
Magnetotransport in semiconductors and two-dimensional materials
from first principles

Dhruv C. Desai,1 Bahdan Zviazhynski,2 Jin-Jian Zhou,1 and Marco Bernardi1, ∗

1Department of Applied Physics and Materials Science,
California Institute of Technology, Pasadena, California 91125

2Trinity College, University of Cambridge, Cambridge, CB2 1TQ, United Kingdom

We demonstrate a first-principles method to study magnetotransport in materials by solving the
Boltzmann transport equation (BTE) in the presence of an external magnetic field. Our approach
employs ab initio electron-phonon interactions and takes spin-orbit coupling into account. We
apply our method to various semiconductors (Si and GaAs) and two-dimensional (2D) materials
(graphene) as representative case studies. The magnetoresistance, Hall mobility and Hall factor in
Si and GaAs are in very good agreement with experiments. In graphene, our method predicts a large
magnetoresistance, consistent with experiments. Analysis of the steady-state electron occupations
in graphene shows the dominant role of optical phonon scattering and the breaking of the relaxation
time approximation. Our work provides a detailed understanding of the microscopic mechanisms
governing magnetotransport coefficients, establishing the BTE in a magnetic field as a broadly
applicable first-principles tool to investigate transport in semiconductors and 2D materials.

I. INTRODUCTION

Magnetic fields can strongly influence the electrical
properties of materials, with changes quantified by
magnetotransport coefficients such as the magnetore-
sistance (MR), Hall mobility and Hall factor [1, 2]. In
metals and semiconductors, the change in resistivity
with magnetic field is typically small, but in certain
semimetals, magnetic heterostructures and oxides the
effects can be far greater or even dramatic, as in the case
of giant and colossal MR [3, 4]. Magnetotransport is
of practical relevance for various applications, including
sensors [5], magnetoresitive RAM and hard drives [6]. In
addition, measurements of the carrier concentration and
electrical mobility require knowledge of the Hall factor.
Therefore it is important to understand the physical
mechanisms governing magnetotransport and develop
methods to accurately predict the MR and Hall factor.

Experimentally, magnetotransport has been studied
extensively in metals [2] and simple semiconductors
such as Si [7–12] and GaAs [13–15]. More recently,
measurements on two-dimensional materials have shown
unconventional behaviors, such as large non-saturating
MR at high fields in graphene [16–18] and WTe2 [19],
and various studies have shown an interplay between
band structure topology and magnetotransport, includ-
ing the chiral anomaly and negative MR in topological
semimetals [20–22]. These developments show that
magnetotransport is a rapidly growing research arena.

Early attempts to formulate theories of magnetotrans-
port phenomena [23] focused on approximate solutions
of the Boltzmann transport equation (BTE) in the
relaxation time approximation (RTA) [1]. Subsequent
work using parametrized electronic band structures and
electron-phonon (e-ph) interactions has shown calcu-
lations of the Hall factor in various materials [24, 25].
Approaches beyond the RTA have also been proposed,
for example by solving BTE in polar semiconductors
in terms of infinite determinants [26] or computing the
phonon-limited Hall mobility in Si using deformation

potential theory [27, 28]. These models lack analytic
closed-form solutions, and thus were implemented
numerically, highlighting the need for computational
approaches to study magnetotransport.

In recent years, density functional theory (DFT) [29]
and density functional perturbation theory (DFPT) [30]
have enabled ab initio calculations of e-ph interactions.
The resulting phonon-limited charge transport has been
studied in various semiconductors and 2D materials
in the framework of the BTE [31–39]. First-principles
studies of magnetotransport have lagged behind − the
only existing examples are two works by Macheda et al.,
who investigated an insulator (diamond) [40] and very
recently the Hall factor in graphene [41] by solving the
BTE in a magnetic field, as well as methods employing
the Fermi surface topology to investigate magneto-
transport [42]. However, first-principles calculations of
magnetotransport in semiconductors are still missing
and the MR in 2D materials has not yet been computed.

Here we show calculations of the MR, Hall mobility
and Hall factor, as a function of temperature and
magnetic field, in group-IV and polar semiconductors,
focusing on the prototypical cases of Si and GaAs, and
in graphene. Our approach, implemented in our open-
source Perturbo code [43], solves the linearized BTE
in a magnetic field using Jacobi iteration (as opposed to
conjugate gradient implemented in Ref. 40) to obtain the
conductivity tensor and from it the magnetotransport
properties. The calculations employ ab initio e-ph in-
teractions and include spin-orbit coupling (SOC), which
is particularly important for holes. We evaluate k-space
derivatives from a central finite difference approxima-
tion [44] and obtain the conductivity using tetrahedron
integration. To our knowledge, magnetotransport calcu-
lations employing such precise numerical techniques and
correctly including SOC have not yet been reported.
Extensive comparisons with experiments demonstrate
the accuracy of our first-principles magnetotransport
calculations for semiconductors. Analysis of the relative
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occupation changes in momentum space shows the
dominant role of backscattering due to optical phonons
and the breaking of the RTA in graphene. Taken
together, our work demonstrates an accurate method
to investigate magnetotransport in semiconductors and
2D materials and clarify the underlying microscopic
mechanisms.

II. METHODS

A. Magnetotransport properties and BTE

In the presence of small electric (E) and magnetic (B)
fields, the current density J can be written as

Ji =
3∑
j=1

σij(B)Ej (1)

with the conductivity tensor σij expanded as [1]

σij(B) = σ
(0)
ij + σ

(1)
ijkBk + σ

(2)
ijklBkBl + . . . (2)

with implied summations over repeated indices (which
correspond to Cartesian components). We write the cur-
rent in terms of electronic occupations fnk and band ve-
locities vnk (n is the band index and k the crystal mo-
mentum of the electronic state):

J =
−Se
NkΩ

∑
nk

fnkvnk, (3)

where e is the absolute value of the electric charge, S
the spin degeneracy, Nk the number of unit cells, and Ω
their volume. At steady-state, the BTE in the presence
of both electric and magnetic fields reads [1]

e
∂fnk
∂εnk

vnk ·E+
e

~
(vnk×B)·∇kfnk+Ie−ph[fnk] = 0 (4)

where εnk are electronic energies, and the last term in-
cludes e-ph collision processes consisting of absorption or
emission of a phonon [43]. Expanding fnk to leading or-
der in E, we write fnk − f0nk = −f0nk(1− f0nk) eE

kBT
·Fnk,

and solve for the unknown occupation changes Fnk [43].
Factoring out −eEf0nk(1− f0nk)/kBT , we obtain the lin-
earized BTE

vnk +
e

~
(vnk ×B)∇kFnk =

1

Nq

∑
m,νq

W νq
nk,mk+q(Fnk − Fmk+q),

(5)

where ν is the phonon mode index, q the phonon
wavevector and Nq the number of q points used in the
summation. Here, W νq

nk,mk+q is the scattering rate from

|nk〉 to |mk + q〉 and takes into account both phonon
absorption and emission processes [43]. We solve for Fnk
by rearranging terms in Eq. (5) and using the iterative
Jacobi scheme. For each iteration i, we get

F
(i+1)
nk = vnkτnk +

τnk
Nq

∑
m,νq

W νq
nk,mk+qF

(i)
mk+q

+
e

~
τnk(vnk ×B)∇kF

(i)
nk,

(6)

where τnk is the relaxation time. The term containing
the gradient in k, ∇kFnk, is computed using the central
finite difference approximation in Ref. [44]. Starting with
the RTA solution as the initial guess, Fnk = vnkτnk, we
evaluate the right-hand side of Eq. (6) to update the
solution Fnk, iterating this procedure until convergence.

Expanding fnk in Eq. (3), we obtain [43]

σij =
e2S

NkΩkBT

∑
nk

f0nk(1− f0nk) (vnk)i(Fnk)j , (7)

We can calculate the magnetotransport coefficients from
this conductivity tensor because of its implicit depen-
dence on B through Eq. (6). The MR can be obtained
from the resistivity tensor ρ(B) = σ−1(B) using [1]:

MR =
ρ(B)− ρ(0)

ρ(0)
. (8)

At low fields, the MR is expected to be quadratic
in the magnetic field [45]. In most materials, the MR
perpendicular to B (transverse MR) is small and positive
− classically, this increase in resistivity can be viewed
as a result of the Lorentz force deviating charge carriers
from their initial trajectories.

First-principles calculations typically compute the
drift mobility µd in zero magnetic field, whereas in exper-
iments a common practice is to obtain the mobility from
Hall measurements [46]; the resulting Hall mobility is
defined as µH = σdRH, where σd is the drift conductivity
and RH the Hall coefficient. In Drude theory, RH evalu-
ates to 1/ne for a carrier concentration n [1], so µH = µd.
However, when the dependence of the relaxation time
on electronic state is taken into account, RH deviates
from the Drude value by the Hall factor r = µH/µd [24],
so the Hall and drift mobilities differ by the Hall
factor. For systems with cubic symmetry and B field in

the z direction, the Hall factor is r = ne σ
(1)
xyz/(σ

(0)
xx )2 [25].

B. Computational details

We apply our approach to Si, GaAs and graphene.
Their ground state is computed using DFT in the local
density approximation, with a plane-wave basis set and
norm-conserving pseudopotentials, using the Quantum
Espresso package. We use plane-wave kinetic energy
cutoffs of 40 Ry for Si, 72 Ry for GaAs and 90 Ry for
graphene and relaxed lattice parameters of 5.43 Å for Si,
5.56 Å for GaAs, and 2.44 Å for graphene. The phonon
dispersions and e-ph perturbation potentials on coarse
q-point grids are computed with DFPT [51] and the
Wannier functions are obtained using Wannier90 [52].
We use coarse electron k-point and phonon q-point
grids of 8 × 8 × 8 for Si and GaAs and 36 × 36 × 1 k-
and 18 × 18 × 1 q-points for graphene. We compute
and interpolate the e-ph matrix elements using our
Perturbo open source package [43]. Calculations with
SOC [43, 53] employ fully relativistic pseudopotentials.
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FIG. 1. (a) Drift and Hall mobilities, in blue and red respectively, as a function of temperature in n-type silicon (experimental
data are from Refs. [12, 47–49]). (b) Hall factor at 300 K as a function of carrier concentration in n-type silicon. (c) Transverse
MR as a function of magnetic field in n-type silicon, compared with experiments from Ref. [8]. (d) Drift and Hall mobilities as
a function of temperature in p-type silicon (experimental data are taken from Refs. [9, 11, 50]).

We implement the iterative solution of the BTE in a
magnetic field in Perturbo, and use very fine, equal
and uniform k- and q-point grids (with 1403 points for
Si, 6503 for GaAs and 18002 for graphene) to converge
the BTE solutions. The conductivity tensor is obtained
via tetrahedron integration [43].

III. RESULTS

A. Silicon

We compute the drift and Hall mobilities, Hall fac-
tor and MR as a function of temperature for Si, and
compare the computed results with experiments. Fig-
ure 1(a) shows the Hall and drift electron mobilities in
n-type silicon. The agreement with experimental data
from Refs. [12, 47–49] is excellent. As expected for elec-
tron carriers, the Hall mobility is greater than the drift
mobility at all temperatures. The computed Hall fac-
tor, r = µH/µd, increases slightly with temperature, as
evidenced by higher deviations between µH and µd for
higher temperatures.

The Hall factor for electrons is shown in Fig. 1(b)
at 300 K as a function of carrier concentration, which
can be tuned in our calculations by changing the chemi-
cal potential. At low carrier density, our computed Hall
factor is very close to the accepted value of ∼1.15 in n-
type Si [7]. The computed Hall factor is within ∼10%
of experiment at all carrier concentrations, a noteworthy

result for a calculation without adjustable parameters.
We attribute the increasing deviation from experiments
at higher concentrations to scattering from ionized im-
purities not taken into account in this work.

The transverse MR is a common figure of merit for
various applications. In Fig. 1(c), we plot the transverse
MR as a function of magnetic field for electron carri-
ers in n-type Si. The computed MR is in very good
agreement with experiments from Ref. [8]. In the low
field regime µHB � 1 the calculations use a strict con-
vergence threshold on the conductivity, with a change
∆σ/σ < 10−8 between consecutive iterations. Calcula-
tions at higher fields (B > 2 ·103 G) require relaxing this
convergence threshold to ∼10−4. Remaining differences
between experiment and theory may be due to various
factors, including uncertainty in the experimental tem-
perature and doping concentration, as well as inevitable
small deviations from experiment of the computed band
structure and phonon dispersions.

Figure 1(d) shows the computed Hall and drift mobili-
ties of hole carriers and compares them with experimental
data for p-type silicon. For hole carriers, we find that
calculations without SOC fail to produce an isotropic
conductivity tensor, a key sanity check for Si(for elec-
trons, SOC has only a minor effect). The spurious MR
anisotropy for calculations without SOC is due to poor
numerical convergence and greater errors in the conduc-
tivity tensor, providing further evidence that including
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FIG. 2. (a) Drift and Hall mobilities in GaAs as a function
of temperature for an electron concentration n = 1016 cm−3.
(b) Hall factor vs temperature for electrons in GaAs.

SOC in our band structure and e-ph calculations [43, 53]
is key to obtaining accurate magnetotransport for hole
carriers. The hole mobilities are in very good agree-
ment with data for p-type Si [9, 11, 50]. For hole carri-
ers, correctly, we obtain a behavior opposite to electrons,
µH<µd in the entire temperature range and thus a Hall
factor r < 1. Our computed low field MR coefficient,
MR/B2, is 7.74 · 105 cm4/V2s2 for holes at 300 K, within
30% of the measured value of 5.90 · 105 cm4/V2s2 [54].
These results show that including SOC makes accurate
magnetotransport calculations possible for hole carriers
in semiconductors.

B. Gallium arsenide

The drift mobility has been studied extensively from
first principles in GaAs [31, 34, 37]. Due to its polar
character, electrons in GaAs couple strongly with longi-
tudinal optical (LO) phonons through the Fröhlich inter-
action. We have recently shown that the iterative solu-
tion of the linearized BTE (ITA in short) overestimates
the mobility and that including electron-two-phonon (e-
2ph) scattering processes significantly improves the re-
sult; the RTA also gives a mobility in agreement with
experiment [31], but due to compensation of errors [34].
We find that the same trends also hold for the Hall mo-
bility. Figure 2(a) shows the drift and Hall mobilities
for electrons in GaAs as a function of temperature. The
experimental Hall mobility shown for comparison is ob-
tained as µH = µdr with values of µd and r from Ref. [13].

The ITA overestimates both the drift and Hall mobili-
ties, by a factor of ∼2 at 300 K, while the RTA is in bet-
ter agreement with experiments due to error compensa-
tion [34]. The Hall factor r = µH/µd for both approaches
is correctly greater than 1, but the Hall factor for ITA is
much closer to the measured data [Fig. 2(b)]. Although
each of the Hall and drift mobilities are overestimated in
the ITA, their ratio is predicted accurately; we cannot
establish whether this result is a coincidence or due to
cancellation of effects from e-2ph processes in the ratio.
Overall, these trends show that for polar semiconductors
first-principles magnetotransport calculations have an ac-
curacy similar to calculations without magnetic field.

C. Graphene

Similar to other semimetals [1], graphene exhibits a
relatively large MR, with reported values of 20−50% at
room temperature and even greater at lower tempera-
tures [17]. We discuss the MR in graphene for hole carri-
ers but the MR values for electrons are similar. The ac-
curacy of our settings is checked by calculating the drift
mobility at 300 K; we obtain a value of ∼ 160000 cm2/Vs
consistent with experiments in suspended graphene [55].

Figure 3(a) shows the computed MR in graphene at
300 K. We find that the MR depends strongly on carrier
concentration − a doubling of concentration from ∼1.5
to 3·1012 cm2/Vs decreases the MR by an order of magni-
tude. This situation makes comparison with experiment
difficult [Fig. 3(b)] as the reported carrier concentration
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FIG. 3. (a) Transverse MR in graphene vs magnetic field for
various hole carrier concentrations at 300 K. (b) Comparison
of the calculated MR for a hole concentration of p = 2.46·1013

cm−2

with experimental data for p = (2.2 − 4.2) · 1013 cm−2, taken
from Ref. 16.
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FIG. 4. (a) Projection of the occupation changes δf/f onto the kz = 0 plane in Si. (b) Occupation change δf/f in graphene
near the Dirac cone with contributions from all phonons. (c) The same result as in (b) for graphene but with scattering from
the highest-energy optical phonon branch excluded from the transport calculation.

usually does not take into account the Hall factor (we
find r = 1.45 for n = 1.2 · 1012 cm−3, consistent with
recent work [41]). As by definition n = r/(eRH), carrier
concentrations from Hall measurements are inaccurate
unless the Hall factor is taken into account. In addition,
most graphene samples are measured on substrates, often
causing a reduction in the mobility. Accordingly, exper-
imental values of the mobility and MR vary over a wide
range [17, 18, 56]. This variability in the experimental
results can at least partially explain the discrepancy be-
tween the calculated and measured MR in Fig. 3(b).

Analysis of the electron occupations (see below) re-
veals that taking into account backscattering by itera-
tively solving the full BTE (as opposed to using the RTA)
is essential in graphene, and that the RTA fails to capture
the correct electronic occupations at steady state. This
key role of backscattering in magnetotransport mimics
trends found for thermal transport in graphene [57].

D. Steady-state occupations

To conclude our analysis, we study the electron
occupations at steady state, focusing on their change
due to the magnetic field for a constant electric
field. We define this relative occupation change as
δf/f = [fnk(E,B) − fnk(E, 0)]/fnk(E, 0), and plot
it in momentum space for Si and graphene. In the
results for Si, shown in Fig. 4(a), the occupation change
projected on the kz=0 plane clearly shows the effect of
the Lorentz force, whereby the electrons deviate in the
E × B direction near the six conduction band minima
(the occupations at the zone center are projections of
the two band minima along the kz axis). As expected,
the electrons are deflected in momentum space due to
the magnetic field, an important sanity check for our
numerical implementation.

The results for graphene, shown in Fig. 4(b), are
more interesting. Similar to Si, the occupations near
the Dirac cone are also changed by the Lorentz force.
However, electrons in graphene couple strongly with
LO phonons with momentum near Γ and TO phonons
with momentum near K [58], which mediate intra-
and inter-valley electronic processes respectively. As a
result, optical phonon absorption generates a step-like

pattern in the occupation changes, with 160−200 meV
spacing equal to the LO and TO phonon energies [58].
The disappearance of the alternating patches on re-
moving scattering from the highest optical branch from
the transport calculation [Fig. 4(c)] provides concrete
evidence for the dominant optical phonon backscattering
in graphene. The RTA completely misses this trend
and gives occupation changes with a pattern similar to
Fig. 4(c). While in graphene the magnetotransport RTA
results are in fairly good agreement with the full solution
of the BTE, which correctly includes backscattering, our
results show that this agreement has to be coincidental
or due to error cancellation.

IV. CONCLUSION

We have shown calculations of magnetotransport that
can accurately predict the Hall mobility, Hall factor
and MR in Si and GaAs. Our results for graphene
leave room for improvements and call for stricter
protocols for magnetotransport measurements in 2D
materials. Analysis of the steady state occupations in
graphene highlights a key strength of first-principles
calculations − they can capture the competition between
mode-dependent e-ph scattering and the effect of the
Lorentz force in momentum space, shedding light on the
microscopic mechanisms governing magnetotransport.
With calculations on materials with tens of atoms in the
unit cell readily available [43], extension of these results
to other semiconductors and 2D materials appears
straightforward. The current formalism can be easily
extended to include the Berry curvature, for example to
study magnetotransport in topological semimetals and
shed light on the origin of their unconventional MR. Our
method is general and can be applied to a wide range
of materials, including semimetals such as bismuth and
graphite with large MR and topological semimetals with
strong SOC and unconventional magnetotransport. As
our approach allows us to calculate the full resistivity
tensor, it will be interesting to apply it in the future
to interpret experimental angular MR diagrams. The
magnetotransport calculations shown in this work will
be made available in our Perturbo code, thus greatly
expanding the reach of first-principles transport studies
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and connecting them more deeply with transport exper-
iments, which are often carried out in magnetic fields.

V. ACKNOWLEDGEMENTS

This work was supported by the National Science
Foundation under Grants No. DMR-1750613. J.-J.Z. ac-
knowledges partial support from the Joint Center for Ar-
tificial Photosynthesis, a DOE Energy Innovation Hub,

as follows: the development of some computational meth-
ods employed in this work was supported through the
Office of Science of the US Department of Energy under
Award No. DE-SC0004993. This research used resources
of the National Energy Research Scientific Computing
Center, a DOE Office of Science User Facility supported
by the Office of Science of the US Department of Energy
under Contract No. DE-AC02-05CH11231.

∗ bmarco@caltech.edu
[1] J. M. Ziman, Electrons and Phonons: the Theory

of Transport Phenomena in Solids (Oxford University
Press, 2001) p. 483.

[2] A. B. Pippard, Magnetoresistance in Metals, Vol. 2
(Cambridge University Press, 1989).

[3] S. Parkin, Giant magnetoresistance in magnetic nanos-
tructures, Annu. Rev. Mater. Sci. 25, 357 (1995).

[4] A. Ramirez, Colossal magnetoresistance, J. Phys. Con-
dens. Matter 9, 8171 (1997).

[5] J. E. Lenz, A review of magnetic sensors, Proc. IEEE 78,
973 (1990).

[6] J. M. Daughton, GMR applications, J. Magn. Magn.
Mater. 192, 334 (1999).

[7] I. G. Kirnas, P. M. Kurilo, P. G. Litovchenko, V. S. Lut-
syak, and V. M. Nitsovich, Concentration dependence of
the Hall factor in n-type silicon, Phys. Status Solidi (a)
23, K123 (1974).

[8] N. A. Porter and C. H. Marrows, Dependence of mag-
netoresistance on dopant density in phosphorous doped
silicon, J. Appl. Phys. 109, 07C703 (2011).

[9] F. J. Morin and J. P. Maita, Electrical properties of sil-
icon containing arsenic and boron, Phys. Rev. 96, 28
(1954).

[10] W. E. Krag, Galvanomagnetic effects in n-type silicon,
Phys. Rev. 118, 435 (1960).

[11] P. P. Debye and T. Kohane, Hall mobility of electrons
and holes in silicon, Phys. Rev. 94, 724 (1954).

[12] E. H. Putley and W. H. Mitchell, The electrical conduc-
tivity and Hall effect of silicon, Proc. Phys. Soc. 72, 193
(1958).

[13] D. L. Rode, Semiconductors and Semimetals (Academic
Press, New York, 1975).

[14] G. Stillman, C. Wolfe, and J. Dimmock, Hall coefficient
factor for polar mode scattering in n-type GaAs, J. Phys.
Chem. Solids 31, 1199 (1970).

[15] J. S. Blakemore, Semiconducting and other major prop-
erties of gallium arsenide, J. Appl. Phys. 53, R123 (1982).

[16] V. Matveev, V. Levashov, O. Kononenko, and V. Volkov,
Large positive magnetoresistance of graphene at room
temperature in magnetic fields up to 0.5t, Scr. Mater.
147, 37 (2018).

[17] K. Gopinadhan, Y. J. Shin, I. Yudhistira, J. Niu,
and H. Yang, Giant magnetoresistance in single-layer
graphene flakes with a gate-voltage-tunable weak antilo-
calization, Phys. Rev. B 88, 195429 (2013).

[18] W. J. Wang, K. H. Gao, Z. Q. Li, T. Lin, J. Li, C. Yu, and
Z. H. Feng, Classical linear magnetoresistance in epitaxial
graphene on SiC, Appl. Phys. Lett. 105, 182102 (2014).

[19] M. N. Ali, J. Xiong, S. Flynn, J. Tao, Q. D. Gib-
son, L. M. Schoop, T. Liang, N. Haldolaarachchige,
M. Hirschberger, N. P. Ong, and R. J. Cava, Large, non-
saturating magnetoresistance in WTe2, Nature 514, 205
(2014).

[20] J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan,
M. Hirschberger, W. Wang, R. J. Cava, and N. P. Ong,
Evidence for the chiral anomaly in the Dirac semimetal
Na3Bi, Science 350, 413 (2015).

[21] C.-Z. Li, L.-X. Wang, H. Liu, J. Wang, Z.-M. Liao, and
D.-P. Yu, Giant negative magnetoresistance induced by
the chiral anomaly in individual Cd3As2 nanowires, Nat.
Commun. 6, 10137 (2015).

[22] N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl
and Dirac semimetals in three-dimensional solids, Rev.
Mod. Phys. 90, 015001 (2018).

[23] J.-P. Jan, Galvamomagnetic and thermomagnetic effects
in metals, in Solid State Physics, Vol. 5 (Elsevier, 1957)
pp. 1–96.

[24] J. Lin, S. Li, L. Linares, and K. Teng, Theoretical analy-
sis of Hall factor and Hall mobility in p-type silicon, Solid
State Electron. 24, 827 (1981).

[25] L. Reggiani, D. Waechter, and S. Zukotynski, Hall-
coefficient factor and inverse valence-band parameters of
holes in natural diamond, Phys. Rev. B 28, 3550 (1983).

[26] B. Lewis and E. Sondheimer, The theory of the magneto-
resistance effects in polar semi-conductors, Proc. R. Soc.
A 227, 241 (1955).

[27] F. Szmulowicz, Calculation of optical- and acoustic-
phonon—limited conductivity and Hall mobilities for p-
type silicon and germanium, Phys. Rev. B 28, 5943
(1983).

[28] F. Szmulowicz and F. L. Madarasz, Deformation-
potential-theory calculation of the acoustic-phonon-
limited conductivity and Hall mobilities for p-type sili-
con, Phys. Rev. B 27, 2605 (1983).

[29] R. M. Martin, Electronic Structure: Basic Theory and
Practical Methods (Cambridge University Press, 2004).

[30] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Gi-
annozzi, Phonons and related crystal properties from
density-functional perturbation theory, Rev. Mod. Phys.
73, 515 (2001).

[31] J.-J. Zhou and M. Bernardi, Ab initio electron mobility
and polar phonon scattering in GaAs, Phys. Rev. B 94,
201201(R) (2016).

[32] V. A. Jhalani, J.-J. Zhou, and M. Bernardi, Ultrafast hot
carrier dynamics in GaN and its impact on the efficiency
droop, Nano Lett. 17, 5012 (2017).

[33] N.-E. Lee, J.-J. Zhou, L. A. Agapito, and M. Bernardi,
Charge transport in organic molecular semiconductors

mailto:bmarco@caltech.edu
https://www.annualreviews.org/doi/10.1146/annurev.ms.25.080195.002041
https://iopscience.iop.org/article/10.1088/0953-8984/9/39/005/meta
https://iopscience.iop.org/article/10.1088/0953-8984/9/39/005/meta
https://doi.org/10.1109/5.56910
https://doi.org/10.1109/5.56910
http://www.sciencedirect.com/science/article/pii/S030488539800376X
http://www.sciencedirect.com/science/article/pii/S030488539800376X
https://doi.org/https://doi.org/10.1002/pssa.2210230250
https://doi.org/https://doi.org/10.1002/pssa.2210230250
https://doi.org/10.1063/1.3536663
https://doi.org/10.1103/PhysRev.96.28
https://doi.org/10.1103/PhysRev.96.28
https://doi.org/10.1103/PhysRev.118.435
https://doi.org/10.1103/PhysRev.94.724.2
https://doi.org/10.1088/0370-1328/72/2/303
https://doi.org/10.1088/0370-1328/72/2/303
https://doi.org/https://doi.org/10.1016/0022-3697(70)90122-8
https://doi.org/https://doi.org/10.1016/0022-3697(70)90122-8
https://doi.org/10.1063/1.331665
https://doi.org/https://doi.org/10.1016/j.scriptamat.2017.12.031
https://doi.org/https://doi.org/10.1016/j.scriptamat.2017.12.031
https://link.aps.org/doi/10.1103/PhysRevB.88.195429
https://doi.org/10.1063/1.4901175
https://doi.org/10.1038/nature13763
https://doi.org/10.1038/nature13763
https://doi.org/10.1126/science.aac6089
https://doi.org/10.1038/ncomms10137
https://doi.org/10.1038/ncomms10137
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/https://doi.org/10.1016/0038-1101(81)90098-8
https://doi.org/https://doi.org/10.1016/0038-1101(81)90098-8
https://doi.org/10.1103/PhysRevB.28.3550
https://doi.org/http://doi.org/10.1098/rspa.1955.0007
https://doi.org/http://doi.org/10.1098/rspa.1955.0007
https://doi.org/10.1103/PhysRevB.28.5943
https://doi.org/10.1103/PhysRevB.28.5943
https://doi.org/10.1103/PhysRevB.27.2605
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1103/RevModPhys.73.515
https://doi.org/10.1103/PhysRevB.94.201201
https://doi.org/10.1103/PhysRevB.94.201201
https://doi.org/10.1021/acs.nanolett.7b02212


7

from first principles: The bandlike hole mobility in a
naphthalene crystal, Phys. Rev. B 97, 115203 (2018).

[34] N.-E. Lee, J.-J. Zhou, H.-Y. Chen, and M. Bernardi, Ab
initio electron-two-phonon scattering in GaAs from next-
to-leading order perturbation theory, Nat. Commun. 11,
1607 (2020).

[35] J. Park, J.-J. Zhou, V. A. Jhalani, C. E. Dreyer, and
M. Bernardi, Long-range quadrupole electron-phonon in-
teraction from first principles, Phys. Rev. B 102, 125203
(2020).

[36] W. Li, Electrical transport limited by electron-phonon
coupling from Boltzmann transport equation: An ab ini-
tio study of Si, Al, and MoS2, Phys. Rev. B 92, 075405
(2015).

[37] T.-H. Liu, J. Zhou, B. Liao, D. J. Singh, and G. Chen,
First-principles mode-by-mode analysis for electron-
phonon scattering channels and mean free path spectra
in GaAs, Phys. Rev. B 95, 075206 (2017).

[38] J. Ma, A. S. Nissimagoudar, and W. Li, First-principles
study of electron and hole mobilities of Si and GaAs,
Phys. Rev. B 97, 045201 (2018).

[39] T. Sohier, D. Campi, N. Marzari, and M. Gibertini, Mo-
bility of two-dimensional materials from first principles
in an accurate and automated framework, Phys. Rev.
Mater. 2, 114010 (2018).

[40] F. Macheda and N. Bonini, Magnetotransport phenom-
ena in p-doped diamond from first principles, Phys. Rev.
B 98, 201201(R) (2018).
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