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Abstract
Let APk = {a, a+ d, . . . , a+ (k− 1)d} be an arithmetic progression. For ε > 0 we call a set APk(ε)=
{x0, . . . , xk−1} an ε-approximate arithmetic progression if for some a and d, |xi − (a+ id)|< εd holds for
all i ∈ {0, 1 . . . , k− 1}. Complementing earlier results of Dumitrescu (2011, J. Comput. Geom. 2(1) 16–29),
in this paper we study numerical aspects of Van der Waerden, Szemerédi and Furstenberg–Katznelson
like results in which arithmetic progressions and their higher dimensional extensions are replaced by their
ε-approximation.
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1. Introduction
For a natural number N we set [N]= {1, 2 . . . ,N}. Assume that [N] is coloured by r colours. We
denote by

N → (APk)r
the fact that any such r-colouring yields a monochromatic arithmetic progression APk of
length k. With this notation the well known Van der Waerden’s theorem can be stated as follows.

Theorem 1.1. For every positive integers r and k, there exists a positive integer N such that N →
(APk)r.

The minimum N with the property of Theorem 1.1 is called the Van der Waerden number of
r, k and is denoted by W(k, r). In other words, W(k, r) is the minimum integer N such that any
r-colouring of [N] contains a monochromatic arithmetic progression of length k. Much effort was
put to determine lower and upper bounds for W(k, r), but the problem remains widely open. As
an illustration, the best known bounds forW(k, 2) are

2k

ko(1)
≤W(k, 2)≤ 22

22
2k+9

,

where o(1)→ 0 as k→ ∞. The lower bound is due to Szabo [25] while the upper bound is a
celebrated result of Gowers on Szemerédi’s theorem [10]. It is good to remark that when k is a
prime the lower bound can be improved toW(k+ 1, 2)≥ k2k by a construction of Berlekamp [2].
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2 V. Rödl and M. Sales

RonGrahamwas keenly interested in the research leading to improvements of the upper bound
of W(k, 2) and motivated it by monetary prizes. Currently open is his $1000 award for the proof
thatW(k, 2)< 2k2 (see [14]). During his career he also contributed to related problems in the area
(see [3, 12, 13]). For instance, together with Erdös [6], Graham proved a canonical version of Van
der Waerden: Every colouring of N, not necessarily with finitely many colours, contains either an
monochromatic arithmetic progression or a rainbow arithmetic progression, i.e., a progression
with every element of distinct colour.

Inspired by the works of [4] and [16], we are interested in the related problem where we replace
an arithmetic progression by an perturbation of it.

Definition 1.2. Given ε > 0, a set X = {x0, . . . , xk−1} ⊆ [N] is an ε-approximate APk(ε) of an
arithmetic progression of length k if there exists a ∈R and d> 0 such that |xi − (a+ id)|< εd.

In other words, an APk(ε) is just a transversal of
⋃k−1

i=0 B(a+ id;εd), where B(a+ id;εd) is the
open ball centred at a+ id of radius εd. Depending on the choice of ε, an APk(ε) can be dif-
ferent from an APk. For example, if ε= 1/3, then a= 0.8 and d = 2.4 testifies that {1, 3, 6} is an
ε-approximate arithmetic progression of length 3, but it is not an arithmetic progression itself.

For integers r, k and ε > 0, let

Wε(k, r)=min{N :N → (APk(ε))r}.
That is,Wε(k, r) is the smallest N with the property that any colouring of [N] by r colours yields a
monochromatic APk(ε). Our first result shows that one can obtain sharper bounds to the Van der
Waerden problem by replacing APk to APk(ε).

Theorem 1.3. Let r ≥ 1. There exists a positive constant ε0 and a real number cr depending on r
such that the following holds. If 0< ε≤ ε0 and k≥ 2rr!ε−1 logr (1/5ε), then

cr
kr

εr−1 log (1/ε)(
r+1
2 )−1

≤Wε(k, r)≤ 2kr

εr−1 .

Similar as in the previous discussion we will writeN →α APk (orN →α APk(ε)) to denote that
any subset S⊆ [N] with |S| ≥ αN necessarily contains an arithmetic progression APk (or APk(ε),
respectively). Answering a question of Erdös and Turan [7], Szemerédi proved the following
celebrated result:

Theorem 1.4. For any α > 0 and a positive integer k, there exists an integer N0 such that for every
N ≥N0 the relation N →α APk holds.

Basically Szemerédi theorem states that any positive proportion of N contains an arithmetic
progression of length k. Not much later Furstenberg [9] gave an alternative proof of Theorem 1.4
using Ergodic theory. Extending [9], Furstenberg and Katznelson [8] were able to prove a
multidimensional version of Szemerédi’s theorem:

An m-dimensional cube C(m, k) is a set of km points in m-dimensional Euclidean lattice Zm

such that

C(m, k)= {
a+ d
v : 
a= (a1, . . . , am) ∈Z
m and 
v= (v1, . . . , vm) ∈ {0, 1, . . . , k− 1}m}.

That is, C(m, k) is a homothetic translation of [k]m. As in the one dimensional case, for α > 0
and integers m, k and N we will write [N]m →α C(m, k) to mean that any subset S⊆ [N]m with
|S| ≥ αNm contains a cube C(m, k). The following is the multidimensional version of Theorem 1.4
proved in [8].

Theorem 1.5. For any α > 0 and positive integers k and m, there exists an integer N0 such that for
every N ≥N0 the relation [N]m →α C(m, k) holds
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Combinatorics, Probability and Computing 3

Define f (N,m, k) as the maximum size of a subset A⊆ [N]m without a cube C(m, k). Note that
f (N, 1, k) corresponds to the maximal size of a subset A⊆ [N] without an arithmetic progression
APk. Theorems 1.4 and 1.5 give us that f (N,m, k)= o(Nm). Determining bounds for f (N,m, k) is
a long standing problem in additive combinatorics. Form= 1 the best current bounds are

N exp
(
−ck( logN)1/�log2 k�

)
≤ f (N, 1, k)≤ N

( log logN)2−2k+9

where ck is a positive constant depending only on k. The upper bound is due to Gowers [10], while
the lower bound with best constant ck is due to O’Bryant [21].

For larger m it is worth mentioning that Furstenberg–Katznelson proof of Theorem 1.5 uses
Ergodic theory and gives us no quantitative bounds on f (N, m, K). Purely combinatorial proofs
were given later based on the hypergraph regularity lemma in [11] and [20, 23]. Those proofs give
quantitative bounds which are incomparably weaker than the one form= 1. For instance, in [19]
Moshkovitz and Shapira proved that the hypergraph regularity lemma gives a bound of the order
of the k-th Ackermann function.

Now we consider ε-approximate versions of Theorems 1.4 and 1.5.

Definition 1.6. Given ε > 0, a set X = {x
v : 
v ∈ {0, 1, . . . , k− 1}m} ⊆ [N]m is an ε-approximate
cube Cε(m, k) if there exists 
a ∈R

m and d> 0 such that ||x
v − (
a+ d
v)||< εd.
For integersN,m, k and ε > 0, let fε(N,m, k) be the maximal size of a subset A⊆ [N]m without

an Cε(m, k). Dimitrescu showed an upper bound for fε(N,m, k) in [4]. We complement his result
by also providing a lower bound to the problem.

Theorem 1.7. Let m≥ 1 and k≥ 3 be integers and 0< ε < 1/125. Then there exists an integer
N0 := N0(k, ε) and positive constants c1 and c2 depending only on k and m such that

Nm−c1( log (1/ε))
1
�

−1 ≤ fε(N,m, k)≤Nm−c2( log (1/ε))−1
,

for N ≥N0 and �= �log2 k�.
The paper is organised as follows. In Section 2, we present a proof of Theorem 1.3. The upper

bound is an iterated blow-up construction, while the lower bound is given by an ad-hoc inductive
colouring. We prove Theorem 1.7 in Section 3. The lower bound uses the current lower bounds
for f (N, 1, k), while the upper bound is given by an iterated blow-up construction combined with
an averaging argument.

2. Proof of Theorem 1.3
2.1 Upper bound
We start with the upper bound. Given r ≥ 1 colours, we consider the following r-iterated blow-up
of an APk given by the set of integers

Br = {
b0 + tb1 + . . .+ tr−1br−1 : (b0, . . . , br−1) ∈ {0, 1 . . . , k− 1}r, t = �k/ε�} .

Note that Br is a set of size |Br| = kr and diam(Br)≤ (k− 1)(1+ t + . . .+ tr−1)< 2(k− 1)tr−1. It
turns out that any r-colouring of Br contains a monochromatic APk(ε). In particular, this implies
thatWε(k, r)≤ diam(Br)+ 1≤ 2kr/εr−1.

Proposition 2.1. Any r-colouring of Br has a monochromatic APk(ε).

Proof. We prove the proposition by induction on the number of colours r. For r = 1, one can
see that B1 = [k], which is an arithmetic progression of length k and in particular a APk(ε).
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4 V. Rödl and M. Sales

Now suppose that any (r − 1)-colouring of Br−1 contains a monochromatic APk(ε). Consider an
r-colouring of Br . Note that we can partition Br =⋃k−1

i=0 Br,i where

Br,i =
{
b0 + . . .+ tr−2br−2 + itr−1 : (b0, . . . , br−2) ∈ {0, 1, . . . , k− 1}r−1, t = �k/ε�} .

That is, for every 0≤ i≤ k− 1, the set Br,i is a translation of Br−1 by itr−1.
Consider a transversal X = {x0, . . . , xk−1} of Br =⋃k−1

i=0 Br,i with xi ∈ Br,i for every 0≤ i≤
k− 1. Let a= diam(Br−1)/2 and d = tr−1. Since xi ∈ Br,i implies that itr−1 ≤ xi ≤ itr−1 +
diam(Br−1), we obtain that

|xi − (a+ id)| ≤ diam(Br−1)
2

≤ kr−1

εr−2 ≤ εd
and X is an ε-approximate APk(ε). Therefore, if some colour c is present in each of the sets Br,i for
0≤ i≤ r − 1, we could selectX to be a monochromatic APk(ε). Consequently wemay assume that
there is no monochromatic transversal in Br , which means that there exists an index i such that
Br,i is coloured with at most (r − 1) colours. Since Br,i is just a translation of Br−1, by induction
hypothesis we conclude that there exists a monochromatic APk(ε) inside Br,i.

2.2 Lower bound
In order to construct a large set avoiding ε-approximate APk(ε) we need some preliminary results.
Given a real number D> 0, we define an (r − 1, 1;D)-alternate labelling of R to be an labelling
χ :R→ {−1,+1} such that

χ(x)=
{+1, if x ∈⋃i∈Z

(
irD+mD,

(
i+ r−1

r
)
rD+mD

]
,

−1, if x ∈⋃i∈Z
((
i+ r−1

r
)
rD+mD, (i+ 1)rD+mD

]
,

for some m ∈Z. That is, χ is a periodic labelling of R with period rD, where we partition R into
disjoint intervals of length D and label them alternating between r − 1 consecutive intervals of
label +1 and one of label −1. The restriction of an (r − 1, 1;D)-alternate labelling to Z will be of
great importance for us. The following lemma roughly characterises the common difference of
any large monochromatic approximate arithmetic progression in such a labelling.

Lemma 2.2. Let D, δ > 0, m be a positive integer with δ ≤ 1
2r(r+1) and χ :R→ {−1,+1} be an

(r − 1, 1;D)-alternate labelling of R. If there exist a, d ∈R and an integer � such that

d 
∈
⋃
i∈Z

r⋃
q=1

((
i
q

− δ

)
rD,

(
i
q

+ δ

)
rD
)
,

and that B=⋃�−1
i=0 B(a+ id, δrD) has a monochromatic transversal of label +1, then �≤ 3r/δ.

Proof.Wemay assume without loss of generality that χ is the following labelling of R:

χ(x)=
{+1, if x ∈⋃i∈Z

(
irD,

(
i+ r−1

r
)
rD
]
,

−1, if x ∈⋃i∈Z
((
i+ r−1

r
)
rD, (i+ 1)rD

]
,

That is, wemay assume thatm= 0 in the definition of an alternate labelling. Also, during the proof
we shall write x to be the representative of x modulo rD in the interval (0, rD], i.e., the number
0< x≤ rD such that x− x= brD for some integer b ∈Z.

We start by claiming that there exists 1≤ s≤ r such that

sd ∈
[
δrD,

rD
r + 1

]
∪
[(

1− 1
r + 1

)
rD, (1− δ)rD

]
. (1)
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First note by our hypothesis that

d /∈
((

i
q

− δ

)
rD,

(
i
q

+ δ

)
rD
)

for every i ∈Z and 1≤ q≤ r. Therefore,

qd /∈ ((i− δ)rD, (i+ δ)rD)⊆ ((i− qδ)rD, (i+ qδ)rD) (2)

for every i ∈Z and 1≤ q≤ r.
Now consider the partition (0, rD]=⋃r

j=0

(
jrD
r+1 ,

(j+1)rD
r+1

]
. If there exists 1≤ s≤ r such that sd

is in the two outer intervals above, i.e., in either
(
0, rD

r+1

]
or
((

1− 1
r+1

)
rD, rD

]
, then by (2) we

obtain that s satisfies (1). Otherwise, assume that there is no 1≤ s≤ r with sd in the two outer
intervals. Then by the pigeonhole principle there exist 1≤ p< q≤ r and an index j such that
pd, qd ∈

(
jrD
r+1 ,

(j+1)rD
r+1

]
. Consequently, we have that qd − pd ∈

(
− rD

r+1 ,
rD
r+1

)
. By letting s= q− p

we obtain that

sd ∈
(
0,

rD
r + 1

]
∪
((

1− 1
r + 1

)
rD, rD

]
,

for 1≤ s≤ r, which is a contradiction. Therefore, condition (1) is always satisfied for some s.
Let 1≤ s≤ r be the number satisfying (1) and consider the subset

B′ =
�
′⋃

i=0
B(a+ isd, δrD)⊆ B,

where �′ = �(�− 1)/s�. That is, if we see B as the arithmetic progression of intervals of length δrD,
size � and common difference d, then B′ is a subarithmetic progression of B with common differ-
ence sd. Since B has a monochromatic transversal labeled +1, then B′ also has a monochromatic
transversal labeled +1. Hence, because

⋃
i∈Z

(
irD, (i+ r−1

r )rD
]
are the elements of label +1 in

our (r − 1, 1;D)-alternate labelling, we have that

{a, a+ sd, . . . , a+ �′sd} ⊆
⋃
i∈Z

(
(i− δ)rD,

(
i+ r − 1

r
+ δ

)
rD
)
.

Suppose that sd ∈ [δrD, 1
r+1 rD

]
. Since the colouring χ is periodic modulo rD, we may

assume without loss of generality that sd ∈ [δrD, rD
r+1
]
. We claim that there exists an inte-

ger p such that {a, a+ sd, . . . , a+ �′sd} ⊆ (
(p− δ)rD,

(
p+ r−1

r + δ
)
rD
)
. Suppose that this is

not the case. Because sd> 0 there exist integers p< q and 0≤ i≤ �′ − 1 such that a+ isd ∈(
(p− δ)rD,

(
p+ r−1

r + δ
)
rD
)
and a+ (i+ 1)sd ∈ ((q− δ)rD,

(
q+ r−1

r + δ
)
rD
)
. A computation

shows that

sd = a+ (i+ 1)sd − (a+ isd)> (q− δ)rD−
(
p+ r − 1

r
+ δ

)
rD≥ (1− 2δr)D≥ rD

r + 1

for δ ≤ 1
2r(r+1) , which contradicts our assumption on sd.

Hence, there exists p such that a, a+ �′sd ∈ ((p− δ)rD,
(
p+ r−1

r + δ
)
rD
)
, which implies that

�′sd = (a+ �′sd)− a≤
(
p+ r − 1

r
+ δ

)
rD− (p− δ)rD= (r − 1)D+ 2δrD.
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6 V. Rödl and M. Sales

Since sd ≥ δrD, we obtain that

�′sd ≥
⌊
�− 1
s

⌋
δrD≥ �δrD

2s
≥ δ�D

2

for � > r ≥ s. The last two computations combined with the fact that δ ≤ 1
2r(r+1) ≤ 1

4 gives us that

�≤ 2(r − 1)D+ 4δrD
δD

≤ 2(r − 1)
δ

+ 4r ≤
(
2
δ

+ 4
)
r ≤ 3r

δ

Now assume that sd ∈
[(

1− 1
r+1

)
rD, (1− δ)rD

]
. By the periodicity of χ , we may assume

without loss of generality that sd ∈ [− rD
r+1 ,−δrD]. By rewriting {a, a+ sd, . . . , a+ �′sd} as

{a′, a′ + sd′, . . . , a′ + �′sd′} with a′ = a+ �′sd and d′ = −d, we are back to the previous case and
again �≤ 3r/δ.

Although it is convenient to prove Lemma 2.2 using an alternate labelling ofR, the lower bound
construction will use alternate labellings of set of integers.With this in mind, we give the following
companion definition.

Given positive integersD, r and t, an (r − 1, 1;D)-alternate labelling of the set [rtD] is a labelling
χ ′ : [rtD]→ {−1,+1} such that χ ′(x)= χ(x), where χ is an (r − 1, 1;D)-alternate labelling of R.
In other words, an alternate labelling of a set of integers is just the restriction of an alternate
labelling of R to the set. Note that by this definition, there exists r distinct (r − 1, 1;D)-alternate
labellings of [rtD]. AD-block of [rtD] is a block ofD consecutive integers of the form [iD+ 1, (i+
1)D]. One can note that theD-blocks form a partition of [rtD] and eachD-block ismonochromatic
in an (r − 1, 1;D)-alternate labelling of [rtD].

Finally, note that given an alternate labelling χ ′ of a set [rtD] we can extend back to a an alter-
nate labelling of (0, rtD] by labelling the entire interval (iD, (i+ 1)D] with the same label as the
D-block of integers [iD+ 1, (i+ 1)D]. Since the labelling is periodic, it is now easy to extend back
to a labelling χ of R.

The next result is a consequence of the proof of Lemma 2.2.

Proposition 2.3. Let D, r, t and � be positive integers with �≥ t(r + 1)+ 2 and 0< ε < 1/2r be a
real number. If [rtD] is coloured by an (r − 1, 1;D)-alternate labelling and X ⊆ [rtD] is a monochro-
matic AP�(ε) of label +1, then there exists 0≤ i≤ rt − 1 such that the D-block [iD+ 1, (i+ 1)D]
satisfies |X ∩ [iD+ 1, (i+ 1)D]| ≥ �/(r − 1).

Proof. Write X = {x0, . . . , x�−1}. Since X is an AP�(ε), there exists a ∈R, d> 0 such that |xi −
(a+ id)|< εd. Therefore, a computation shows that

rtD> |x�−1 − x0| ≥ a+ (�− 1)d − a− 2εd = (�− 1− 2ε)d,
which implies that

d ≤ rtD
�− 2

≤ rD
r + 1

(3)

for �≥ t(r + 1)+ 2.
Similarly as in the proof of Lemma 2.2, we will show that all the elements of X are inside an

interval of (r − 1) consecutive D-blocks of label +1.
Suppose that this was not the case. Since non-consecutiveD-blocks of label+1 are at a distance

of at least D elements, then there exists xi and xi+1 such that |xi+1 − xi| ≥D. However, in view of
ε < 1/2r and (3), we obtain
|xi+1 − xi| ≤ |xi+1 − (a+ (i+ 1)d)| + |a+ (i+ 1)d − (a+ id)| + |xi − (a+ id)| ≤ (1+ 2ε)d<D,
which is a contradiction. The result now follows by an application of the pigeonhole principle.
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Note that Proposition 2.3 already gives us a lower bound for the case r = 2. Indeed, we will
prove that an (1, 1; k− 1)-alternate labelling of

[
2(k−1)(k−2)

3

]
1 does not contain a monochromatic

APk(ε) for ε < 1/4 and sufficiently large k.
Suppose that this is not the case. Since an (1, 1; k− 1)-alternate labelling is symmetric, we may

assume that there is a monochromatic APk(ε) of label +1. Applying Proposition 2.3 with r = 2,
t = (k− 2)/3, D= k− 1 and �= k gives us that there exists a (k− 1)-block of the form [i(k−
1)+ 1, (i+ 1)(k− 1)] such that |X ∩ [i(k− 1)+ 1, (i+ 1)(k− 1)]| ≥ k, which contradicts the size
of the block.

Unfortunately, the argument above does not give a lower bound depending on ε. To achieve
such a bound we will need to refine the previous construction, but first we need one more
preliminary result.

The second Chebyshev function ψ(x) is defined to be the logarithm of the least common
multiple of all positive integers less or equal than x. The following bound on ψ(x) will be useful
for us.

Theorem 2.4. ([24], Theorem 7). If x≥ 108, then |ψ(x)− x|< cx/ log x for some positive
constant c.

In particular, Theorem 2.4 asserts that for sufficiently large n we have

lcm(1, . . . , n)= en+O(n/ log n). (4)

We are now ready to prove the lower bound of Theorem 1.3.

Theorem 2.5. Let r ≥ 1. There exists a positive constant ε0 and a real number cr depending on r
such that the following holds. If 0< ε≤ ε0 and k≥ 2rr!ε−1 logr (1/5ε) is a integer, then there exist
an integer N := N(ε, k, r) satisfying

N ≥ cr
kr

εr−1 log (1/ε)(
r+1
2 )−1

,

so that [N] admits an r-colouring without monochromatic APk(ε).

Proof. The proof is by induction on the number of colours r. For r = 1, the result clearly holds for
N(ε, k, 1)= k− 1 since there is no APk(ε), or even APk, on (k− 1) terms. Now suppose that for
any ε and k such that 0< ε≤ ε0 and k≥ 2r−1(r − 1)!ε−1 logr−1 (1/5ε), there exists N(ε, k, r − 1)
and a (r − 1)-colouring of [N(ε, k, r − 1)] satisfying the conclusion of the statement. We want to
find an integer N1 so that [N1] has a r-colouring without monochromatic APk(ε).

To do that we start with some choice of variables. Let

N0 =N
(
ε,

k
rs
, r − 1

)
, s= 1

0.9
log (1/5ε), w= e0.9s

s(r − 1)! , t = k
2rs

, Dj = s− j+ 1
s

N0

(5)

be integers for 1≤ j≤ s/2. Note that although s, w, t and {Dj}1≤j≤s/2 might not be integers, we
prefer to write in this way, since it simplifies the exposition and has no significant effect on the
arguments. Moreover, the integer N0 always exists since by hypothesis

k
rs

≥ 2rr!ε−1 logr (1/5ε)
rs

≥ 2r−1(r − 1)!ε−1 logr−1 (1/5ε).

1Strictly speaking we should use the set
[
2
⌊ k−2

3
⌋
(k− 1)

]
, since k−2

3 is not necessarily an integer. However, during our
exposition we will not bother with this type of detail since it has no significant effect on arguments or results.
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8 V. Rödl and M. Sales

Let N1 = rwt(D1 + . . .+Ds/2). We are going to define a colouring ϕ:[N1]→ [r] not admitting
monochromatic APk(ε). To this end we partition [N1] into consecutive intervals following the
four steps below:

• First we partition [N1] into [N1]= Y1 ∪ . . .∪ Yw, where Yi are consecutive intervals and
|Yi| = rt(D1 + . . .+Ds/2) for every i= 1, . . . ,w.

• Each Yi is partitioned into Yi = Yi,1 ∪ . . .∪ Yi,s/2, where Yi,j’s are consecutive intervals and
|Yi,j| = rtDj for every j= 1, . . . , s/2.

• Each Yi,j is partitioned into Yi,j = Zi,j
1 ∪ . . .∪ Zi,j

t , where Z
i,j
u ’s are consecutive intervals and

|Zi,j
u | = rDj for every u= 1, . . . , t.

• Each Zi,j
u is partitioned into Zi,j

u = Zi,j
u,1 ∪ . . .∪ Zi,j

u,r , where Z
i,j
u,v’s are consecutive intervals and

|Zi,j
u,v| =Dj for every v= 1, . . . , r.

More explicitly, we define

αi = (i− 1)rt(D1 + . . .+Ds/2), i ∈ [w]
βi,1 = αi, i ∈ [w]
βi,j = rt(D1 + . . .+Dj−1)+ αi, (i, j) ∈ [w]× [2, s/2]
γi,j,u = (u− 1)rDj + βi,j, (i, j, u) ∈ [w]× [s/2]× [t]
σi,j,u,v = (v− 1)Dj + γi,j,u (i, j, u,w) ∈ [w]× [s/2]× [t]× [r].

Therefore, our intervals can be written as:

Yi = [αi + 1, αi + rt(D1 + . . .+Ds/2)], i ∈ [w]
Yi,j = [βi,j + 1, βi,j + rtDj], (i, j) ∈ [w]× [s/2]

Zi,j
u = [γi,j,u + 1, γi,j,u + rDj], (i, j, u) ∈ [w]× [s/2]× [t]

Zi,j
u,v = [σi,j,u,v + 1, σi,j,u,v +Dj], (i, j, u, v) ∈ [w]× [s/2]× [t]× [r]

Finally, we describe the colouring ϕ:[N1]→ [r] on the intervals Zi,j
u,v. By induction hypothesis,

given any set C of r − 1 colours there exists a colouring ϕC:[N0]→ C with no monochromatic
APk/rs(ε). Fix Z

i,j
u,v with (i, j, u, v) ∈ [w]× [s/2]× [t]× [r]. We colour Zi,j

u,v by the same colouring
as the firstDj elements of [N0] when [N0] is coloured by ϕ[r]\{v}. That is, the colouring ϕ restricted
to Zi,j

u,v only uses r − 1 colours and does not contain a monochromatic APk/rs(ε).
To prove that the colouring ϕ is free of APk(ε) we are going to show that there is no a ∈R

and d> 0 such that
⋃k−1

i=0 B(a+ id, εd) has a monochromatic transversal in [N1]. Suppose the
opposite and assume that there exists a and d such that

⋃k−1
i=0 B(a+ id, εd) has a monochromatic

transversalX = {x0, . . . , xk−1} ⊆ [N1] of colour c ∈ [r]. Since all the balls have radius εd, we obtain
that {a, a+ d, . . . , a+ (k− 1)d} ⊆ (1− εd,N1 + εd), which gives that (k− 1)d ≤ (N1 − 1)+ 2εd.
By (5) and by the fact that ε≤ ε0 we have that

d ≤ N1 − 1
k− 1− 2ε

≤ 2N1
k

= 2rwt(D1 + . . .+Ds/2)
k

= wN0
s2

(
s+ . . .+

( s
2

+ 1
))

≤ wN0
2

, (6)

for sufficiently small ε0.
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Combinatorics, Probability and Computing 9

For a fixed Yi,j =⋃t
u=1

⋃r
v=1 Z

i,j
u,v we define an auxiliary labelling χi,j : Yi,j → {−1,+1} of Yi,j

such that every Dj-block Z
i,j
u,v is monochromatic and

χi,j(Z
i,j
u,v)=

{+1, if v 
= c,
−1, if v= c.

.

In other words, every element of a Dj-block Z
i,j
u,v is of label −1 if the colouring ϕ restricted to Zi,j

u,v
has the same colouring of the firstDj elements of ϕC : [N0]→ C, where C = [r] \ {c}, i.e., the set of
colours missing the colour c. Otherwise, we label all the elements in Zi,j

u,v by+1. It is not difficult to
check that χi,j is an (r − 1, 1;Dj)-alternate labelling of Yi,j. Moreover, since X is monochromatic
of colour c and Zi,j

u,c is coloured by ϕ[r]\{c}, we obtain that X ∩ Zi,j
u,c = ∅. This implies that every

element of X ∩ Yi,j is labeled +1. Finally, in order to apply Lemma 2.2, we extend the labelling χi,j
to the set of real numbers (βi,j, βi,j + rtDj] by labelling the entire interval (σi,j,u,v, σi,j,u,v +Dj] by
colour χi,j(Z

i,j
u,v) for every u, v ∈ [t]× [r].

The main idea of the proof is based on the fact that for d not too small, there exists an index
j0 such that d is far from certain fractions involving Dj0 . We will then imply by Lemma 2.2 that
the number of elements of X in Yi,j0 is ‘small’. It turns out that this fact is enough to restrict the
entire location of X to just a few Yi,j’s. Then by the pigeonhole principle and Proposition 2.3 we
can show that there exists a Dj-block Zi,j

u,v with large intersection with X, which contradicts the
inductive colouring of Zi,j

u,v.
The next proposition elaborates more on the existence of such a j0.

Proposition 2.6. If d> N0
s(r−1)! , then there exists index 1≤ j0 ≤ s/2 such that∣∣∣∣d − mDj0

(r − 1)!
∣∣∣∣≥ N0

2s(r − 1)!
for every m ∈Z.

Proof. LetM0 = N0
s(r−1)! . Note that by (5) we can write

Dj

(r − 1)! = (s− j+ 1)
N0

s(r − 1)! = (s− j+ 1)M0,

for every 1≤ j≤ s/2. Therefore, every number of the form mDj
(r−1)! for m ∈Z

+ and 1≤ j≤ s/2 is a

multiple of M0. Moreover, the least non-zero common term among the sequences
{

mDj
(r−1)!

}
m∈Z+

for 1≤ j≤ s/2, i.e.,

min
⋂

1≤j≤s/2

{ mDj

(r − 1)! :m ∈Z
+
}

=min
⋂

1≤j≤s/2

{
m(s− j+ 1)M0 :m ∈Z

+}

is equal to LM0, where L= lcm(s/2+ 1, . . . , s).
Since every number in {1, . . . , s/2} has a non-trivial multiple inside {s/2+ 1, . . . , s} we obtain

by (4) that

L= lcm(s/2+ 1, . . . , s)= lcm(1, . . . , s)= es+O(s/ log s) ≥ e0.9s,

for s= 1
0.9 log (1/5ε)≥ 1

0.9 log (1/5ε0) and ε0 sufficiently small. Hence, by (5) and (6) we have

d ≤ wN0
2

= N0e0.9s

2s(r − 1)! ≤ LN0
2s(r − 1)! = L

2
M0.
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10 V. Rödl and M. Sales

Let pM0 be the multiple of M0 closest to d. Since d>M0, we clearly have that p 
= 0. By
definition,

pM0 = pN0
s(r − 1)! ≤ d +

∣∣∣∣ pN0
s(r − 1)! − d

∣∣∣∣≤ d + M0
2
< LM0.

Therefore, by the minimality of LM0, there exists an index 1≤ j0 ≤ s/2 such that pM0 is not a
multiple of Dj0

(r−1)! = (s− j0 + 1)M0. Since, by the definition of p, all the other numbers of the form
mM0 have distance at least M0

2 = N0
2s(r−1)! to d, Proposition 2.6 follows.

We now prove that there exists a set Yi,j with a large proportion of elements of X.

Proposition 2.7. There exist indices (i1, j1) ∈ [w]× [s/2] such that |X ∩ Yi1,j1 | ≥ k/s.

Proof. Let I ⊆ [w]× [s/2] be set of pair of indices defined by

I = {
(i, j) ∈ [w]× [s/2] : X ∩ Yi,j 
= ∅} ,

and let Y =⋃
(i,j)∈I Yi,j. By (5) and (6) we obtain that the difference between two consecutive

terms of X is bounded by

|xh+1 − xh| ≤ (1+ 2ε)d ≤ (1+ 2ε)
e0.9sN0

2s(r − 1)! <
kN0
4s

≤ k(s− j+ 1)N0
2s2

= rtDj = |Yi,j|,

for k≥ 2rr!ε−1 logr (1/5ε)≥ ε−1/(r − 1)!. That is, the difference between two consecutive terms
of X is smaller than the size of an interval Yi,j for (i, j) ∈ [w]× [s/2]. This implies that all intervals
in Y must be consecutive. Recall that by construction two intervals Yi,j and Yi′,j′ are consecutive if
(i, j) and (i′, j′) are consecutive in the lexicographical ordering of [w]× [s/2].

If |I| ≤ 2, then by the pigeonhole principle there exist indices (i1, j1) such that |X ∩ Yi1,j1 | ≥
k/2≥ k/s for ε0 sufficiently small. Thus we may assume that |I|> 3. This implies that there exists
at least one pair of indices (i′, j′) such that Yi′,j′ is neither the first or last interval of Y .

Let X ∩ Yi′,j′ = {xh, . . . , xh+b−1}, where b= |X ∩ Yi′,j′ |. Since Yi′,j′ is not one of intervals in the
extreme of Y , we obtain that 2≤ h≤ h+ b− 1≤ k− 1 and in particular there exists points xh−1
and xh+b outside of Yi′,j′ . Then a simple computation gives us that

|Yi′,j′ | ≤ |xh+b − xh−1| ≤ (b+ 1+ 2ε)d< 2bd

and consequently

|X ∩ Yi′,j′ | = b>
|Yi′,j′ |
2d

(7)

for any Yi′,j′ not on the extremes of Y .
We split the proof into two cases depending on the size of d. If d ≤ N0

s(r−1)! , then (5) and (7) give
that

|X ∩ Yi′,j′ |>
|Yi′,j′ |
2d

=
rtDj′
2d

≥ k(s− j′ + 1)(r − 1)!
4s

≥ k(r − 1)!
8

≥ k
s

for every Yi′,j′ not on the extremes and sufficiently large s. Taking (i1, j1) as one such (i′, j′) gives
the desired result.

Now suppose that d> N0
s(r−1)! . Let j0 be the index provided by Proposition 2.6. In particular, it

holds that ∣∣∣∣d − mrDj0
q

∣∣∣∣≥ N0
2s(r − 1)! (8)
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Combinatorics, Probability and Computing 11

for everym ∈Z and 1≤ q≤ r. Suppose that X ∩ Yi,j0 
= ∅ for some 1≤ i≤w. Our goal is to apply
Lemma 2.2 with D=Dj0 , δ = 1/4sr! to the interval ( min (Yi,j0 )− 1, max (Yi,j0 )]= (βi,j0 , βi,j0 +
rtDj] labeled with our extension of χi,j0 . In order to verify the assumptions of the lemma note
that

N0
2s(r − 1)! = Dj0

2(s− j0 + 1)(r − 1)! ≥ Dj0
2s(r − 1)! > δrDj0

and therefore by (8) we have

d /∈
⋃
m∈Z

r⋃
q=1

((
m
q

− δ

)
rDj0 ,

(
m
q

+ δ

)
rDj0

)
.

Consequently, the conclusion of the lemma gives to us that any arithmetic progression of intervals
of radius δrDj0 with common difference d and a monochromatic transversal of label+1 inside the
interval ( min (Yi,j0 )− 1, max (Yi,j0 )] has length bounded by 3r/δ. This is true in particular for⋃k−1

i=0 B(a+ id, εd), since by (5) and (6) we have

εd ≤ εwN0
2

= N0
10s(r − 1)! = Dj0

10(s− j0 + 1)(r − 1)! ≤ Dj0
5s(r − 1)! < δrDj0 .

Hence, because X is transversal of label +1 of
⋃k−1

i=0 B(a+ id, εd), the conclusion of Lemma 2.2
gives for k≥ 2rr!ε−1 logr (1/5ε)> 32

3 r
2ε−1 log (1/5ε) that

|X ∩ Yi,j0 | ≤
3r
δ

= 12sr!r = 40
3
r!r log (1/5ε)< 5

4
ε(r − 1)!k. (9)

However, by (5), (6) and (7) we have

|X ∩ Yi′,j′ |>
|Yi′,j′ |
2d

=
rtDj′
2d

≥ 1
wN0

· k(s− j′ + 1)N0
2s2

≥ k
4ws

= 5
4
ε(r − 1)!k (10)

for any Yi′,j′ in the middle of Y . Comparing (9) and (10) yields that |X ∩ Yi,j0 |< |X ∩ Yi′,j′ | for any
intervalYi′,j′ in themiddle ofY . ThusYi,j0 cannot be amiddle interval and we obtain that if (i, j0) ∈
I, then Yi,j0 is either the first or last interval of Y . Therefore, we can have at most two occurrences
of j0 in I and consequently the entire location of I is contained between those two occurrences, i.e.,
I ⊆ {(i, j0), (i, j0 + 1), . . . , (i+ 1, j0 − 1), (i+ 1, j0)} for some 1≤ i≤w− 1. Hence, the set I has at
most s/2+ 1 elements and by the pigeonhole principle there exists a pair of indices (i1, j1) ∈ I such
that |X ∩ Yi1,j1 | ≥ k/(s/2+ 1)≥ k/s.

Let (i1, j1) be the indices given by Proposition 2.7. Next we apply Proposition 2.3 to the set Yi1,j1
labeled by χi1,j1 with D=Dj1 , �= k/s and ε-approximate arithmetic progression X ∩ Yi1,j1 . Note
that by (5) the hypothesis concerning r, t and � in the statement holds since

t(r + 1)+ 2= (r + 1)k
2rs

+ 2<
k
s

= �

for r ≥ 2 and k≥ 2rr!ε−1 logr (1/5ε)≥ 80 log (1/5ε)/9. Also a Dj-block of Yi1,j1 is an interval
of the form Zi1,j1

u,v . Hence, by the conclusion of the proposition, there exists Zi1,j1
u,v such that

|X ∩ Zi1,j1
u,v | ≥ �/(r − 1)> k/rs. Since each set Zi,j

u,v was (r − 1)-coloured inductively not to contain
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12 V. Rödl and M. Sales

an APk/rs(ε), we reach a contradiction. Thus there is no monochromatic APk(ε) in [N1]. In view
of (5) we have

N1 = rwt(D1 + . . .+Ds/2)= ke0.9sN0
2s3(r − 1)!

(
s+ . . .+

( s
2

+ 1
))

≥ kN0
40εs(r − 1)! ≥ kN0

50(r − 1)!ε log (1/ε) .

Consequently, in view of s=O( log (1/5ε)) we obtain by induction that

N1 ≥ k
50(r − 1)!ε log (1/ε) ·

c′r
(
k
rs

)r−1

εr−2 log (1/ε)(
r
2)−1

≥ cr
kr

εr−1 log (1/ε)(
r+1
2 )−1

. �

3. Proof of Theorem 1.7
3.1 Lower bound
For positive integers k and N, recall that f (N, 1, k), sometimes denoted by rk(N), is defined to be
the size of the largest set A⊆ [N] without an arithmetic progression of length k. A classical result
of Behrend [1] shows that,

f (N, 1, 3)>N exp
(
−c
√
logN

)
,

for a positive constant c (see [5, 15] for slightly improvements). In [22] (See also [18]) the
argument was generalised to yield that

f (N, 1, k)>N exp
(
−c( logN)1/�

)
, (11)

where �= �log2 k� and k≥ 3 and c is a constant depending only on k. We will use the last result
as a building block for our construction.

Before we turn our attention to the lower bound construction, we will state a preliminary result
about ε-approximate arithmetic progressions. Given a set of k integers, one can identify them as
an APk by the common difference between the elements. Unfortunately, the same is not true for
an APk(ε). On the positive side, the next result shows that if a set of k elements is an APk(ε), then
the differences of consecutive terms are almost equal.

Proposition 3.1. Given 0< ε < 1/10, let X = {
x0, . . . , xk−1

}
be an APk(ε). Then for every pair of

indices 0≤ i, j≤ k− 2 the following holds∣∣∣∣ |xj+1 − xj|
|xi+1 − xi| − 1

∣∣∣∣< 5ε.

Proof. Since X is an APk(ε), there exist a and d such that |xi − (a+ id)|< εd for 0≤ i≤ k− 1.
Therefore, a simple computation shows that

1− 5ε <
(1− 2ε)d
(1+ 2ε)d

<
|xj+1 − xj|
|xi+1 − xi| <

(1+ 2ε)d
(1− 2ε)d

< 1+ 5ε

for 0< ε < 1/10 and 0≤ i, j≤ k− 2.

We now prove the lower bound of Theorem 1.3 for one dimension.

Lemma 3.2. Let k≥ 3 and 0< ε≤ 1/125. Then there exists a positive constant c1 depending only
on k and an integer N0 := N0(k, ε) such that the following holds. If N ≥N0, then there exists a set
A⊆ [N] without APk(ε) such that
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Combinatorics, Probability and Computing 13

|A| ≥N1−c1( log (1/ε))
1
�

−1

for �= �log2 k�.
Proof. For integers a, b, let Sk([a, b]) be the largest subset in the interval [a, b] without any arith-
metic progression APk of length k. By a simple translation, one can note that Sk([a, b]) has the
same size as Sk([b− a+ 1]) and by (11) we have

|Sk([a, b])| = f (b− a+ 1, 1, k)≥ (b− a+ 1) exp
(
−c( log (b− a+ 1))1/�

)
, (12)

for a positive constant c and �= �log2 k�.
Let q= 1

25ε ≥ 5 be an integer and h be largest exponent such that qh ≤N < qh+1. For such a
choice of q and h, we construct the set

A=
{
s ∈ [N] : a= s0 + s1q+ . . .+ sh−1qh−1

}
,

where sh−1 ∈ Sk([0, q− 1]) and si ∈ Sk
([
2q/5, 3q/5

])
for 0≤ i≤ h− 2. Our goal is to show that A

satisfies the conclusion of Lemma 3.2.
First note by (12) that

|A| = |Sk([0, q− 1])| · ∣∣Sk ([2q/5, 3q/5])∣∣h−1

≥ q
exp (c( log q)1/�)

·
(

q
5 exp (c( log q/5)1/�)

)h−1

≥ qh

exp (c( log q)1/�)(5 exp (c( log q)1/�))h−1

≥ N
5h−1q exp (c( log q)1/�)h

≥ N
q exp (c′h( log q)1/�)

,

and in view of h≤ logN
log q and our choice of q we obtain that

|A| ≥ 20εN
exp

(
c′ logN( log q)1/�−1

) ≥N1−c1 log (1/ε)1/�−1

for sufficiently large N and appropriate constant c1 depending only on k. Therefore the set A has
the desired size. It remains to prove that A is APk(ε)-free.

Suppose that there exists an ε-approximate arithmetic progressionX = {x0, . . . , xk−1} inA. For
each 0≤ i≤ k− 1, write xi =∑h−1

j=0 xi,jqj. Since all xi’s are distinct, there exists a maximal index
j0 such that the elements of Xj0 = {xi,j0}0≤i≤k−1 are not all equal. By construction of A the set Xj0
fails to be an APk. Therefore there exists two indices 0≤ i1, i2 ≤ k− 2 such that

|xi1+1,j0 − xi1,j0 | 
= |xi2+1,j0 − xi2,j0 |. (13)

For 0≤ i≤ k− 1, note that

|xi+1 − xi| =
∣∣∣∣∣∣
h−1∑
j=0

(xi+1,j − xi,j)qj
∣∣∣∣∣∣=

∣∣∣∣∣∣
j0∑
j=0

(xi+1,j − xi,j)qj
∣∣∣∣∣∣

by the maximality of j0. Thus by the triangle inequality we obtain that

∣∣|xi+1 − xi| − |xi+1,j0 − xi,j0 |qj0
∣∣≤ j0−1∑

j=0
|xi+1,j − xi,j|qj. (14)
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14 V. Rödl and M. Sales

Moreover, recalling that xi,j ∈
[
2q/5, 3q/5

]
for 0≤ j≤ h− 2 we infer that

j0−1∑
j=0

|xi+1,j − xi,j|qj ≤
j0−1∑
j=0

qj+1

5
≤ 2qj0

5

for q≥ 2. The last inequality combined with (14) gives us that
∣∣|xi+1 − xi| − |xi+1,j0 − xi,j0 |qj0

∣∣≤ 2
5
qj0 , (15)

for 0≤ i≤ k− 2. Hence by (13) we have that
∣∣|xi2+1 − xi2 | − |xi1+1 − xi1 |

∣∣≥ ∣∣|xi2+1,j0 − xi2,j0 | − |xi1+1,j0 − xi1,j0 |
∣∣qj0 − 4

5
qj0

≥ qj0 − 4
5
qj0 = qj0

5
(16)

On the other hand, Proposition 3.1 for i1 and i2 together with (15) gives us that
∣∣|xi2+1 − xi2 | − |xi1+1 − xi1 |

∣∣< 5ε|xi1+1 − xi1 |< 5ε
(

|xi1+1,j0 − xi1,j0 | +
2
5

)
qj0 .

Since xi,j0 ∈ [0, q− 1] for every 0≤ i≤ k− 1 and εq= 1/25 we have

∣∣|xi2+1 − xi2 | − |xi1+1 − xi1 |
∣∣< 5εqj0+1 = qj0

5
,

which contradicts (16).

For higher dimensions the result follow as a corollary of Lemma 3.2. Recall by Definition 1.6
that an ε-approximate cube Cε(m, k) is just an multidimensional version of an APk(ε)

Corollary 3.3. Let k≥ 3 and m≥ 1 be integers and 0< ε≤ 1/125. Then there exists an integer
N0 := N0(k, ε) and a positive constant c1 depending on k such that the following holds. If N ≥N0,
then there exists a set S⊆ [N]m without Cε(m, k) such that

|S| ≥Nm−c( log (1/ε))
1
�

−1

for �= �log2 (k− 1)�.
Proof. Let N0 be the integer given by Lemma 3.2 and let A⊆ [N] be the set such that A has
no APk(ε) for N ≥N0. Set S=A× [N]m−1, i.e., S= {(s1, . . . , sm) : s1 ∈A, s2, . . . , sm ∈ [N]}. Note
that S has the desired size since

|S| =Nm−1|A| ≥Nm−c( log (1/ε))
1
�

−1
.

We claim that S is free of Cε(m, k).
Suppose that the claim is not true and let X = {x
v : 
v ∈ {0, . . . , k− 1}m} be an Cε(m, k) in S.

By definition there exists 
a ∈R
m and d> 0 such that ||x
v − (
a+ d
v)||< εd for every 
v ∈ {0, . . . ,

k− 1}m. In particular, when applied to {te1 = (t, 0, . . . , 0) : 0≤ t ≤ k− 1} the observation gives
us that

|xte1,1 − (a1 + td)| ≤
(
(xte1,1 − (a1 + dt))2 +

m∑
i=2

(xte1,i − ai)2
)1/2

= ||xte1 − (
a+ dte1)||< εd

Therefore, the set {xte1,1}0≤t≤k−1 ⊆A is an APk(ε), which contradicts our choice of A.
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3.2 Upper bound
As in the upper bound ofWε(k, r), our proof of the upper bound of fε(N,m, k) will use an iterative
blow-up construction. It is worth to point out that a similar proof was obtained independently
by Dumitrescu in [4]. While both proofs use a blow-up construction, the author of [4] finishes
the proof with a packing argument. Here we will follow the approach of [16, 17], which uses an
iterative blow-up construction combined with an average argument to estimate the largest subset
of a grid without a class of configurations of a given size. This approach allows us to slightly
improve the constants in the result.

The proof is split into two auxiliary lemmas.

Lemma 3.4. Given positive real numbers α, ε > 0 and integers m≥ 1 and k≥ 3, there exists
N0 := N0(α, ε,m, k)≤ (k√m/ε

)2km log (1/α) and a subset A⊆ [N]m with the property that any
X ⊆A, |X| ≥ α|A| contains a Cε(m, k).

Proof. For m and k, let � be the standard cube C(m, k) of dimension m over {0, . . . , k− 1}, i.e.,
� is the set of all m-tuples 
v= {v1, . . . , vm} ∈ {0, . . . , k− 1}m. Viewing � as an m-dimensional
lattice in the Euclidean space, we note that diam(�)= (k− 1)

√
m, while the minimum distance

between two vertices in� is one.
Similarly as in the proof of the upper bound of Theorem 1.3, we consider an iterated blow-

up of the cube. For integers r and t = k
√
m/ε, let Ar be the following r-iterated blow-up of a

cube

Ar =
{

v0 + t
v1 + . . .+ tr−1
vr−1 : 
v0, . . . , 
vr−1 ∈�, t = k

√
m
ε

}
.

Alternatively, we can view Ar as the product
∏m

i=1 B
(i)
r ofm identical copies of

Br =
{
b0 + tb1 + . . .+ tr−1br−1 : (b0, . . . , br−1) ∈ {0, 1 . . . , k− 1}r , t = k

√
m
ε

}
,

an r-iterated blow-up of the standard APk. Note by the construction that |Ar| = krm. The next
proposition shows that fixed α > 0, for a sufficiently large r any α-proportion of Ar will contain a
Cε(m, k).

Proposition 3.5. Let 0<α < 1 be a real number and r a positive integer such that α >
(
km−1
km

)r
.

Then every X ⊆Ar with |X| ≥ α|Ar| contains a Cε(m, k).

Proof. The proof is by induction on r. If r = 1, then A1 =� and α > km−1
km . Let X ⊆A1 with |X| ≥

α|A1|. Thus

|X| ≥ α|A1|> km − 1
km

· km = km − 1,

which implies that X =�. So X contains a cube C(k,m) and in particular an ε-approximate cube.
Now suppose that the proposition is true for r − 1 and we want to prove it for r. First, we

partition Ar into
⋃


u∈� Ar,
u, where

Ar,
u =
{

v0 + t
v1 + . . .+ tr−2
vr−2 + tr−1
u : 
v0, . . . , 
vr−2 ∈�, t = k

√
m
ε

}
.

Note that by definitionAr,
u is a translation ofAr−1 by tr−1
u. In particular, this implies that |Ar,
v| =
k(r−1)m. Let X ⊆Ar with |X| ≥ α|Ar| be given. We will distinguish two cases:
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Case 1: X ∩Ar,
u 
= ∅ for all 
u ∈�.

For each 
u ∈� choose an arbitrary vector w(
u) ∈ X ∩Ar,
u. We will observe that {w(
u)}
u∈�
forms a Cε(m, k). To testify that, set 
a= (0, . . . , 0) and d = tr−1. Write w(
u)=∑r−2

i=0 ti 
wi + tr−1
u
with 
wi ∈�. Thus, a computation shows that

||w(
u)− (
a+ d
u)|| = ||w(
u)− tr−1
u|| =
∣∣∣∣∣
∣∣∣∣∣
r−2∑
i=0

ti 
wi

∣∣∣∣∣
∣∣∣∣∣≤

r−2∑
i=0

ti|| 
wi||

for 
w0, . . . , 
wr−2 ∈�. Since diam(�)= (k− 1)
√
m, it follows that

||w(
u)− (
a+ d
u)|| ≤ (k− 1)
√
m

(r−2∑
i=0

ti
)

≤ ktr−2√m< εtr−1 = εd,

by our choice of t. Since {w(
u)}
u∈� ⊆ X, we conclude that X contains an Cε(m, k).

Case 2: There exists 
u0 ∈� with X ∩Ar,
u0 = ∅.
Since |X| ≥ α|Ar| and |�| = km, by an average argument there exists 
u1 ∈� such that

|X ∩Ar,
u1 | ≥
α|Ar|
km − 1

= αkm|Ar−1|
km − 1

.

Set X′ = X ∩Ar,
u1 and α′ = αkm
km−1 . Note that

α′ = αkm

km − 1
>

(
km − 1
km

)r
· km

km − 1
=
(
km − 1
km

)r−1
.

Therefore, viewing Ar,
u as a copy of Ar−1 by the induction assumption we obtain that X′ ⊆ X
contains an Cε(m, k).

Let r be the smallest integer such that
(
km−1
km

)r
<α and set A=Ar . A computation shows

that

r =
⌈
log (1/α)
log km

km−1

⌉
< 2km log (1/α).

Therefore by Proposition 3.5 we have that any set X ⊆A with |X| ≥ α|A| contains an Cε(m, k).
Finally, by the construction of A we have that A⊆ [N0]m for

N0 ≤ diam(Br)+ 1= (k− 1)(1+ t + . . .+ tr−1)+ 1≤ ktr−1 ≤
(
k
√
m
ε

)2km log (1/α)
. �

Lemma 3.4 gives us a set A⊆ [N]m such that any α-proportion contains a Cε(m, k). However,
this is still not good enough, since to obtain an upper bound we need a similar result for [N]m.
The next lemma shows by an average argument that the property of A can be extended to [N]m by
losing a factor of a power of two in the proportion α.

Lemma 3.6. Let A⊆ [N]m be a configuration in the grid. For any X ⊆ [N]m with |X| ≥ αNm, there
exists a translation A′ of A such that |X ∩A′| ≥ α

2m |A′|.
Proof. Consider a random translation A′ =A+ 
u, where 
u= (u1, . . . , um) is an integer vec-
tor chosen uniformly inside [−N + 1,N]m. For every vector 
x ∈ X, there exists exactly |A|
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elements 
v ∈ [−N + 1,N]m such that 
x− 
v ∈A. This means that P(
x ∈A′)= P(
x− 
u ∈A)=|A|
(2N)m . Therefore

E(|X ∩A′|)=
∑

x∈X

P(
x ∈A′)= |X||A|
(2N)m

≥ α

2m
|A| = α

2m
|A′|

Consequently, by the first moment method, there is 
u and A′ satisfying our conclusion.

We finish the section putting everything together.

Proposition 3.7. Let N, m and k be integers and ε > 0. Then there exists a positive constant c2
depending only on k and m such that the following holds. If S⊆ [N]m is such that

|S|>Nm−c2( log (1/ε))−1
,

then S contains an Cε(m, k).

Proof. Set α0 = 2mN−c′( log (1/ε))−1 where c′ = (4km log (k
√
m))−1. Let N0 =N0(α0/2m, ε,m, k) be

the integer obtained by Lemma 3.4 and A⊆ [N0] be the set such that any X ⊆A with |X| ≥ α0
2m |A|

contains an Cε(m, k). Note that

N0 ≤
(
k
√
m
ε

)2km log (2m/α0)
= exp

(
2c′km logN log (k

√
m/ε)

log (1/ε)

)
≤ exp

(
4c′km logN log (k

√
m)
)=N,

which implies that A⊆ [N].
Let S⊆ [N] with |S| ≥ α0Nm. Then by Lemma 3.6, there exists a translation A′ of A such that

|S∩A′| ≥ α0
2m |A′|. Hence, by Lemma 3.4, the set S contains aCε(m, k). The result now follows since

|S| ≥ α0Nm = 2mNm−c′( log (1/ε))−1
>Nm−c2( log (1/ε))−1

for appropriate c2.
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[12] Graham, R. L. and Nešetřil, J. (1986) Large minimal sets which force long arithmetic progressions. J. Combin. Theory
Ser. A 42(2) 270–276.

[13] Graham, R. (2006) On the growth of a van der Waerden-like function. Integers 6, A29, 5.
[14] Graham, R. (2008) Old and new problems and results in Ramsey theory. In Horizons of Combinatorics, pp. 105–118.
[15] Green, B. and Wolf, J. (2008) A note on elkin’s improvement of behrend’s constructions, arXiv:0810.0732, 4 p. 14
[16] Han, J., Kohayakawa, Y., Sales, M. T. and Stagni, H. (2019) On some extremal results for order types. Acta Math. Univ.

Comenian. (N.S.) 88(3) 779–785.
[17] Han, J., Kohayakawa, Y., Sales, M. T. and Stagni, H. (2019) Extremal and probabilistic results for order types. In

Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 426–435.
[18] Laba, I. and Lacey, M. T. (2001) On sets of integers not containing long arithmetic progressions, arXiv:math, 8, p. 14
[19] Moshkovitz, G. and Shapira, A. (2019) A tight bound for hyperaph regularity. Geom. Funct. Anal. 29(5) 1531–1578.
[20] Nagle, B., Rodl, V. and Schacht, M. (2006) The counting lemma for regular k-uniform hypergraphs. Random Struct.

Algorithms 28(2) 113–179.
[21] O’Bryant, K. (2011) Sets of integers that do not contain long arithmetic progressions. Electron. J. Combin. 18(1), Paper

59, 15.
[22] Rankin, R. A. Sets of integers containing not more than a given number of terms in arithmetical progression. Proc. R.

Soc. Edinburgh Sect. A 65(1960/61) 332–344 (1960/61).
[23] Rodl, V. and Skokan, J. (2004) Regularity lemma for k-uniform hypergraphs. Random Struct. Algorithms 25(1) 1–42.
[24] Rosser, J. B. and Schoenfeld, L. (1975) Sharper bounds for the Chebyshev functions θ(x) and ψ(x). Math. Comp. 29

243–269.
[25] Szabo, Z. (1990) An application of Lovasz’ local lemma|a new lower bound for the van der Waerden number. Random

Struct. Algorithms 1(3) 343–360.

Cite this article: Rödl V and Sales M (2021). A blurred view of Van der Waerden type theorems. Combinatorics, Probability
and Computing. https://doi.org/10.1017/S0963548321000535

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0963548321000535
Downloaded from https://www.cambridge.org/core. Emory University, on 22 Feb 2022 at 20:14:08, subject to the Cambridge Core terms of use, available at

https://doi.org/10.1017/S0963548321000535
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0963548321000535
https://www.cambridge.org/core

	
	Introduction
	Proof of Theorem 1.3

	Upper bound
	Lower bound
	Proof of Theorem 1.7

	Lower bound
	Upper bound

