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Today, grasslands cover approximately 80% of Madagascar [1,2], but their
extent prior to recent landscape modification remains elusive. Numerous
studies converge to suggest that forest cover was much more widespread
greater than 1000 years ago and even 100 years ago [3–7]. While researchers
initially regarded grasslands as primarily anthropogenic (e.g. [8–10]), the
view has been challenged by the diversity and age of endemic grass lineages.
This shift in perspective started when Bond et al. [1] suggested that C4 grasses
have existed on Madagascar since the late Miocene (e.g. [11]). These inferences
were based on (i) C4 grasses, including endemic species, being remarkably
diverse in Madagascar, (ii) the species composition of grassy biomes varying
geographically (following climate and elevational gradients similar to South
Africa), and (iii) grassy biomes including endemic graminoid, herbaceous and
woody species. Bond et al. [1] also observed that Malagasy invertebrate and ver-
tebrate groups have grassland specialists. Hackel et al. [12] found support for a
Miocene to Pliocene origin of Madagascar’s grassy biomes, while Vorontsova
et al. [2] demonstrated that roughly 40% of Madagascar’s grass species are ende-
mic. There is particularly high diversity and spatial and ecological turnover of
endemic grasses in Madagascar’s Central Highlands, a region generally con-
sidered highly anthropogenically modified and biologically impoverished [4].

Solofondranohatra et al. [13] confirmed that endemic grasses in central Mada-
gascar are phylogenetically diverse and found both fire- and grazer-adapted
assemblages. They reasoned grassy biomes were maintained by fire and native
grazers before humans arrived, and that cattle may have replaced native grazers.
They further argued that the importance of grassy biomes has been underappre-
ciated and the Malagasy unnecessarily vilified in the traditional deforestation
narrative; efforts to reforest with exotic species are misguided. We agree with
these basic arguments. However, two fundamental questions remain unresolved:
(i) which now-extinct taxa maintained grazer-adapted grasses? (ii) How extensive
were grasslands before human arrival?

As Solofondranohatra et al. [13] note, published isotope data for Madagas-
car’s Central Highlands are taxonomically limited (favouring lemurs) and
scattered across multiple sources and sites [14–19]. We seek to help rectify this
gap by summarizing existing radiocarbon and δ13C data and providing new
data for lemurs, hippos and a euplerid carnivoran from the ecoregion (figure 1;
electronic supplementary material, table S1). Sample preparation and analysis
followed [18]. Raw isotope data were normalized using internal reference
materials following [20]. Analytical precision and accuracy were 0.29 and
0.27‰, respectively. We compared δ13Ccollagen values with expected values for
pure C3 and mixed C3–C4 consumers. To do this, we assumed that most grasses
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in Central Madagascar use the C4-photosynthetic pathway,
based on species lists for the Central Highlands (e.g. [1]), and a
valid assumption for tropical and subtropical sites worldwide.
No isotope data exist for grasses from central Madagascar.
However, globally, C4 plants have a narrow range of δ13C
values (−13.1 ± 1.2‰ [21]). For C3 plants, we used δ13C values
for plants from Tsinjoarivo (−24.7 to −32.1‰ [22]), a protected
area in the eastern Central Highlands 1300–1675 metres above
sea level (m.a.s.l.). After accounting for the isotopic difference
between tissue and diet (+5‰ for bone collagen; see [23]), as
well as isotopic changes in atmospheric CO2 following the indus-
trial revolution (the Suess effect, −1.2‰; see [23]), animals with
pure C3 diets should have collagen δ13CSuess values <−19.7‰
while higher values require a mixed C3–C4 diet.

We explored temporal and spatial trends in the isotope data.
We broke data down into two elevational bins: high (greater
than 1300 m.a.s.l.) and mid-elevation (800–1300 m.a.s.l.). This
cutoff is based on differences in climate (higher elevations
have cooler temperatures and receive more precipitation),
vegetation (mid-altitude versus montane and sclerophyll
forest) and considerably reduced bird and mammal species
richness above 1300 m.a.s.l. (e.g. [24,25]). We also broke the
data into three temporal bins: greater than 19 000 calendar
years before present (cal BP), which encompasses the Last
Glacial Maximum (LGM); 19 000–11 700 cal BP, which covers
the last deglaciation interval; and less than 11 700 cal BP,
which covers the Holocene.

At high-elevation sites (Antsirabe, Masinandraina and
Tsaramody), there are no δ13C data for animals greater than
19 700 cal BP. However, there were shelducks and sheldgeese
(Alopochen and Centrornis) at Antsirabe during and just after
the LGM, which supports wetland conditions (figure 2). Just
one datum exists for the last deglaciation, a hippo from Tsar-
amody with a δ13CSuess value suggesting a mixed C3–C4 diet
(−15.9‰). More data are available for the Holocene. Hippos
(all from Antsirabe) had a narrow isotopic range reflecting
pure C3 diets (−26.7 to −26.1‰). However, elephant birds
(Aepyornis hildebrandti) had elevated δ13CSuess values both at
Antsirabe and Masinandraina (−18.3 to −14.6‰), suggesting
a mixed C3–C4 diet. A single extinct Malagasy ‘aardvark’,
Plesiorycteropus, had a δ13CSuess value close to the expected
threshold for pure C3 consumption (−19.9‰).

At mid-elevation Ampasambazimba, water birds (Alopo-
chen) were also present greater than 19 700 cal BP (figure 2).
A single Archaeolemur dating to 33 168 ± 3563 cal BP had a
δ13CSuess value of −16.7‰, supporting some reliance on C4

resources. However, during the last deglaciation and Holo-
cene, lemurs had δ13CSuess values reflecting pure C3 diets
(−25.6 to −20.5‰). The carnivoran Cryptoprocta ferox also con-
sumed C3 resources (−21.1‰), while hippopotamuses had
variable δ13CSuess values, with some relying on a mixed
diet (−24.2 to −14.7‰).

Although these data are still rather limited spatially, tem-
porally and particularly taxonomically, they support the
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Figure 1. Map of Madagascar showing Central Highland subfossil sites included in this study. Basemap modified from commons.wikimedia.org. (Online version in colour.)
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notion that Madagascar’s Central Highlands were not den-
sely forested prior to and during the LGM. Available
evidence for forest-dependent taxa at sites greater than
1300 m.a.s.l. and the elevated δ13Csuess value for the Archaeole-
mur at mid-elevation are consistent with relatively open habitat
at that time. Isotope data also support continued C4 presence
at high elevations after the LGM, and at both mid- and high-
elevation sites during the Holocene. However, the abundance
of lemur and other arboreal taxa implies significant tree cover
from the last deglaciation through much of the Holocene.

Isotope and radiocarbon data do not obviate the presence
of ancient grasslands in Madagascar. However, they also do
not support widespread grasslands in central Madagascar
throughout the past 30 000+ years. Instead, the data support
a mosaic landscape, with fluctuating dominance of different
biomes at different elevations and during different windows of
time [5,26]. Factors beyond natural fire and grazing (including
temperature, rainfall and anthropogenic fires) have probably

contributed to the distribution of grassy biomes over time.
Additional data will further elucidate the extent of grassy
biomes in Madagascar’s Central Highlands and which herbi-
vores maintained grazer-dependent taxa. We look forward to
helping solve these remaining unknowns so that appropriate
management and conservation decisions can be made.
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Figure 2. Boxplots showing δ13C values for vertebrates during three time intervals at (a) three high-elevation sites (Antsirabe, Masiandraina and Tsaramody) and
(b) one mid-elevation site (Ampasambazimba). Stars denote taxa with dates but no δ13C values. (Online version in colour.)
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