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Abstract: In direct laser deposition (DLD) processes, process uncertainty leads to defects in the final 

product, which can significantly compromise product quality, mechanical properties, and reliability of the 

additively manufactured (AM) parts. Therefore, quality control and certification are of critical importance 

in the broader adoption of DLD processes. In-situ thermal history contains critical information of process 

quality and defect occurrences. This paper proposes a new layer-wise anomaly detection method for in-situ 

DLD process certification by leveraging thermal image series analysis. Image registration is leveraged to 

characterize the dynamics in the layer-wise thermal history, and Gaussian process (GP) models are used to 

characterize the variation component which is left unexplained by the image registration operation. Multiple 

new layer-wise features are extracted from the registration modeling and the GP models. Both a thin wall 

specimen and a cylindrical shaped specimen are used in the case study to demonstrate the effectiveness of 

the proposed method. When comparing with the benchmark method, the proposed method shows 

comparable results for the thin wall specimen, and it significantly outperforms the benchmark method for 

the cylindrical shaped specimen. In addition, the average computational time of the proposed method is 

significantly shorter than the average layer-wise build time, enabling the proposed method to facilitate in-

situ anomaly detection and process control. 
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1. Introduction 

The direct laser deposition (DLD) process is one of the laser-based additive manufacturing (AM) 

processes that can fabricate functional components with complicated geometries and functionally graded 

material [1]. During the DLD process, feedstock material is continuously delivered in the form of powder 

or wire, while being melted by a focused laser, gradually forming the final component in a layer-by-layer 

fashion. The high energy produced by the laser melts the feedstock in the melt pool, and the molten material 

is solidified on the substrate or the previous layer of the build, forming the newly deposited layer [2, 3]. 

The flexibility of DLD processes enables their applications in both metallic component fabrication and 

component repair. However, process uncertainty leads to defects in the AM parts, which will significantly 

compromise the mechanical properties and reliability of the final parts. This remains the major barriers that 

prevent broader adoption of AM technology to mission critical applications [4, 5].  

Since the DLD process is governed by the complex thermo-mechanical process, the thermal history of 

the DLD process contains significant process information which can be used for defect detection and part 

certification. The advancement in sensing technologies has enabled real-time monitoring of thermal history 

for anomaly detection via infrared thermography, generating thermal image streams with extremely large 

volume and complex spatiotemporal structure. The  existing data-driven approaches  utilize statistical 

methods to identify anomalies from thermal images [6–8]. In most of the studies, the local features are used 

to predict anomaly which cannot be directly utilized to monitor the profile of an entire deposited layer. This 

being the case, layer-wise process signatures have been extracted based on two major sensing technologies: 

1) optical imaging technology [9]; and 2) thermal imaging technology [10]. Although optical imaging 

systems are more cost-effective, infrared cameras, such as coaxial pyrometers, provide unique capacities 

on measuring the temperature distribution over time and space [11]. Figure 1 shows a schematic plot of a 

DLD fabrication process monitored by a coaxial pyrometer. When a process anomaly occurs, the thermal 
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image series shows unstable behaviors. For example, when there is an abnormal layer height defect, a 

significant location shift of the melt pool can be observed in the thermal images. Current layer-wise process 

feature extraction methods are purely data-driven [10], and are therefore cumbersome to incorporate AM 

part design information, such as printing trajectory. This may lead to limited performance when applying 

those methods to the AM fabrication of complex geometries. Therefore, there is a need for layer-wise 

feature extraction methods that can incorporate the design and printing path information of the AM 

specimen.  

 

Figure 1: A DLD process monitored by a co-axial pyrometer. 

In this paper, the thermal history is formulated as an image-based time series for in-situ process 

certification. A new methodology is proposed to leverage the AM process knowledge to extract layer-wise 

process features from the real-time thermal history for DLD processes. The major assumption of the 

proposed methodology is that a stable thermal history leads to homogenous microstructure and porosity-

free deposited layers. To quantify the dynamic change in the thermal image series, process features can be 
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extracted from two sources of variation in the thermal image series, namely, the thermal image registration 

operation between two consecutive images, and first order difference (i.e., error) between the two thermal 

images after registration. Subsequently, the extracted layer-wise features are used for process anomaly 

detection by leveraging supervised learning algorithms, i.e., support vector machine methods.  

The technical contributions of the paper are summarized as below. 

• The paper proposes a new data-driven formulation to model the layer-wise thermal history by 

integrating the AM process domain knowledge. More specifically, the melt pool image is 

decomposed into two components: 1) one is described by the previously observed melt pool image 

and an image registration operation; and 2) the other is denoted as the error term and modeled as a 

Gaussian process model. 

• The instantaneous printing directions are incorporated into the new formulation to account for 

complex printing paths. This significantly expands the capacity of the current literature to facilitate 

anomaly detection for complex shaped specimen fabricated by DLD processes. 

• Multiple new layer-wise features, including registration related features and error modeling related 

features, have been proposed based on the proposed new formulation for process anomaly 

detection. 

• By leveraging a support vector machine classification algorithm, the extracted features can 

facilitate reliable and efficient in-situ layer-wise certification for DLD processes. 

The rest of the paper is structured as follows. Section 2 provides a detailed literature review on the 

existing post-process defect detection techniques, and state-of-the-art studies on in-situ process monitoring 

and anomaly detection for laser-based AM processes. In section 3, the proposed methodology for layer-

wise process feature extraction and anomaly detection is introduced. Section 4 presents two case studies of 

fabricating a thin wall and a cylindrical specimen using the DLD process to validate the proposed 

methodology. Finally, section 5 summarizes the conclusion and potential future research directions. 
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2. Literature Review 

The state-of-art studies on defect characterization and anomaly detection for laser-based AM can be 

briefly categorized into two groups, namely, post-manufacturing defect detection and certification 

(subsection 2.1), and in-situ process monitoring (subsection 2.2). Their corresponding research gaps are 

analyzed at the end of each section, respectively. Subsequently, subsection 2.3 compares the strengths and 

weaknesses of these two categories of methods. 

2.1 Post-manufacturing Defect Detection and Part Certification  

Most traditional AM defect characterization and part certification methods focus on post-manufacturing 

inspection, including Computed Topography (CT), Magnetic Resonance Imaging (MRI), and ultrasonic 

testing [12]–[14]. For example, using the CT adjustment technique by investigating the minimum detectable 

pore size, the superiority of AM technology over casting processes is investigated [15]. Moreover, X-ray 

tomography combined with 3D image analysis is applied for the porosity detection in powder feedstock 

characterization for AM processes [16]. On the other hand, by combining OTSU thresholding and a 

convolutional neural network (CNN), the porosity is automatically segmented from X-ray CT images of 

metallic AM specimens [17]. In addition, three techniques (i.e., water intrusion porosimetry, micro-CT, and 

water absorption under vacuum) have been applied and compared for porosity characterization in [18]. In 

other studies, it is also shown that the porosity characterization results can vary depending on the collected 

data (e.g., pore size and pore structure) [19]. However, all of the post-manufacturing quality control 

approaches for AM can only be used after the final product is completely fabricated. Moreover, those 

approaches are usually expensive and limited to certain part geometries and/or dimensions.  

2.2 In-situ Process Monitoring and Anomaly Detection  

The metrological systems for in-situ anomaly detection in laser-based AM systems can be categorized 

into two groups, namely, optical imaging and thermal imaging systems. The state-of-the-art process 

monitoring methodologies developed for both metrological systems are summarized as follows.  

The broad adoption of machine vision systems in AM processes leads to various image-based process 

monitoring approaches for AM. In order to detect and predict the anomalies during production, large 
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amounts of data are generated in the formats of videos or image series which are then analyzed using big 

data analytics methods. For instance, a novel approach based on spatially weighted principal component 

analysis (PCA) was proposed to extract the spatiotemporal features from the video data, and the k-means 

clustering-based method is adopted for automatic defect detection [20]. Moreover, video analysis method 

was proposed by decomposing the original data into random natural events, sparse spatially clusters, and 

temporally consistent anomalous events [9]. In addition, a novel CNN architecture was presented for pixel-

wise localization of layer-wise powder bed imaging data, and the core advantage of that algorithm is to 

provide real-time performance, by seamlessly transferring the learned knowledge between different AM 

machines [2]. Specifically, a computer vision algorithm was recommended to automatically identify 

anomalies that occur during the powder spreading stage of the process, and the powder bed images are used 

as the potential component of a real-time control system in an LPBF machine. The developed algorithm 

was implemented using an unsupervised machine learning approach to detect and classify anomaly [21]. 

However, all the methods described above are pure data-driven approaches that do not consider the AM 

process knowledge during the analysis. 

Thermal imaging systems provide the temperature measurements in the field of view, and thus they 

could provide informative characterization of the thermal history for process monitoring and anomaly 

detection. For example, a reflectometer-based instrument was used to provide the dynamic laser absorption 

measurements to describe the melt pool dynamics for process monitoring [22]. Moreover, the thermal 

imaging has been used as an efficient tool in both online monitoring and part certification. For example, 

Mitchell et al. proposed a methodology for in-situ anomaly detection using pyrometry for laser powder bed 

fusion processes by correlating in-situ thermal observations with the included void observed through post-

build micro-computed tomography using machine learning algorithms [23]. In another approach, a close-

loop control system was developed based on the melt pool characterization using infrared imaging in laser-

based AM processes to improve geometric accuracy [24]. Moreover, the melt pools were characterized by 

image processing and feature extraction from the thermal images, and the supervised machine learning 

methods were adopted for porosity prediction in a single-track thin wall specimen fabricated by the DLD 
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process [6]. In addition, Guo et al. developed a data-driven framework that characterizes the spatial-

temporal effects for anomaly detection [25]. Moreover, a physics-driven deep learning model was 

developed to predict the porosity occurrences in the AM parts by integrating both observed and simulated 

melt pool data [26]. 

One major limitation in the current studies lies in their underlying premises that the healthy melt pools 

follow the same distribution. However, the heat transfer varies significantly as the layer is deposited higher 

in the build, leading to a drifting pattern in the thermal distribution between lower and higher layers. This 

may potentially limit the performance of the current methods. Seifi et al. [10] proposed a data-driven 

method to address the thermal distribution drifting by extracting new layer-wise features via tensor 

decomposition and convex hull computation. However, their method may demonstrate limitations when 

applied to complex geometry fabrication. As illustrated in Figure 2, during the fabrication of a thin wall 

specimen, the melt pool images are much more uniform comparing to the ones observed in a cylindrical 

shaped part fabrication. The variability in the melt pool images of the cylindrical part (in the bottom row) 

is assignable to the dynamic printing direction, in which the printing starts with the circular perimeter of 

the layer and then unidirectional infills are printed to form the solid part. Therefore, there is a need in 

extracting layer-wise features which is capable of accounting for both printing trajectory complexity and 

thermal distribution drifting. 

 
Figure 2: Thermal image examples during the fabrication of one thin wall and one cylindrical shaped 

specimen. 
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2.3 Comparison of Post-manufacturing and In-situ Anomaly Detection 

The two major categories of defect characterization and anomaly detection for laser-based AM are 

compared based on the multiple aspects as below. In terms of measurement accuracy, post-manufacturing 

methods are, in general, more accurate than the in-situ anomaly detection methods. Although post-

manufacturing methods demonstrate a wide range of accuracy depending on the technology used, they are 

all regarded as direct characterizations of anomaly and porosity occurrences in the build [27]. However, in-

situ anomaly detection methods usually leverage indirect process characterizations such as thermal history 

or other process condition variables, which only record the instantaneous process condition during the build 

to predict the anomaly occurrence in the final AM components [7], [20], [28].  

When jointly considering spatial resolution and object size, most post-manufacturing methods, 

especially the ones using the CT technologies, show a strong linear correlation between the voxel size and 

the object dimension [12]. Therefore, to measure a large build, post-manufacturing methods need to 

sacrifice the measurement resolution. However, the resolution of in-situ defect characterization methods is 

determined by the sampling rate of the sensor used [29], and completely independent of the build dimension. 

Therefore, in-situ defect characterization schemes can be more flexibly adapted to large-scale AM 

certification. In addition, when comparing their measuring speed and equipment cost, post-manufacturing 

schemes are significantly slower and more expensive than their in-situ counterparts [12], [30]. Last but not 

the least, post-manufacturing schemes cannot facilitate process control during the fabrication while in-situ 

characterization methods can enable real-time feedback control for quality assurance of the AM component 

[10], [25]. 

Given their respective strengths and weaknesses, post-manufacturing methods are usually used to 

collect limited ground truth data in a lab environment to support the training of supervised machine learning 

models for in-situ defect detection [7], [10], [31]. In this sense, the strengths of both categories of methods 

can be combined to facilitate fast, cost-effective, and accurate AM part certification. 
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3. Methodology 

In this section, the proposed methodology is introduced. Subsection 3.1 establishes the overall proposed 

formulation of the layer-wise thermal history of the DLD process. Subsections 3.2 and 3.3 introduce the 

two major components in the overall formulation, i.e., image registration and error modeling, respectively. 

Subsequently, subsection 3.4 introduces the layer-wise features extracted and subsection 3.5 proposes the 

anomaly detection method based on the features extracted.  

3.1 Image Series Analysis Formulation 

In the DLD process, the melt pool images contain location-based temperature measurements, and the 

thermal history of a fabricated layer can be considered as a series of melt pool images. To characterize the 

dynamics in the thermal history, the melt pool image series collected during the build of a layer can be 

modeled as an image series model as depicted in Equation (1), 

𝑿𝑡+1 = 𝑓𝑡,𝑡+1(𝑿𝑡, 𝛀𝑡,𝑡+1) + 𝜺𝑡+1 (1) 

where the thermal image collected at time 𝑡 (𝑡 ∈ 𝒯𝑙) is denoted by 𝑿𝑡 with a dimension of 𝐼 × 𝐽, where 𝒯𝑙 

denotes the set of timestamps of collected melt pool images that belong to the 𝑙-th layer, and 𝐼 and 𝐽 denote 

the number of rows and columns of each thermal image, respectively. 𝑓𝑡,𝑡+1 denotes an image registration 

function that best aligns 𝑿𝑡 and 𝑿𝑡+1, which is characterized by a 3×3 transformation matrix  𝛀𝑡,𝑡+1. An 

error matrix denoted by 𝜺𝑡+1 with a dimension of 𝐼 × 𝐽 contains the error information which cannot be 

explained by the registration function 𝑓𝑡,𝑡+1. In this study, a Gaussian process model is used to characterize 

the stationary component in the error term 𝜺𝑡+1.  

The rationale of the proposed formulation (Equation (1)) is illustrated in Figure 3. The image sequence 

model comes from the hypothesis that the thermal history of AM processes will be stable when the AM 

process is healthy. Furthermore, the melt pool images are also determined by the instantaneous printing 

direction. Therefore, the paper proposes to characterize the relationship between the two consecutive melt 

pool images using an image registration function to characterize the translational and rotational relationship 

between the two consecutive images. The best fitted rotational operation between the two images will be 
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compared with the instantaneous printing directional changes. Furthermore, any difference that cannot be 

explained in the image registration function will be included in the error term. 

 

 

Figure 3: Melt pool image series formulation 

3.2 Image Registration between Consecutive Images 

In this paper, image registration is used to project 𝑿𝑡 to 𝑿𝑡+1 (𝑡 ∈ 𝒯𝑙) for the best alignment, which is 

characterized as the minimal mean squared error between the two images after registration. The registration 

function 𝑓𝑡,𝑡+1 can involve both translation and rotation operations of 𝑿𝑡 to optimally fit 𝑿𝑡+1. Specifically, 

the translation operation signifies the magnitude of shift in a 2D coordinate system between 𝑿𝑡 and 𝑿𝑡+1, 

whereas the rotation describes the orientation difference between 𝑿𝑡 and 𝑿𝑡+1. The output of the image 

registration technique is defined as a 3×3 transformation matrix of 𝛀𝑡,𝑡+1 in Equation (2), 

𝛀𝑡,𝑡+1 = [
𝑎𝑡,𝑡+1 𝑏𝑡,𝑡+1 0

−𝑏𝑡,𝑡+1 𝑎𝑡,𝑡+1 0
𝑡𝑥

𝑡,𝑡+1 𝑡𝑦
𝑡,𝑡+1 1

] (2) 

where, 𝑡𝑥
𝑡,𝑡+1 and 𝑡𝑦

𝑡,𝑡+1 denote the number of pixels to shift 𝑿𝑡 in the horizontal and vertical directions, 

respectively. In addition, 𝑎𝑡,𝑡+1 and 𝑏𝑡,𝑡+1 jointly specify the rotation operation, such that 𝑎𝑡,𝑡+1 =

cos 𝑞𝑡,𝑡+1  and 𝑏𝑡,𝑡+1 = sin 𝑞𝑡,𝑡+1, where 𝑞𝑡,𝑡+1 denotes the rotation angle of 𝑿𝑡 about the origin of the 

image to best fit 𝑿𝑡+1. In an iterative procedure, the image registration algorithm is performed to minimize 

a pre-defined similarity metric (such as mean square error (MSE) of the images after registration). The 

image registration operations iteratively modify the operations to 𝑿𝑡 to obtain a minimal MSE [32]. 
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3.3 Error Modeling based on Gaussian Process Models 

The Gaussian Process (GP) model enables to characterize highly nonlinear covariance structure [33], 

[34] in the error term 𝜺𝑡+1 in Equation (1), as illustrated in Equation (3),  

𝜺𝑡+1~𝐺𝑃(𝛽𝑡+1, 𝐾((𝑖, 𝑗), (𝑖′, 𝑗′)) + 𝜎𝑡+1
2 𝐼𝑛) (3) 

Here, in the error term matrix 𝜺𝑡+1, the row and column indices of the pixel are denoted as 𝑖 and 𝑗, where 

𝑖 = 1,2,3, … , 𝐼, and 𝑗 = 1,2,3, … , 𝐽. 𝛽𝑡+1 denotes the intercept of the GP model. 𝜎𝑡+1
2  denotes the variation 

of the modeling error of 𝜺𝑡+1 and 𝐼𝑛 is an identity matrix, which collectively identify the white noise error. 

The kernel function is represented by  𝐾(∙,∙), which is used to characterize the covariance between the 

different locations in 𝜺𝑡+1, such as (𝑖, 𝑗) and (𝑖′, 𝑗′). Specifically, it determines how the response at each 

pixel is correlated with the responses at its neighboring pixels. The covariance function 𝐾(∙,∙) can be 

parameterized by various kernel functions. In this study, to characterize the spatial correlation in 𝜺𝑡+1’s, 

the squared exponential kernel function is used as follows, 

𝐾((𝑖, 𝑗), (𝑖′, 𝑗′)|𝜎𝐿
𝑡,𝑡+1, 𝜎𝐹

𝑡,𝑡+1) = (𝜎𝐹
𝑡,𝑡+1)2exp (−

1

2

𝑟2

(𝜎𝐿
𝑡,𝑡+1)2) (4) 

where, 𝑟 represents the Euclidean distance between the two pixels (𝑖, 𝑗) and (𝑖′, 𝑗′), i.e., 𝑟 =

√(𝑖 − 𝑖′)2 + (𝑗 − 𝑗′)2, as shown in Figure 4; 𝜎𝐿
𝑡,𝑡+1 denotes the characteristic length scale, and 𝜎𝐹

𝑡,𝑡+1 

denotes the signal standard deviation [35].  

The Quasi-Newton optimizer can be used for parameter estimation of the GP models. To accelerate the 

parameter estimation in the GP modeling for 𝜺𝑡+1, the data sampling technique is adopted to the 𝐼 × 𝐽 error 

matrix. This will serve to reduce the computational cost of GP models when the dimensionality of 𝜺𝑡+1 is 

high. Specifically, a pre-defined number 𝑠 of pixels are randomly sampled from the error matrix 𝜺𝑡+1, 

which are used as the response data in the GP model. The effect of the sample size 𝑠 on the final anomaly 

detection performance and computational time is investigated in the case studies in section 4. 
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Figure 4: Distance measure in an error matrix 𝜺𝑡+1 

3.4 Layer-wise Feature Extraction 

The layer-wise thermal image series are characterized by extracting two groups of features. One group 

of features are extracted from the transformation matrix 𝛀𝑡,𝑡+1 of image registration function, and another 

group is extracted from the estimated parameters from the GP models to characterize the error matrix 𝜺𝑡+1.  

3.4.1 Registration related Features 

The image registration related features are extracted from the transformation matrix 𝛀𝑡,𝑡+1 as presented 

in Equation (2), where the rotation and translation parameters can be determined as i) the angle of rotation  

𝑞𝑡,𝑡+1 = tan−1 (
𝑏𝑡,𝑡+1

𝑎𝑡,𝑡+1) (5) 

and ii) Euclidian distance shifted from 𝑿𝑡 to the registered image  

𝐸𝐷𝑡,𝑡+1 = √(𝑡𝑥
𝑡,𝑡+1)2 + (𝑡𝑦

𝑡,𝑡+1)
2
 (6) 

The parameters of 𝑞𝑡,𝑡+1, and 𝐸𝐷𝑡,𝑡+1 are the two fitted features of image rotation and translation between 

image 𝑿𝑡 and 𝑿𝑡+1, respectively. 

The feature used to characterize the rotation operation, denoted as 𝑅𝑂𝑡+1, can be determined by 

calculating the absolute difference between the theoretical and fitted angular changes between the 

consecutive melt pool images. The theoretical angular change ∆𝜃𝑡,𝑡+1 can be calculated from the printing 
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path by linear or circular interpolation using the coordinates in the g-code; and the rotation operation related 

feature can be calculated as the absolute difference between the theoretical and fitted angular changes, i.e.,  

𝑅𝑂𝑡+1 = |𝑞𝑡,𝑡+1 − ∆𝜃𝑡,𝑡+1| (8) 

Both features characterize the dynamic change in the melt pool image series, and their values should 

be very small when the AM process is stable. Therefore, the maximum values of both features are calculated 

to quantify the most extreme changes in the melt pool image series. Both registration related layer-wise 

features for anomaly detection can be calculated based on Equation (9) and (10),  

𝐹𝑙
1 = max

𝑡∈𝒯𝑙

{𝐸𝐷𝑡,𝑡+1} (9) 

𝐹𝑙
2 = max

𝑡∈𝒯𝑙

{𝑅𝑂𝑡+1} (10) 

where the layer-wise features of the 𝑙-th layer are denoted as 𝐹𝑙
1 and 𝐹𝑙

2, which can be calculated by taking 

the maximum of the local registration related features in the fabrication of the 𝑙-th layer.  

3.4.2 Error Modeling based Features 

Using the estimated parameters of the GP models, the error modeling based features are extracted, 

including the absolute value of the intercept 𝐹𝑙,𝑡+1
3 = |𝛽𝑡+1|, and the variation and covariance related 

features, i.e., 𝐹𝑙,𝑡+1
4 = 𝜎𝑡+1, 𝐹𝑙,𝑡+1

5 = 𝜎𝐿
𝑡,𝑡+1, and 𝐹𝑙,𝑡+1

6 = 𝜎𝐹
𝑡,𝑡+1. Similar to the calculation of 𝐹𝑙

1 and 𝐹𝑙
2, 

each GP model related feature quantifies the dynamics in the thermal history, where the larger the features 

are, the more unstable the melt pool image series will be. Therefore, to obtain the layer-wise features, the 

maximum value of each feature for the 𝑙-th layer is calculated as  𝐹𝑙
𝑖 = max

𝑡∈𝒯𝑙

{𝐹𝑙,𝑡
𝑖 }, where 𝑖 = 3, 4, 5, 6 and 

𝒯𝑙 represents the set of timestamps which are included in the fabrication of the 𝑙-th layer.  

3.5 Anomaly Detection based on Layer-wise Features  

Supervised learning methods can be used for layer-wise anomaly detection via training a classification 

model based on labeled historical data. The layer-wise labeling information can be obtained using post-

process quality evaluation such as X-ray CT scanning. Specifically, a layer is labeled as healthy if it does 

not include a porosity, and one is labeled as unhealthy if it contains at least one porosity. It should be noted 
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that various machine learning algorithms can be applied for layer-wise anomaly detection in real time. In 

this study, the support vector machine (SVM) method is used due to its flexibility in learning the boundary 

by incorporating diversified kernel functions. By leveraging a historical data set with labeling information, 

an SVM classifier can be trained by finding the hyperplane that best separates all data points of different 

classes, and the complexity of the hyperplane can be determined by cross validation [36].  

4. Case Study 

4.1 Experimental setup  

The Laser Engineered Net Shaping (LENS) process is one of the most widely used DLD processes and 

is thus used to validate the effectiveness of the proposed methodology. The LENS 750 machine used in the 

case study is equipped with a co-axial pyrometer camera (Stratonics, Inc.) to capture the melt pool image 

series. More information about the experimental setup can be found in [10], [37]. The feedstock material 

used was Ti-6AL-4V powder. To examine the robustness of the proposed method to different printing 

trajectories, two parts with different geometries (i.e., one thin wall and one cylindrical shaped part) were 

fabricated (as illustrated in Figure 5). The key process parameters of the two specimens are summarized in 

Table 1. 

 

Figure 5: Additively fabricated parts: a) thin wall, and b) cylinder part. 

During the specimen fabrication, the melt pool images were captured using the co-axial pyrometer 

camera, producing melt pool images in the matrix form of 480×752, with each pixel value represents the 

temperature measurement at that location. Some melt pool image examples from one layer of both two parts 

are illustrated in Figure 2. It can be observed that for the thin wall specimen, all the melt pools within one 

layer have the identical orientation due to its unidirectional printing path. In addition, the cylindrical 
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specimen demonstrates diversified orientation in the melt pool images collected from the layer-wise 

fabrication. For example, during the printing of the perimeter of the cylinder, the melt pool orientation is 

varying continuously over time, and thus needs to be taken into account in the melt pool image series 

modeling for anomaly detection. After the build of the parts, the porosity inside the structure was evaluated 

using the X-ray CT scanning procedure (Skyscan 1172), and the minimum size of a detectable pore was set 

to 0.05𝜇𝑚.  

Table 1: Process parameters for fabricating the two specimens. 

Parameters Thin wall Cylinder 

Scan speed 
30 

inch/min 
40 inch/min 

Powder feed rate 4 rpm 3 rpm 

Hatch spacing 0.02 inch 0.02 inch 

Power 300 W 300 W 

Layer thickness 0.02 inch 0.015 inch 

Nozzle diameter 0.035 inch 0.035 inch 

Infill pattern - 

Unidirectional 

(180° rotation between 

layers) 

Total number of layers in the build 60 69 

Number of abnormal layers in the 

build 
26 58 

Number of thermal images 

collected 
1557 2827 

 

4.2 Benchmark method selection 

One group of potential methods for benchmark analysis is time series models (such as autoregressive 

modeling [38]). The stochastic nature of the temporal sequenced data can be characterized and the one-step 

ahead prediction error can be used for process monitoring [39], [40]. However, one most important 

assumption of most time series analysis methods is stationarity, where the mean, variance, and 

autocorrelation structure do not change over time [41]. Unfortunately, this assumption does not hold in the 

layer-wise melt pool image series since the relationship between consecutive images are essentially 

dynamic and cannot be properly characterized using a time series model. 
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The layer-wise anomaly detection method proposed by Seifi et al. [10] was used as the benchmark 

method, which is the most recently published layer-wise anomaly detection methodology for DLD 

processes. In the benchmark method, multi-linear principal component analysis (MPCA) was leveraged to 

reduce the dimension of the thermal images. Subsequently, the volume of the convex hull formed by the 

extracted MPCs extracted from each layer is used as one layer-wise feature to quantify the stability of the 

thermal history within one layer. On the other hand, the maximum value of the residual norm of the MPCA 

modeling within a layer is used any the second feature for layer-wise anomaly detection. The method 

demonstrates superior layer-wise anomaly detection performance when compared with its benchmark 

methods for the thin wall specimen fabrication.  

4.3 Evaluation procedure 

To compare the performance of the proposed and benchmark method, the thermal history of two DLD 

fabrication have been used, i.e., one is a thin wall and the other is a cylindrical specimen, leading to two 

separate datasets. The two datasets were trained and evaluated separately based on the following procedure. 

First, each data set was randomly split into the training set (80%) and testing set (20%), and both the 

proposed method and the benchmark method were implemented separately for model training and 

performance evaluation.  

For the proposed feature extraction, only the translational operator (i.e., 𝐸𝐷𝑡,𝑡+1) was extracted as the 

registration related feature from the thin wall dataset due to the unidirectional printing path used. On the 

other hand, for the cylindrical part dataset, both translational (i.e., 𝐸𝐷𝑡,𝑡+1) and rotational operators (i.e., 

𝑅𝑂𝑡+1) were extracted as the registration related features. The error modeling related features extracted are 

the same for both datasets. Subsequently, their corresponding layer-wise features were calculated and the 

SVM classifiers were trained based on the layer-wise labels. 

200 replications of the performance evaluation were conducted by performing the random data split 

200 times and evaluating the average performance. The recall, precision, Fscore, and overall accuracy are 

reported as the performance metrics of the two methods, which can be calculated as follows: 
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Recall =
TP

TP + FN
 (11) 

Precision =
TP

TP + FP
 (12) 

Fscore = 2 ×
Precision × Recall

Precision + Recall
 (13) 

Accuracy =
TP + TN

TP + TN + FP + FN
 (14) 

where True-Positive (TP) denotes the unhealthy layers which are predicted accurately as unhealthy, 

whereas True-Negative (TN) represents the healthy layers which are accurately predicted as healthy. On 

the other hand, False-Negative (FN) denotes inaccurate prediction of unhealthy layers as healthy, while 

False-Positive (FP) represents inaccurate prediction of the layers which are healthy but predicted as 

unhealthy. In each iteration, the TP, TN, FN, and FP values were obtained by comparing the predicted 

labels and the ground truth labels from the X-ray CT inspection based on the testing data set. The Fscore 

is the harmonic mean of precision and recall, and the overall accuracy is calculated by dividing the total 

correct classifications by the total number of layers evaluated. In this paper, similar to [10], the Fscore 

value is used as the major metric for performance comparison. 

4.4 Results and discussion 

The mean of the performance metrics of both the proposed and benchmark methods are summarized in 

Table 2. To test the effects of the sample size 𝑠 used in fitting the GP model for the error matrix, a variety 

of different sample size values were evaluated. It can be observed that the proposed method and the 

benchmark method demonstrate comparable average Fscore performance in the layer-wise anomaly 

detection for the thin wall specimen. However, the proposed method significantly outperforms the 

benchmark method for the cylindrical shaped part. It can be observed that the Fscore values of the proposed 

method using different 𝑠 values are universally higher (approximately 6% higher) than the benchmark 

method, and the overall accuracy of the proposed method is approximately 10% higher than the benchmark 

method. This significant improvement is mainly because the proposed method takes the printing trajectory 
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information into account in the melt pool image series modeling. Therefore, the proposed method is capable 

of layer-wise anomaly detection for complex geometry/printing paths.  

Table 2: Result summary for performance comparison 
  Proposed method   

Benchmark  

method   s=50 s=100 s=150 s=200 s=300 s=400  

Thin wall Accuracy 93.54% 93.17% 93.00% 93.92% 93.12% 93.25%  94.67% 
 Precision 94.75% 91.88% 91.63% 93.64% 91.85% 92.50%  95.91% 
 Recall 91.20% 93.58% 93.58% 93.68% 93.68% 93.58%  90.98% 
 Fscore 92.36% 92.10% 91.97% 93.06% 92.10% 92.38%  93.24% 

Cylinder Accuracy 84.29% 84.21% 83.96% 83.93% 83.11% 83.21%  73.60% 
 Precision 84.97% 84.96% 84.86% 84.85% 84.76% 84.78%  81.46% 
 Recall 99.18% 98.94% 98.72% 98.68% 97.76% 97.89%  88.05% 
 Fscore 91.26% 91.18% 91.02% 91.00% 90.52% 90.59%  84.12% 

 

There are three possible reasons for observed misclassification of both the proposed and the benchmark 

methods. First, the discrete data sampling limits the data acquisition of the thermal history, which may lead 

to missed thermal images when the actual anomaly occurs. Second, the X-ray CT scanning characterization 

may be subject to noise and error. Third, the proposed anomaly detection method does not consider effects 

of re-melting, which can potentially remove some of the porosities generated in the previous layer during 

the deposition of the consecutive layers. 

The computational time of the proposed method with different sample size values 𝑠 in the GP modeling 

phase is demonstrated in Figure 6, where the average layer-wise computation time and the layer-wise build 

time is visualized. The processor used to evaluate the computation efficiency was Intel® Core™ Processor 

i7-7700 CPU @ 3.60GHz. It can be observed that the computation time for the cylinder specimen is 

significantly longer than the thin wall specimen due to the additional operation in the registration phase 

(i.e., rotation operation) to accommodate complex printing trajectory. In addition, it can be observed that 

reducing the sample size used in the GP modeling phase can significantly reduce the computation time, 

while not significantly affecting the anomaly detection results (as illustrated in Table 2). It is also worth 

noting that in all the tested scenarios the computation for layer-wise anomaly detection takes significantly 

shorter than its corresponding layer-wise fabrication for both specimens. Therefore, the proposed method 
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is computationally efficient and thus can facilitate in-situ layer-wise anomaly detection and potential 

process control. 

 
Figure 6: Average layer-wise computation time given different sample size 𝑠 used in the GP model. 

 

5. Conclusion 

Direct laser deposition (DLD) is a widely used metal-based additive manufacturing technology in 

fabricating functional components for mission critical applications. However, the lack of repeatability in 

the additively fabricated parts is one of the major challenges that hinders broader industrial applications of 

DLD processes. Possible quality issues, such as internal porosity, deformation, and cracking, can lead to 

significantly compromised mechanical properties. Comprehensive studies including data-driven methods 

have been focused on local characterization for anomaly detection based on individual thermal images. A 

layer-wise thermal image modeling framework can take into account the printing trajectory information to 

characterize the complex spatio-temporal relationship within the image series, which can achieve improved 

anomaly detection results. In this paper, the layer-wise thermal images are formulated as an image series, 

and the image registration method is used to quantify the dynamic relationship between consecutively 

observed thermal images. In addition, Gaussian process (GP) models are used to characterize the error term 

which is left unexplained by the registration operation. Multiple layer-wise features are extracted from the 

registration operation and GP model-based error modeling, respectively. The support vector machine 
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classifier is trained based on historical data and used for in-situ layer-wise anomaly detection based on the 

extracted layer-wise features. Case studies based on a thin wall and a cylindrical shaped specimen 

fabrication using a DLD process are used to validate the proposed methodology. The proposed method also 

demonstrates competitive performance when comparing with the benchmark methods for layer-wise 

anomaly detection.  

A couple of research topics remain open for future work. First, more sophisticated geometric parts, 

such as freeform parts, will be used to test the performance of the proposed. Second, the proposed 

methodology is limited to training one model for one identical set of AM process parameters, making the 

proposed method quite expensive for data collection. Therefore, transfer learning algorithm and domain 

adaptation methods can be adopted to combine the process data collected using different process parameters 

or even different AM machines for part certification and anomaly detection. Last but not the least, the 

prediction of mechanical behavior of the AM parts is critical to AM users. Therefore, it is necessary to link 

the detected anomaly characteristics with the durability and the performance of the fabricated AM parts.  
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