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Abstract
Let AP, ={a,a+d,...,a+ (k—1)d} be an arithmetic progression. For ¢ > 0 we call a set AP;(¢) =
{% ..., X%} an e-approximate arithmetic progression if for some a and d, |x; — (a + id)| < ed holds for

allie {0,1...,k— 1}. Complementing earlier results of Dumitrescu (2011, J. Comput. Geom. 2(1) 16-29),
in this paper we study numerical aspects of Van der Waerden, Szemerédi and Furstenberg—Katznelson
like results in which arithmetic progressions and their higher dimensional extensions are replaced by their
g-approximation.
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1. Introduction

For a natural number N we set [N] ={1,2..., N}. Assume that [N] is coloured by r colours. We
denote by

N — (APy),

the fact that any such r-colouring yields a monochromatic arithmetic progression APy of
length k. With this notation the well known Van der Waerden’s theorem can be stated as follows.

Theorem 1.1. For every positive integers r and k, there exists a positive integer N such that N —
(Apk)r-

The minimum N with the property of Theorem 1.1 is called the Van der Waerden number of
7, k and is denoted by W(k, r). In other words, W(k, r) is the minimum integer N such that any
r-colouring of [N] contains a monochromatic arithmetic progression of length k. Much effort was
put to determine lower and upper bounds for W(k, r), but the problem remains widely open. As
an illustration, the best known bounds for W(k, 2) are
2k 2222k+9
o <W(k2)=<2
where 0(1) — 0 as k — oo. The lower bound is due to Szabo [25] while the upper bound is a
celebrated result of Gowers on Szemerédi’s theorem [10]. It is good to remark that when k is a
prime the lower bound can be improved to W(k + 1, 2) > k2 by a construction of Berlekamp [2].
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2 V. Rodl and M. Sales

Ron Graham was keenly interested in the research leading to improvements of the upper bound
of W(k, 2) and motivated it by monetary prizes. Currently open is his $1000 award for the proof

that W(k, 2) < 2K (see [14]). During his career he also contributed to related problems in the area
(see [3, 12, 13]). For instance, together with Erdos [6], Graham proved a canonical version of Van
der Waerden: Every colouring of N, not necessarily with finitely many colours, contains either an
monochromatic arithmetic progression or a rainbow arithmetic progression, i.e., a progression
with every element of distinct colour.

Inspired by the works of [4] and [16], we are interested in the related problem where we replace
an arithmetic progression by an perturbation of it.

Definition 1.2. Given ¢ > 0, a set X = {xp,...,xx_1} C [N] is an g-approximate APy(e) of an
arithmetic progression of length k if there exists a € R and d > 0 such that |x; — (a + id)| < ed.

In other words, an APy(e) is just a transversal of Uf:ol B(a + id;ed), where B(a + id;ed) is the
open ball centred at a + id of radius ed. Depending on the choice of ¢, an APy(¢) can be dif-
ferent from an APy. For example, if ¢ = 1/3, then a = 0.8 and d = 2.4 testifies that {1, 3, 6} is an
€-approximate arithmetic progression of length 3, but it is not an arithmetic progression itself.

For integers 7, k and & > 0, let

We(k,r) = min{N : N — (AP(&)),}.

That is, W, (k, r) is the smallest N with the property that any colouring of [N] by r colours yields a
monochromatic APy (). Our first result shows that one can obtain sharper bounds to the Van der
Waerden problem by replacing APy to AP (¢).

Theorem 1.3. Let r > 1. There exists a positive constant &y and a real number ¢, depending on r
such that the following holds. If0 < & < gy and k > 2"rle "' log" (1/5¢), then

k" 2k
cr T = Welk,r) <
gr—1 log(l/s)( )1

Similar as in the previous discussion we will write N —, APy (or N —4 APy (¢)) to denote that
any subset S C [N] with |S| > &N necessarily contains an arithmetic progression APy (or AP(¢),
respectively). Answering a question of Erdds and Turan [7], Szemerédi proved the following
celebrated result:

gr—l'

Theorem 1.4. For any o > 0 and a positive integer k, there exists an integer Ny such that for every
N > Ny the relation N —, APy, holds.

Basically Szemerédi theorem states that any positive proportion of N contains an arithmetic
progression of length k. Not much later Furstenberg [9] gave an alternative proof of Theorem 1.4
using Ergodic theory. Extending [9], Furstenberg and Katznelson [8] were able to prove a
multidimensional version of Szemerédi’s theorem:

An m-dimensional cube C(m, k) is a set of k" points in m-dimensional Euclidean lattice Z™
such that

Cimk)y={a+dv:a=(a1,...,am)€Z™andv=1,...,vm) €{0,1,...,k— 1"

That is, C(m, k) is a homothetic translation of [k]”. As in the one dimensional case, for o > 0
and integers m, k and N we will write [N]" —, C(m, k) to mean that any subset S C [N]™ with
|S] = aN™ contains a cube C(m, k). The following is the multidimensional version of Theorem 1.4
proved in [8].

Theorem 1.5. For any o > 0 and positive integers k and m, there exists an integer Ny such that for
every N > Ny the relation [N]" —o C(m, k) holds
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Combinatorics, Probability and Computing 3

Define f(N, m, k) as the maximum size of a subset A C [N]" without a cube C(m, k). Note that
f(N, 1, k) corresponds to the maximal size of a subset A C [N] without an arithmetic progression
APy. Theorems 1.4 and 1.5 give us that f(N, m, k) = o(N™). Determining bounds for (N, m, k) is
a long standing problem in additive combinatorics. For m =1 the best current bounds are

N

52k

N exp (—cp(log N) /M08 K) < N, 1K) £ —————
(loglog N)

where ¢y is a positive constant depending only on k. The upper bound is due to Gowers [10], while
the lower bound with best constant ¢ is due to O’Bryant [21].

For larger m it is worth mentioning that Furstenberg—Katznelson proof of Theorem 1.5 uses
Ergodic theory and gives us no quantitative bounds on f(N, m, K). Purely combinatorial proofs
were given later based on the hypergraph regularity lemma in [11] and [20, 23]. Those proofs give
quantitative bounds which are incomparably weaker than the one for m = 1. For instance, in [19]
Moshkovitz and Shapira proved that the hypergraph regularity lemma gives a bound of the order
of the k-th Ackermann function.

Now we consider g-approximate versions of Theorems 1.4 and 1.5.

Definition 1.6. Given ¢ > 0, a set X ={x;:v€{0,1,...,k— 1}""} C[N]™ is an ¢-approximate
cube C;(m, k) if there exists @ € R™ and d > 0 such that ||x; — (a + dv)|| < &d.

For integers N, m, k and € > 0, let f. (N, m, k) be the maximal size of a subset A C [N]™ without
an Cg(m, k). Dimitrescu showed an upper bound for f. (N, m, k) in [4]. We complement his result
by also providing a lower bound to the problem.

Theorem 1.7. Let m>1 and k >3 be integers and 0 < & < 1/125. Then there exists an integer
No := No(k, €) and positive constants ¢1 and ¢, depending only on k and m such that

N”’_”“Og(l/”"))%_1 <fe(N,m, k) < Nm—ellog /e
for N > Np and £ = [log, k].

The paper is organised as follows. In Section 2, we present a proof of Theorem 1.3. The upper
bound is an iterated blow-up construction, while the lower bound is given by an ad-hoc inductive
colouring. We prove Theorem 1.7 in Section 3. The lower bound uses the current lower bounds
for f(N, 1, k), while the upper bound is given by an iterated blow-up construction combined with
an averaging argument.

2. Proof of Theorem 1.3
2.1 Upper bound

We start with the upper bound. Given r > 1 colours, we consider the following r-iterated blow-up
of an APy given by the set of integers

Br={bo+th+...+t by_y:(bo,....,b_1) €{0,1... . k— 1}, t=Tk/e]}.

Note that B, is a set of size |B,| = k" and diam(B,) < (k— 1)(A +t+...+ D <2(k— DL It
turns out that any r-colouring of B, contains a monochromatic AP (¢). In particular, this implies
that W (k, ) < diam(B,) + 1 < 2k"/e" L.

Proposition 2.1. Any r-colouring of B, has a monochromatic APy (¢).

Proof. We prove the proposition by induction on the number of colours r. For r =1, one can
see that By = [k], which is an arithmetic progression of length k and in particular a APg(e).

Downloaded from https://www.cambridge.org/core. Emory University, on 22 Feb 2022 at 20:14:08, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50963548321000535


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0963548321000535
https://www.cambridge.org/core

4 V. Rodl and M. Sales

Now suppose that any (r — 1)-colouring of B,_; contains a monochromatic APx(e). Consider an
r-colouring of B,. Note that we can partition B, = Uf:_ol B, ; where

Bri={bo+... 4+t b,y +it"  i(bo,...,br2) €{0,1,..., k= 1)1, t=Tk/el}.

That is, for every 0 < i < k — 1, the set B, ; is a translation of B,_; by it

Consider a transversal X = {xo,...,x;_1} of B, = Uf;ol B, with x; € B,; for every 0 <i<
k—1. Let a=diam(B,_1)/2 and d=t""1. Since x; € B,; implies that it"™! <ux; <it™! +
diam(B,_1), we obtain that

diam(B,_1) - S < ed

2 T2
and X is an e-approximate APy (¢). Therefore, if some colour c is present in each of the sets B, ; for
0 <i<r—1,wecouldselect X to be a monochromatic AP, (¢). Consequently we may assume that
there is no monochromatic transversal in B,, which means that there exists an index i such that
B, is coloured with at most (r — 1) colours. Since B, is just a translation of B,_;, by induction
hypothesis we conclude that there exists a monochromatic APx(¢) inside By ;. O

lxi — (a+id)| <

2.2 Lower bound
In order to construct a large set avoiding e-approximate APy (g) we need some preliminary results.

Given a real number D > 0, we define an (r — 1, 1; D)-alternate labelling of R to be an labelling
x : R — {—1, +1} such that

+1,  ifxe ey (irD+mD, (i+ =) rD+ mD],
—1, ifxeUyy ((i+=2) rD+mD, (i+ 1)rD+ mD],

for some m € Z. That is, x is a periodic labelling of R with period rD, where we partition R into
disjoint intervals of length D and label them alternating between r — 1 consecutive intervals of
label +1 and one of label —1. The restriction of an (r — 1, 1; D)-alternate labelling to Z will be of
great importance for us. The following lemma roughly characterises the common difference of
any large monochromatic approximate arithmetic progression in such a labelling.

x(x) =

Lemma 2.2. Let D,6 > 0, m be a positive integer with § < m and x :R— {—1,41} be an
(r — 1, 1; D)-alternate labelling of R. If there exist a, d € R and an integer £ such that

r . .
d¢LleJ((1——8)rD,<i—%8>rD>,
i€Z q=1 9 1
and that B= Uf:_ol B(a + id, §rD) has a monochromatic transversal of label +1, then £ < 3r/é.
Proof. We may assume without loss of generality that x is the following labelling of R:
+1,  ifxe Uy (irD, (i+ =2) D],
x(x) = .
-1, ifxeUjz ((i+52) D, i+ 1)rD],

That is, we may assume that 1 = 0 in the definition of an alternate labelling. Also, during the proof
we shall write X to be the representative of x modulo rD in the interval (0, rD], i.e., the number
0 < X < rD such that x — X = brD for some integer b € Z.

We start by claiming that there exists 1 <s < r such that

thulgyﬂb— l>mﬂ—&m] (1)
r+1 r+1
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Combinatorics, Probability and Computing 5

First note by our hypothesis that

(502 (Gl )

for every i € Z and 1 < g <r. Therefore,
qd ¢ ((i — 8)rD, (i + 8)rD) < ((i — qd)rD, (i + qd)rD) (2)

foreveryie Zand 1 <q<r.

Now consider the partition (0, rD] = U;=o (

is in the two outer intervals above, i.e., in either (0, r’Jr—Dl] or ((1 — H%) rD, rD], then by (2) we

jrD  (j+1)rD

T | If there exists 1 < s < r such that sd

obtain that s satisfies (1). Otherwise, assume that there is no 1 <s <r with sd in the two outer
intervals. Then by the pigeonhole principle there exist 1 <p < g <r and an index j such that

pd,qd € (er (jH)rD]. Consequently, we have that gd — pd € (—ﬁ 2). By letting s=q — p

r+1° r+l r+1° r+1

we obtain that
_ rD 1
sde |0, U 1— rD,rD |,
r+1 r+1

for 1 <s <r, which is a contradiction. Therefore, condition (1) is always satisfied for some s.
Let 1 <s <r be the number satisfying (1) and consider the subset

K/

B = U B(a+ isd, 8rD) C B,
i=0

where £/ = | (€ — 1)/s]. That is, if we see B as the arithmetic progression of intervals of length 7D,
size £ and common difference d, then B’ is a subarithmetic progression of B with common differ-
ence sd. Since B has a monochromatic transversal labeled +1, then B’ also has a monochromatic
transversal labeled +1. Hence, because Uz’eZ (irD, (i+ %)rD] are the elements of label +1 in
our (r — 1, 1; D)-alternate labelling, we have that

{g,a+sd,...,a+{'sd} C U <(i—8)rD, (i—i— ; +5) rD) .
i€Z
Suppose that sd € [SrD, H_Ler]. Since the colouring x is periodic modulo rD, we may
assume without loss of generality that sd € [8rD, r:L—Dl] We claim that there exists an inte-
ger p such that {a,a+sd,...,a+¢'sd} C ((p —8)rD, (p + % + 8) rD). Suppose that this is
not the case. Because sd > 0 there exist integers p <q and 0 <i<¢ —1 such that a+isd €
((p— 8D, (p+ =2 +8) rD) and a+ (i + 1)sd € (( — 8)rD, (9 + ==+ + 8) rD). A computation

shows that
. . r—1 rD
sd=a+ (i+1)sd — (a+isd) > (q— 8)rD — <p+—+8> rD>(1—28r)D > 1
r r
foré < m, which contradicts our assumption on sd.

Hence, there exists p such that a,a + ¢'sd € ((p —8)rD, (p + % + 8) rD), which implies that

—1
Usd=(a+sd)—a< (p—{—r——l—ﬁ) rD — (p — 8)rD = (r — 1)D + 287D.
r
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6 V. Rodl and M. Sales

Since sd > 8rD, we obtain that

£—-1

£5rD 84D
U'sd>| —— |8rD> >
s

-2

for £ > r > s. The last two computations combined with the fact that § < m < %1 gives us that

2(r—1)D+48rD  2(r—1) 2 3r
L=< < +4r<|-+4)r=<—
8D b 8 b

Now assume that sd € [(1 — r%) D, (1 — B)rD]. By the periodicity of x, we may assume
rD

without loss of generality that sd € [ — ;75, —érD]. By rewriting {a,a+sd,...,a+ {'sd} as
{d,d +sd,...,d +sd}witha =a+ ¢'sd and d = —d, we are back to the previous case and

again £ < 3r/é. O

Although it is convenient to prove Lemma 2.2 using an alternate labelling of IR, the lower bound
construction will use alternate labellings of set of integers. With this in mind, we give the following
companion definition.

Given positive integers D, rand ¢, an (r — 1, 1; D)-alternate labelling of the set [r¢D] is a labelling
x': [rtD] — {—1, 41} such that x'(x) = x(x), where x is an (r — 1, 1; D)-alternate labelling of R.
In other words, an alternate labelling of a set of integers is just the restriction of an alternate
labelling of R to the set. Note that by this definition, there exists r distinct (r — 1, 1; D)-alternate
labellings of [r¢D]. A D-block of [rtD] is a block of D consecutive integers of the form [iD + 1, (i 4
1)D]. One can note that the D-blocks form a partition of [rtD] and each D-block is monochromatic
in an (r — 1, 1; D)-alternate labelling of [r¢D].

Finally, note that given an alternate labelling x’ of a set [rtD] we can extend back to a an alter-
nate labelling of (0, r¢D] by labelling the entire interval (iD, (i 4+ 1)D] with the same label as the
D-block of integers [iD + 1, (i + 1)D]. Since the labelling is periodic, it is now easy to extend back
to a labelling x of R.

The next result is a consequence of the proof of Lemma 2.2.

Proposition 2.3. Let D, 1, t and £ be positive integers with £ > t(r + 1) +2 and 0 <e < 1/2r bea
real number. If [rtD] is coloured by an (r — 1, 1; D)-alternate labelling and X C [rtD] is a monochro-
matic APy(e) of label +1, then there exists 0 <i <rt — 1 such that the D-block [iD + 1, (i + 1)D]
satisfies | X N [iD+ 1, (i+ 1)D]| > £/(r — 1).

Proof. Write X = {xg,...,x¢_1}. Since X is an APy(g), there exists a € R, d > 0 such that |x; —
(a+ id)| < ed. Therefore, a computation shows that
rtD > |x¢g_1 —xp| >a+ £ —1)d—a—2ed={ —1—2¢)d,
which implies that
rtD rD

d<
“4-2"r+1

3)

fore>t(r+1)+2.

Similarly as in the proof of Lemma 2.2, we will show that all the elements of X are inside an
interval of (r — 1) consecutive D-blocks of label +1.

Suppose that this was not the case. Since non-consecutive D-blocks of label +1 are at a distance
of at least D elements, then there exists x; and x;11 such that |x;11 — x;| > D. However, in view of
& < 1/2r and (3), we obtain

IXit1 — xil < |xip1 — (@+ i+ Dd)| +la+ i+ 1)d — (a+id)| +|x; — (a+id)| < (1 +2¢)d < D,
which is a contradiction. The result now follows by an application of the pigeonhole principle. [
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Note that Proposition 2.3 already gives us a lower bound for the case r = 2. Indeed, we will

2(k—1)(k—=2)
3

prove that an (1, 1; k — 1)-alternate labelling of [ ]1 does not contain a monochromatic

APy (e) for & < 1/4 and sufficiently large k.

Suppose that this is not the case. Since an (1, 1; k — 1)-alternate labelling is symmetric, we may
assume that there is a monochromatic APy (¢) of label +1. Applying Proposition 2.3 with r =2,
t=(k—2)/3, D=k —1 and ¢ =k gives us that there exists a (k — 1)-block of the form [i(k —
1)+ 1,(i+ 1)(k — 1)] such that | X N [i(k — 1) + 1, (i + 1)(k — 1)]| > k, which contradicts the size
of the block.

Unfortunately, the argument above does not give a lower bound depending on ¢. To achieve
such a bound we will need to refine the previous construction, but first we need one more
preliminary result.

The second Chebyshev function v (x) is defined to be the logarithm of the least common
multiple of all positive integers less or equal than x. The following bound on ¥ (x) will be useful
for us.

Theorem 2.4. ([24], Theorem 7). If x> 108, then |Y(x) — x| <cx/ logx for some positive
constant c.

In particular, Theorem 2.4 asserts that for sufficiently large n we have
lem(l, . .., n) = " tO0/ logm) (4)

We are now ready to prove the lower bound of Theorem 1.3.

Theorem 2.5. Let r > 1. There exists a positive constant gy and a real number ¢, depending on r
such that the following holds. If 0 < & < &g and k > 2"rle ™! log" (1/5¢) is a integer, then there exist
an integer N := N(g, k, r) satisfying

k?’

N=>c - >
rs’—llog(l/g)(;l)_1

so that [N] admits an r-colouring without monochromatic APy(g).

Proof. The proof is by induction on the number of colours r. For = 1, the result clearly holds for
N(e, k, 1) =k — 1 since there is no APg(¢), or even APy, on (k — 1) terms. Now suppose that for
any € and k such that 0 < & <gp and k> 21— 1)le7 ! logr_1 (1/5¢), there exists N(g, k, r — 1)
and a (r — 1)-colouring of [N(s, k, ¥ — 1)] satisfying the conclusion of the statement. We want to
find an integer N so that [N;] has a r-colouring without monochromatic AP ().
To do that we start with some choice of variables. Let
09 k s—j+1

k 1
No=N|e,—r—1), s=—Ilog(1/5¢), w=——, t=—, Dj=—"——N
0 ( rs ) 0.9 g(1/5€) s(r—1)! 2rs / s 0
)

be integers for 1 <j <s/2. Note that although s, w, t and {D}},<j</> might not be integers, we
prefer to write in this way, since it simplifies the exposition and has no significant effect on the
arguments. Moreover, the integer Ny always exists since by hypothesis

k _2'rle7tlog  (1/5
k_ 2rte” log’ (1/%) > 2" (r = 1)le " log' ™! (1/5¢).

rs rs

IStrictly speaking we should use the set [Zl_k%zj(k —1)], since k%z is not necessarily an integer. However, during our
exposition we will not bother with this type of detail since it has no significant effect on arguments or results.
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8 V. Rodl and M. Sales

Let Ny = rwt(D; + . . . 4 D;)2). We are going to define a colouring ¢:[N;] — [r] not admitting
monochromatic APx(¢). To this end we partition [N;] into consecutive intervals following the
four steps below:

« First we partition [N;] into [N;]=Y; U...UY,,, where Y; are consecutive intervals and
|Yi| =rt(D1 + ...+ Dyj2) foreveryi=1,...,w

+ Each Y; is partitioned into Y; = Y;; U...U Y]/, where Y;;’s are consecutive intervals and
|Yij| =rtDj foreveryj=1,...,s/2.

+ Each Yj; is partitioned into Y;; = ZII’J U...uU Z:’], where Z,7’s are consecutive intervals and
|ZZ]|=rDjforeveryu= 1,...,t

« EachZ/ is partitioned into z) = Z;’] U..u Z,’j],,, where Z,’j{v’s are consecutive intervals and

|Zw =Djforeveryv=1,.

More explicitly, we define

aj=(—1rt(Dy+ ...+ Dsp), i€ [w]
Bi1=ai, i€[w]
Bij=rt(D1+ ...+ Dj—1) + i, (i,)) € [w] x [2,5/2]
Yiju=(u—rDj+ Bij,  (i»j, u) € [w] x [s/2] x [t]
Oijuy = —=1Dj+vViju () u,w) € [w] x [s/2] x [t] x [r].

Therefore, our intervals can be written as:

Yi=[ai+ Loaj+rt(Di+...4+Dyp)l, ie(w]
Yij=1[Bij+ L Bij+rtDjl, (i,j) € [w] x [s/2]
Z) = Wiju + L Vijgu +1Djl, (6,5, u) € [w] x [s/2] x [t]

Zidy = 0ijuy + 1, 0ijuy + Dil,  (irjou,v) € [w] x [5/2] x [t] x [r]

Finally, we describe the colouring ¢:[N;] — [r] on the intervals Z;’{v. By induction hypothesis,
given any set C of r — 1 colours there exists a colouring ¢c:[Ny] — C with no monochromatic
APy /r(e). Fix Z,l,’ v with (4, j, u, v) € [w] x [s/2] x [t] x [r]. We colour Z; v by the same colouring
as the first D;j elements of [Np] when [Ny] is coloured by ¢\ (). That is, the colouring ¢ restricted
toZ JV only uses r — 1 colours and does not contain a monochromatic APy /(¢).

To prove that the colourlng @ is free of APx(g) we are going to show that there is no a e R

and d > 0 such that Ul o Bla+id, ed) has a monochromatic transversal in [N1]. Suppose the
opposite and assume that there exists a and d such that Uf 01 B(a + id, ed) has a monochromatic
transversal X = {xo, . . ., xk_1} € [N1] of colour ¢ € [r]. Since all the balls have radius ed, we obtain
that{a,a+d,...,a+ (k—1)d} € (1 — ed, N1 + &d), which gives that (k — 1)d < (N; — 1) + 2¢&d.
By (5) and by the fact that ¢ < &y we have that

< — =

“k—1—-2¢" k k 52

Ny—1 2Ny 2wt(Di+...+D N N
LN 1 2rwi(D1 + ...+ Ds)2) WO(+ +(i+1))§%, (6)

for sufficiently small &.
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Combinatorics, Probability and Computing 9

For a fixed Y;; = Uizl Ui, ZZ{V we define an auxiliary labelling x;;: Yij — {—1, +1} of Y;;

such that every D;-block 7!, is monochromatic and

+1, ifv#£ec,

(Ziy) = :
Xig{Zais) {—l, ifv=c.

In other words, every element of a D;-block 7!, is of label —1 if the colouring ¢ restricted to Z;.,,
has the same colouring of the first D; elements of ¢ : [No] — C, where C = [r] \ {c}, i.e., the set of
colours missing the colour ¢. Otherwise, we label all the elements in Z;’ v by +1. It is not difficult to
check that x;; is an (r — 1, 1; Dj)-alternate labelling of Y;;. Moreover, since X is monochromatic
of colour ¢ and ZMJE is coloured by @[+}\(c}> We obtain that X N Z,/. = . This implies that every
element of X N Y is labeled +1. Finally, in order to apply Lemma 2.2, we extend the labelling x;;
to the set of real numbers (B;;, Bij + rtD;] by labelling the entire interval (0iu, 0ijuy + Dj] by
colour XiJ(Z,lj{V) for every u, v € [t] x [r].

The main idea of the proof is based on the fact that for d not too small, there exists an index
jo such that d is far from certain fractions involving Dj,. We will then imply by Lemma 2.2 that
the number of elements of X in Y;, is ‘small’. It turns out that this fact is enough to restrict the
entire location of X to just a few Y;;’s. Then by the pigeonhole principle and Proposition 2.3 we

can show that there exists a Dj-block 7}, with large intersection with X, which contradicts the
inductive colouring of ZL] v
The next proposition elaborates more on the existence of such a jy.

Proposition 2.6. If d > - then there exists index 1 < jo <s/2 such that

D“
No
— 2s(r—1)!

for every m € Z.

Proof. Let My = % Note that by (5) we can write

D . No .
o STt Ty = e DM,

for every 1 <j <s/2. Therefore, every number of the form ( 1), formeZtand1<j<s/2isa

. D;j
multiple of My. Moreover, the least non-zero common term among the sequences {%]

‘I meZt
for1 <j<s/2,ie,

mbD;
min mEZ+}=min m(s—j+1)My:meZ"
ﬂ { (r—1)! 1<Q/2 { J 0 }

is equal to LMy, where L =lcm(s/2 +1,...,s).
Since every number in {1, . . ., s/2} has a non-trivial multiple inside {s/2 41, . . ., s} we obtain
by (4) that

=lem(s/2+1,...,s)=lem(l,...,s)= e TOG/logs) 095
fors= % log (1/5¢) > % log (1/5¢¢) and & sufficiently small. Hence, by (5) and (6) we have

wNy Noes LN, L
< = < = —MO.
2 2s(r—1)! ~ 2s(r—1)! 2
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10 V. Rodl and M. Sales

Let pMy be the multiple of My closest to d. Since d > My, we clearly have that p #0. By
definition,

_ PNo _PNo
pMO_s(r—l)! sd+ s(r—l)'

Therefore, by the minimality of LM, there exists an index 1 <jy <s/2 such that pMj is not a

M
‘§d+70<LM0.

multiple of —% (r 1), =(s—jo+ l)M() Smce, by the definition of p, all the other numbers of the form

mMj have distance at least y; to d, Proposition 2.6 follows. O

25(r 1
We now prove that there exists a set Y;; with a large proportion of elements of X.
Proposition 2.7. There exist indices (i1, j1) € [w] x [s/2] such that | X N Y;, j| > k/s.
Proof. Let I C [w] x [s/2] be set of pair of indices defined by
I={(i,j) € [w] x [s/2]: X N Y;j # 0},
and let Y = U(i el Yij. By (5) and (6) we obtain that the difference between two consecutive
terms of X is bounded by
"Ny kNp  k(s—j+1)Np
—_—e—e—e< —
2s(r — 1)! 4s — 2s%
for k> 27rle! log" (1/5¢) > e~ 1/(r — 1)\. That is, the difference between two consecutive terms
of X is smaller than the size of an interval Y;; for (i, j) € [w] x [s/2]. This implies that all intervals
in J) must be consecutive. Recall that by construction two intervals Y;; and Y/ s are consecutive if
(i, j) and (7, j') are consecutive in the lexicographical ordering of [w] x [s/ 2]
If [I| <2, then by the pigeonhole principle there exist indices (i1, 1) such that XN Y; ;| >

k/2 > k/s for &g sufficiently small. Thus we may assume that |I| > 3. This implies that there exists
at least one pair of indices (7, ') such that Y, 7 is neither the first or last interval of V.

lxp1 — 2l < (1 +28)d<(1+28) = rtDj = |Yjjl,

LetXNYy ;= {xn> .. .> Xntp—1}, whereb=[XNY, j/l. Since Yy 7 is not one of intervals in the

extreme of ), we obtain that 2 <h <h+ b — 1 <k — 1 and in particular there exists points xj_;
and xj1p outside of Yy iz Then a simple computation gives us that

1Yy 1= %y — X1l < (b+ 1+ 26)d < 2bd

and consequently

|Y ]
i
2d

(XN Yi/,j" =b> (7)

for any Y, 7 not on the extremes of ).

We split the proof into two cases depending on the size of d. If d < %, then (5) and (7) give
that

1Yy 71 _ rtDy k=i + DD k-1 k
2d 2d ~ 4s - 8 T s

for every Y, j noton the extremes and sufficiently large s. Taking (i}, j1) as one such (7, j') gives

XNY, /| >
by

the desired result.
Now suppose that d > % Let jo be the index provided by Proposition 2.6. In particular, it

holds that

mrD; N
’d— o> 2 8)

q |~ 2s(r—1)!
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Combinatorics, Probability and Computing 11

for every m € Z and 1 < g < r. Suppose that X N Y; ;; # ¢ for some 1 < i < w. Our goal is to apply
Lemma 2.2 with D= Dy, § =1/4sr! to the interval (min (Y;;,) — 1, max (Y;;,)] = (Bijo» Bijo +
rtD;] labeled with our extension of y;j,. In order to verify the assumptions of the lemma note
that

No _ Dj - Djo
25(r— 1) 2(s—jo+ 1)(r—1)! ~ 2s(r — 1)!

> (STDJ'O

and therefore by (8) we have

Q0o 5)m)

meZ q=1

Consequently, the conclusion of the lemma gives to us that any arithmetic progression of intervals
of radius §rDj, with common difference d and a monochromatic transversal of label +1 inside the
interval (min (Y;j,) — 1, max (Y;j,)] has length bounded by 3r/§. This is true in particular for

Uf;_ol B(a + id, £d), since by (5) and (6) we have

ed < EwNo = No = Dj < Djy
-2 10s(r — 1)!'  10(s —jo + 1)(r — 1)! — 5s(r — 1)!

< 57’Dj0.

Hence, because X is transversal of label +1 of U:-‘;Ol B(a + id, ed), the conclusion of Lemma 2.2
gives for k > 27rle ! log" (1/5¢) > 33—21’28_1 log (1/5¢) that

3 40 5
XN Yijl < ?r = 12srlr = ?r!rlog (1/5¢) < Zs(r — k. 9)
However, by (5), (6) and (7) we have

5

Y, /| rtDy —7
i j - 1 - k(S ] + 1)N0 > — Zg(r_ l)yk (10)

k
2d — 2d T wN, 252 = 4ws

XNYs /| >
i

for any Y, 7 in the middle of JV. Comparing (9) and (10) yields that | X N Y; | < [X N Y//' for any
interval Y, s in the middle of . Thus Y j, cannot be a middle interval and we obtain that if (i, jo) €

I,then Y; jo 18 either the first or last interval of ). Therefore, we can have at most two occurrences
of jo in I and consequently the entire location of I is contained between those two occurrences, i.e.,
I<{(i,jo), (bjo+1),...,(i+ 1,jo — 1), (i+ L,jo)} for some 1 <i <w — 1. Hence, the set I has at
most s/2 + 1 elements and by the pigeonhole principle there exists a pair of indices (i}, j1) € I such
that X N Y; ;| > k/(s/2+1) > k/s. O

Let (i1, j1) be the indices given by Proposition 2.7. Next we apply Proposition 2.3 to the set Y;, j,
labeled by x;, j, with D= D;, £ = k/s and e-approximate arithmetic progression X N Y; ;. Note
that by (5) the hypothesis concerning r, t and £ in the statement holds since

Dk k
(r+1) +2<-=/

tr+1)+2=
2rs s

for r>2 and k> 2"rle ! log’ (1/5¢) > 801log (1/5¢)/9. Also a Dj-block of Y; j is an interval
of the form Z,}'. Hence, by the conclusion of the proposition, there exists Z, ;' such that

XN Zf},}{l | >¢/(r — 1) > k/rs. Since each set Z,ij{v was (r — 1)-coloured inductively not to contain
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12 V. Rodl and M. Sales

an APy (¢), we reach a contradiction. Thus there is no monochromatic APy(¢) in [N1]. In view
of (5) we have

Ni = rwt(Dy + . .. + Dy/2) k"N ( + +(S +1))
=W e = — 7S e —
! ! S =030 — 1) 2

- kNy - kNy
~ 40es(r — 1)! T 50(r — 1)!elog (1/¢)
Consequently, in view of s = O(log (1/5¢)) we obtain by induction that

k ¢ (%)H 1%

1= : T = Cr -l .
50(r — 1)lelog (1/e) gr—2 log(l/e)(z)_l or—1 log(l/s)( -1

3. Proof of Theorem 1.7
3.1 Lower bound
For positive integers k and N, recall that f(N, 1, k), sometimes denoted by r¢(N), is defined to be

the size of the largest set A C [N] without an arithmetic progression of length k. A classical result
of Behrend [1] shows that,

f(N,1,3) > Nexp (—c\/@) ,

for a positive constant ¢ (see [5, 15] for slightly improvements). In [22] (See also [18]) the
argument was generalised to yield that

f(N,1,k) > N exp (—c( logN)l/K) , (11)

where ¢ = [log, k] and k > 3 and ¢ is a constant depending only on k. We will use the last result
as a building block for our construction.

Before we turn our attention to the lower bound construction, we will state a preliminary result
about e-approximate arithmetic progressions. Given a set of k integers, one can identify them as
an AP; by the common difference between the elements. Unfortunately, the same is not true for
an APk(e). On the positive side, the next result shows that if a set of k elements is an APy (¢), then
the differences of consecutive terms are almost equal.

Proposition 3.1. Given 0 <& < 1/10, let X = {xo, ..., xx_1 } be an APi(e). Then for every pair of
indices 0 < i, j < k — 2 the following holds

Ixj+1 — xj]
i1 — il

—1’ < 5e.

Proof. Since X is an APy (e), there exist a and d such that |x; — (a +id)| <ed for0<i<k—1.
Therefore, a simple computation shows that

(1—2e)d - [xj+1 — xjl - (1+2e)d
(1+28)d  |xip1—xi| (1 —2e)d
for0<e<1/10and 0 <i,j<k—2. O

1—-5¢<

<1+ 5¢

We now prove the lower bound of Theorem 1.3 for one dimension.

Lemma 3.2. Let k> 3 and 0 < & <1/125. Then there exists a positive constant ¢, depending only
on k and an integer No := Ny(k, &) such that the following holds. If N > Ny, then there exists a set
A C [N] without APy(e) such that
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Combinatorics, Probability and Computing 13

-1

|A| > Nl—cl(log(l/e))%

for £ = [log, k1.

Proof. For integers g, b, let Si([a, b]) be the largest subset in the interval [a, b] without any arith-
metic progression APy of length k. By a simple translation, one can note that Sg([a, b]) has the
same size as Sg([b — a + 1]) and by (11) we have

Sl BDI =f(b—a+ L, 1,K) = (b—a+ Dexp (~c(log (b—a+1)"*),  (12)

for a positive constant ¢ and £ = [log, k].
Let g= ﬁ > 5 be an integer and h be largest exponent such that ¢ <N < ¢"*!. For such a

choice of g and h, we construct the set
A= {se [N] :a=50+51q+...+sh_1qh71},

where s;,_; € S¢([0,g — 1]) and s; € S ([Zq/S, 3q/5]) for 0 <i < h — 2. Our goal is to show that A
satisfies the conclusion of Lemma 3.2.
First note by (12) that

A = 1S¢([0,q — 1D - |k ([2a/5, 3¢/5]) """

. q . ( 9 )h_l
~ exp (c(logq)'/t) \ 5exp (c(logg/5)1/¢)

qh

>
~ exp (c(log q)1/¢)(5 exp (c(log q)1/¢))r—1

N N
> > R
~ 5h-1gexp (c(log @)V/t)" ~ qexp (Ch(logg)'/¢)

and in view of h < ll(;gTZ and our choice of g we obtain that

20eN < leq log(l/&‘)lﬂz*l

|Al = - >
exp (¢’ log N(log q)1/¢-1)

for sufficiently large N and appropriate constant ¢; depending only on k. Therefore the set A has
the desired size. It remains to prove that A is APy (¢e)-free.
Suppose that there exists an e-approximate arithmetic progression X = {xy, . . . , x¢_1} in A. For

each 0 <i<k— 1, write x; = Z]]':ol X; ]qf . Since all x;’s are distinct, there exists a maximal index

jo such that the elements of Xj, = {xij, }o<i<k—1 are not all equal. By construction of A the set Xj,
fails to be an APy. Therefore there exists two indices 0 < iy, i < k — 2 such that

|xi1+1,j0 - xi1J0| e |xi2+1,jo - xiz,jo|~ (13)
For 0 <i <k — 1, note that
h—1 jo
lxit1 — xi| = Z (xit1j — %)) | = Z (xi41) — %i))q
=0 =0

by the maximality of jo. Thus by the triangle inequality we obtain that
Jjo—1
|xip1 — xi| = |xig1jo — Xijo lg° | < Z |Xit1j — xijlq - (14)
j=0
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14 V. Rodl and M. Sales

Moreover, recalling that x; ; € [2q/5, 3q/5] for 0 <j < h — 2 we infer that

Jjo—1 Jo—1 g '
j g _29°
Xip1j — Xijlqd < <
Z| i+1,j 1,]|CII_ ' 5 = 5
j=0 j=0

for g > 2. The last inequality combined with (14) gives us that
‘ 2 .
|41 — xil = [xig1jo — Xijo g | < gq’o, (15)
for 0 <i <k — 2. Hence by (13) we have that
jo 4 jo
|12iy41 — iy | = |xiy 41 — iy || = [|Xi 410 — Xinjo| — [Xii41jo — Xinjol|4° — gqj
4 g
> o Zgo_ 1 16
> gt -2 =1 16
On the other hand, Proposition 3.1 for i; and i, together with (15) gives us that
2 io
|1xiy41 — iy | — [, 41 — i || < 5elai 41 — xiy | < 5 (%5415 — Xijo| + 3 q°.

Since x;j, € [0,q — 1] for every 0 <i <k — 1 and eqg = 1/25 we have

qio
5
which contradicts (16). O

|1%iy41 = Xiy | — |1y 41 — X3, || < Seq™ =

>

For higher dimensions the result follow as a corollary of Lemma 3.2. Recall by Definition 1.6
that an e-approximate cube C,(m, k) is just an multidimensional version of an AP (e)

Corollary 3.3. Let k>3 and m > 1 be integers and 0 < & < 1/125. Then there exists an integer
Ny := No(k, €) and a positive constant ¢, depending on k such that the following holds. If N > Ny,
then there exists a set S C [N]™ without C.(m, k) such that

|S| > Nm—c( log(l/ez))%_1

for £ =T[log, (k—1)].

Proof. Let Ny be the integer given by Lemma 3.2 and let A C [N] be the set such that A has
no AP(g) for N> Np.Set S= A x [N]" L ie,S={(s1,...,5m):51 €A, s2,...,5m € [N]}. Note
that S has the desired size since

18] = N1 4] 2 Nm-elog /et
We claim that S is free of C.(m, k).

Suppose that the claim is not true and let X = {x;: v € {0, ...,k — 1}""} be an C.(m, k) in S.
By definition there exists a € R” and d > 0 such that ||x; — (@ + dv)|| < ed for every v € {0, . . .,
k —1}™. In particular, when applied to {te; =(¢,0,...,0):0 <t <k — 1} the observation gives
us that

m 1/2
|Xte;,1 — (a1 + td)| < ((xtel,l — (a1 +d)’ + Y (Ko — ai)2> = ||xte, — (@ + dter)l| < ed
i=2

Therefore, the set {x/e,,1}0<t<k—1 € A is an APy(e), which contradicts our choice of A. O
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Combinatorics, Probability and Computing 15

3.2 Upper bound

As in the upper bound of W, (k, r), our proof of the upper bound of f, (N, m, k) will use an iterative
blow-up construction. It is worth to point out that a similar proof was obtained independently
by Dumitrescu in [4]. While both proofs use a blow-up construction, the author of [4] finishes
the proof with a packing argument. Here we will follow the approach of [16, 17], which uses an
iterative blow-up construction combined with an average argument to estimate the largest subset
of a grid without a class of configurations of a given size. This approach allows us to slightly
improve the constants in the result.
The proof is split into two auxiliary lemmas.

Lemma 3.4. Given positive real numbers o, ¢ >0 and integers m>1 and k>3, there exists

No:= Nolo, &, m, k) < (kﬂ/s)w log(1/) 11d a subset A C [N]™ with the property that any
X CA, |X| > «a|A| contains a Cc(m, k).

Proof. For m and k, let A be the standard cube C(m, k) of dimension m over {0, ...,k — 1}, i.e,
A is the set of all m-tuples v={vy,..., vy} €{0,...,k—1}". Viewing A as an m-dimensional
lattice in the Euclidean space, we note that diam(A) = (k — 1)/m, while the minimum distance
between two vertices in A is one.

Similarly as in the proof of the upper bound of Theorem 1.3, we consider an iterated blow-
up of the cube. For integers r and ¢ = ky/m/e, let A, be the following r-iterated blow-up of a
cube

Ar=:%Jrﬁl+...+t"1?r_1:?o,---,?r—lGA, t=

kﬁ}'

&

Alternatively, we can view A, as the product [ I, BY of m identical copies of

B,={b0+tb1+...+tr_1b,_1:(bo,...,br_l)e{o,l...,k—1}’, t=
&

kym }
an r-iterated blow-up of the standard APy. Note by the construction that |A,| = k™. The next
proposition shows that fixed « > 0, for a sufficiently large r any a-proportion of A, will contain a
Ce(m, k).

m r
Proposition 3.5. Let 0 < o < 1 be a real number and r a positive integer such that o > (kk,;l) .
Then every X C A, with |X| > «|A,| contains a C¢(m, k).

Proof. The proofis by inductionon r. If r=1,then A = Aand « > krz,;l. Let X C A; with |X]| >
a|A1|. Thus

m—1

km

IX| = a|Ar] > KT =k" -1,

which implies that X = A. So X contains a cube C(k, m) and in particular an e-approximate cube.
Now suppose that the proposition is true for r — 1 and we want to prove it for r. First, we

partition A, into ;A Arsi» Where

A= {Do+t31 4o T vy, LV €A, =

k«/ﬁ}'

Note that by definition A, j; is a translation of A,_1 by t"~!i. In particular, this implies that |A, ;| =
kr=1m Let X C A, with |X| > «|A,| be given. We will distinguish two cases:
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16 V. Rodl and M. Sales

Case I: XN A,z #Wforallu € A.

For each # € A choose an arbitrary vector w(u1) € XN A, ;. We will observe that {w(i1)};ca
forms a C(m, k). To testify that, set @ = (0,...,0) and d = t"~. Write w(it) = Zir;g tfw + 1ty
with w; € A. Thus, a computation shows that

|w(it) — @+ du)|| = ||w(w) — il =

r—2
E t 171/1‘
i=0

for wo, . .., w,_3 € A. Since diam(A) = (k — 1)/m, it follows that

r—2
<> tlwll
i=0

r—2
Hw@%—@+d@“§w—nvﬁ(§:f>ngJJE<e¢*=8i

i=0
by our choice of t. Since {w(l)};ca C X, we conclude that X contains an C,(m, k).
Case 2: There exists tp € A with X N A, 7, = 0.
Since |X| > a|A,| and |A| = k™, by an average argument there exists #; € A such that

X s DAL akmA )
P =g ] T gm =1

SetX'=XNA,z anda’ = % Note that

. ak™ Kt —1\" k" km— 1\
o = > : = .
km—1 km km—1 km
Therefore, viewing A, ; as a copy of A,_; by the induction assumption we obtain that X' € X
contains an C,(m, k). ]

k"1
K

Let r be the smallest integer such that (
that

;
) <o and set A=A,. A computation shows

r= ’VM-‘ <2k" log (1/a).
IOg _1

Therefore by Proposition 3.5 we have that any set X C A with |X| > a|A| contains an Cg(m, k).
Finally, by the construction of A we have that A C [Np]™ for

O

kﬂ)zk"‘ log(l/oz)

Nofdiam(Br)-i-l:(k—1)(1+t+...+tr1)+1§ktr1§<
€

Lemma 3.4 gives us a set A € [N]" such that any a-proportion contains a C,(m, k). However,
this is still not good enough, since to obtain an upper bound we need a similar result for [N]™.
The next lemma shows by an average argument that the property of A can be extended to [N]™ by
losing a factor of a power of two in the proportion «.

Lemma 3.6. Let A C [N]™ be a configuration in the grid. For any X C [N]™ with | X| > aN™, there
exists a translation A" of A such that |X N A'| > 55 |A’).

Proof. Consider a random translation A’ = A + u, where 4= (uy,...,uy) is an integer vec-
tor chosen uniformly inside [ — N 4 1, N]™. For every vector x € X, there exists exactly |A|
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elements ve [ — N + 1, N]" such that X — v € A. This means that P(xc A)=P(x —ucA)=

(zlfl)lm . Therefore
- IX[A] _ o o
E(XNA|)=) PxeA)= > —|Al=—|A
(I ) Z Fea)=Gaym Z g Al= 5w 14
xeX
Consequently, by the first moment method, there is # and A’ satisfying our conclusion. O

We finish the section putting everything together.

Proposition 3.7. Let N, m and k be integers and € > 0. Then there exists a positive constant ¢,
depending only on k and m such that the following holds. If S C [N]™ is such that

|S| - Nmfcz(log(l/e))’l’
then S contains an Co(m, k).

Proof. Set oy = omN—¢(og(1/eN™" where ¢ = (4k™ log (kv/m))~1. Let Ng = No(ap /2™, &, m, k) be
the integer obtained by Lemma 3.4 and A C [Np] be the set such that any X € A with |X]| > ;‘—},’, |A]
contains an C.(m, k). Note that

(k./m)zw log (2"/et0) <2c/km log N log (k,/m/s))
No< (2 —exp
€ log(1/¢)

< exp (4ck™ log N log (kv/m)) =N,

which implies that A € [N].
Let S € [N] with |S| > a¢gN™. Then by Lemma 3.6, there exists a translation A’ of A such that
ISNA’| > 5% |A’|. Hence, by Lemma 3.4, the set S contains a C¢ (1, k). The result now follows since

|S| > aon — 2111]\]mfc/(log(l/a))’l ~ Nmfcz(log(l/s))’l

for appropriate c;. O
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