal characteristics of NAS-outage related lightning intensity
at the CONUS scale which can be generalized to airports suffering from
lightning impacts worldwide. In addition, the results show that five ty-
pologies, or specific combinations of lightning intensity (i.e. maximum
peak current), multiplicity', spatial proximity to the impacted facility,
and temporal proximity to outage occurrence, better depict climato-
logical hazard parameters of lightning strikes to aviation infrastructure.

2. Methods
2.1. Lightning flash time series clustering

Past research in time series clustering falls into 3 main categories:
shape-based (raw-data-based) (Faloutsos, Ranganathan, & Man-
olopoulos, 1994; Golay et al., 1998; Liu, Maharaj, & Inder, 2014; Sakoe
& Chiba, 1978; Vlachos, Kollios, & Gunopulos, 2002; Zhang, Wu, Yang,
Ou, & Lv, 2009), model-based (Alfalg et al., 2006; Chen, Nascimento,
Ooi, & Tung, 2007; Corduas & Piccolo, 2008; Minnen, Isbell, Essa, &
Starner, 2007; Panuccio, Bicego, & Murino, 2002; Smyth, 1996; Xiong &
Yeung, 2002) and feature-based (Chan & Fu, 1999; Guo, Jia, & Zhang,
2008; Keogh, Chakrabarti, Pazzani, & Mehrotra, 2001; Keogh & Paz-
zani, 1998; Moller-Levet, Klawonn, Cho, & Wolkenhauer, 2003; Popi-
vanov & Miller, 2002; Zhang, Ho, Zhang, & Lin, 2006). Shape-based
approaches cluster time series by applying modified similarity/distance
measure on raw time series that are stretched or contracted along the
time axis. Model-based approaches fit time series with parametric
models which then translate into model parameters. These parameters
are then fed into a clustering algorithm with suitable model distance
which yields final partitioning results (Warren Liao, 2005). Feature-
based approaches extract a low-dimensional feature vector from each
time-series, followed by a conventional clustering algorithm usually
with Euclidean distance measurement (Aghabozorgi, Seyed Shirkhor-
shidi, & Ying Wah, 2015; Hautamaki, Nykanen, & Franti, 2008). Unlike
previous approaches, which are either sensitive to noise in data or
subject to heavy model assumptions, feature-based methods are more
robust to noise, require no user assumptions and can be easily tailored to
incorporate specific research objectives. We therefore adopt a unique
feature-based clustering approach to identify distinct typologies in
lightning flash time series.

In this study, we extract 1,509 lightning flash time series directly
associated with NAS facility outages (outage code: 85-3%) for 279 air-
ports over the past 11 years (January 15t 2009 to June 30th, 2020) from
publicly available records provided in the NLDN database based on
spatial and temporal criteria. Spatially, lightning flashes within the 15
nautical mile® (NM) radius area around the Air Traffic Control Towers
(ATCTs) of airports are retrieved. According to the statistical model
developed by Vidal and Rakas (Vidal and Rakas, 2010), the 15 NM
radius is a spatial window that represents the maximum area in which a
strike can be considered as a potential trigger to an NAS outage.
Temporally, lightning flashes that occurred <1 h prior to the time of an
outage (code 85-3) are retrieved. Each lightning flash time series X

! Number of lightning strokes within a lightning flash.

2 The FAA outage data used in the analysis were manually gathered on-site by
NAS maintenance technicians. A coded system is used to identify the airport to
which each NAS facility belongs and to classify the outages based on their
cause. Code 85-3 refers to lightning strike induced facility outages.

3 A nautical mile is a unit of length used in air, marine, and space navigation.
One nautical mile is defined as exactly 1,852 meters (6,076 ft; 1.151mi).
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contains multiple lightning flash records x;, each with 5 raw attributes:
time of occurrence, polarity, multiplicity, peak current, and geographic
location. Leveraging information about the locations of the airports’
ATCTs, we are able to calculate the distance of each flash to the ATCT
and add it to the existing list of attributes. Here, the distance to ATCT is
used as an approximation to the distance between a lightning flash and
an individual facility. We also estimate the action integral (Gamerota,
Elismé, Uman, & Rakov, 2012; Hirano, Katsumata, Iwahori, & Todoroki,
2010), i.e. energy per unit resistance at the strike point. The equation
used to calculate action integral is |’ i2dt where i is the lightning current.
We assume a standardized lightning waveform that is compliant with
the U.S. military standard (MIL-STD-464C (DOD, 2010)) based on which
the duration of one strike is approximately 500 microseconds. For
lightning flashes with a multiplicity greater than one, we assume that
the peak current of the first lightning stroke equals the value of the peak
current attribute of the entire flash Py, and the peak current of the
subsequent strokes is P"‘T"X due to attenuation in the electrical current of
lightning waveforms. Moreover, we measure the time gap (in seconds)
from the time of each flash x; to the time of the NAS outage. In total, we
summarized 6 unique attributes characterizing each lightning flash time
series: polarity, peak current, multiplicity, distance to ATCT, action in-
tegral, and time to the outage; i.e. X = [x1,x2,...,Xn], X; € RS,

Each lightning flash x; can be mapped into a 6-dimensional space as a
point based on its attributes. All lightning flash time series (containing
multiple lightning flashes) can therefore be represented as a set of points
in the same 6-dimensional space. To identify interpretable attribute
combinations in the multidimensional feature space and create a uni-
form analytical framework for time series with variable lengths, we
propose an innovative “grid-based” approach to transform multivariate
time series data into N-dimensional vectors. This is achieved through
dividing each of the dimensions/attributes into multiple bins recording
the counts of lightning flashes under a multidimensional unit (see also
Supplementary Table 2). Formally, let us denote A’ the i attribute, D'
the number of bins for attribute i, and A; the j™ bin of attribute A’. The
resulting feature space would be a cross product of all attributes, and the

6

new feature space has a total of HDi = 5400 dimensions. This process
i=1

transforms each time series into a 5400-D vector, X € R>*%0, which is

then fed into the pattern recognition stage.

2.2. Pattern recognition

We perform unsupervised clustering on the 5,400-D vectors to
identify different lightning hazard impact typologies. It should be noted
that most, if not all, unsupervised clustering methods (e.g. k-means) do
not directly yield interpretable results. This occurs partially because the
clustering outputs are usually determined by all features, making it
difficult to discern commonalities between points of the same cluster
(Moshkovitz, Dasgupta, Rashtchian, & Frost, 2020). In the field of ma-
chine learning, the decision tree is recognized as a canonical example for
best model interpretability. Similar to previous works (Frost, Moshko-
vitz, & Rashtchian, 2020; Moshkovitz et al., 2020), we perform
explainable unsupervised clustering in order to provide explicable pat-
terns in lightning time series that are directly associated with NAS
outages of the lightning strikes that result in outages.

First, we perform vanilla k-means (MacQueen, 1967) clustering on
the processed dataset. Given a set of observations (X1, X», ..., X,), where
each observation is a D-dimensional vector, vanilla k-means aims to
partition the observations into k (<n) sets S = {S1, So, ..., S} so as to
minimize the within-cluster sum of squares. Formally, the objective is to
find:

K
argsminzz‘|X—ﬂ[‘|§ (€8]

=1 Xes,
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where ! is the mean of points (i.e. centroid/cluster center) in S;, and ||«||
represents the #norm of the vector. To decide the optimal value for
parameter k, we calculate the Inertia value and the Silhouette Score.
Inertia evaluates the internal coherence of clusters by calculating the
sum of squared distances between each instance and its assigned

centroid: Y Xj — 1, where y is the index of the closest cluster center

to Xj, i.e. y' = argmin||X’ — p/ Hi Smaller inertia values suggest better
1%j<k

clustering outcomes. Intuitively, larger k yields smaller inertia yet the
resulting clusters shrink in size as well as in between-cluster dissimi-
larity. The elbow method is often applied in practice to determine the
smallest k with diminishing returns in terms of inertia decrease.
Silhouette Coefficient (Rousseeuw, 1987) is defined as ma’; ’(g_q), where q is
the mean distance to the other instances in the same cluster and p is the
mean distance to the instances of the next closest cluster. After inertia
and Silhouette Score calculation, k = 5 is chosen as the optimal number
of clusters and pl, p2 ..., pk represent cluster centers after applying
vanilla k-means.

Second, we build a decision tree top-down with binary splits. A tree
structure is particularly useful in high-dimensional space since the
number of clusters is much smaller than the input dimension (5 <«
5,400). The tree consists of a root node, k leaves and multiple internal
nodes, each containing a single decision feature and an associated
threshold value. Each decision node (the root node and all internal
nodes) partitions the input space into 2 hyper-rectangular cells with no
overlaps. Starting at the root node, an initial feature i with a threshold is
selected such that it produces the least mistakes when parsing input data
through the node. A mistake occurs when a data point X and its corre-
sponding cluster center |’ are partitioned into different cells at the
decision node. With dynamic programming, we search for the optimal
splitting rule (i, 7) efficiently (Eq. (2)). Next, if 2 or more cluster centers
fall within the same cell, another split is legitimized. All data points
whose cluster centers lie outside of the cell are intentionally left out
since they are considered as mistakes in the previous splits. This process
is performed recursively on the left and right children until each leaf
node is pure (i.e., contains only one cluster center).

i,T= a.rgminz;yilmistake (Xj7 py’, i T),

iLi<t<r

LW <9 (i <)
0 else

mistake (X’ RTNA 1:) = ()

It should be noted that the true representation space of individual
clusters are not necessarily hyper-rectangular. The approach to creating
a binary tree above is likely to introduce large bias in classification re-
sults. In other words, data points are systematically misclassified due to
the rigid decision boundary of the binary tree classifier that has few leaf
nodes. To balance the bias-variance tradeoff in this approach, we use
ExXKMC (Frost et al., 2020) to allow more flexibility to the previous
decision tree. We expand the original binary tree with k leaf nodes to one
with kK’ nodes (k' > k) based on a surrogate cost and associate/classify
each of the k' leaves with one of the cluster centers i. The surrogate cost
is defined as follows: given k cluster centers M = [, 42 ..., "], and a

binary tree T which defines clustering (E‘l, 62, s E‘k ), the surrogate

cost cost" (1) = Y25, 52 |fe — |, where & = argmin 5 flx — w3
< ’ NS
For each leaf node nqs with associated samples Xjeqf, the gain by split-
ting nyeqris calculated as (Eq. (3)), where X; = {x € X |x; < 7} and Xg = {x
€ X|x; > 7}. Finally, we split the leaf node with the largest gain into two
child nodes npey, and npew,and compute gain(npey,) and gain(npey,)
respectively. This expansion process is repeated recursively until the
tree has exactly k' leaf nodes. In our analysis, k' = 2k = 10 is chosen as
the optimal value for all experiments in this study based on sensitivity
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gain (n,mf) — cost (X,mf) — (,”(JTY/IM(XL) — cost” (X&), 3

2.3. Critical feature identification

Due to the non-deterministic characteristic of the above unsuper-
vised clustering method, the resulting clusters may not accurately
describe the semantic structure of the input lightning flash time series.
To mitigate the randomness and capture the semantic structure more
robustly, we propose to repeat the clustering process on the lightning
dataset m times (m is set to 10,000 in this study), and assemble the
clustering results into a fully connected graph.

Formally, let’s denote the set of lightning flash time series as 2” =
{X',x2,...,X"}, and m clustering models as M = {M,My, ..., My}, in
which Mi(Xj) returns the cluster label of time series sample X in the i
cluster model. Combining #” and M, we build a weighted complete
graph G = {V, E}, where each node n; represents a lightning time series
X and an edge (n;n;) denotes that n; and n; are in the same cluster.
Theoretically, this complete graph has n nodes and @ edges, with
edge weight w; which corresponds to the number of times (out of m) that
Mi(Xi) and Mi()(j) returns the same cluster label i.e. wjj = | {m: m € M,m
(Xi) = m(Xj)}|. An e;dge (nif n;) with large weight suggests a closer rela-
tionship between X' and X since they are often grouped into the same
cluster. After the graph is created, we prune edges with smaller weights
with a specific threshold, i.e., (n;,n) is removed from G if w;; < 7, where 7
is the threshold hyper-parameter. We test the effect of different values
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(from small to large) on pruning results and discover that the resulting
graph G is relatively stable even when taking on larger values such as
5,000. After pruning, we identify k cliques/connected components
within G'to arrive at the final clustering result.

To pinpoint a subset of features (among 5,400 total) that best ex-
plains the key characteristics of time series that share the same cluster
label, a critical feature identification process is developed to evaluate
the importance of features. Leveraging information of the decision nodes
in binary trees created beforehand, we record the number of occurrences
C; when a feature is identified to be associated with a decision node C; =
[Ci1,Cig, -..,Cip 1, where D = 5,400. Then we compute the cumulative
count over all decision trees: Cqc = Y C; = [C1, Ca,...,Cp] and sort out

L

top 10 features with higher Cg (see Supplementary Table 3 for details).
3. Results
3.1. Beyond the peak current

Peak current, or lightning intensity, is shown to be highly correlated
with thermal and mechanical damage typologies to infrastructure that
are exposed to lightning hazards in empirical studies (Ma et al., 2020;
Millen, Murphy, Catalanotti, & Abdelal, 2019; Munoz et al., 2014). We
first explore spatiotemporal characteristics of NAS outage-related
lightning strike peak current and go beyond to show how specific
combinations of different climatological lightning hazards parameters
can become better indicators of lightning damage potential to NAS

AL\ BA ¢

Lightning flash —

High: 172.2 kA Low: 0.0 kA
||

Peak current
kernel density

d

Fig. 1. Lightning strike time series extracted from NLDN. a. Distribution of the total number of lightning flash time series extracted for airports in CONUS and spatial
criterion for lightning flash time series extraction using Morristown Airport (MMU) as an example. All flashes within 15 NM radius from the location of MMU’s ATCT
are included in initial consideration. b—d. 3D scatter plots of combinations of lightning flash attributes (polarity, peak current, multiplicity, distance to airport, action
integral, and time to the outage) using one lightning flash time series at MMU airport.



Y. He et al.

facilities. In this study, a total of 1,509 lightning strike time series
directly associated with NAS facility outages (cause code 85-3) were
extracted from the NLDN database over the past 11 years for a total of
284 distinct airports in the CONUS (Fig. 1a). Each time series contains
multiple lightning flash records with attributes indicating the location
where the flash occurred, peak current of the first stroke, polarity, and
multiplicity (Fig. 1b-d). A spatiotemporal screening criterion was
applied to include lightning flashes that occurred within 15 NM radius of
the airports’ air traffic control tower (ATCT) and 1 h time window to the
NAS outages (see Methods for details). The spatial distribution of these
time series reveal a heterogeneous lightning hazard impact pattern with
more lightning-induced outage occurrences in Northeastern, South-
eastern and Midwestern states than Western and Southwestern states.
Airports, namely Savannah/Hilton Head International Airport (SAV),
Duluth International Airport (DLH), Tri-Cities Airport (TRI), Chatta-
nooga Airport (CHA), and Charleston International Airport (CHS) have
the highest outage occurrences of all-28, 28, 27, 26 and 25 respectively
(see also Supplementary Table 1 for more details).
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Our spatiotemporal assessment of the maximum peak current dis-
tribution of NAS outage-related lightning strikes in the CONUS (Fig. 2)
shows that the kernel density curve of the maximum peak current values
of all time series peaks around 100 kA with a minimum of 20.2 kA and a
maximum of 427.6 kA (Fig. 2a). To investigate the spatial distribution of
maximum peak current values, we grouped the lightning strikes
maximum peak current values by airport and extracted the maximum
and minimum values of the maximum peak current. The 750 percentile
of the maximum values is 187.85 kA, which suggests that the majority of
the maximum peak current observed at airports is below this threshold.
The minimum values exhibit a unique distribution with 66.25 kA as the
50" percentile and 47.77 kA as the 25™ percentile (Fig. 2b). This sug-
gests that for some airports, lightning strikes with relatively lower
maximum peak current could still induce NAS outages. Fig. 2¢ shows the
spatial distribution of the maximum and minimum values of the
maximum peak current at each airport overlaid on a kernel density
estimation map of NAS facility outages in the past 11 years. We can
observe that the variation in minimum values across the CONUS is

50 100 150 200 250 300 350 400

lll l LI
5
10
15 Maximum of the lightning
20 strike maximum peak current
Minimum of the lightning
25 strike maximum peak current

' Peak Current (kA)

NORTH

85-3 Outage
Kernel Density Estimation

High: 1 —
Low: 0 —

Min  Max

<50 kA

50 — 100 kA
100 — 150 kA
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>300ka @

TN K EKERE
(OO00oo0-.:

Fig. 2. Maximum peak current distribution across all airports in the CONUS. a. Density, box and scatter plots of the maximum peak current values of all lightning
strike time series. b. Histograms of maximum and minimum values of the maximum peak current of the lightning time series grouped by airport. c. Maximum and
minimum values of the maximum peak current grouped by airport overlaid on kernel density estimation plot based on the number of 85-3 outages from 2009

through 2020.
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smaller than that of the maximum values. The disparity between mini-
mum and maximum values are more obvious in the Eastern states and
spatially coincides with areas where more NAS facility outages are
observed. In general, lightning time series with a higher maximum peak
current is more likely to induce facility outages. This pattern can be
observed in areas near Chicago, Boston, and southern Florida. However,
areas near southern Indiana, Huston and Philadelphia display con-
trasting patterns which indicate that the underlying lightning hazard
impact pattern is complex and spatially heterogeneous. The subsequent
sections will discuss distinct patterns in lightning time series that are
associated with NAS facility outages.

3.2. New climatological lightning hazard typologies

Our analysis identifies five distinct typologies of lightning strike
hazard patterns that are directly associated with NAS outages. The first
typology (T1) involves occurrence(s) of one or more lightning flashes
with high peak current within 5 kilometers (km) from the ATCT of the
airport (Fig. 3 first column). The peak current values for the majority of

Computers, Environment and Urban Systems 91 (2022) 101735

lightning flash time series in this typology concentrates in the 70-100 kA
range with a minimum of 34 kA (Palm Beach International Airport
(PBI)) and a maximum of 371 kA (Northwest Arkansas National Airport
(XNA)). In general, lightning flash time series in the T1 category can be
characterized as high lightning intensity with close distance to airports
(Fig. 3b and c). The flashes in these time series carry a large amount of
electromagnetic energy and usually occur right before the time of the
outage. This typology aligns well with general assumptions about
lightning hazard impact patterns reflected in dominant lightning pro-
tection and hardening standards. According to the FAA’s standard for
lightning and surge protection, grounding, bonding, and shielding re-
quirements for facilities and electronic equipment, NAS facilities are
required to install lightning protection systems to provide preferred
paths for lightning discharges to enter or leave the earth without causing
damage to facility or equipment or injury to personnel. Our results show
that in areas with frequent lightning activity and high lightning flash
intensity, such hazard typology still plays a dominant role in inducing
facility outages. At Northeast, Mid-Atlantic and Southeastern state air-
ports and airports in cities such as the New York City, T1 is the dominant
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and examples. Each column (e.g. a, b, ¢) consists of three visualizations of lightning flash time series attributes that belong to a specific typology (e.g. T1) and an
specific airport example. The first row (a, d, g, j, m) are histograms of the number of the lightning flash time series that fall into 10 distance ranges (minimum: 0,
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corresponding distance to airport and time to outage attributes. Each extracted lightning flash is represented as a black dot in the contour plots based on which the
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lightning hazard pattern that causes outages (Fig. 4a).

The second typology (T2) can be characterized by higher occurrences
of lightning flashes at further distances (10-20 km or, in some cases,
nearly 30 km) from the ATCT with high peak current. Adjacent to the
airport T2 typology presents absence or low lightning activity (Fig. 3
second column). Our pattern signature identification also shows com-
parable results indicating that longer distances to ATCT (e.g. 10, 20, and
30 km thresholds) are strong features in characterizing such lightning
strike hazard patterns. Bivariate kernel density estimate results show
that the time of high intensity lightning flash occurrence from these time
series is generally closer to the time of outage (Fig. 3f). Current LPGBS
requirements, as well as the latest revisions of the National Fire Pro-
tection Association Standard for the Installation of Lightning Protection
Systems (NFPA 780), put much focus on protecting facilities that are
located within the airport boundary focusing on ATCT, air terminals,
and conductors. Facilities beyond the airport boundary and/or infra-
structure (that are not owned by the FAA) are often neglected for
lightning hazard assessment. The International Air Transport Associa-
tion (IATA) recommends airports to issue lightning alerts when light-
ning strikes are detected at 8 km from the airport boundary, and stop
high risk operations when they are detected at 5 km. They suggest using
a 5 km critical radius and resuming operations once the lightning ac-
tivity has moved beyond this radius (IATA, 2021; Earth Networks, 2021).
Our results suggest that lightning flash occurrences further away from
airports (20-30 km) could also induce NAS outages. This typology is
more evident in Midwestern and Southeastern states where it would be
desirable to review the critical radius for certain high risk operations
(Fig. 4). The physical and cyber interconnections and interdependencies
between facilities within the airport boundary and infrastructures in its
vicinity and/or beyond could offer one explanation for this
phenomenon.

The third typology (T3) can be summarized by large quantities of
lightning flash occurrences both adjacent and far away from the ATCT
with relatively low peak current (Fig. 3 third column). This typology is
relatively rare compared with other typologies with a total of 11 light-
ning flash time series samples covering 8 airports: Jack Brooks Regional
Airport (BPT), Fort Smith Regional Airport (FSM), Groton-New London
Airport (GON), Hagerstown Regional Airport (HGR), Morristown
Airport (MMU), Dane County Regional Airport (MSN), South Bend In-
ternational Airport (SBN), and Toledo Express Airport (TOL). Spatially,
these airports are located in Northeastern states as well as Southwestern
states, namely Texas and Oklahoma. Aside from peak current intensity
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and distance, this lightning hazard typology points to the importance of
considering the chronic impact of lightning flashes with high multi-
plicity and lower intensity strikes. Recognizing and acknowledging that
low intensity and high multiplicity lightning flashes can help better
characterize lightning hazard to NAS facilities in the context of airport
facility reliability, is essential for a successful LPGBS program. Lightning
hazard protection of buildings and other safety recommendations are
well documented and have precise technical standards such as those
referred by the NFPA 780. Such protection measures have proven to
reduce the probability of outages from lightning strike occurrence, but
residual risk remains (He et al., 2019).

The fourth (T4) and fifth (T5) typologies are both related to the
temporal pattern of the lightning flash occurrences. The key feature that
differentiates T4 from the previous three typologies is early occurrence
(Fig. 3 fourth column). Lightning flashes that took place as early as 1 h
prior to the time of the reported outage could induce NAS facility fail-
ures. This result aligns well with our critical feature identification results
which highlights time of occurrence as a key feature in differentiating
lightning hazard patterns. In terms of spatial distribution, T4 is domi-
nant in states such as Michigan, Oklahoma, Texas, New Jersey, and
Florida. T5 can be considered as the multiplication between T2 and T4.
Lightning flash time series that belong to T5 are often distant from the
airport ATCT both spatially and temporally (Fig. 3 fifth column). This
typology is shown to be most notable in Southern states such as Ten-
nessee, Oklahoma, and Northern states such as Massachusetts. The wide
geographical distribution and common occurrence of T4 and T5 calls for
a review of temporal thresholds of early warning systems at airports to
improve organizational preparedness to potential operational impacts.
The current lightning warning systems provide two levels of warning: an
alert, indicating that lightning may develop or move into the area of
protection in the near future, and an alarm, indicating that lightning has
been detected in the immediate vicinity or is expected to develop at any
moment. While there are no universally recognized standards for issuing
alerts or alarms for airport operations, the American Meteorological
Society and the National Oceanic and Atmospheric Administration
(NOAA) have endorsed the “30-30 rule” which states that operations
should be limited or curtailed whenever there has been a lightning strike
detected within 6 miles (approximately 9.6 km) (based on 30 s between
an observed flash and the sound of the thunder) and within 30 min
(Heitkemper & Johnson, 2008). The fourth and fifth typologies identi-
fied in our analysis, however, in part contradict this recommendation
and call for lightning warning thresholds for longer time periods and
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Fig. 4. Spatial distribution of typologies in the CONUS. The spatial distribution of the mode of lightning strike hazard pattern at the national scale. The size of the
circle/dot represents the frequency of the corresponding typology. Refer to Supplementary Fig. 2 for individual distribution plots for each typology.
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greater spatial distances. This could potentially induce organizational
shifts in early warning systems with the creation of a “pre-alert phase”
where operational procedures seek to mitigate the risk of facility outages
due to lightning strikes.

4. Conclusion

The impact of lightning strike hazard in the vicinity of, and on,
airport operating areas has long been recognized by airport and airline
operators as both a safety and an operational challenge. The cost to the
flying public of lightning induced outages (which in turn cause delays
and cancellations) can be almost five times the cost of retrofitting an
existing facility (Ding & Rakas, 2015; He et al., 2020). Our analysis
identifies new lightning strike hazard impact patterns on NAS facilities
based on historical facility outage records maintained by the FAA and a
nationwide spatiotemporal lightning strike dataset from NLDN over the
past 11 years. Our findings shed new light into the design of lightning
detection and warning systems at airports and LPGBS at NAS facilities.

Airports are high reliability organizations (Roberts, 1989) where
safety goals override performance goals, but it is difficult to incorporate
higher restrictions on operations due to lightning activity. For airport
business continuity, there is a delicate balance between preventive
lightning procedures and operational reliability, but our results show
how airport operators can be better prepared to deal with potential
lightning-induced outages. Four of the five distinct lightning flash time
series typologies (T2-5) help identify airports with atypical hazard
impact patterns (Fig. 5) and unique risk profiles that may benefit from
distinct lightning hazard mitigation strategies. Airport operators can
benefit from new insights into how lightning strikes damage their fa-
cilities and employ more accurate lightning observation and detection
technology to develop robust operational management procedures.
Airports presenting more atypical typologies have a higher motivation
to revisit their operational management systems including thresholds for
early warnings based on the onset and duration of lightning. Current
aviation lightning protection and prevention policies employed at U.S.
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and other exposed airports worldwide can be improved using spatial and
temporal lightning detection thresholds uncovered in this study. New
lightning impact patterns detected here help prioritize investment de-
cisions and present new and low cost alternatives for airport safety
managers to improve current procedures and policies for lightning strike
resilience beyond traditional infrastructure hardening.

5. Discussion

It should be noted that our results are more robust for T1, T2, T4 and
T5 where samples are relatively abundant. T3 typology is rarer and
therefore we have less information on the distribution and occurrence
frequencies locally at airports and throughout the United States. In
addition, airports categorized with the same hazard typology do not
necessarily translate to the same lightning hazard impact mechanism.
Other important attributes of NAS facilities that should be considered
are: NAS facility type, location, age, fault tolerance and infrastrucutre
connectivity, along with existing lightning protection requirements and
operational procedures at place. Since all lightning-induced outages are
recorded manually by FAA field technicians, it is likely that the total
number of outages (and associated lightning strike hazard typologies)
are underestimated (He et al., 2019). In other words, there might exist
additional climatological lightning hazard typologies beyond the five
typologies identified in this article.

Lightning strike hazard not only impacts the NAS facilities but also
interconnected critical infrastructure systems such as the electricity grid
(Maruyama Rentschler, Obolensky, & Kornejew, 2019). The impact of
lightning strikes on humans in airports usually involves personnel
operating sensitive equipment in buildings without lightning protection,
grounding, bonding, and shielding (Ding & Rakas, 2015; World News,
2014) and especially personnel working outdoors (Steiner, Deierling,
Ikeda, Nelson, & Bass, 2014; Steiner, Deierling, & Johnson, 2012). In
contrast to the greatly improved knowledge of lightning occurrences,
the distribution of lightning-related human fatalities and injuries is not
well characterized in many regions, especially in lesser-developed
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nations (Dewan, Hossain, Rahman, Yamane, & Holle, 2017) where
outdoors workers are highly impacted (Adhikari, 2021; Holle et al.,
2019). In developed countries, lightning fatalities have been greatly
reduced during the last century thanks to economic advances that pro-
vide lightning-safe structures and dwellings as well as transitions in
industrial structure (Holle, 2016). In developing countries, however, the
impact of lightning strike hazard is heavily underestimated and the
majority of the population continues to be engaged in subsistence
agriculture for long periods, live in lightning-unsafe dwellings, and work
in lightning-unsafe structures (Dlamini, 2009). The pattern recognition
methods proposed in this study can be adapted to facilitate the identi-
fication of other impact typologies involving injuries and fatalities,
especially in developing countries where such research is scarce. Similar
spatiotemporal thresholds applied to human impact patterns could
hence be applied to create or update early warning systems which
directly mitigate the risk of injury or fatalities.

Data availability

Historical lightning strike data from NLDN can be accessed from
https://ghrc.nsstc.nasa.gov/home/lightning/index/data_nldn

Code availability

The Python code used to complete the analysis and produce the
figures in this study will be available in the following online repository
[https://github.com/jesuslovesyiyi/Lightning outage_pattern.git].
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