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Charge transport in organic molecular crystals (OMCs) is conventionally categorized into two lim-
iting regimes − band transport, characterized by weak electron-phonon (e-ph) interactions, and
charge hopping due to localized polarons formed by strong e-ph interactions. However, between
these two limiting cases there is a less well understood intermediate regime where polarons are
present but transport does not occur via hopping. Here we show a many-body first-principles ap-
proach that can accurately predict the carrier mobility in this intermediate regime and shed light on
its microscopic origin. Our approach combines a finite-temperature cumulant method to describe
strong e-ph interactions with Green-Kubo transport calculations. We apply this parameter-free
framework to naphthalene crystal, demonstrating electron mobility predictions within a factor of
1.5−2 of experiment between 100−300 K. Our analysis reveals the formation of a broad polaron
satellite peak in the electron spectral function and the failure of the Boltzmann equation in the
intermediate regime.

INTRODUCTION

Organic molecular crystals (OMCs) possess complex
crystal structures with an intricate interplay of elec-
tronic and structural degrees of freedom. Their elec-
tronic properties range from metallic to semiconducting
or insulating, and they can host ferroelectricity [1], mag-
netism [2] and superconductivity [3]. OMCs are also
versatile materials with broad applications, for example
in electronics [4], light-emitting diodes [5, 6], spintron-
ics [7, 8], batteries [9, 10] and solar cells [11–13]. The
charge carrier mobility is a key figure of merit for organic
materials in these devices [14–17]. Yet, understanding
charge transport and accurately predicting the mobility
in OMCs remain open challenges. Due to the presence of
electron-phonon (e-ph) interactions ranging from weak
to strong [18], the mobility varies dramatically among
different OMCs, both in magnitude and temperature de-
pendence [16]. Even in the same organic crystal, electron
and hole carriers can exhibit different transport regimes,
and the mobility can vary by orders of magnitude for dif-
ferent crystallographic directions.

Charge transport in OMCs is often classified into two
limiting cases − the band transport and polaron hop-
ping regimes, each entailing specific transport mecha-
nisms [19]. In band transport, charge carriers are de-
localized, the e-ph coupling is weak, and the mobility is
correspondingly high (> 10 cm2V−1s−1) and character-
ized by a power-law decrease with temperature. Band
transport in OMCs is usually governed by scattering
of carriers with low-energy acoustic and intermolecular
phonons, with the corresponding e-ph interactions often
modeled by the Peierls Hamiltonian [20]. These weak
e-ph interactions can be described with lowest-order per-
turbation theory, and the OMC mobility can be accu-
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rately predicted using the Boltzmann transport equation
(BTE) [18, 24], including all phonon modes on the same
footing.

In the polaron hopping regime, the charge carriers
interact strongly with phonons, forming self-localized
(small) polarons, which are often modeled with the Hol-
stein Hamiltonian to describe intramolecular e-ph inter-
actions [25]. The resulting charge transport is dominated
by thermally activated polaron hopping and is often de-
scribed with Marcus theory [26, 27]. The mobility in the
polaron hopping regime is relatively small, usually below
0.1 cm2V−1s−1, and is more challenging to predict from
first principles.

Between these two limiting scenarios, OMCs also ex-
hibit an intermediate transport regime, for which neither
the band transport nor the polaron hopping pictures are
fully adequate [19, 27]. In the intermediate regime, the
mobility exhibits a bandlike power-law temperature de-
pendence [27–29], yet polarons can be present and low
mobility values (< 1 cm2V−1s−1) are common [19]. A
signature of intermediate transport is the violation of the
Mott-Ioffe-Regel limit [30], whereby the carrier mean-
free-paths become smaller than the intermolecular dis-
tance [27], making the BTE description inadequate.

Various approaches have been employed to study in-
termediate transport in OMCs; they typically employ a
Holstein Hamiltonian or a (Peierls-type) dynamical dis-
order Hamiltonian, or a combination of both, and obtain
the mobility via linear-response theory [31–34], diffusion
simulation [35, 36], surface hopping method [37], or tran-
sient localization calculation [38, 39]. These methods
are highly valuable for studies of OMCs, although they
usually rely on simplifying assumptions such as includ-
ing only specific phonon modes and e-ph interactions,
or fitting model parameters to experiments. To date,
first-principles approaches to predict charge transport in
the intermediate regime with quantitative accuracy are
scarce, especially within rigorous treatments based on
many-body perturbation theory.
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In this work, we develop rigorous calculations of the
mobility in the intermediate charge transport regime in
OMCs. Focusing on naphthalene crystal as a case study,
we employ a finite-temperature cumulant approach [28]
to capture the strong e-ph interactions and polaron ef-
fects characteristic of the intermediate regime, and em-
ploy Green-Kubo theory to compute the electron mo-
bility. All phonon modes are included and treated on
equal footing. This cumulant plus Kubo (CK) approach
is shown to predict the electron mobility in the interme-
diate regime with a high accuracy, within a factor of two
of experiment between 100−300 K for crystallographic
directions parallel to the naphthalene molecular planes.
We additionally show the failure of the BTE to describe
the mobility in the intermediate regime.

Our analysis of the electronic spectral functions reveals
the presence of a broad satellite next to the quasiparti-
cle (QP) peak, explaining the breakdown of the BTE
and the band transport picture. The broadening of the
QP peak is mainly due to coupling with low-energy in-
termolecular phonons, while the polaron satellite peaks
are due to strong coupling with intramolecular phonons.
Therefore, the intermolecular modes are directly respon-
sible for scattering the electrons and limiting the mobil-
ity, whereas the intramolecular modes limit the mobility
indirectly, by transferring spectral weight from the QP
peak to the polaron satellites. For charge transport nor-
mal to the molecular planes, we find that both the BTE
and CK approaches cannot correctly predict the mobility,
which experimentally is nearly temperature independent
and governed by small-polaron hopping [40–42]. This
finding restricts the applicability of the CK method to
intermediate e-ph coupling strengths.

Taken together, our work provides an accurate first-
principles method to study polaron transport in OMCs,
and unravels the interplay of low- and high-energy
phonon modes in the intermediate regime. Our results
provide a blueprint for studying charge transport in a
wide range of organic crystals.

RESULTS

Computational approach
We compute the ground state electronic structure

of naphthalene crystal using plane-wave density func-
tional theory (DFT) calculations with the Quantum
Espresso code [43, 44]. We employ the generalized
gradient approximation [45] and norm-conserving pseu-
dopotentials [46] from Pseudo Dojo [47]. The DFT
band structure is refined using GW calculations (with
the Yambo code [48, 49]) to better capture dynami-
cal screening effects. Maximally localized Wannier func-
tions [50] are generated with the Wannier90 code [51]
following a procedure similar to Ref. [18]. We compute
the e-ph interactions and charge transport separately at
four temperatures (100, 160, 220, and 300 K), using dif-
ferent experimental lattice parameters at each temper-

ature [52] and relaxing the atomic positions with DFT.
We obtain the lattice dynamics and e-ph perturbation
potentials from density functional perturbation theory
(DFPT) [53], and compute the e-ph interactions with
the Perturbo code [54]. Additional numerical details
are provided in the Methods section.

Using the computed e-ph interactions, we study charge
transport in the BTE and CK frameworks with the Per-
turbo code [54]. In the BTE, the mobility tensor µαβ is
computed in the relaxation time approximation (RTA):

µαβ(T ) =
2e

ncVuc

∫
dE

(
−∂f(E, T )

∂E

)
×
∑
nk

τnk(T )v
α
nkv

β
nkδ(E − εnk),(1)

where α and β are Cartesian directions parallel to the
crystal principal axes, T is the temperature, e the elec-
tronic charge, nc the carrier concentration, Vuc the unit
cell volume, f the electronic Fermi-Dirac distribution
and E is the electron energy. Here and below, n is the
band index and k the crystal momentum of the electronic
states. The BTE mobility depends on the electron band
energies εnk, the corresponding band velocities vnk, and
the state-dependent e-ph relaxation times τnk obtained
within lowest-order perturbation theory [54, 55]. As a
sanity check, we compute the mobility at 220 K by solv-
ing the full linearized BTE with an iterative approach
(ITA) [23, 54], and find that in naphthalene it gives re-
sults identical to the RTA, justifying our use of the RTA.

To properly treat strong e-ph interactions and in-
clude polaron effects in the mobility, we employ a finite-
temperature cumulant approach in which the retarded
electron Green’s function GR

nk is written using the expo-
nential ansatz [28, 56–60]

GR
nk(t, T ) = GR,0

nk (t)eCnk(t,T ), (2)

where GR,0
nk is the non-interacting Green’s function and

Cnk is the cumulant function, obtained here at finite
temperatures from the lowest-order e-ph self-energy (see
Methods). The electron spectral function is obtained
from the Green’s function at each electron energy E using

Ank(E, T ) = −ImGR
nk(E, T )/π. (3)

In the CK method, the mobility tensor is computed
directly from the spectral function using the linear-
response Green-Kubo formula [28, 57, 61]:

µαβ(T ) =
1

nce

∫
dE Φαβ(E, T ), (4)

where the integrand is the transport distribution func-
tion (TDF). Under the approximation of neglecting ver-
tex corrections, the TDF reads [61]

Φαβ(E, T ) =
πℏe2

Vuc

∑
nk

vαnkv
β
nk|Ank(E, T )|2

(
−∂f(E, T )

∂E

)
,

(5)
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FIG. 1. Structure. a Monoclinic crystal structure of naph-
thalene, with molecular a-b planes stacked in the plane-
normal c∗ direction. b Band structure of naphthalene, show-
ing the two lowest-energy electron (LUMO and LUMO+1)
and hole (HOMO and HOMO-1) bands.

where vnk are the unperturbed electron band velocities,
the same as those used in Equation (1) [61]. The
CK mobility defined in Equation (4) is obtained from
the cumulant spectral function, therefore it takes into
account the strong e-ph coupling and polaron effects.
The CK calculations have been shown to provide results
in close agreement with the BTE-RTA in the limit of
weak e-ph interactions (see Ref. [28] for a calculation on
GaAs).

Electron mobility
The crystal structure of naphthalene consists of molec-

ular planes in the a and b crystallographic directions,
stacked along the plane-normal c∗ direction (Figure 1a).
We first discuss charge transport in the molecular planes.
For hole carriers, we have previously shown that such in-
plane transport is bandlike and well described by the
BTE [18]. In this work, we focus on the mobility of
the electron carriers, which due to their flatter elec-
tronic bands with greater effective masses compared to
holes (Figure 1b) are expected to exhibit lower mobili-
ties and a range of transport regimes. Only the electronic
bands formed by the lowest unoccupied molecular orbital
(LUMO) and the next-higher-energy orbital (LUMO+1)
contribute to electron transport in the 100−300 K tem-
perature range studied here, so we consider only these
two bands in our mobility calculations.

Figure 2 shows the in-plane electron mobilities com-
puted with the BTE and CK methods, and compares
them with experimental data [40]. We fit each mobility
curve with a T−n power-law temperature trend and give
the exponent n next to each curve. The results show
that the BTE predicts a much stronger temperature de-
pendence of the mobility than in experiment, with er-
rors in the computed exponents for transport along the
a and b crystallographic directions (mobilities µa and µb

in Figure 2, respectively) of over 100% for µa and 270%
for µb relative to the exponent n obtained by fitting the
experimental results. Due to this error, the BTE greatly

FIG. 2. In-plane electron mobility in naphthalene. a
Electron mobility in direction a. b Electron mobility in di-
rection b. Results obtained from BTE and CK calculations
are compared with experimental data from Ref. [40].

overestimates the mobility at low temperatures − for ex-
ample, µa at 100 K from the BTE is an order of magni-
tude greater than the experimental value.

These results are a strong evidence of the failure of
the Boltzmann equation to describe electron transport
in naphthalene; the physical origin of this failure is ex-
amined below. Note that the BTE failure is not a conse-
quence of our use of the RTA, as the full solution of the
BTE [54] gives results nearly identical to the RTA (see
the ITA points at 220 K in Figure 2). The fact that the
mobility has a power-law temperature dependence but is
not correctly predicted by the BTE is a hallmark of the
intermediate transport regime [27, 29].

The CK calculations give significantly improved results
(Figure 2). The CK mobilities are within a factor of 2 of
experiment for µa and 1.3 for µb in the entire 100−300 K
temperature range. The error in the T−n exponent is
reduced to 20% for µa and 45% for µb relative to ex-
periment, a five-fold improvement in accuracy over the
BTE results. Achieving this level of accuracy for quanti-
tative predictions of the mobility in OMCs has recently
become possible in the band transport regime [18] but has
so far remained challenging in the intermediate regime.
As we discuss below, by combining the cumulant and
Green-Kubo frameworks, our CK approach can capture
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FIG. 3. Spectral function and e-ph coupling. a Spectral functions computed at three temperatures for the CBM electronic
state. Results from the cumulant approach (AC

CBM) are compared to the Dyson-Migdal spectral function (ADM
CBM). The QP peak

is chosen as the zero of the energy axis for each spectral function. The transport distribution function (TDF) in arbitrary units
is also shown at each temperature. b Electron spectral function for the LUMO and LUMO+1 bands along a high-symmetry
path, computed at 100 K using the cumulant method. The solid line is the GW band structure and the dashed line shows
the renormalized cumulant band structure obtained by connecting the QP peaks of the spectral functions. c Gauge-invariant
e-ph coupling strength as a function of phonon energy. The energies ω1 and ω2 of the two phonon modes with strongest e-ph
coupling are shown with vertical dashed lines. d Atomic displacements for the two intramolecular modes with the strongest
e-ph coupling.

key polaron effects in the intermediate regime such as
higher-order e-ph coupling and spectral weight transfer,
resulting in improved mobility predictions.

Electron spectral function
The electron spectral function is central to understand-

ing polaron effects [28] and intermediate charge trans-
port. The spectral function can be viewed as the density
of states of a single electronic state, and it integrates to
one over energy due to a well-known sum rule [57]. In
Figure 3a, we show the spectral function at three temper-
atures, using results obtained with our cumulant method
for the electronic state at the conduction band minimum
(CBM) (Γ point in Figure 1b). At 100 K, next to the
main QP peak we find a broad spectral feature associ-
ated with the combined excitation of an electron QP plus
one or two phonons. This broad satellite combines con-
tributions from multiple satellite peaks, as shown by the
arrows in Figure 3a, and is a signature of polaron forma-

tion [28]. At higher temperatures, the QP and satellite
peaks broaden and ultimately merge into a continuum
at 300 K. The coexistence of a well-formed QP peak and
broad satellites shows that large-polaron effects, charac-
teristic of e-ph interactions with intermediate strength,
are a key characteristic of the intermediate transport
regime.

The cumulant spectral functions for multiple electronic
states in the LUMO and LUMO+1 bands can be com-
bined to obtain a polaron band structure renormalized
by the e-ph interactions. Figure 3b compares the band
structures at 100 K computed with the GW method and
with our cumulant calculations that use the GW band
structure as input. The cumulant band structure, ob-
tained by connecting the QP peaks of the cumulant spec-
tral functions at neighboring k-points, captures polaron
effects such as QP mass and weight renormalization. At
100 K, where the QP peaks are well-defined, we calcu-
late the renormalized effective masses from the cumulant
band structure, and find a moderate effective mass en-
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hancement of 15−35% compared to the effective masses
in the GW band structure in the in-plane directions.
This shows that the cumulant approach can capture the
bandwidth-narrowing due to strong e-ph interactions and
polaron effects in OMCs [62].

The physical origin of the polaron satellite in Figure 3a
is of key importance. In the prototypical case of a polar
inorganic material with strong e-ph coupling with lon-
gitudinal optical (LO) phonons, the satellite peaks are
located at the LO-mode energy ωLO (and its multiples)
relative to the QP peak [28, 63]. Here, due to the pres-
ence of a large number of phonon modes in OMCs (108
in napthalene), the satellites merge into a broad spectral
feature resembling a long tail of the QP peak, with con-
tributions from various phonon modes. To explain the
origin of this broad satellite, in Figure 3c we analyze the
e-ph coupling strength for an electronic state near the
CBM, as quantified by the absolute value of the gauge-
invariant e-ph coupling, |g| (see Methods).

In naphthalene, the 12 lowest-energy phonon modes
are intermolecular, and the remaining 96 modes are in-
tramolecular vibrations [18]. In Figure 3a, the mode with
the strongest e-ph coupling, an intramolecular phonon
with energy ω1 ≈ 0.1 eV, generates a satellite peak in the
spectral function at energy ω1 relative to the QP peak.
The intramolecular phonon with the second strongest e-
ph coupling, with energy ω2 ≈ 0.2 eV, gives a second
contribution to the broad satellite, followed by a plateau
at higher energy. Finally, the inflection point in the spec-
tral function at energy ω1+ω2 is due to higher-order e-ph
coupling from the two modes with energies ω1 and ω2.
The atomic displacements associated with these two in-
tramolecular modes are shown in Figure 3d. Both modes
involve vibrations of the hydrogen atoms, in one case in
the carbon ring plane and in the other case normal to the
carbon rings. Our analysis demonstrates that these in-
tramolecular phonons are responsible for the formation
of polarons in naphthalene. This strong coupling with
intramolecular phonons and the associated satellite peak
in the spectral function are consistent with recent results
from the Holstein-Peierls model [33].

Interestingly, lowest-order theory is wholly inadequate
to describe this polaronic regime with intermediate e-
ph coupling strength. To show this point, we compute
the Dyson-Migdal (DM) spectral function [see Equa-
tion (11)], which is obtained from the lowest-order e-ph
self-energy and therefore does not include polaron effects.
From the comparison of the cumulant and DM spectral
functions in Figure 3a it is clear that the DM spectral
functions have a Lorentzian shape and lack any satel-
lite structure. As a result, the subtle interplay between
inter- and intramolecular phonons in the QP and satel-
lite peaks cannot be captured in lowest-order theory. As
we discuss below, this is the origin of the failure of the
BTE to describe transport in the intermediate regime.

FIG. 4. Full width at half maximum of the QP peak.
shown at two temperatures for both the cumulant and DM
spectral functions. The energy zero is set to the conduction
band minimum.

Failure of the Boltzmann equation

It is important to understand the microscopic origin of
the failure of the BTE, and the success of the CK method,
to describe transport in the intermediate regime. In the
Green-Kubo framework, the mobility is given by an in-
tegral over electron energies [see Equation (4)], which in
principle combines contributions from all features of the
spectral function. To quantify the contributions of the
QP and satellite peaks to charge transport, we analyze
the mobility integrand, the TDF in Equation (5), and
plot it together with the spectral functions in Figure 3a.
We find that the TDF decays rapidly outside the QP
peak, within an energy ω1 of the QP peak at low tem-
perature and ω2 at 300 K. Therefore any spectral func-
tion feature with energy greater than ω2 does not overlap
with the TDF and cannot contribute to charge transport
between 100−300 K. In this temperature range, although
the mobility is mainly governed by the QP peak, polaron
effects still contribute in important ways.

First, due to higher-order e-ph coupling with both
inter- and intramolecular phonons, the linewidth of the
QP peak in the cumulant spectral function is different
than in the DM spectral function from lowest-order the-
ory (see Figure 4), whose linewidth is the scattering
rate entering the BTE mobility calculation. This QP
linewidth discrepancy is temperature and energy depen-
dent (Figure 4), which explains why the BTE cannot
correctly predict the value and temperature dependence
of the mobility in the intermediate regime, corroborating
our results in Figure 2. Second, the broad satellite in the
cumulant spectral function limits the carrier mobility in-
directly, by transferring spectral weight away from the
QP peak (recall that the spectral function integrates to
one over energy). The satellite peak at ω1 contributes
directly to transport only above ∼200 K, where the QP
peak broadens, merging with the satellite and overlap-
ping with the TDF.
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FIG. 5. Hole carrier mobilities in naphthalene. (µh) shown for the three crystallographic directions a, b, and c∗, computed
both with the BTE in the relaxation time approximation (gray solid line) and with the CK approach (blue, green and red).
The computational settings are the same as in the electron mobility calculations. The BTE results presented in Ref. [18], which
were obtained using a previous implementation of e-ph interactions with less accurate Wigner-Seitz cell summations, are shown
as dashed lines for comparison. The exponent n from a T−n power-law fit of the temperature dependence is given next to each
curve. The experimental data (black) are from Ref. [40].

The picture that emerges is that electron transport in
the naphthalene molecular planes is mainly governed by
the scattering of QPs with renormalized weight, which
couple directly (via the main QP peak) with low-energy
intermolecular phonons and indirectly (via weight trans-
fer to the satellites) with higher-energy intramolecular
phonons. The latter can also contribute directly to
charge transport as the temperatures increases above
200 K. The ability of our CK approach to address these
subtle e-ph interactions enables accurate predictions of
the mobility and its temperature dependence in the in-
termediate regime, where the BTE with lowest-order e-ph
coupling fails to capture these essential polaron effects.

Comparison with hole mobilities
Finally, we present mobility results for hole carriers

in naphthalene to contrast their behavior with electron
carriers. We compute the hole mobility in naphthalene
between 100−300 K using the CK approach, and com-
pare the results to BTE calculations and experiments
(see Figure 5). The BTE calculations are a refinement
of those we presented in Ref. [18], obtained here using
a more accurate Wigner-Seitz cell summation procedure,
as implemented in Perturbo and described in detail in
Ref. [54]. The revised BTE mobilities follow an identical
temperature trend as in our previous results in Ref. [18],
but their value is now greater than experiment, a physi-
cally meaningful trend for phonon-limited mobilities.

For hole carriers, both the BTE and CK methods give
accurate predictions of the hole mobility, within a factor
of 2−3 of experiment at all temperatures. The temper-
ature dependence is nearly identical for the CK and the
BTE mobilities, as shown by fitting the mobility curves
with a T−n power-law and giving the exponent n next
to each curve in Figure 5. These findings demonstrate
that the band transport picture of the BTE, which is
inadequate for electron carriers, is sufficient to describe

transport for hole carriers due to their more dispersive
bands (see Figure 1) and overall weaker e-ph coupling
(see Supplementary Figure 1).

DISCUSSION

In naphthalene, measurements of the mobility in the
direction normal to the molecular planes (c∗ direction in
Figure 1) point to a transport regime different from the
in-plane directions. In experiments, the mobility along
c∗ is lower than 1 cm2V−1s−1 and is nearly temperature
independent between 100−300 K [40–42]. These trends
suggest that charge transport normal to the molecular
planes may occur in the small-polaron hopping regime,
where the carriers are strongly localized and the e-ph
interaction is so strong that a diagram-resummation
technique such as the cumulant method is not expected
to give accurate results.

We calculate the plane-normal mobility using both
the BTE and CK methods, and compare the results
with experiments in Figure 6. The computed mobility
decreases with temperature in both the CK and BTE
approaches, deviating substantially from the nearly
temperature independent mobility found in experiment.
It is encouraging that the CK mobility agrees well with
experiment at 100 K and its temperature dependence
is weaker than in the BTE − fitting the temperature
dependence with a T−n power law gives an exponent
n = 1.72 in the CK and n = 3.78 in the BTE method,
versus n = 0.04 in experiment. However, although the
CK provides a significant improvement over the BTE,
it is clear that neither method can accurately describe
charge transport normal to the molecular planes.

The electron bands in the GW band structure are
nearly flat in the plane-normal c∗-direction (Γ − Z
direction in Figure 3b), with large effective masses of
order 15me for the GW calculation done on the 100 K
structure, and greater at higher temperatures. Com-
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FIG. 6. Electron mobility in the plane-normal direc-
tion in naphthalene. The plot compares CK and BTE
calculations with experimental data from Ref. [40].

bined with the absence of a power-law temperature trend
in the experimental mobility, this relatively flat band
suggests that electrons are nearly localized to a single
molecular plane and that transport in the plane-normal
direction occurs via small-polaron hopping. The failure
of the CK approach in this regime highlights the need
for predictive first-principles approaches to study charge
transport in the small-polaron hopping regime in OMCs.

In summary, we studied the electron mobility in
naphthalene crystal as a paradigmatic case of inter-
mediate charge transport in OMCs. Combining a
finite-temperature cumulant method and Green-Kubo
transport calculations, we demonstrated accurate pre-
dictions of the electron mobility and its temperature
dependence in the intermediate regime. Our results
reveal a subtle interplay between inter- and intramolec-
ular phonons: the low-energy intermolecular phonons
determine the broadening of the QP peak, while the
intramolecular phonons are responsible for forming
polarons and the associated satellite peaks. Both types
of phonons contribute to limit the mobility. The broad
satellite removes spectral weight from the QP peak,
modifying the mobility and its temperature dependence.
By capturing these subtle polaron effects, our CK
approach addresses the shortcomings of the BTE for
modeling the intermediate transport regime. We also
highlighted the limitations of the CK approach to de-
scribe polaron-hopping between molecular planes. Taken
together, our work advances microscopic understanding
of the intermediate transport regime and paves the way
for accurate first-principles calculations of the carrier
mobility in OMCs.

METHODS

First-principles calculations

We carry out first-principles density functional theory
(DFT) calculations of the ground state and electronic
structure of naphthalene using the Quantum Espresso
code [43, 44]. Thermal expansion of the lattice is taken
into account by employing lattice constants [52] taken
from experiments at four different temperatures of 100,
160, 220, and 300 K. All calculations are carried out sepa-
rately at these four temperatures. The initial atomic po-
sitions are also taken from experiment [64, 65]. We use a
kinetic energy cutoff of 90 Ry together with 2×4×2 and
4 × 4 × 4 k-point grids for self-consistent and non-self-
consistent calculations, respectively. The Grimme van
der Waals correction [66, 67] is included during struc-
tural relaxation of the atomic positions. To improve the
description of dynamical electronic correlations, we cor-
rect the DFT electronic band structure with G0W0 cal-
culations, which include 500 bands in the polarization
function and a cutoff of 10 Ry in the dielectric screening
using the Yambo code [49]. The Wannier90 code [51]
is employed to obtain Wannier functions and the cor-
responding transformation matrices, using the selected-
columns-of-the-density-matrix method [68]. The lattice
dynamics and e-ph perturbation potential are computed
with density functional perturbation theory (DFPT) [53]
calculations on a 2 × 4 × 2 q-point grid (here and be-
low, q is the phonon wavevector). Using our Perturbo
code [54], the electron and phonon data are combined to
form the e-ph coupling matrix elements [54]:

gmnν(k,q) =

√
ℏ

2ωνq

∑
κα

eκανq√
Mκ

⟨mk+ q|∂qκαV |nk⟩,

(6)

where |nk⟩ are electronic Bloch states, ωνq are phonon
energies, ∂qκαV are e-ph perturbation potentials, eκανq are
phonon displacement vectors, and Mκ is the mass of atom
κ. The absolute value of the gauge-invariant e-ph cou-
pling strength shown in Figure 3b is computed for each
phonon mode ν and phonon wavevector q as [54]

|gν(k=0,q)| =
√∑

mn

|gmnν(k=0,q)|2/Nb , (7)

where Nb is the number of selected bands. The mobility
calculations use a fine k-grid of 60× 60× 60 for the BTE
and 30× 30× 30 for the CK method. Both methods use
between 105−106 randomly selected q-points.
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Electron-phonon scattering rate
The relaxation time τnk used in the BTE is computed

as the inverse of the scattering rate, defined as [55]

Γnk(T ) =
2π
ℏ

∑
mνq

|gnmν(k,q)|2

×[(Nνq + 1− fmk+q)δ(εnk − εnk+q − ωνq)

+(Nνq + fmk+q)δ(εnk − εnk+q + ωνq)], (8)

where fnk and Nνq are electron Fermi-Dirac and phonon
Bose-Einstein occupations in thermal equilibrium,
respectively.

Cumulant method
The cumulant ansatz assumes that the retarded elec-

tron Green’s function in the time domain takes the expo-
nential form in Equation (2), where the cumulant func-
tion Cnk is defined as [28, 56]

Cnk(t, T ) =

∫ ∞

−∞
dE

|ImΣnk(E + εnk, T )|
πE2

(e−iEt + iEt− 1).

(9)

Here, εnk is the electron band energy, E the electron
energy, and Σnk is the lowest-order (Fan-Migdal) e-ph
self-energy [57]:

Σnk(E, T ) =
∑
mνq

|gmnν(k,q)|2

×
[

Nνq + fmk+q

E − εmk+q + ωνq + iη
+

Nνq + 1 + fmk+q

E − εmk+q − ωνq + iη

]
(10)

whose temperature dependence is due to the occupation
factors Nνq and fnk. Our cumulant Green’s function in-
cludes e-ph Feynman diagrams of all orders: it sums over
all the improper diagrams in which, at order n, the Fan-
Migdal e-ph self-energy is repeated n times and weighted
by a 1/n! factor [57]. After Fourier-transforming the re-
tarded Green’s function in Equation (2) to the energy
domain, we obtain the electron spectral function using
Equation (3). We compute ImΣnk(E) off-shell, using a
fine energy E grid, and ReΣnk on-shell at the band en-
ergy εnk, and use them as input to obtain the spectral
function Ank [28] as a function of electron energy E. Due
to the exponential form of GR

nk, the cumulant Green’s
function includes contributions from higher-order e-ph
Feynman diagrams [57].

Dyson-Migdal spectral function
The Dyson-Migdal (DM) spectral function is given by

ADM
nk (E, T ) =

−ImΣnk(T )

[E − εnk − ReΣnk(T )]2 + [ImΣnk(T )]2
,

(11)

where Σnk(T ) is the lowest-order e-ph self-energy [Equa-
tion (10)] computed on-shell at the band energy εnk. The
DM spectral function has a Lorentzian shape as a func-
tion of energy, with a linewidth of 2 ImΣnk(T ) which is
proportional to the e-ph scattering rate in Equation (8),
Γnk(T ) = 2 ImΣnk(T )/ℏ [55].
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