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Abstract

We determine the order of magnitude of the minimum clique cover of the
edges of a binomial, r-uniform, random hypergraph G (n,p), p fixed. In
doing so, we combine the ideas from the proofs of the graph case (r = 2) in
Frieze and Reed [Covering the edges of a random graph by cliques, Combi-
natorica 15 (1995) 489-497] and Guo, Patten, Warnke [Prague dimension of
random graphs, manuscript submitted for publication].
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1. INTRODUCTION

For an r-uniform hypergraph (briefly, an r-graph) H = (V, E) and a set S, a
representation of H on S is an assignment of subsets S, C S, v € V, in such a
way that for each R € (‘7{) we have (,cp Sv # 0 if and only if R € E. To observe
that any r-graph admits such a representation, assign to each vertex v the set
{e: v €eec E} of all edges e containing v. Then, {v1,...,v,} € E if and only if

ﬂ;ﬂ Sy, # 0.
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Definition. The representation number 61(H) of H is the smallest cardinality
of a set S which admits a representation of H. Equivalently, 6;(H) is also the
smallest number of cliques needed to cover all edges of H (see Appendix for a
proof of the equivalence).

It is perhaps interesting to note (cf. [6]) that the maximum of 6, (H) over all
r-graphs H on n vertices equals the Turan number for the r-uniform clique 7E721
on r + 1 vertices which is unknown even for r = 3.

We determine a typical order of magnitude of the parameter 6; for a class
of large random r-graphs. Given integers n,r > 2, and a real 0 < p < 1, let
G (n,p) denote the random r-graph obtained by independent inclusion of each
r-set with probability p. In particular, the number of edges of G(") (n,p) is bi-
nomially distributed with expectation (Z) p. We say that a property of r-sets
P holds asymptotically almost surely, abbreviated to a.a.s., if the probability
Prob(G")(n,p) € P) — 1 as n — oo. Throughout the paper p remains indepen-
dent of n, while all logarithms are natural and denoted by log.

Theorem 1. For every integer v > 2 and a constant 0 < p < 1, there exist
positive constants ¢i and co such that a.a.s.

T T

n n
<0G (n,p)) < ca

" logn) 71 = (log )7/

The case r = 2 was proved by Frieze and Reed [3], and, in a stronger form,
by Guo, Patten, and Warnke [4]. Here we follow the ideas from there, some of
which have already originated in a paper by Alon, Kim, and Spencer [1]. The
lower bound follows immediately from the upper bound on the order of the largest
clique in G(")(n, p) (see below). Hence, in the remaining sections we focus on the
upper bound only.

Proof of the lower bound in Theorem 1. Recall that p and r are constants
independent of n. The expected number of cliques of order

ti= Rbgzll/mlog”)l/(r_ﬂ +r

(1)) < (5" < (Greven) = ot

t t

in G (n,p) is

as n — oo. Hence, a.a.s., there are no cliques of order ¢ (or higher). On the
other hand, by Chebyshev’s inequality, there are, a.a.s., at least %p(:f) edges in
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G (n,p). Therefore, a.a.s., one needs at least

1o o "
222;3()’”) > 5 (3) =2 (g

cliques to cover all edges of G(")(n, p). |

For the proof of the upper bound we now define a crucial notion. Let an
r-graph G on a vertex set V', two integers 0 < s < j < |V/|, and a set S € (‘s/) be
given. A subset J C V is called an (S, j)-clique in G if

e JDOS,|J|=j,and
e By :={f € (‘7{) : fNn(J\S) # 0} C E(G), that is, E(G) contains all
r-element subsets of J except those which are subsets of S.

Note that |E;| = (ﬁ) - (i) Moreover, for s = 0, an ((, j)-clique is just any copy

of the clique K](-T) in G, while for j < r every J € (‘j/), J 2 S, is a (trivial)
(S, j)-clique (with E; = 0).

2. AN EXPANDING PROPERTY OF RANDOM r-GRAPHS

Throughout the paper V is an n-vertex set of the random r-graph G (n,p).
Given s > r — 1, and a set S € (‘S/), let X(S) be the number of (S,s + 1)-
cliques in G((n, p). In other words, X (S) counts the common neighbors of all
(r — 1)-element subsets of S. Clearly,

(1) E(X(S)) = (n— s)p-1) = u(s).

The next lemma asserts that, for a wide range of s and for every s-element set S
of vertices there are roughly the same number of (S, s + 1)-cliques in G (n, p).
Let

k= L(@ log n)l/(r_l)J

for sufficiently small o > 0.
Claim 2. Let A be the event that for allr —1 <s<k—1and all S € (Z)

|X(S) = E(X(5)] < n”/PE(X(S)).
Then, Prob(A) =1 —o(1).

Proof. Note that u(s) is a decreasing function of s and, by the definition of k

above, (fjj) < (k—1)""! < alogn. Thus, for large n,

k—1
r—

(2) i(s) > plk —1) > (n/2)p1) > (n/2)pelosn > —p09

I

DO | —
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if only a’log(1/p) < 0.01.

Recall that, for every S € (‘5/), the random variable X (S) counts the number
of (S,s+ 1)-cliques and so, it is binomially distributed with expectation given
by (1). Thus, by Chernoff’s bound (see, e.g., [5], Corollary 2.3, Ineq. (2.9)),
assuming n is sufficiently large,

Prob(|X (S) — u(s)| > n~3u(s)) < 2exp{—n"3pu(s)/3} < exp{—n'/1},

where the last inequality follows from (2). Finally, by the union bound, summing
over all choices of s and S,

Prob(—A) < knF exp{—n'/*} = o(1). |

3. PROOF OF THEOREM 1

The upper bound in Theorem 1 will be a consequence of Claim 2 given in Section
2 and Lemma 4 to be stated below.

3.1. Notation

Before stating Lemma 4, we introduce a few parameters used therein. Very

roughly, the lemma will claim the existence of a sequence of r-graphs G, ..., Gy,
. r+1
19 = loglogn |,
r—1

which begins with the random r-graph Gy := G(") (n, p) and maintains throughout
certain properties. As the proof of Lemma 4 will reveal, each next graph Gy
will be derived from G; by a random deletion of cliques of order k;, where, for

sufficiently small o > 0,
b — {(alo.gn>1/(r—1)J |
)

(Note that k; = k defined earlier.)

In addition, some random edges of G; will be deleted as well. The random
procedure will be designed in such a way that the graphs G; will shrink at the
rate of 1/e, thus resembling random r-graphs G") (n, p;), where

pi =pe' .

The resemblance will be manifested by the behavior of the number of (S, j)-cliques
in GGy, which, for all 0 < s < j < k;, will be close to the quantity

(3) pils. ) = <7? - S)I,i(z;)—(:).

] —Ss
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Note that u;(s,j) is the expected number of (S, j)-cliques in a random r-graph
G(T) (nap’i)'

In particular, for s > r — 1, the quantity u1(s,s+ 1) = u(s) has been defined
in (1). Note also that

pit1(s,J) ()-(2)
4 —_— Y = 1 e [ r/,
Let us now prove some bounds on (s, j).

Claim 3. For all 1 < i < dg, all 0 < s < j < k;, sufficiently small o and
sufficiently large n,

i) =M

(b) (s, 5) > 0%,

i(s+1,5 —0.
(a) wi(s+1,5) 0.99.

, we have is"~! < alogn. Hence, for

1/(r—1
Proof. (a) Since s < k; < (@) /(r=1)

sufficiently small o and large n,
pils+1,5) _j=s (%) _

- %

Mi(‘s?j) n—s

S \w.

(@/p)"" < L(efpye

Z alogn
L (e/p)

<
<n —0.99

(b) By (a), ui(s,j) decreases with growing s. Thus, similarly to (a), since

ij" ! <k~ < alogn,

we have

- - : , (1= 1) n mhon alogn ~ . 0.99
pi(s:3) = pi(=1,4) = (n=j+1)p;"" > 5 (p/e'” by > 5 (p/e) > n?%,
for sufficiently small a. [ ]

Finally, as an important part of the forthcoming lemma is a sequence of r-
graphs Gi,...,Gj,, for given 0 < s < j < k; and S € (‘S/), we denote by N;(S,7)
the number of (S, j)-cliques in G;. Note that N;i(S,s + 1) is the deterministic
counterpart of the random variable X (S) appearing in Claim 2. In particular, if
Gp € A, then

(5) INL(S, s+ 1) — (5,5 + 1) < n 3 (s, s+ 1).

Note also that, for s = 0, N;(0, 7) is just the number of cliques of order j in Gj,
in particular, N;(0,r) = |G|, the number of edges of G;. (From now on, we will
denote the number of edges of an r-graph G by |G|.) Finally, notice that by a
comment at the end of Section 1 and by (3), for j < r,

) wi(s.d) = (127 ) = s
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3.2. Statement of Lemma 4 and proof of Theorem 1

Here we state a crucial, technical lemma from which Theorem 1 will follow. Out
of the three properties listed therein, the second one, Q;, is there just to facilitate
the proof. All parameters appearing in the statement have been defined in the
previous subsection.

Lemma 4. For every n-vertex r-graph G1 € A, where the event A is defined in
Claim 2, there exist a descending sequence of r-graphs

G1 DG2D - DGy
and an ascending sequence of families of cliques
D=CiCCC---CC
such that the three properties below hold.

(P;) For all 2 < i <ig, C; is a clique cover of G1 — G; and

ICi\Ci—1] < ———

(Qi) Foralll<i<ip, all0<s<k —1,andall S€(V),

(7) IN;(S, s + 1) — pi(s, s +1)| < in (s, s +1).
(R;) Forall1<i<ip, all0<s<j<k;, andall S € (V),

(8) INi(S,5) = pi(s, ) < 0~V pacs, ).

Note that for j = s + 1, property R; is overwritten by Q;. This is because,
1 <19 < %log logn and thus, for all n, the right-hand side of (7) is smaller
than the right-hand side of (8). Also, by (6), for j < r the left-hand side of (8)
equals 0. For the same reason, whenever s < r — 2, the left-hand side of (7)
equals 0. This means that in these cases properties Q; and R; hold trivially.

We defer the proof of Lemma 4 for later. Now, we give a short proof of
Theorem 1 based on Claim 2 and Lemma 4.

Proof of Theorem 1. By Claim 2, the random r-graph G; = G (n,p) a.a.s.
satisfies event A and so, we are in position to fix G; € A and apply Lemma 4.
Obviously, the union C of the clique cover C;, and the edge set of the graph Gj,
form a clique cover of Gy. Further, recalling that |G;,| = N;,(0,7), we have, by
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Pi, i =2,...,1p, and by R, applied only in one special case of S =0, j = r, and
1 =10,

io—1 io—1
€1 = 1Cal #1650l = 3 G \ Gl + Nig(0,) < 3 220 4 (1 ™40 0,7)
i=1 =1
] 2pnri£ n 2epn” > zé 2epn”
= ; et~1(alogn)r/(r=1) * 2<r>pi° = (alogn)r/(r=1) ; et * eto
2epCn” 2epn” ~ 2epC(1+o(1))n"

= (alogn) 7D T (alogm) /1 — (alogn) /-1

r

ir—1
where C' =37, “——. n

et

4. PREPARATIONS FOR THE PROOF OF LEMMA 4

First, we are going to show that property R; is, in some sense, redundant. Nev-
ertheless, we found it convenient to state it explicitly in Lemma 4.

4.1. ©Q; implies R;
This short subsection is devoted to proving the following implication.
Claim 5. For all 1 < i <y, if G; € Q;, then G; € R;

Proof. The key idea is to view (S, j)-cliques as a result of an iterative process of
vertex by vertex “extensions” of the set S (with all required edges present). Fix
0<s<j<k S=A{v,...,v5} € (‘s/) and let NV;(S, ) be the set of all (S, j)-
cliques in G;. Recall that N;(S,j) = |[N;(S, )], that is, N;(S, j) counts the number
of sets {vst1,...,v;} C V' \ S such that J = SU{vsq1,...,v;} is an (S, j)-clique
in G;. Similarly, we define N/(S,j) as the number of sequences (vsi1,...,v;) of
J — s distinct vertices in V' \ S such that, again, J = S U {vsy1,...,v;} is an
(S, j)-clique in G;. Equivalently,

Ni(S, ) = H(wst1, -+ v5)  SU{vsq1, .. v} € Ni(S, )}
We have, obviously,
(9) N;(S,j) = (j — $)IN(S, 7).

For all s+ 1 < ¢ < j and wvgyq,...,vs, by property Q; applied to the set
Sp =S U{vsi1,...,ve}, setting Vo = {vps1 : Se U{vep1} € Ni(Se, £+ 1)},

Vil = pa(s + €5 + 0+ 1)| < in Pui(s+ 6,5+ £+ 1).
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Note that, by definition (3) and the standard combinatorial identity 22;10 ( h )

— (),

Jj—1 Zj:l( h )
[T wih b+ 1) = (n = 8)oayp; "= = (5 — 8)lpa(s, 4).
h=s

Thus, observing that N/(S,j) = é;; |Ve|, we arrive at

j—s

(1- m*l/?’)j‘s G = 9)ils,7) < NI(S,9) < (1+in72) 7 G = )G, ).

Comparing with (9) and canceling (j — s)! sidewise, this yields
(1= )" s, ) < Ni(S.) < (1 in )" s, ).
Finally, as (j — s)in™"/3 < k;(io + 1)n~'/3 = o(n=1/*), we conclude that

INi(S,5) — pi(s,5)| < =Y 4(s, 5)

which means that G;, indeed, satisfies property R;. [

4.2. A random procedure

We intend to prove Lemma 4 by induction on . Suppose that for some 1 < i <
ip — 1, a graph G; and a clique cover C; of G — G; satisfy properties P;, O;,
and R;. To obtain (G;41,Cit+1), we apply a random procedure during which we
simultaneously select

e /C; — a random collection of cliques in G; of order k;, each chosen indepen-
dently with probability

1
(1 + n_1/4)ui(r, kiz)

(10) qi =

and
e & — a random collection of edges f € G;, viewed as r-vertex cliques, each f
chosen independently with probability

(11) G r=1—(1- g;) T ki) =Ni(f ki)

Then, we set
e Ciy1 :=CUK;UE;, and

e Git1=G;— (UK;UE), where | JK; is the set of edges covered by the union
of cliques in ;.
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(The idea of using such a random procedure has appeared in a similar context
already in [1].)

The selections of IC; and &; are performed simultaneously, that is, indepen-
dently of each other. Note also that the exponent in (11) is, due to property
R;, nonnegative. Finally, observe that for an edge f € G;, the probability that
f € Giy1 equals

1

(F V40 (r ke
(1= g) MR (1 —gi p) = (1= g) T mE)

which explains the definition of p; given earlier.

4.3. R,; implies P;41

The following result is the first ingredient of the forthcoming probabilistic proof
of Lemma 4.

Claim 6. For all 1 <1i <ig—1, if G; € R;, then, with probability at least 0.49,
the pair (Giy1,Cit1) satisfies property Piiq.

Proof. Recall that, by the random procedure described in Subsection 4.2,
(12) Cir1\Ci=K;U&,

where K; is a collection of k;-cliques and &; is a collection of edges selected
randomly and independently from Gj.

As each k;-clique is drawn with the same probability ¢;, the quantity |KC;| is
binomially distributed with expectation E|C;| = N;(0, k;) x ¢;. This, for large n
can be estimated, using property R;, the definition (3) of w;(s,j), and the di-
vergence k; — oo as n — oo (cf. definitions of k; and iy in Subsection 3.1), as
follows:

Ni(0, ki) 1i(0,ki) _ (n),

E[K| = Ni(0, k) x ¢; = = (k)
il (0.k:) x ¢ (Ut n (k) — gl k) (ki)

< <kl_nr+1> pi = (1 +0(1))(n/ki)"pi < 1.01(n/k;)"p;.

Similarly, quantity |&;| has a general binomial distribution with

(13) El&| = gy

fea;

For f € G;, by property R; and Bernoulli’s inequality, we have

(14) Gip <1— (1= g)2 k) < op =14 (r ky)gs < 2 V4,
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Consequently, bounding crudely |G;| < n", by (13) and (14),
E|&| <n” x 2n~ Y4 = O(n""4).

Further, observe that by the definitions of p;, k;, and i,

T ir io kT r v r
ul < ek < ki _ 0 ((logn)ﬁJ“ﬁ) =0 ((logn)zrjf) .
Di pe pe

Thus, E|&| = O(n" /%) = o ((n/k;)"p;), and, by (12), we have

E’CZ‘_;,_l \Cz‘ = E|]CZ‘ + E’gZ’ < (1.01 + 0(1))(n/ki)rpi.
Finally, by Markov’s inequality,
PrOb(|Ci+1 \Cz‘ > Q(H/ki)rpi) < 0.51.

It means that property P;11 holds for (G;y1,Ci+1) with probability at least 0.49.
|

5. PROOF OF LEMMA 4

We are going to show the existence of sequences G; D G2 D --- D G, and
) =C CCyC - CCy satisfying properties P;, Q;, and R;, by induction on
i=1,... 4.

Let us begin with the base case i = 1. For a fixed G; € A, property Q1
follows from Claim 2 (cf. (5)), while property R; is implied by Qi, as shown in
Claim 5.

Assuming now that for some ¢ > 1 a pair (G;, C;) satisfies properties P; (only
for i > 2), Q;, and R;. We are going to show that with positive probability
the pair (G;+1,Cit1), chosen randomly according to the procedure described in
Subsection 4.2, satisfies P11, Qit1, and R;41, and thus, such a pair exists.

By Claim 5, property Q;;1 implies property R;i+1. Moreover, by Claim 6,
property P;y1 holds for (Git1,Ciy1) with probability at least 0.49. Thus, it
suffices to prove that G, satisfies property Q; 1 with probability strictly greater
than 0.51. In fact, the latter probability will turn out to be 1 — o(1).

We begin with estimating the expectation of

X = Nij11(S,s + 1)
the (random) number of (S, s + 1)-cliques in G;;.

Claim 7. For all1 <i<ig—1, if G; € O;, then, for allr —1 < s < k;, and all
se(y).
IEX — piiv1(s,s +1)] < (i +0.5)n Y 3puip1(s, s +1).
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Proof. Fixr—1 < s < k;and S € (S) and recall our notation E; for the set
of all edges of an (5, j)-clique J and N;(S, j) for the family of all (.5, j)-cliques in
G;. By linearity of expectation,

(15) EX= ) Prob(E; CGis).
JEN;(S,s+1)

To estimate Prob(E; C Gj+1), observe that an (S, s+ 1)-clique J of G; “survives”
into G441 if none of its edges was selected to & or belonged to some k;-clique
selected to KC;. The probability of the former event is ] fe EJ(l — gi,f), while the

probability of the latter event is (1 — ¢;)/!, where U := User, Ni(f, ki). Set

= |U|— Z Ni(f, ki) and mg = (1+n" Y u(r, k)| Eyl.
fEE,

Then, using (11), we infer that

(16) Prob(E; C Gip1) = (1 — ¢;)! H (1—qif) = (1—g)m™+m.
fEEy

Next, we separately find lower and upper bounds on (1—¢;)™* and (1—¢;)™2
By Bonferroni’s inequality, property R; (which follows from Q;, see Claim 5), and
the monotonicity of y;(t, k;) as a function of ¢ (see Claim 3(a)), the quantity —m;
can be bounded as follows:

0<-mi< > NlgUhk)< > (1+n")ui(lgUhl ki)

g’hEEJ’g#h gvheEng7éh
(17) < N QY+ k) < ESP( 4 n a(r + 1 k).
g’hEEJ’g#h

(Above, we maximized p;(|gUh|, k;) by minimizing |gUh| which achieves minimum
at r + 1.) Note that

(18) |E,| = (T ° 1) < k"' =0(logn).
Consequently, by Claim 3(a) and the definition (10) of ¢;,

1<(1—g)™ <exp {qi!EJ\z (1 + n_1/4) pi(r + 1, ki)}
(19)

= eXp{‘ J‘:((:Z-) ; )} <" exp {|ESPn09) =1+ 0 (n~09) .
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Further, by Claim 3(b), (10), and (18),

O(logn) < 2799 (logn) = o (n0%) ,

ailE| ) _
g S 20| Ey| = (1 + n—1/4) wi(r ki) —

This implies that

e 1Bl > (1 - ¢;)™ > exp {—'EJ| } > e~ IB] <1 - q¢|EJ|>

> e*IEJ| (1 _ 0(n70.98)) _
Thus, by (16), (19), and (20),
(21) (1 —0(n®9%)) e 1Bl < Prob(E; € Giz1) < (1 + o(n™9)) e~ 1B,

Recall that, by property Q;, N;(S,s+1) < (1+in""/3)u;(s, s+ 1), while, by (4),
wi(s, s+ 1)6_(’“i1) = pi+1(s,s+1). Thus, using also (15) and (21), and recalling
that [E;| = (,°,), we finally have

EX < N;i(S,s+1)(1+ O(n—0.98)) e ()
< (1+ o(n_o‘gg)) (14 in Y3 (s, s + 1)6_(T'i1)

—
N
=

(1+ o(n_o‘gg)) (1 + in_1/3) fit1(s,s+ 1)

< (1 b+ 0.5)n—1/3> fis1(s,s + 1)

and, similarly, EX > (1 — (i + 0.5)n"Y3) 41 (s, s + 1). ]

In view of the above claim, to establish property Q;+1 of G;y1, it remains
to show that X is concentrated around its expectation with probability very
close to 1. In doing so, similarly to [4], we will utilize the following Azuma-type
concentration inequality which can be deduced from [7], Theorem 3.8 (see also
[8], Corollary 1.4).

Lemma 8. Let Xi,..., Xy be 0-1 independent random wvariables and let f :
{0, 1}M] 5 R satisfy Lipschitz condition (L) with constants c1,...,cu:

(L) for all (z1,...,2zn) € {0, 13 M and (2],...,2,,) € {0,1} M and all
1<m< M,

If(21,- - 2nm) — fF(2h, . 20)| < cm,  whenever z, = 2}, for all h # m.
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Set
M
X=f(Xy,....Xm), W zmzlcglProb(Xm =1), and C= | nax, cm.
Then, for everyt >0,
2
Prob(|X—EX|2t)§2exp{—2(VV+Ct)}. .

Now, we are ready to provide the last ingredient of the proof of Lemma 4.
Claim 9. For all1 <i<iy—1, if G; € Q;, then, a.a.s., Gi11 € Qjy1.

Proof. Fixr—1<s<k;and S € (‘8/), and notice that if J is an (5, s+ 1)-clique
in G,41, then it must have also been an (S, s + 1)-clique in G;, whose all edges
“survived” the random procedure described in Subsection 4.2.

Recall that NV; (0, k;) denotes the set of all k;-cliques in G; and that N;(0, k;) =
IN: (0, k;)|. We set My = N;(0,k;) and N;(0,k;) = {K1,...,Kny b Let X,

m =1,..., Mj, be the indicator random variable which equals 1 if K, € K; and
0 otherwise. Similarly, set My = |G;| and G; = {f1,..., fa,}, and denote by
Y, m = 1,..., M, the indicator random variable equal to 1 if f,, € & and 0
otherwise.

As the events K,, € K;, m = 1,...,Mq, and f,, € &, m = 1,..., Mo,
fully determine the number of (S, s)-cliques left in G;y;, there exists a function
f {0, 1} MAMz] s R Csuch that

X :NZ’+1(S,S+1) :f(Xl,...,XMl,Yl,...,YM2).

The explicit form of function f is not important for us.
As we are aiming at applying Lemma 8 to X, we need to find constants for
which the Lipschitz condition (L) holds and then estimate W. Set

cm:maX’f(xlw"alevyla"'7yM2)_f(xlh"'a"'7'7’{/\/[17y17"'7yM2)‘7

where the maximum is taken over all (z1,...,zap), (27,...,2,) € {0, 1}[M]
and (y1,...,yu,) € {0, 1}2] such that x), = z), for all h # m. Similarly, we set

dm:maX|f($17"'7$M17yla“'7yM2)_f($17'"a"'vapyi"")y;WQ”)

where the maximum is taken over all (z1,...,za) € {0, 1} M and (y1,...,y10),
(Y1, -5 Yh,) € 10, 1}M2] guch that yj, = y), for all h # m. In other words, ¢,
and d,, are, respectively, upper bounds on the change of X due to flipping the
outcome of the event K, € K;, respectively, f., € &;.



14 V. RODL AND A. RUCINSKI

Now we estimate the Lipschitz parameters ¢, and d,, taking into account
the position of K,, and f,, with respect to the given set S. We begin with d,,, as
this case is easier. As an edge of G; may belong to at most one (5, s + 1)-clique
J, the values of X = N;11(S,s+ 1) for G;+1 with or without the edge f,, may
differ by at most one. Thus,

(22) d <1

forallm=1,..., Ms.
On the other hand, since |J| = s+ 1, any such J contains exactly (Tfl) edges
of G;, so there are altogether

(23) N;(S,s+1) x ( s 1> < Ni(S, s+ 1)kt
edges fm,, € G; whose removal could affect X = N;y1(S,s + 1). Thus, for that
many edges we put d,, = 1, while for all other edges d,, = 0.

Turning to ¢, by the same token, very crudely, for all m =1,..., M,

k;
(24) em < | Kp| = ( ) <k,
T

as every edge of K,, may belong to at most one (S, s + 1)-clique J.

Moreover, ¢, > 0 only if K, contains at least one edge of some (S5,s + 1)-
clique of G;. There are N;(S,s + 1) such (S,s + 1)-cliques and each contains
(ril) edges. In turn, by property R;, each edge f is contained in N;(f,k;) <
(1+ n71/4)u2-(r, k;) k;-cliques of G;. Hence, there are at most

(25) Ni(S,S-i-l) X < y 1) xmaxNi(f, kz) < NZ‘(S,S-F 1)kT*1(1+n*1/4)m(7’, kl)
r—

feaq;

cliques K, in G; which share an edge with some (S, s + 1)-clique. This implies
that for at most that many indices m € [M;] we have ¢, > 0.

Putting (22)—(25) together, one can bound the parameter W appearing in
Lemma 8, using again property R;, the definition (10) of ¢;, and the estimate
(14) of g; ¢, as follows.

(26)

oL 2 o 2 (14) r—1 ~1/4 2
W=> cha+ > dogis < Ni(S,s+DE 140" )pi(r ki) x k7 x g
m=1 m=1

(10) Ri
+ Ni(S, s+1) k" Ix12x2n 7Y < (140(1)) Ny (S, s+1)ET ™1 < (s, s+1)E
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Recall that, by definition (3), pi(s,s +1) = (n — s)pi(“l)

(4), piv1(s,s+1) = ef(ril)ui(s,s + 1) < (s, s+ 1). Moreover, by Claim 3(b)
applied with i+ 1, pir1(s,s+1) > n?9. Putting all these facts together, we have

< n, while, by equality

(27) n%9 < (s, 54+ 1) < pi(s, s+ 1) < n.
Thus, in view of (26), by Lemma 8 with

1 _
t= 3N V3 pii(s,s4+1) and C= max{lgrrrllgzc\/[l Crms 1§rrnn%)§\/12 dm} < k",

noting that Ct = o (u;(s, s + 1)k*") and taking n sufficiently large,

in*2/3/ﬁ+1(37 s+1)
2(pi(s, s + 1)k3 + Ct)

2 1.98
pip1(8,5+1) (27) n 0.3
< — < V< —nY
2exp { Opia(s, 5 1)n2/3k:37" 2 exp 57318 exp{ n } .

Prob(X —EX >1t) < 2exp {—

In view of the above and using Claim 7 and the union bound, a.a.s., for all s and
se(l),

X =Nis1(S,s+1) <EX +t < (1 +(i+05)n"3 + 0.5n*1/3) piv1(s,s+1)
< (14 G+ 1007 pisa (s s+ 1)

and, similarly, X > (1— (i + 1)n=3) pi41(s, s + 1), which completes the proof
of Claim 9. m
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APPENDIX

The following folklore result was observed by many authors for graphs (r = 2)
but there seems to be no published proof of the general case. Here we fill that

gap.

Fact 1. Let H be an r-graph and let 01 (H) and 0,(H) stand, respectively, for its
representation number and minimum (edge) clique cover number. Then 01(H) =

01(H).
For the proof we need a simple observation.

Observation. Let H = (V, E) be an r-graph and let S = {S, C S:v eV} bea
representation of H with the smallest set S. Then every element s € S belongs
to at least r sets in S.

Proof. Suppose there is an s € S belonging to fewer than r sets in S. Then
Ss = {Sy \ {s} : v € V} would also be a representation of H which contradicts
the minimality of S. Indeed, for such an s and any R with |R| = r,

ﬂ Sy # 0 if and only if m (Su \ {s}) #0.

vER VER |
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Proof of Fact 1. Let S = {S, C S : v € V} be a minimum representation of H,
that is, a representation of size |S| = 61(H). By the above Observation, for each
s € S the set C(s) = {v:s € S,} has size |C(s)| > r. What is more important,
C(s) is a clique in H. Indeed, if {v1,...,v,} C C(s), then S,,, N---NS,, > s, thus
{v1,...,v.} € H. Moreover, each edge {v1,...,v.} € H is covered by a clique
C(s), where s € Sy, N ---NS,,. Hence, 6, (H) < 6,(H).

Conversely, let {C(s) : s € S} be a clique cover of H indexed by some
(abstract) set S. For every vertex v € V consider the set

Sy={se€S:vel(s)}

Next, observe that {vi,...,v,} € E if and only if there is some s € S with
{v1,...,v,} C C(s). We will draw two consequences of this equivalence. First, if
{v1,...,v,} € E, then there exists s € S,,, N---NS,,, implying that

Sy N---N Sy, #0.

However, if {vy,...,v,} € E then {v1,...,v,} ¢ C(s) for all s € S, which means
that Sy, N---N Sy, = 0. Consequently, {S, : v € V} is a representation of H,
yielding 6, (H) < 61(H). |



