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Abstract

We determine the order of magnitude of the minimum clique cover of the
edges of a binomial, r-uniform, random hypergraph G(r)(n, p), p fixed. In
doing so, we combine the ideas from the proofs of the graph case (r = 2) in
Frieze and Reed [Covering the edges of a random graph by cliques, Combi-
natorica 15 (1995) 489–497] and Guo, Patten, Warnke [Prague dimension of

random graphs, manuscript submitted for publication].
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1. Introduction

For an r-uniform hypergraph (briefly, an r-graph) H = (V,E) and a set S, a
representation of H on S is an assignment of subsets Sv ⊂ S, v ∈ V , in such a
way that for each R ∈

(

V
r

)

we have
⋂

v∈R Sv 6= ∅ if and only if R ∈ E. To observe
that any r-graph admits such a representation, assign to each vertex v the set
{e : v ∈ e ∈ E} of all edges e containing v. Then, {v1, . . . , vr} ∈ E if and only if
⋂r

j+1 Svj 6= ∅.
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research performed at Emory University, Atlanta.
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2 V. Rödl and A. Ruciński

Definition. The representation number θ1(H) of H is the smallest cardinality
of a set S which admits a representation of H. Equivalently, θ1(H) is also the
smallest number of cliques needed to cover all edges of H (see Appendix for a
proof of the equivalence).

It is perhaps interesting to note (cf. [6]) that the maximum of θ1(H) over all

r-graphs H on n vertices equals the Turán number for the r-uniform clique K
(r)
r+1

on r + 1 vertices which is unknown even for r = 3.
We determine a typical order of magnitude of the parameter θ1 for a class

of large random r-graphs. Given integers n, r ≥ 2, and a real 0 < p < 1, let
G(r)(n, p) denote the random r-graph obtained by independent inclusion of each
r-set with probability p. In particular, the number of edges of G(r)(n, p) is bi-
nomially distributed with expectation

(

n
r

)

p. We say that a property of r-sets
P holds asymptotically almost surely, abbreviated to a.a.s., if the probability
Prob(G(r)(n, p) ∈ P) → 1 as n → ∞. Throughout the paper p remains indepen-
dent of n, while all logarithms are natural and denoted by log.

Theorem 1. For every integer r ≥ 2 and a constant 0 < p < 1, there exist

positive constants c1 and c2 such that a.a.s.

c1
nr

(log n)r/(r−1)
≤ θ1(G

(r)(n, p)) ≤ c2
nr

(log n)r/(r−1)
.

The case r = 2 was proved by Frieze and Reed [3], and, in a stronger form,
by Guo, Patten, and Warnke [4]. Here we follow the ideas from there, some of
which have already originated in a paper by Alon, Kim, and Spencer [1]. The
lower bound follows immediately from the upper bound on the order of the largest
clique in G(r)(n, p) (see below). Hence, in the remaining sections we focus on the
upper bound only.

Proof of the lower bound in Theorem 1. Recall that p and r are constants
independent of n. The expected number of cliques of order

t :=

⌈

(

r!

log(1/p)
log n

)1/(r−1)
⌉

+ r

in G(r)(n, p) is

(

n

t

)

p(t
r) ≤

(en

t
p(t−r)r−1/r!

)t
≤

(en

t
e− logn

)t
= o(1)

as n → ∞. Hence, a.a.s., there are no cliques of order t (or higher). On the
other hand, by Chebyshev’s inequality, there are, a.a.s., at least 1

2p
(

n
r

)

edges in
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G(r)(n, p). Therefore, a.a.s., one needs at least

1
2p

(

n
r

)

(

t
r

) ≥
1

2
p
(n

t

)r
= Ω

(

nr

(log n)r/(r−1)

)

cliques to cover all edges of G(r)(n, p).

For the proof of the upper bound we now define a crucial notion. Let an
r-graph G on a vertex set V , two integers 0 ≤ s < j ≤ |V |, and a set S ∈

(

V
s

)

be
given. A subset J ⊂ V is called an (S, j)-clique in G if

• J ⊃ S, |J | = j, and

• EJ := {f ∈
(

J
r

)

: f ∩ (J \ S) 6= ∅} ⊂ E(G), that is, E(G) contains all
r-element subsets of J except those which are subsets of S.

Note that |EJ | =
(

j
r

)

−
(

s
r

)

. Moreover, for s = 0, an (∅, j)-clique is just any copy

of the clique K
(r)
j in G, while for j < r every J ∈

(

V
j

)

, J ⊇ S, is a (trivial)
(S, j)-clique (with EJ = ∅).

2. An Expanding Property of Random r-Graphs

Throughout the paper V is an n-vertex set of the random r-graph G(r)(n, p).
Given s ≥ r − 1, and a set S ∈

(

V
s

)

, let X(S) be the number of (S, s + 1)-

cliques in G(r)(n, p). In other words, X(S) counts the common neighbors of all
(r − 1)-element subsets of S. Clearly,

(1) E(X(S)) = (n− s)p( s
r−1) := µ(s).

The next lemma asserts that, for a wide range of s and for every s-element set S
of vertices there are roughly the same number of (S, s + 1)-cliques in G(r)(n, p).
Let

k =
⌊

(α logn)1/(r−1)
⌋

for sufficiently small α > 0.

Claim 2. Let A be the event that for all r − 1 ≤ s ≤ k − 1 and all S ∈
(

V
s

)

|X(S) −E(X(S))| ≤ n−1/3E(X(S)).

Then, Prob(A) = 1 − o(1).

Proof. Note that µ(s) is a decreasing function of s and, by the definition of k
above,

(

k−1
r−1

)

≤ (k − 1)r−1 ≤ α logn. Thus, for large n,

(2) µ(s) ≥ µ(k − 1) ≥ (n/2)p(k−1

r−1) ≥ (n/2)pα logn ≥
1

2
n0.99,
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if only α log(1/p) ≤ 0.01.
Recall that, for every S ∈

(

V
s

)

, the random variable X(S) counts the number
of (S, s + 1)-cliques and so, it is binomially distributed with expectation given
by (1). Thus, by Chernoff’s bound (see, e.g., [5], Corollary 2.3, Ineq. (2.9)),
assuming n is sufficiently large,

Prob(|X(S) − µ(s)| > n−1/3µ(s)) ≤ 2 exp{−n−2/3µ(s)/3} ≤ exp{−n1/4},

where the last inequality follows from (2). Finally, by the union bound, summing
over all choices of s and S,

Prob(¬A) ≤ knk exp{−n1/4} = o(1).

3. Proof of Theorem 1

The upper bound in Theorem 1 will be a consequence of Claim 2 given in Section
2 and Lemma 4 to be stated below.

3.1. Notation

Before stating Lemma 4, we introduce a few parameters used therein. Very
roughly, the lemma will claim the existence of a sequence of r-graphs G1, . . . , Gi0 ,

i0 =

⌈

r + 1

r − 1
log log n

⌉

,

which begins with the random r-graph G1 := G(r)(n, p) and maintains throughout
certain properties. As the proof of Lemma 4 will reveal, each next graph Gi+1

will be derived from Gi by a random deletion of cliques of order ki, where, for
sufficiently small α > 0,

ki =

⌊

(

α log n

i

)1/(r−1)
⌋

.

(Note that k1 = k defined earlier.)
In addition, some random edges of Gi will be deleted as well. The random

procedure will be designed in such a way that the graphs Gi will shrink at the
rate of 1/e, thus resembling random r-graphs G(r)(n, pi), where

pi = pe1−i.

The resemblance will be manifested by the behavior of the number of (S, j)-cliques
in Gi, which, for all 0 ≤ s < j ≤ ki, will be close to the quantity

(3) µi(s, j) =

(

n− s

j − s

)

p
(jr)−(sr)
i .
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Note that µi(s, j) is the expected number of (S, j)-cliques in a random r-graph
G(r)(n, pi).

In particular, for s ≥ r− 1, the quantity µ1(s, s+ 1) = µ(s) has been defined
in (1). Note also that

(4)
µi+1(s, j)

µi(s, j)
= (1/e)(

j
r)−(sr).

Let us now prove some bounds on µi(s, j).

Claim 3. For all 1 ≤ i ≤ i0, all 0 ≤ s < j ≤ ki, sufficiently small α and

sufficiently large n,

(a) µi(s+1,j)
µi(s,j)

≤ n−0.99;

(b) µi(s, j) ≥ n0.99.

Proof. (a) Since s < ki ≤
(

α logn
i

)1/(r−1)
, we have isr−1 < α logn. Hence, for

sufficiently small α and large n,

µi(s + 1, j)

µi(s, j)
=

j − s

n− s
p
−( s

r−1)
i <

j

n
(ei/p)s

r−1

≤
j

n
(e/p)is

r−1

<
j

n
(e/p)α logn

≤ n−0.99.

(b) By (a), µi(s, j) decreases with growing s. Thus, similarly to (a), since

ijr−1 ≤ ikr−1
i ≤ α log n,

we have

µi(s, j) ≥ µi(j−1, j) = (n−j+1)p
(j−1

r−1)
i ≥

n

2

(

p/ei−1
)jr−1

≥
n

2
(p/e)α logn ≥ n0.99,

for sufficiently small α.

Finally, as an important part of the forthcoming lemma is a sequence of r-
graphs G1, . . . , Gi0 , for given 0 ≤ s < j ≤ ki and S ∈

(

V
s

)

, we denote by Ni(S, j)
the number of (S, j)-cliques in Gi. Note that N1(S, s + 1) is the deterministic
counterpart of the random variable X(S) appearing in Claim 2. In particular, if
G1 ∈ A, then

(5) |N1(S, s + 1) − µ1(s, s + 1)| ≤ n−1/3µ1(s, s + 1).

Note also that, for s = 0, Ni(∅, j) is just the number of cliques of order j in Gi,
in particular, Ni(∅, r) = |Gi|, the number of edges of Gi. (From now on, we will
denote the number of edges of an r-graph G by |G|.) Finally, notice that by a
comment at the end of Section 1 and by (3), for j < r,

(6) Ni(S, j) =

(

n− s

j − s

)

= µi(s, j).
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3.2. Statement of Lemma 4 and proof of Theorem 1

Here we state a crucial, technical lemma from which Theorem 1 will follow. Out
of the three properties listed therein, the second one, Qi, is there just to facilitate
the proof. All parameters appearing in the statement have been defined in the
previous subsection.

Lemma 4. For every n-vertex r-graph G1 ∈ A, where the event A is defined in

Claim 2, there exist a descending sequence of r-graphs

G1 ⊃ G2 ⊃ · · · ⊃ Gi0

and an ascending sequence of families of cliques

∅ = C1 ⊂ C2 ⊂ · · · ⊂ Ci0

such that the three properties below hold.

(Pi) For all 2 ≤ i ≤ i0, Ci is a clique cover of G1 −Gi and

|Ci \ Ci−1| ≤
2pi−1n

r

kri−1

.

(Qi) For all 1 ≤ i ≤ i0, all 0 ≤ s ≤ ki − 1, and all S ∈
(

V
s

)

,

(7) |Ni(S, s + 1) − µi(s, s + 1)| ≤ in−1/3µi(s, s + 1).

(Ri) For all 1 ≤ i ≤ i0, all 0 ≤ s < j ≤ ki, and all S ∈
(

V
s

)

,

(8) |Ni(S, j) − µi(s, j)| ≤ n−1/4µi(s, j).

Note that for j = s + 1, property Ri is overwritten by Qi. This is because,
i ≤ i0 ≤ r+1

r−1 log log n and thus, for all n, the right-hand side of (7) is smaller
than the right-hand side of (8). Also, by (6), for j < r the left-hand side of (8)
equals 0. For the same reason, whenever s ≤ r − 2, the left-hand side of (7)
equals 0. This means that in these cases properties Qi and Ri hold trivially.

We defer the proof of Lemma 4 for later. Now, we give a short proof of
Theorem 1 based on Claim 2 and Lemma 4.

Proof of Theorem 1. By Claim 2, the random r-graph G1 = G(r)(n, p) a.a.s.
satisfies event A and so, we are in position to fix G1 ∈ A and apply Lemma 4.
Obviously, the union C of the clique cover Ci0 and the edge set of the graph Gi0

form a clique cover of G1. Further, recalling that |Gi0 | = Ni0(∅, r), we have, by
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Pi, i = 2, . . . , i0, and by Ri0 applied only in one special case of S = ∅, j = r, and
i = i0,

|C| = |Ci0 | + |Gi0 | =

i0−1
∑

i=1

|Ci+1 \ Ci| + Ni0(∅, r) ≤
i0−1
∑

i=1

2pin
r

kri
+ (1 + n−1/4)µi0(0, r)

≤
i0−1
∑

i=1

2pnri
r

r−1

ei−1(α log n)r/(r−1)
+ 2

(

n

r

)

pi0 ≤
2epnr

(α log n)r/(r−1)

∞
∑

i=1

i
r

r−1

ei
+

2epnr

ei0

≤
2epCnr

(α logn)r/(r−1)
+

2epnr

(α log n)(r+1)/(r−1)
=

2epC(1 + o(1))nr

(α log n)r/(r−1)
,

where C =
∑∞

i=1
i

r
r−1

ei
.

4. Preparations for the Proof of Lemma 4

First, we are going to show that property Ri is, in some sense, redundant. Nev-
ertheless, we found it convenient to state it explicitly in Lemma 4.

4.1. Qi implies Ri

This short subsection is devoted to proving the following implication.

Claim 5. For all 1 ≤ i ≤ i0, if Gi ∈ Qi, then Gi ∈ Ri

Proof. The key idea is to view (S, j)-cliques as a result of an iterative process of
vertex by vertex “extensions” of the set S (with all required edges present). Fix
0 ≤ s < j ≤ k, S = {v1, . . . , vs} ∈

(

V
s

)

and let Ni(S, j) be the set of all (S, j)-
cliques in Gi. Recall that Ni(S, j) = |Ni(S, j)|, that is, Ni(S, j) counts the number
of sets {vs+1, . . . , vj} ⊂ V \ S such that J = S ∪ {vs+1, . . . , vj} is an (S, j)-clique
in Gi. Similarly, we define N ′

i(S, j) as the number of sequences (vs+1, . . . , vj) of
j − s distinct vertices in V \ S such that, again, J = S ∪ {vs+1, . . . , vj} is an
(S, j)-clique in Gi. Equivalently,

N ′
i(S, j) = |{(vs+1, . . . , vj) : S ∪ {vs+1, . . . , vj} ∈ Ni(S, j)}|.

We have, obviously,

(9) N ′
i(S, j) := (j − s)!N(S, j).

For all s + 1 ≤ ℓ ≤ j and vs+1, . . . , vℓ, by property Qi applied to the set
Sℓ := S ∪ {vs+1, . . . , vℓ}, setting Vℓ = {vℓ+1 : Sℓ ∪ {vℓ+1} ∈ Ni(Sℓ, ℓ + 1)},

∣

∣

∣
|Vℓ| − µi(s + ℓ, s + ℓ + 1)

∣

∣

∣
≤ in−1/3µi(s + ℓ, s + ℓ + 1).
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Note that, by definition (3) and the standard combinatorial identity
∑t−1

h=0

(

h
r−1

)

=
(

t
r

)

,
j−1
∏

h=s

µi(h, h + 1) = (n− s)(j−s)p

∑j−1

h=s ( h
r−1)

i = (j − s)!µi(s, j).

Thus, observing that N ′
i(S, j) =

∏j−1
ℓ=s |Vℓ|, we arrive at

(

1 − in−1/3
)j−s

(j − s)!µi(s, j) ≤ N ′
i(S, j) ≤

(

1 + in−1/3
)j−s

(j − s)!µi(s, j).

Comparing with (9) and canceling (j − s)! sidewise, this yields

(

1 − in−1/3
)j−s

µi(s, j) ≤ Ni(S, j) ≤
(

1 + in−1/3
)j−s

µi(s, j).

Finally, as (j − s)in−1/3 ≤ ki(i0 + 1)n−1/3 = o(n−1/4), we conclude that

|Ni(S, j) − µi(s, j)| ≤ n−1/4µi(s, j)

which means that Gi, indeed, satisfies property Ri.

4.2. A random procedure

We intend to prove Lemma 4 by induction on i. Suppose that for some 1 ≤ i ≤
i0 − 1, a graph Gi and a clique cover Ci of G1 − Gi satisfy properties Pi, Qi,
and Ri. To obtain (Gi+1, Ci+1), we apply a random procedure during which we
simultaneously select

• Ki — a random collection of cliques in Gi of order ki, each chosen indepen-
dently with probability

(10) qi :=
1

(1 + n−1/4)µi(r, ki)

and

• Ei — a random collection of edges f ∈ Gi, viewed as r-vertex cliques, each f
chosen independently with probability

(11) qi,f = 1 − (1 − qi)
(1+n−1/4)µi(r,ki)−Ni(f,ki).

Then, we set

• Ci+1 := Ci ∪ Ki ∪ Ei, and

• Gi+1 = Gi − (
⋃

Ki ∪Ei), where
⋃

Ki is the set of edges covered by the union
of cliques in Ki.
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(The idea of using such a random procedure has appeared in a similar context
already in [1].)

The selections of Ki and Ei are performed simultaneously, that is, indepen-
dently of each other. Note also that the exponent in (11) is, due to property
Ri, nonnegative. Finally, observe that for an edge f ∈ Gi, the probability that
f ∈ Gi+1 equals

(1 − qi)
Ni(f,ki)(1 − qi,f ) = (1 − qi)

(1+n−1/4)µi(r,ki) ∼
1

e
,

which explains the definition of pi given earlier.

4.3. Ri implies Pi+1

The following result is the first ingredient of the forthcoming probabilistic proof
of Lemma 4.

Claim 6. For all 1 ≤ i ≤ i0 − 1, if Gi ∈ Ri, then, with probability at least 0.49,
the pair (Gi+1, Ci+1) satisfies property Pi+1.

Proof. Recall that, by the random procedure described in Subsection 4.2,

(12) Ci+1 \ Ci = Ki ∪ Ei,

where Ki is a collection of ki-cliques and Ei is a collection of edges selected
randomly and independently from Gi.

As each ki-clique is drawn with the same probability qi, the quantity |Ki| is
binomially distributed with expectation E|Ki| = Ni(0, ki) × qi. This, for large n
can be estimated, using property Ri, the definition (3) of µi(s, j), and the di-
vergence ki → ∞ as n → ∞ (cf. definitions of ki and i0 in Subsection 3.1), as
follows:

E|Ki| = Ni(0, ki) × qi =
Ni(0, ki)

(1 + n−1/4)µi(r, ki)
≤

µi(0, ki)

µi(r, ki)
=

(n)r
(ki)r

pi

≤

(

n

ki − r + 1

)r

pi = (1 + o(1))(n/ki)
rpi ≤ 1.01(n/ki)

rpi.

Similarly, quantity |Ei| has a general binomial distribution with

(13) E|Ei| =
∑

f∈Gi

qi,f .

For f ∈ Gi, by property Ri and Bernoulli’s inequality, we have

(14) qi,f ≤ 1 − (1 − qi)
2n−1/4µi(r,ki) ≤ 2n−1/4µi(r, ki)qi ≤ 2n−1/4.
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Consequently, bounding crudely |Gi| ≤ nr, by (13) and (14),

E|Ei| ≤ nr × 2n−1/4 = O(nr−1/4).

Further, observe that by the definitions of pi, ki, and i0,

kri
pi

≤
eikri
pe

≤
ei0kri
pe

= O
(

(log n)
r+1

r−1
+ r

r−1

)

= O
(

(log n)
2r+1

r−1

)

.

Thus, E|Ei| = O(nr−1/4) = o ((n/ki)
rpi), and, by (12), we have

E|Ci+1 \ Ci| = E|Ki| + E|Ei| ≤ (1.01 + o(1))(n/ki)
rpi.

Finally, by Markov’s inequality,

Prob(|Ci+1 \ Ci| > 2(n/ki)
rpi) ≤ 0.51.

It means that property Pi+1 holds for (Gi+1, Ci+1) with probability at least 0.49.

5. Proof of Lemma 4

We are going to show the existence of sequences G1 ⊃ G2 ⊃ · · · ⊃ Gi0 and
∅ = C1 ⊂ C2 ⊂ · · · ⊂ Ci0 satisfying properties Pi, Qi, and Ri, by induction on
i = 1, . . . , i0.

Let us begin with the base case i = 1. For a fixed G1 ∈ A, property Q1

follows from Claim 2 (cf. (5)), while property R1 is implied by Q1, as shown in
Claim 5.

Assuming now that for some i ≥ 1 a pair (Gi, Ci) satisfies properties Pi (only
for i ≥ 2), Qi, and Ri. We are going to show that with positive probability
the pair (Gi+1, Ci+1), chosen randomly according to the procedure described in
Subsection 4.2, satisfies Pi+1, Qi+1, and Ri+1, and thus, such a pair exists.

By Claim 5, property Qi+1 implies property Ri+1. Moreover, by Claim 6,
property Pi+1 holds for (Gi+1, Ci+1) with probability at least 0.49. Thus, it
suffices to prove that Gi+1 satisfies property Qi+1 with probability strictly greater
than 0.51. In fact, the latter probability will turn out to be 1 − o(1).

We begin with estimating the expectation of

X := Ni+1(S, s + 1)

the (random) number of (S, s + 1)-cliques in Gi+1.

Claim 7. For all 1 ≤ i ≤ i0 − 1, if Gi ∈ Qi, then, for all r − 1 ≤ s < ki, and all

S ∈
(

V
s

)

,

|EX − µi+1(s, s + 1)| ≤ (i + 0.5)n−1/3µi+1(s, s + 1).
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Proof. Fix r − 1 ≤ s < ki and S ∈
(

V
s

)

and recall our notation EJ for the set
of all edges of an (S, j)-clique J and Ni(S, j) for the family of all (S, j)-cliques in
Gi. By linearity of expectation,

(15) EX =
∑

J∈Ni(S,s+1)

Prob(EJ ⊂ Gi+1).

To estimate Prob(EJ ⊂ Gi+1), observe that an (S, s+1)-clique J of Gi “survives”
into Gi+1 if none of its edges was selected to Ei or belonged to some ki-clique
selected to Ki. The probability of the former event is

∏

f∈EJ
(1 − qi,f ), while the

probability of the latter event is (1 − qi)
|U|, where U :=

⋃

f∈EJ
Ni(f, ki). Set

m1 = |U| −
∑

f∈EJ

Ni(f, ki) and m2 = (1 + n−1/4)µi(r, ki)|EJ |.

Then, using (11), we infer that

(16) Prob(EJ ⊂ Gi+1) = (1 − qi)
|U|

∏

f∈EJ

(1 − qi,f ) = (1 − qi)
m1+m2 .

Next, we separately find lower and upper bounds on (1−qi)
m1 and (1−qi)

m2 .
By Bonferroni’s inequality, property Ri (which follows from Qi, see Claim 5), and
the monotonicity of µi(t, ki) as a function of t (see Claim 3(a)), the quantity −m1

can be bounded as follows:

0 ≤ −m1 ≤
∑

g,h∈EJ ,g 6=h

Ni(g ∪ h, ki) ≤
∑

g,h∈EJ ,g 6=h

(1 + n−1/4)µi(|g ∪ h|, ki)

≤
∑

g,h∈EJ ,g 6=h

(1 + n−1/4)µi(r + 1, ki) ≤ |EJ |
2(1 + n−1/4)µi(r + 1, ki).(17)

(Above, we maximized µi(|g∪h|, ki) by minimizing |g∪h| which achieves minimum
at r + 1.) Note that

(18) |EJ | =

(

s

r − 1

)

≤ kr−1 = Θ(log n).

Consequently, by Claim 3(a) and the definition (10) of qi,

(19)

1 ≤ (1 − qi)
m1 ≤ exp

{

qi|EJ |
2
(

1 + n−1/4
)

µi(r + 1, ki)
}

= exp

{

|EJ |
2µi(r + 1, ki)

µi(r, ki)

}

Cl.3(a)

≤ exp
{

|EJ |
2n−0.99

}

= 1 + o
(

n−0.98
)

.
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Further, by Claim 3(b), (10), and (18),

qi|EJ |
1−qi

≤ 2qi|EJ | =
O(logn)

(

1 + n−1/4
)

µi(r, ki)
≤ 2n−0.99Θ(log n) = o

(

n−0.98
)

.

This implies that

(20)
e−|EJ | ≥ (1 − qi)

m2 ≥ exp

{

−
|EJ |

1 − qi

}

≥ e−|EJ |

(

1 −
qi|EJ |

1 − qi

)

≥ e−|EJ |
(

1 − o(n−0.98)
)

.

Thus, by (16), (19), and (20),

(21)
(

1 − o(n0.98)
)

e−|EJ | ≤ Prob(EJ ⊂ Gi+1) ≤
(

1 + o(n−0.98)
)

e−|EJ |.

Recall that, by property Qi, Ni(S, s+ 1) ≤ (1 + in−1/3)µi(s, s+ 1), while, by (4),

µi(s, s + 1)e−( s
r−1) = µi+1(s, s + 1). Thus, using also (15) and (21), and recalling

that |EJ | =
(

s
r−1

)

, we finally have

EX ≤ Ni(S, s + 1)
(

1 + o(n−0.98)
)

e−( s
r−1)

≤
(

1 + o(n−0.98)
)

(1 + in−1/3)µi(s, s + 1)e−( s
r−1)

(4)
=

(

1 + o(n−0.98)
)

(

1 + in−1/3
)

µi+1(s, s + 1)

≤
(

1 + (i + 0.5)n−1/3
)

µi+1(s, s + 1)

and, similarly, EX ≥
(

(1 − (i + 0.5)n−1/3
)

µi+1(s, s + 1).

In view of the above claim, to establish property Qi+1 of Gi+1, it remains
to show that X is concentrated around its expectation with probability very
close to 1. In doing so, similarly to [4], we will utilize the following Azuma-type
concentration inequality which can be deduced from [7], Theorem 3.8 (see also
[8], Corollary 1.4).

Lemma 8. Let X1, . . . , XM be 0–1 independent random variables and let f :
{0, 1}[M ] → R satisfy Lipschitz condition (L) with constants c1, . . . , cM :

(L) for all (z1, . . . , zM ) ∈ {0, 1}[M ] and (z′1, . . . , z
′
M ) ∈ {0, 1}[M ], and all

1 ≤ m ≤ M ,

|f(z1, . . . , zM ) − f(z′1, . . . , z
′
M )| ≤ cm, whenever zh = z′h for all h 6= m.
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Set

X = f(X1, . . . , XM ), W =
M
∑

m=1

c2m Prob(Xm = 1), and C = max
1≤m≤M

cm.

Then, for every t ≥ 0,

Prob(|X −EX| ≥ t) ≤ 2 exp

{

−
t2

2(W + Ct)

}

.

Now, we are ready to provide the last ingredient of the proof of Lemma 4.

Claim 9. For all 1 ≤ i ≤ i0 − 1, if Gi ∈ Qi, then, a.a.s., Gi+1 ∈ Qi+1.

Proof. Fix r−1 ≤ s < ki and S ∈
(

V
s

)

, and notice that if J is an (S, s+1)-clique
in Gi+1, then it must have also been an (S, s + 1)-clique in Gi, whose all edges
“survived” the random procedure described in Subsection 4.2.

Recall that Ni(∅, ki) denotes the set of all ki-cliques in Gi and that Ni(∅, ki) =
|Ni(∅, ki)|. We set M1 = Ni(∅, ki) and Ni(∅, ki) = {K1, . . . ,KM1

}. Let Xm,
m = 1, . . . ,M1, be the indicator random variable which equals 1 if Km ∈ Ki and
0 otherwise. Similarly, set M2 = |Gi| and Gi = {f1, . . . , fM2

}, and denote by
Ym, m = 1, . . . ,M2, the indicator random variable equal to 1 if fm ∈ Ei and 0
otherwise.

As the events Km ∈ Ki, m = 1, . . . ,M1, and fm ∈ Ei, m = 1, . . . ,M2,
fully determine the number of (S, s)-cliques left in Gi+1, there exists a function
f : {0, 1}[M1+M2] → R, such that

X = Ni+1(S, s + 1) = f(X1, . . . , XM1
, Y1, . . . , YM2

).

The explicit form of function f is not important for us.
As we are aiming at applying Lemma 8 to X, we need to find constants for

which the Lipschitz condition (L) holds and then estimate W . Set

cm = max |f(x1, . . . , xM1
, y1, . . . , yM2

) − f(x′1, . . . , . . . , x
′
M1

, y1, . . . , yM2
)|,

where the maximum is taken over all (x1, . . . , xM1
), (x′1, . . . , x

′
M1

) ∈ {0, 1}[M1]

and (y1, . . . , yM2
) ∈ {0, 1}[M2] such that xh = x′h for all h 6= m. Similarly, we set

dm = max |f(x1, . . . , xM1
, y1, . . . , yM2

) − f(x1, . . . , . . . , xM1
, y′1, . . . , y

′
M2

)|,

where the maximum is taken over all (x1, . . . , xM1
) ∈ {0, 1}[M1] and (y1, . . . , yM2

),
(y′1, . . . , y

′
M2

) ∈ {0, 1}[M2] such that yh = y′h for all h 6= m. In other words, cm
and dm are, respectively, upper bounds on the change of X due to flipping the
outcome of the event Km ∈ Ki, respectively, fm ∈ Ei.
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Now we estimate the Lipschitz parameters cm and dm taking into account
the position of Km and fm with respect to the given set S. We begin with dm as
this case is easier. As an edge of Gi may belong to at most one (S, s + 1)-clique
J , the values of X = Ni+1(S, s + 1) for Gi+1 with or without the edge fm may
differ by at most one. Thus,

(22) dm ≤ 1

for all m = 1, . . . ,M2.

On the other hand, since |J | = s+1, any such J contains exactly
(

s
r−1

)

edges
of Gi, so there are altogether

(23) Ni(S, s + 1) ×

(

s

r − 1

)

≤ Ni(S, s + 1)kr−1

edges fm ∈ Gi whose removal could affect X = Ni+1(S, s + 1). Thus, for that
many edges we put dm = 1, while for all other edges dm = 0.

Turning to cm, by the same token, very crudely, for all m = 1, . . . ,M1,

(24) cm ≤ |Km| =

(

ki
r

)

≤ kr,

as every edge of Km may belong to at most one (S, s + 1)-clique J .

Moreover, cm > 0 only if Km contains at least one edge of some (S, s + 1)-
clique of Gi. There are Ni(S, s + 1) such (S, s + 1)-cliques and each contains
(

s
r−1

)

edges. In turn, by property Ri, each edge f is contained in Ni(f, ki) ≤

(1 + n−1/4)µi(r, ki) ki-cliques of Gi. Hence, there are at most

(25) Ni(S, s+1)×

(

s

r − 1

)

×max
f∈Gi

Ni(f, ki) ≤ Ni(S, s+1)kr−1(1+n−1/4)µi(r, ki)

cliques Km in Gi which share an edge with some (S, s + 1)-clique. This implies
that for at most that many indices m ∈ [M1] we have cm > 0.

Putting (22)–(25) together, one can bound the parameter W appearing in
Lemma 8, using again property Ri, the definition (10) of qi, and the estimate
(14) of qi,f , as follows.

(26)

W =

M1
∑

m=1

c2mqi +

M2
∑

m=1

d2mqi,f
(14)

≤ Ni(S, s + 1)kr−1(1 + n−1/4)µi(r, ki) × k2r × qi

+Ni(S, s+1)kr−1×12×2n−1/4
(10)

≤ (1+o(1))Ni(S, s+1)k3r−1
Ri

≤ µi(s, s+1)k3r.
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Recall that, by definition (3), µi(s, s + 1) = (n− s)p
( s
r−1)

i ≤ n, while, by equality

(4), µi+1(s, s + 1) = e−( s
r−1)µi(s, s + 1) ≤ µi(s, s + 1). Moreover, by Claim 3(b)

applied with i+1, µi+1(s, s+1) ≥ n0.99. Putting all these facts together, we have

(27) n0.99 ≤ µi+1(s, s + 1) ≤ µi(s, s + 1) ≤ n.

Thus, in view of (26), by Lemma 8 with

t =
1

2
n−1/3µi+1(s, s + 1) and C = max

{

max
1≤m≤M1

cm, max
1≤m≤M2

dm

}

≤ kr,

noting that Ct = o
(

µi(s, s + 1)k3r
)

and taking n sufficiently large,

Prob(X −EX ≥ t) ≤ 2 exp

{

−
1
4n

−2/3µ2
i+1(s, s + 1)

2(µi(s, s + 1)k3r + Ct)

}

≤ 2 exp

{

−
µ2
i+1(s, s + 1)

9µi(s, s + 1)n2/3k3r

}

(27)

≤ 2 exp

{

−
n1.98

n5/3k3r

}

≤ exp
{

−n0.3
}

.

In view of the above and using Claim 7 and the union bound, a.a.s., for all s and
S ∈

(

V
s

)

,

X = Ni+1(S, s + 1) ≤ EX + t ≤
(

1 + (i + 0.5)n−1/3 + 0.5n−1/3
)

µi+1(s, s + 1)

≤
(

1 + (i + 1)n−1/3
)

µi+1(s, s + 1)

and, similarly, X ≥
(

1 − (i + 1)n−1/3
)

µi+1(s, s + 1), which completes the proof
of Claim 9.
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Appendix

The following folklore result was observed by many authors for graphs (r = 2)
but there seems to be no published proof of the general case. Here we fill that
gap.

Fact 1. Let H be an r-graph and let θ1(H) and θ̃1(H) stand, respectively, for its

representation number and minimum (edge) clique cover number. Then θ1(H) =
θ̃1(H).

For the proof we need a simple observation.

Observation. Let H = (V,E) be an r-graph and let S = {Sv ⊂ S : v ∈ V } be a

representation of H with the smallest set S. Then every element s ∈ S belongs

to at least r sets in S.

Proof. Suppose there is an s ∈ S belonging to fewer than r sets in S. Then
Ss = {Sv \ {s} : v ∈ V } would also be a representation of H which contradicts
the minimality of S. Indeed, for such an s and any R with |R| = r,

⋂

v∈R

Sv 6= ∅ if and only if
⋂

v∈R

(Sv \ {s}) 6= ∅.
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Proof of Fact 1. Let S = {Sv ⊂ S : v ∈ V } be a minimum representation of H,
that is, a representation of size |S| = θ1(H). By the above Observation, for each
s ∈ S the set C(s) = {v : s ∈ Sv} has size |C(s)| ≥ r. What is more important,
C(s) is a clique in H. Indeed, if {v1, . . . , vr} ⊂ C(s), then Sv1 ∩· · ·∩Svr ∋ s, thus
{v1, . . . , vr} ∈ H. Moreover, each edge {v1, . . . , vr} ∈ H is covered by a clique
C(s), where s ∈ Sv1 ∩ · · · ∩ Svr . Hence, θ̃1(H) ≤ θ1(H).

Conversely, let {C(s) : s ∈ S} be a clique cover of H indexed by some
(abstract) set S. For every vertex v ∈ V consider the set

Sv = {s ∈ S : v ∈ C(s)}.

Next, observe that {v1, . . . , vr} ∈ E if and only if there is some s ∈ S with
{v1, . . . , vr} ⊂ C(s). We will draw two consequences of this equivalence. First, if
{v1, . . . , vr} ∈ E, then there exists s ∈ Sv1 ∩ · · · ∩ Svr , implying that

Sv1 ∩ · · · ∩ Svr 6= ∅.

However, if {v1, . . . , vr} 6∈ E then {v1, . . . , vr} 6⊂ C(s) for all s ∈ S, which means
that Sv1 ∩ · · · ∩ Svr = ∅. Consequently, {Sv : v ∈ V } is a representation of H,
yielding θ1(H) ≤ θ̃1(H).


