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THE BIGGER PICTURE Our article introduces a universal predictive framework for point defect formation
energies and charge transition levels in a wide chemical space of zinc blende semiconductors and possible
impurity atoms selected from across the periodic table. This framework was developed by leveraging high-
throughput quantum mechanical simulations benchmarked using some experimental data from the litera-
ture, as well as machine learning (ML)-based regressions techniques that map unique materials descriptors
to computed defect properties and yield optimized and generalizable models. The power and utility of these
models is revealed through quick predictions for thousands of new defects and screening of low-energy
impurities, which may tune the equilibrium conductivity in the semiconductor. This work presents, to our
knowledge, the largest density functional theory (DFT) dataset of defect properties in semiconductors
and the largest DFT+ML-based screening of point defects in semiconductors to date.

oe 3 oe Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems

SUMMARY

We develop a framework powered by machine learning (ML) and high-throughput density functional theory
(DFT) computations for the prediction and screening of functional impurities in groups IV, 1lI-V, and 1I-VI zinc
blende semiconductors. Elements spanning the length and breadth of the periodic table are considered as
impurity atoms at the cation, anion, or interstitial sites in supercells of 34 candidate semiconductors, leading
to a chemical space of approximately 12,000 points, 10% of which are used to generate a DFT dataset of
charge dependent defect formation energies. Descriptors based on tabulated elemental properties, defect
coordination environment, and relevant semiconductor properties are used to train ML regression models
for the DFT computed neutral state formation energies and charge transition levels of impurities. Optimized
kernel ridge, Gaussian process, random forest, and neural network regression models are applied to screen
impurities with lower formation energy than dominant native defects in all compounds.

INTRODUCTION conductor properties is the introduction of dopants or impurities,
i.e., guest atoms at a cation, anion, or interstitial site. Such
Compositional manipulation of semiconductors is one of the pri-  impurities, even in a very dilute concentration, can potentially

mary methods used to obtain optimal properties.’® Apart from  cause major changes in the electronic structure and physical
alloying, the primary means for compositional control of semi-  properties of the material.” ' A complete understanding of a
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semiconductor’s optoelectronic behavior requires estimating
the formation energies of point defects, whether accidental or
intentionally introduced.®"""2

While approximately 90% of solar cells still rely on crystalline Si
as the absorber, related group IV semiconductors such as SiC, II-
VI semiconductors such as CdTe, lll-V semiconductors such as
GaAs, and various derivative compounds are all viable as photo-
voltaic (PV) materials and are currently in use in single terminal as
well as tandem solar cells.>'*"'” Many of these compounds have
also been used in transistors, photodiodes, lasers, and qubits or
quantum sensors. The chemical space of binary group IV, IlI-V,
and II-VI semiconductors contains compounds that exist in the
cubic zinc blende (ZB) or wurtzite crystal structures and show sys-
tematic trends in lattice constants, electronic band gaps, optical
absorption coefficients, and defect properties.'® Alloying in these
spaces has frequently been used for tuning properties and perfor-
mance, with some prominent examples including the use of
CdSeTe in solar cells'*?° and AlGaAs in light-emitting diodes.?"?

Although the structure and optoelectronic properties of binary,
ternary, and even quaternary compounds in the group IV, IlI-V,
and II-VI semiconductor space have been widely studied both
computationally and experimentally,**"'>'® a comprehensive
understanding of the formation likelihood and electronic levels
of point defects and impurities is missing. A look at functional
atomic defects in semiconductors reveals that the energy levels
created inside the band gap can (a) reduce PV efficiency via non-
radiative recombination of charge carriers, (b) enable sub-gap
absorption or emission if the levels are partially filled or if they
have low photoionization energies, and (c) enable quantum
computing, quantum sensing, and quantum communication via
their nuclear or electronic spins. A universal prediction frame-
work for impurity behavior in known and novel semiconductor
spaces is thus paramount.’? Given such a framework for group
IV, -V, and 1I-VI semiconductors, it would be possible to
perform high-throughput screening of impurity atoms from
across the periodic table in terms of their energetics relative to
dominant native defects (such as vacancies and self-intersti-
tials), the nature of equilibrium conductivity, and the location of
energy levels with respect to band edges.

For years, defect levels and their donor or acceptor type na-
ture have been experimentally measured using methods such
as deep level transient spectroscopy and cathodolumines-
cence,”>?* but such studies have been limited by difficulties in
sample preparation and assigning measured levels to specific
vacancies, interstitials, substitutions, or complex defects.
Computationally, the first principles density functional theory
(DFT) has been widely used to predict the formation energies
of point defects as a function of the net charge in the system,
the chemical potential conditions, and the Fermi level as it
goes from the valence band maximum (VBM) to the conduction
band minimum (CBM).>® 11225 \When an appropriate level of
theory is applied, the DFT-computed defect charge transition
levels have been seen to match well with measured levels and
have helped to identify specific charge transitions of specific de-
fects. DFT can reliably predict defect and impurity behavior in a
variety of semiconductors, but limitations arise from the compu-
tational expense of using large supercells and performing
charged calculations,'? making it difficult to extend calculations
to explore new systems broadly.
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Predictive machine learning (ML) models, trained from
existing or freshly generated data, act as surrogates for DFT
calculations by providing statistical estimates of the desired
properties.'>?°?® The burgeoning field of materials informatics
has led to many successes, with some of the most notable
contributions resulting from the combination of first principle
computations and ML. ML applied on DFT data has seen the
development of predictive and design tools®*'; the discovery
of novel materials for batteries, capacitors, solar cells, and ther-
moelectrics®*>%; and the efficient exploration of extremely large
chemical spaces.*”*® Indeed, ML has been instrumental in accel-
erating the prediction of properties related to point defects and
dopants in materials. This includes predicting vacancy formation
and substitutional energies of oxides using regression algorithms
applied on DFT data,***? ML formation energies, transition levels,
and the migration energies of point defects in known semiconduc-
tors and alloys,**** predicting the dopability of semiconductors,*®
and improving high-fidelity predictions of point defect properties
using previously unknown correlations.*® Recent work from our
group involved performing high-throughput DFT computations
to study the formation energies and charge transition levels of im-
purities in halide perovskites® and Cd-chalcogenides, ' following
which ML models were trained for the prediction and screening of
impurity atoms that can shift the equilibrium Fermi level as deter-
mined by dominant native defects. An extension of these studies
in terms of semiconductor and impurity chemical spaces as well
as ML techniques can pave the path toward a universal framework
for impurity prediction and design.

In this work, we consider atomic impurities from across the pe-
riodic table, in a chemical space of binary group IV, llI-V, and [I-VI
semiconductors in the ZB structure, and use the DFT + ML meth-
odology to predict their complete charge, chemical potential, and
Fermi level-dependent formation energies. This is a direct exten-
sion of our work on Cd-chalcogenides,'? which forms a subset of
the computational data presented here. We perform high-
throughput DFT computations on impurity atoms simulated at
the cation, anion, and different interstitial sites in several selected
compounds in the group IV (e.g., Si, SiC, and GeC), llI-V (e.g.,
BSb, GaAs, and InP), and II-VI (e.g., ZnSe and CdS) chemical
space and use descriptors encoding information about the semi-
conductor, the impurity atom, and the defect site coordination
environment as input to train ML models that predict the neutral
state formation energy and six types of charge transition levels
for any possible impurity. We used sure independence screening
and sparsifying operator (SISSO) for feature selection and the
K-nearest neighbors (KNN) approach for outlier detection, fol-
lowed by regression techniques such as random forest, Gaussian
process, and neural network to yield the predictive models.

In the following sections, we discuss the exact composition of
the chemical space and visualize the DFT computed data, also
plotting the Fermi level-dependent formation energies of native
defects and impurities for selected compounds. We then delve
deep into the development of the ML framework, explaining
the descriptor choices, methods of feature selection, outlier
exclusion, and the various regression techniques used. We
compare the performances of different models using root
mean square errors (RMSE) and estimate the uncertainties in
prediction for each technique. The best models thus obtained
are used to make predictions for the entire chemical space,
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only approximately 10% of which was used to generate the DFT
data, and make a list of dominating impurities for each com-
pound. We finish with a perspective on what can be accom-
plished using this design framework, the limitations of this
work, and potential next steps. The workflow adopted here is
laid out in Figure 1A, highlighting data generation, feature selec-
tion, regression model development, and high-throughput
screening. The DFT data and ML codes generated through this
work are made available on Github.

RESULTS

Semiconductor and impurity chemical space

The chemical space considered in this work has been pictured in
Figure 1 in terms of the semiconductor compounds (b), possible
defect sites (c), and impurity atoms (d). We include AB semicon-
ductors (with A broadly defined as the cation and B the anion)
belonging to groups II-VI, -V and IV-IV, leading to 8 group II-
VI compounds (CdO, CdS, CdSe, CdTe, ZnO, ZnS, ZnSe, and
ZnTe), 16 group llI-V compounds (BN, BP, BAs, BSb, AIN, AIP,
AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, and InSb),
and 10 group IV compounds (C, Si, Ge, Sn, SiC, GeC, SnC,
SiGe, SiSn, and GeSn). The resulting 34 compounds are

== impurities with or without
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Figure 1. Outline and chemical space

(A-D) (A) The DFT-ML workflow followed in this
work, and the semiconductor-impurity chemical
space in terms of (B) the cation and anion choices
for group IV, II-VI, and llI-V compounds, (C) types of
defect sites, and (D) impurity atoms selected from
across the periodic table.

Data formatted

=P appropriately to be read

by ML algorithms

Primary features >
compound features 2>
eliminate uncorrelated
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Train-test split + HP
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validation + uncertainties

using Bootstrapping modeled in the cubic ZB structure, with A

atoms occupying an FCC lattice and B
atoms occupying the tetrahedral sites.
The DFT-computed lattice constants and
band gaps (using different levels of theory)
of all the compounds are listed in Table S1,
along with corresponding experimental

ML screened low energy
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B i C :

Semiconductors Dofect Sltos measurements collected from the litera-

vt i = M . Ms ,  ture.ltcanbeseenthat, although the cubic

| | ] \ | | | b lattice constants are reasonably accurate,

o 9 B Iy g G . the standard generalized gradient approx-
Zn S Al P Si Si }/" . .

5o Ga | A o e imation-Perdew-Burke-Ernzerhof  (GGA-

Te In Sb Sn Sn o R PBE) functional underestimates the band

gap, as has been well demonstrated in

the past.”’*° Band gaps computed for

\3 some compounds using the hybrid

HSEOQ6 functional, with and without spin-

orbit coupling (SOC), compare better with
experiments.

In any AB compound in the ZB structure,

defects or impurities could be found at the

A site, B site, or several possible symmet-

rically inequivalent interstitial sites. Figure 1

also shows the defect sites considered in

this work, namely, the A and B sites and

three types of interstitial sites: the A site

interstitial (with 4 neighboring A atoms),

the B site interstitial (with 4 neighboring B atoms), and the neutral

site interstitial (with 3 neighboring A and B atoms each). The 5

defect sites are considered in the 30 binary compounds while

in the remaining 4 elemental systems (C, Si, Ge, and Sn), 3 defect

sites are considered (A site, A site interstitial, and neutral site

interstitial). For a few defects, we also tested other possible inter-

stitial sites in the ZB structure, such as anion/cation-split sites

(as described in the literature”), and generally found one of the

three chosen interstitial sites to be lower in energy. In terms of

impurity atoms, we consider nearly all elements from periods I

to VI as well as all lanthanides, leading to a total of 77 species,

as pictured in Figure 1. The total number of possible impurities

in this chemical space can thus be estimated as: 77 x 5 x

30+ 77 X 3 x 4=12,474. Out of these 12,474 data points, about

10% are considered for DFT computations to determine their

neutral state formation energies, and charge transition levels;

ML models trained on these data based on the properties of

the semiconductor compound, defect site coordination, and im-

purity atom lead to generalized predictions applicable to all the

data points. The 10% of data points chosen for computations

constituted a desirable diversity in semiconductor type, element

type, and defect site type; in other words, while the actual data

points were selected at random (and added to prior data'?),
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Figure 2. Comparison of DFT-computed defect levels with experi-
mentally measured levels

(Obtained from publications®'~°%). Measured versus DFT RMSE values are also
shown for different semiconductor types and for the combined set of points. A
few defect levels have been labeled.

we ensured that every compound (out of 34), element (out of 77),
and defect site (substitutional or interstitial) is roughly equally
represented, with the exception of CdTe, which is heavily
represented.

Defect properties: Benchmarking DFT and native defect
energy picture

The methodology to compute defect formation energy (E") from
DFT as a function of charge (qg), chemical potential («) conditions,
and Fermi level (Ef) is described in the Experimental procedures
section. Ultimately, for all native defects and impurities, we
calculate neutral state formation energies at two extreme u con-
ditions, namely A-rich and B-rich, and six types of defect charge
transition levels, namely +3/+2, +2/+1, +1/0, 0/-1, —1/-2, and
—2/-8. An experimental comparison of defect properties
computed at the chosen level of theory is worthwhile before
launching a computational data-driven discovery exercise.

As noted earlier, the standard GGA-PBE functional used in this
work is known to underestimate band gaps, but it has been re-
ported that defect charge transition levels from PBE can
compare well with experiments for various semiconductor clas-
ses such as hybrid perovskites®'° and even group IV, Ill-V, and
[I-VI semiconductors.' "?>%%°0 This contrast can be attributed to
total energy differences in DFT being more accurate than using
Kohn-Sham energy levels to estimate band edges''?**° or
band gaps,® or in the case of hybrid perovskites, a fortuitous
cancellation of errors that leads to PBE being as accurate as
HSE06+SOC.%"° It has been reported in past work that defect
levels computed from semilocal GGA-PBE for well-known ZB
semiconductors such as Si and GaAs can span the physical
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band gap of the material®>°°; that is, the defect transition levels
calculated from PBE correspond well with experimental values
up to the experimental band gap, even for transitions that are
further from the VBM than the PBE-calculated band gap. To
ascertain the accuracy of PBE defect and impuirity levels in all
II-VI, 1lI-V, and IV-IV compounds, we scoured the published
literature®'~®® (in a brute force manner, something we hope to
replace with more efficient and comprehensive natural language
processing-based searches in the future®”°®) and collected
measured energy levels for 84 defects across the 34 com-
pounds, adding to the set of 15 points collected for CdTe in
ref'2 As presented in Figure 2 and Table S2, the PBE predicted
defect levels are highly correlated with experimental measure-
ments, with a correlation coefficient (R% of 0.85. We find that
the RMSE of PBE predictions compared with experiments is
less than 0.2 eV for IlI-V and IV-IV compounds, and 0.24 eV
for [I-VI compounds, resulting in a total RMSE of approximately
0.21 eV. This is an acceptable level of accuracy that is similar to
what we found in earlier work, 2and is within the recognized ac-
curacy limit of DFT electronic levels; a similar ML versus DFT ac-
curacy would be desired for eventual prediction and screening to
be performed with some degree of experimental precision. To
our knowledge, this is the largest comparison performed to
date between DFT computed defect levels and experimental
measurements.

Before discussing the computational dataset of impurity for-
mation energies and charge transition levels, we take a look at
the complete picture of native point defect formation energies
as a function of g, u, and Er. In each of the 34 semiconductors,
we performed neutral and charged DFT calculations for all
possible vacancy, interstitial, and anti-site substitutional defects.
It should be noted that all interstitial and substitutional native de-
fects are made a part of the impurity DFT data for ML but va-
cancies are not, as in the current ML framework, many descriptor
dimensions are made up of properties of the atom occupying the
defect site. In Figure 3, we plotted the computed formation en-
ergies as a function of Fermi level (as it goes from the VBM to
the CBM) for all native point defects and selected impurities in
(@) ZnSe at Se-rich conditions, (b) AlAs at As-rich conditions,
and (c) SiC at Si-rich conditions.

From Figure 3, we can deduce the lowest energy donor and
acceptor type native defects, their preferred charged states in-
side the band gap, the p-type or n-type nature of equilibrium
conductivity, and the energetics of impurities relative to domi-
nant native defects. For instance, in ZnSe at Se-rich conditions,
the Vz, and Zn; are the dominant acceptor and donor type de-
fects respectively, and pin the equilibrium Eg (determined by
applying charge neutrality conditions®®) closer to the valence
band edge, indicating a p-type conductivity. It can be seen
that impurities Ptz, and Cl; create higher energy negatively
charged defects in the band gap than the Vz,, meaning they
cannot compensate for native defects. Similarly, the V5 and
Asp form the lowest energy acceptor and donor type defects
in AlAs at As-rich conditions and pin the equilibrium Er around
the middle of the band gap, resulting in an intrinsic type conduc-
tivity, while impurities Tlas and C; are both higher energy defects.
In SiC at Si-rich conditions, the V¢ and Cg; are the lowest energy
donor and acceptor type defects and lead to intrinsic conductiv-
ity. Also marked in Figures 3A-3C are some neutral state
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Figure 3. Charge- and Fermi-level-dependent formation energy picture

(A-C) Computed formation energies of native defects (solid lines) and selected impurities (dashed lines) in (A) ZnSe under Se-rich conditions, (B) AlAs under As-
rich conditions, and (C) SiC under Si-rich conditions, as a function of the Fermi level as it goes from the VBM (E£ = 0 eV) to the CBM (E£ = experimental band gap).
The intersection point of the dominant donor and acceptor type native defects (shown using extended dotted colored lines) approximately gives the equilibrium
defect formation energy, and the vertical dotted lines show the equilibrium Fermi level. Some charge transition levels and neutral state formation energies have

been labeled.

formation energies, AH, and some charge transition levels, e(q4/
Qo). In Tables S3 and S4, we list the dominating acceptor and
donor type defects, and the equilibrium Eg, E’, and type of con-
ductivity in every compound at A-rich and B-rich chemical po-
tential conditions; all impurity formation energies will be
compared against these defects to determine whether they are
dominating or not, and how they might change the equilibrium
conductivity.

Computational dataset

Building on the dataset of impurity properties in Cd-chalcogen-
ides from our previous work'? and the native defects presented
in the previous section, we performed additional impurity calcu-
lations for randomly selected impurity atoms across the space of
34 group IV, llI-V, and II-VI semiconductors. For any defect or
impurity, what is ultimately desired is a complete picture of the
formation energy as a function of the charge, Fermi level, and
chemical potential, as shown in Figure 3. We explicitly consid-
ered two types of predictable properties that can yield the entire
formation energy picture, namely, the neutral state formation en-
ergy (AH [A-rich] or AH [B-rich]) and possible charge transition
levels (e(+3/+2), e(+2/+1), e(+1/0), €(0/-1), e(—1/-2) and g(—2/
—3)). Out of a total chemical space of 12,474 impurity types,
we computed using DFT (a) 1568 AH values at either chemical
potential condition and (b) 1004 €(q+/qy) values for all six charge
transition types. We then trained eight separate ML models for
AH (A-rich), AH (B-rich), and transition levels from (+3/+2) to
e(—2/-3).

In Figure S1, the distributions of semiconductor types (II-VI,
-V, or IV-IV) and impurity types (A site, B site, or interstitial
site) are pictured for the entire chemical space and for the two
DFT datasets. It can be seen that, based on the chemical space
we selected, almost one-half of the data points belong to IlI-V
semiconductors and one-quarter of the points each belong to
II-VI and IV-1V; this is, however, not reflected in the DFT data-
sets, owing to a predominance of data available on II-VI semi-
conductors from past and present work. Nevertheless, it is ex-
pected that the llI-V and IV-IV semiconductors are adequately
represented because, while choosing data points for DFT calcu-
lations, it was ensured that at least 10 impurities in each com-

pound are selected, and every defect site is considered. Further,
the entire chemical space contains approximately 40% substitu-
tional impurities and 60% interstitial impurities, with the former
being equally divided between A site and B site substitutions,
and the latter divided equally between the three types of intersti-
tial sites; all the defect sites are pictured in an example ZB super-
cell in Figure 1. The defect site distribution is similar for each
defect property (AH or €), ensuring adequate representation.

To visualize the DFT data, we plotted all the computed charge
transition levels and formation energies in Figure 4. The transition
levels are plotted two at a time against each other in Figures 4A-
4C, as a fraction of the experimental band gap of the compound.
Many transition levels are seen to lie deep inside (>0.2 eV from
the band edges) the shaded region that represents the band
gap, which indicates the tendency of certain impurities to create
deep energy levels. It can also be seen that most of the mid-gap
impurity levels belong to +1/0 and 0/—1 transitions, and to a
lesser extent to +2/+1 and —1/—2, but almost not at all to the
higher charge transitions like +3/+2 and —2/—3. The ranges of
values of the transition levels are fairly wide, from deep inside
the VB to the band gap to deep inside the CB, which reveals a
great variety in the type of impurities based on their preferred
oxidation states and the sites they occupy. In Figure 4D, we
plotted AH (A rich) versus AH (B rich), which shows values that
range from approximately —5 eV to approximately 20 eV. For
the group IV compounds C, Si, Ge, and Sn, the A-rich and B-
rich conditions are the same, leading to many of the red points
lying along the diagonal. In general, AH (A rich) and AH (B rich)
pin two extremes of the impurity formation energy values, and
medium chemical potential conditions would lead to intermedi-
ate formation energies.

Machine learning framework

Descriptors

Aside from generating the computational data, the need for
domain expertise is most evident in creating appropriate de-
scriptors or sets of features that can uniquely represent every
point in the dataset. In the semiconductor and impurity chemical
space used in this work, we can uniquely identify every data
point using the identity of the semiconductor, the identity of
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Figure 4. Visualization of DFT data

(A-D) (A-C) transition levels (+3/+2) to (—2/—3), and
(D) neutral state formation energies at A-rich and B-
rich chemical potential conditions, plotted for
different semiconductor types.

leaving behind only highly correlated fea-
tures. Finally, a sparsifying operation” is

(g]
O

AH (B-rich) (eV)

(0/-1) Transition Level (fraction of gap)

2 applied to filter down the feature space to
80-150 for each output.

Outlier identification

The detection of outliers in a dataset helps
identify candidates with unusual proper-
ties, which may either be erroneous or
lead to lower accuracy when used to train
ML models. KNN is a method commonly
applied to identify the outliers in a dataset
based on a feature space.”* KNN assigns
classes to data points based on the most
common assignment of its k-nearest

-1 0 1 2 3 -5 0
(+1/0) Transition Level (fraction of gap)

the impurity atom, and the defect site it occupies. Thus, we
define descriptors for any impurity M at any site S in any com-
pound AB by combining the following three levels of information:

1. ABpop: Available computed or experimental properties of
the semiconductor AB, namely, the formation energy, lat-
tice constant, band gap, and the electronic and ionic
dielectric constants; this leads to five dimensions.

2. Elemg,op: Tabulated elemental properties of the impurity M
as well as species A and B, such as ionic radius, ionization
energy, electronegativity, and so on; this leads to 81 di-
mensions.

3. CMgp: Quantifying the chemical coordination environ-
ment around the defect site S in terms of A and B neigh-
bors, using the Coulomb Matrix definition”’; this leads to
eight dimensions.

The complete list of descriptors can be found on the x axis of
Figure S2 as well as Table S5, which show the Pearson coeffi-
cient of linear correlation (|r|) between the properties of interest,
AH and ¢(q1/92), and each of the descriptors.

Feature selection

The primary feature set of 94 dimensions are all assumed to be
relevant to describe the targeted predictors, that is, the impurity
transition levels and formation energies. To better explore the
nonlinear relationships that may exist between these descriptors
dimensions and the properties, we used the SISSO’" method to
perform feature engineering. First, a set of operators, namely +,
—,*,/,exp,log, M—1), A2, A3, sqrt, cbrt, |-, are implemented recur-
sively for feature space expansion. The total feature size goes from
approximately 102 to approximately 10° after two iterations. Next,
sure independence screening’” is used to screen all features from
0D feature space (no iteration) to 1D feature space (one iteration) to
2D feature space (two iterations) using a linear correlation metric,
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AH (Arich) (V)

neighbors; any point that is surrounded
by points belonging to a different class is
denoted an outlier. Here, the DFT
computed transition levels and formation
energy values were used as a combined input to a KNN frame-
work. Another method we considered to detect outliers was
the principal component analysis (PCA),”® which decreases the
number of variables used to describe an output while still main-
taining most of the descriptive information. A covariance matrix
of the data is decomposed to orthogonal eigenvectors, associ-
ated with eigenvalues that signify how much of the variance in
the data that eigenvector captures. Each data point is labeled
with an outlier score as determined by the sum of the weighted
distances to all the eigenvectors, with smaller eigenvalues hav-
ing higher influence (as this is where outliers are more likely to
exist).”® Using both KNN and PCA, we selected 10% of the
data with the highest outlier scores to be removed. We found
that PCA disproportionately removed data points belonging to
IV-IV semiconductors. Ultimately, the KNN filtered inlier points
proved more effective for all models, and were used as the stan-
dard training sets.

10 15 20

Training regression models

In the following sections, we discuss the optimization and perfor-
mance of various regression models trained on the computa-
tional data, starting with linear regression and moving on to
different nonlinear regression techniques, namely, random for-
ests, Gaussian processes, kernel ridge, and neural network
regression. Common to every method used in this work is the
way the training-test split, cross-validation, hyperparameter
optimization, and error evaluation was performed. A separate
model was trained for each of the eight outputs, namely the six
types of transition levels and two formation energies. Five-fold
cross-validation was implemented for each model because of
a strong dependence of the prediction ability on the exact points
chosen for training. Cross-validation helps to reduce the re-
ported bias and variance, and is important for avoiding overfit-
ting. Various important hyperparameters were optimized for
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Table 1. ML test set prediction RMSE values for transition levels

ML I-vi -V IV-IvV Total
Propertymethod error (eV) error (€V) error (eV) error (eV)
e(+3/+2) MLR 0.35 0.37 0.34 0.35
e(+3/+2) Ridge 0.35 0.35 0.32 0.34
e(+3/+2) LASSO 0.36 0.36 0.32 0.35
e(+3/+2) Elastic net0.35 0.35 0.32 0.34
e(+3/+2) RFR 0.36 0.31* 0.35 0.34
e(+3/+2) KRR 0.33 0.37 0.31 0.33
e(+3/+2) GPR 0.32 0.36 0.32 0.33
e(+3/+2) NN* 0.29* 0.36 0.29* 0.31*
e(+2/+1) MLR 0.42 0.46 0.46 0.44
e(+2/+1) Ridge 0.42 0.43 0.45 0.43
e(+2/+1) LASSO  0.43 0.44 0.45 0.44
e(+2/+1) Elastic net0.42 0.43 0.45 0.43
e(+2/+1) RFR 0.39 0.36 0.40 0.38
e(+2/+1) KRR 0.33 0.38 0.40 0.36
e(+2/+1) GPR 0.32 0.38 0.41 0.36
e(+2/+1) NN* 0.29* 0.35* 0.38" 0.33"
e(+1/0) MLR 0.40 0.39 0.43 0.40
e(+1/0) Ridge 0.40 0.38 0.42 0.40
e(+1/0) LASSO 0.41 0.39 0.43 0.41
e(+1/0) Elastic net0.40 0.38 0.42 0.40
e(+1/0) RFR 0.38 0.36 0.39 0.38
e(+1/0) KRR 0.31 0.34 0.38 0.33
e(+1/0) GPR* 0.29* 0.32 0.38 0.32*
e(+1/0) NN 0.29 0.31* 0.37* 0.32
¢(0/~1) MLR 0.37 0.42 0.34 0.38
¢(0/-1) Ridge 0.37 0.40 0.34 0.37
e(0/-1) LASSO 0.37 0.40 0.34 0.37
e(0/-1) Elastic net0.37 0.40 0.34 0.37
e(0/-1) RFR 0.37 0.33 0.35 0.35
e(0/-1) KRR 0.32 0.36 0.32 0.33
e(0/-1) GPR 0.31 0.34 0.32 0.32
e(0/-1) NN* 0.28" 0.33* 0.31* 0.30"
e(-1/-2) MLR 0.33 0.38 0.30 0.33
e(-1/-2) Ridge 0.32 0.37 0.29 0.32
e(-1/-2) LASSO 0.32 0.37 0.29 0.33
e(-1/-2) Elastic net0.32 0.37 0.29 0.33
e(-1/-2) RFR 0.34 0.35 0.27 0.33
e(-1/-2) KRR 0.29 0.32 0.27* 0.29
e(-1/-2) GPR 0.29 0.31 0.28 0.29
e(-1/-2) NN* 0.26" 0.29" 0.28 0.27*
e(-2/-3) MLR 0.27 0.26 0.22 0.26
e(-2/-3) Ridge 0.27 0.26 0.22 0.25
e(-2/-3) LASSO 0.27 0.26 0.22 0.25
e(-2/- 3) Elastic net0.27 0.26 0.22 0.25
e(-2/-3) RFR 0.24* 0.28 0.27 0.25
e(-2/-3) KRR 0.26 0.24 0.21 0.24
e(-2/-3) GPR 0.25 0.24 0.21 0.24
e(-2/-3) NN* 0.25 0.22* 0.22¢ 0.24*

*The gene in closest proximity to the cytokine QTL SNPs.

¢? CellPress

each regression technique; for instance, for neural networks,
they include the number of hidden layers, the numbers of nodes
in each layer, the dropout rate, and so on. All regression models
were trained using functions in the Python ML library scikit-
learn.””

The metric for evaluating model performance was chosen to
be the prediction RMSE. Each of the five folds was treated as
a validation set over multiple training cycles, and the prediction
RMSE for each fold was averaged over the number of folds.
This leads to an effective 80-20 training-test split in the dataset,
and an effective test prediction error is obtained for every data
point, providing an unbiased prediction that reveals the true pre-
dictive power of the trained model. The optimal set of hyperpara-
meters is chosen such that the cross-validation error is mini-
mized; we ultimately report training and test errors for every
model, but optimization is based on the validation error, such
that the actual test set in each iteration remains unseen by the
model during the training process. Further, the standard devia-
tion in predictions over the multiple training cycles is defined
as the uncertainty for each predicted point, providing an error
bar that accompanies every prediction. Results are presented
as parity plots of ML predictions versus DFT-calculated proper-
ties, with reported RMSE values in eV, and plots between uncer-
tainties and errors in every data point; the predictions are also
visualized in terms of semiconductor type. The training predic-
tion RMSE values are listed in Tables S6 and S7, and the test pre-
diction RMSE values listed in Tables 1 and 2, divided in terms of
property, ML technique used, and type of data point. The set of
best hyperparameter values obtained for each technique and
each property are included as part of the Supplementary mate-
rials, as are alternative prediction performance metrics, mean
absolute errors, and R, scores.

Linear regression

Figure S2 shows the Pearson coefficient of linear correlation be-
tween various (primary) descriptor dimensions and the proper-
ties of interest. We see that many of the features are 50%-—
70% correlated with the properties, showing a certain degree
of linear relationship. We further plotted the correlation coeffi-
cients for the 10 best SISSO-based compound features (essen-
tially, complex functions of combinations of original features) in
Figure S3. The highest correlated features reveal the specific de-
scriptors or combinations thereof that could best predict the
defect formation energy and charge transition levels. We notice
that atomic radii and ionization energy differences (between
defect atom M and A/B atoms) are most important for e(+3/+2),
while valence and electronegativity differences dominate for
e(+2/+1); coefficients for both remain small, at approximately
0.35. The highest correlations are between 0.5 and 0.55 for
¢(+1/0) and g(0/—1), with ionization energy and atomic radii differ-
ences dominating in both. ¢(—1/—2) and ¢(—2/—3) show even
higher correlations of between 0.7 and 0.75, with descriptors
such as the Mendeleev number, covalent radii, and ICSD volume
of M/A/B atoms being most important. Finally, we find correla-
tion maximums of approximately 0.45 for AH (A rich) and AH
(B rich), determined primarily by the semiconductor lattice con-
stant, ionization potential, boiling point, heat of fusion/vaporiza-
tion, and specific heat capacity. Overall, these correlations
reveal that the relative electronegativities, ionization energies,
and radii of elements are important in placing defect energy
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Table 2. ML test set prediction RMSE values for formation
energies

ML 1I=VI n-v IV-IvV Total
Property method error (€V) error (€V) error (€V) error (eV)
AH MLR 0.85 1.57 1.81 1.16
(A rich)
AH Ridge 0.85 1.54 1.78 1.14
(A rich)
AH LASSO 0.88 1.55 1.79 1.16
(A rich)
AH Elastic 0.85 1.53 1.78 1.14
(Arich) Net
AH RFR 1.05 1.038 1.20* 1.07
(A rich)
AH KRR* 0.62 1.35 1.32 0.89*
(A rich)
AH GPR 0.59* 1.33 1.71 0.96
(A rich)
AH NN 0.62 1.30* 1.40 0.89
(A rich)
AH MLR 1.04 1.82 1.81 1.31
(B rich)
AH Ridge 1.04 1.73 1.77 1.29
(B rich)
AH LASSO 1.08 1.74 1.80 1.32
(B rich)
AH Elastic 1.05 1.72 1.77 1.28
(B rich) Net
AH RFR 1.09 1.25* 1.52 1.18
(B rich)
AH KRR 0.77* 1.52 1.45 1.03
(B rich)
AH GPR 0.82 1.52 1.70 1.1
(B rich)
AH NN* 0.81 1.34 1.44* 1.01*
(B rich)

*Lowest prediction errors.

levels relative to band edges, while the size of the lattice and heat
of fusion may determine how likely it is for the defect atom to
exist at site in consideration
To explore linear relationships further, we chose multiple linear
regression (MLR) as the method to train the first predictive
models. Given a vector of properly standardized features X” =
(X1,X2,...,Xp), and calculated output vector Y, the matrix of co-
efficients B corresponding with each feature and the output is
determined by minimizing the least square error |Y —X7g|".
While MLR yields an unbiased predictor, it is prone to overfitting
when several features are highly correlated with the output. To
address this issue, we use three shrinkage methods, namely,
least absolute shrinkage and selection operator (LASSO) regres-
sion, ridge regression, and elastic net regression,”® all of which
yield a biased predictor, but with a lower variance, leading to
less overfitting compared with the standard least square. Ridge
regression shrinks the coefficients by imposing an L, penalty,
whereas LASSO uses an L, penalty.”® The elastic net is another
regularized linear regression technique that combines both L
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penalty and L, penalty. Typically, B shrinkage inside LASSO
regression progress more severely compared with the other
two approaches, and some of the coefficients are brought
down to 0.

In Figures S4-S7, we present parity plots for models trained
using MLR, LASSO, ridge regression, and elastic net regression,
respectively. We see from the plots and from Tables 1 and 2 that
there is a marginal improvement in prediction going from MLR to
LASSO, ridge, or elastic net regression. The presented results
are using the SISSO features, as they provide better predictions
than using the primary feature set, which is presumably due to
the nonlinear nature of the input-output relationship. We further
find that there is a strong dependence of the prediction error
on semiconductor type and impurity site. We observe these ef-
fects in nonlinear models as well, which will be discussed in sub-
sequent sections. Such prediction error differences can be
attributed to the imbalanced distribution of training data; the
DFT datasets are biased toward II-VI semiconductors and inter-
stitial site impurities, as seen from Figure S1. In general, we get
better performance on II-VI or interstitial data points, since the
models we trained work better on majority groups.

Random forest regression

The improvement in linear regression model performances upon
going from using the primary features to the SISSO-based fea-
tures shows the importance of interpreting nonlinear relation-
ships between the features and properties. However, non-line-
arity is still limited by the set of operators used in the SISSO
method; to further explore this effect, we adopted a popular
nonlinear regression algorithm known as random forest regres-
sion (RFR). RFR is an ensemble measurement method that fits
a designated number of classifying decision trees such that
each tree is fit on a different randomized sub-sample of the data-
set, chosen through bootstrapping. During the construction of
any tree, the best split for each node is found based on some
number of input features. Averaging over all the trees in the forest
can be performed in several ways, and, in this work, the model
combines the results of the trees by averaging their probabilistic
prediction, which improves prediction accuracy and can help to
control overfitting.*°

Hyperparameter tuning focuses on the five most important
features in the RFR model, namely, the number of trees in the for-
est, the maximum depth of each tree, the number of features to
consider when looking for the best node split, the minimum num-
ber of samples required to split an internal node, and the mini-
mum number of samples required to be at a leaf node. For
each of the eight outputs, Bayesian optimization was per-
formed®' using a function set to minimize both the test RMSE
and the difference between the training and test RMSE to bal-
ance the bias-variance trade off in the model. Figure S9 shows
a comparison between grid search and Bayesian search based
hyperparameter optimization for RFR; it is seen that both
methods produce similar test errors, but the latter mitigates
overfitting (difference between training and test errors) far better,
thus motivating its use. Parity plots for the optimized models for
all eight properties are shown in Figure 5A. Looking at the error
values listed in Tables 1 and 2, there is a general improvement
in all the transition level prediction RMSEs from between 0.3
and 0.45 eV for the linear models to between 0.25 and 0.38 eV
for RFR, and the formation energy RMSEs drop from 1.2 eV or
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higher to between 1.07 and 1.16 eV. We further plotted the RFR
uncertainties in prediction against the absolute prediction error
values in Figure S8. While uncertainty and error do not correlate
linearly, such plots reveal the degree of confidence one can have
in a given prediction. A large portion of points lie in the low uncer-
tainty, low error region, but a number of points with low uncer-
tainty also show large prediction errors, which highlights the
need to exercise caution in trusting the ML predictions regard-
less of the estimated uncertainty.

As observed in the linear regression results, we found that RFR
was able to predict formation energies of II-VI semiconductor
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Figure 5. Parity plots for best regression
models

(A-C) (A) Random Forest, (B) Gaussian process, and
(C) NN regression, plotted for different semi-
conductor types.

impurities more accurately than IlI-V or
IV-1V, owing to the larger portion of II-VI
semiconductor points in the training data-
set. Interestingly, the transition levels
showed much less of a dependence on
semiconductor type; the difference could
be due to the larger range of values in the
formation energy data versus the transi-
tional levels. We found that the points the
model predicted most inaccurately for for-
mation energies are relative outliers as pre-
dicted by KNN and PCA, and of those
points, llI-V and IV-IV semiconductor
types make up a larger portion than in the
dataset as a whole. When analyzing the
prediction results by site of impurity defect,
it was once again seen that interstitials are
predicted slightly better than substitu-
tionals, once again owing to the predomi-
nance of the former in the dataset.

Finally, we examined the feature impor-
tance values that are reported as part of
random forest models; these values were
collected for each property and averaged
over five-fold cross validation. The impor-
tance values for the ten best (SISSO-
based) features are plotted for all eight
properties in Figure S10. It is seen that
the most important features for predicting
e(+3/+2), e(+2/+1) and &(+1/0) are the differ-
ences between valence, preferred oxida-
tion states, and electronegativities of the
defect atom M and A/B atoms. The ¢(0/
—1) is determined by the difference be-
tween thermal expansion coefficient of M
and thermal conductivity of B, &(—1/-2)
by the atomic radius of B and electrical
conductivity of A, and e(—2/—3) by the co-
valent radius of B and Mendeleev number
of A. While many of the important features
for transition levels are similar to those ob-

tained from Figure S3, the emergence of some new features
shows the importance of uncovering more complex nonlinear re-
lationships. Finally, the most important features for AH (A rich)
and AH (B rich) are differences between group numbers and
heat of vaporization for the former and differences in thermal
expansion coefficients for the latter.

Kernel ridge regression

The improvement in prediction with RFR provided the motivation
for alternative nonlinear regression techniques that could lead to
further lowering of errors. Kernel ridge regression (KRR) is a sim-
ilarity-based regression technique that uses the kernel trick to
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Figure 6. Gaussian process regression: Error
versus uncertainty
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assumed to have a Gaussian distribution.
Based on Bayes’ theorem,®* we get a pre-
dictive posterior distribution, from which
we can attain a point prediction using its
mean, and an uncertainty value using its
variance. A major difference between
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solve a nonlinear problem in a linear fashion. The original low-
dimensional features are used as input and mapped to a high-
dimensional kernel space in which they can be linearly
interpreted. In this work, we use different possible choices for
the kernel function, namely polynomial, radial basis function,
and Laplacian. For hyperparameter optimization, we applied
the grid search method to search a dense space for the best
combination of kernel choice and different parameters in the
kernel, separately for each output.

The prediction performances for the eight outputs are shown
as parity plots in Figure S11A and listed in Tables 1 and 2.
KRR shows a marked improvement in formation energy predic-
tion and slight improvements in transition level predictions
compared to RFR. The improvement is heavily owed to signifi-
cant lowering of errors for impurities in the II-VI compounds.
We find the KRR RMSE for AH (A rich) to be 0.89 eV and for
AH (B rich) to be 1.03 eV, while the RMSE values for the six tran-
sition levels range between 0.25 and 0.35 eV. As shown in Fig-
ure S11B, the uncertainties on the KRR predictions range from
0to 0.25 eV for the transition levels and 0 to 1 eV for the formation
energies. Once again, a large concentration of points lie in the
low uncertainty, low error region, with a few outliers existing in
the opposite end of the spectrum.

Gaussian process regression
Another nonlinear regression technique that uses the kernel trick
is Gaussian process regression (GPR).?*®> GPR uses the kernel
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formation energy errors are between 0.96
and 1.1 eV, while the transition level errors
range from 0.24 to 0.36 eV. It can also be
seen from the training prediction errors
listed in Tables S6 and S7 that there is a
greater difference between the training and the test RMSE for
both formation energies and transition levels than KRR. This
can be explained by the flexibility of the GPR models, which likely
causes overfitting when dealing with a small dataset and high
dimensional features.?®> The uncertainty versus absolute error
plots in Figure 6A show similar trends to KRR, with a majority
of the points occupying the low-error, low-uncertainty region.
Neural network regression
Finally, we used neural networks (NN) to train regression models
and compared the results with nonlinear regression models from
RFR, KRR, and GPR. The Keras functional API model was used
to build a deep feedforward NN to machine learn a multi-output
regression.®® A sequential model trained to predict the six tran-
sition levels and two formation energies was found to be time
consuming and lacked the ability to predict multiple outputs at
once effectively. Further, a grid search used to explore the num-
ber of hidden layers, number of neurons, learning rate, epochs,
batch size, optimizers, and activation functions was found to
be inefficient. Separate models were thus trained for each prop-
erty using the SISSO-generated descriptors, and scikit-optimize
(skopt) was used for Bayesian hyperparameter optimization. To
overcome an overfitting problem arising from minimizing only the
test RMSE, the optimization function was revised to also include
the difference in train and test RMSE.

Each NN architecture contains two to three dense neuron
layers, through which the input is concatenated before returning
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the output through the final layer. The number of neurons in each
dense layer varies with the input dimensions for each specific
property or output. Kernel and activity regularizers were also in-
tegrated in each dense layer to prevent overfitting. The “relu”
activation function was ultimately used for each dense layer,
beating out sigmoid, softmax, softplus, tanh, and selu func-
tions,®” while the Adam optimizer was selected over SGD,
RMSEprop, Adadelta, and Adagrad.®® NN model training
involved 10-repeated 5-fold cross-validation, where the mean
and SD of prediction of every data point were used as the pre-
dicted value and uncertainty value, respectively. Parity plots
for the best models thus obtained are presented in Figure 5C,
while Figure 6B shows the uncertainty versus absolute er-
ror plots.

It can be seen from the parity plots and Tables 1 and 2 that NN
predictions for both transition levels and formation energies are
similar to KRR and GPR. Transition level RMSE values are seen
torange from 0.24 to 0.33 eV, while the formation energy RMSEs
are between 0.9 and 1 eV. A comparison with training set predic-
tions in Tables S6 and S7 further reveals that the gaps in test and
training predictions from NN are similar to those from KRR,
implying less overfitting as compared to GPR. A possible disad-
vantage of the NN models comes from the larger uncertainty
values seen in general compared to other methods, as visible
from Figure 6B, while the absolute error values are similar to
other methods. This is an effect of the stronger dependence of
NN model prediction on the hyperparameter choice, leading to
a larger SD in prediction; this is expected to affect NN predic-
tions over the entire chemical space. We further note that stan-
dard deviations over 10-folds may not be sufficient to converge
the uncertainties, but we use an ensemble of 10 predictions here
to save on training time and keep estimates consistent across
different ML models. Methods such as Monte Carlo dropout®
can help to attain better uncertainty estimates as well, and will
be applied in future work.

High-throughput screening of dominating impurities

The detailed ML analysis presented in this work reveals that mul-
tiple nonlinear regression techniques can be trained to make pre-
dictions of impurity transition levels and formation energies with
errors that are within 10% of the range of values across the data-
set. In Figure 7A, we present the test set prediction RMSE values
of eight different ML techniques used in this work, namely MLR,
ridge, LASSO, elastic net, RFR, KRR, GPR, and NN, for the six
transition levels and two formation energies. The errors are
plotted separately for the II-VI, llI-V, and IV-IV points, as well
as all the points taken together. It can be seen that for all the
data types, the general trend is a reduction in RMSE upon going
from linear to nonlinear techniques. It is also seen that in general,
the RFR performance is worse than KRR, GPR, and NN, while the
latter three have similar formation energy errors with NN edging
out the other two for most of the transition levels. From these re-
sults, one can expect NN, GPR, and KRR to yield similar results
for the complete formation energy picture of all impurities as a
function of charge, chemical potential, and Fermi level, which
can be formulated using the predicted neutral state formation
energies and all possible charge transitions.

We performed high-throughput prediction of the complete for-
mation energies of the entire dataset of 12,474 impuirities, using
the best NN, GPR, KRR, and RFR models. It is important to note

¢ CellP’ress

here that a significant amount of time is saved by replacing full
DFT calculations with almost instantaneous ML predictions. On
average, any 1 point defect in a 64-atom supercell simulated in
the neutral state requires approximately 500 core hours, while
6 charged state calculations require a further approximately
2000 core hours (running on 8 Intel Broadwell XEON E5-2695 no-
des with 36 cores each). For the DFT datasets of approximately
1500 neutral state formation energies and approximately 1000
charge transition levels of 6 types, this translates to approxi-
mately 2.75 million core hours. For the entire dataset of 12,474
impurities, approximately 32 million core hours would be
required for complete DFT optimization and prediction of all
defect properties. In contrast, every ML model takes a matter
of minutes to train and make predictions over the entire chemical
space. Thus, based on computations using 1/10th of the total
computing time required, we can make reasonable predictions
for all the data points. Predictions for the entire set of 12,474 im-
purities using different ML models are included as a spreadsheet
as part of the Supplementary materials.

The ML-predicted impurity formation energies across the data-
set were compared with the dominant native defect energetics for
each compound, based on which screening is performed for (a)
dominating impuirities, i.e., impurities with lower energy than native
defects, which will change the equilibrium Fermi level of the semi-
conductor, and (b) low energy impurities (lower than native defects)
with mid-gap energy levels. The screening performance of each
ML model is determined by comparing the ML and DFT screening
for the data points in the original DFT dataset. Given the expected
DFT versus experiments and ML versus DFT errors, we relax the
screening criteria by + 0.2 eV for the DFT data and by +0.5 eV for
the ML data. We thus calculated the number of true positives
(TP, dominating/mid-gap from both DFT and ML), true negatives
(TN), false positives (FP) and false negatives (FN) for each method.
Based on these scores, the following metrics were defined:

Accuracy = (TP + TN)/(TP + TN + FP + FN)
Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

Figures 7B and 7C show the accuracy, precision, and recall
scores of each ML technique for screening of dominating impu-
rities and low energy impurities with mid-gap levels, respectively.
Results are plotted for the total dataset and for each semicon-
ductor type, for both A-rich and B-rich conditions. The accuracies
(in blue) of RFR, GPR, and KRR for all data types are seen to be
greater than 95% for screening of dominating impurities in Fig-
ure 7B, while the precision (red) and recall (green) range from
80% to 95%. Interestingly, the accuracy, precision and recall
scores of NN predictions are universally seen to lag behind the
scores from RFR, GPR, and KRR. This surprising lack of predictive
power of the NN models is attributed to their strong dependence
on the hyperparameter choices, which is intimately linked with
the exact nature of the training dataset. This leads to the higher un-
certainty values seen in Figure 6B and likely overfitting, which may
not manifest in a limited test set, but over the entire set of 12,474
impurities, some predictions may be well off, resulting in lower ac-
curacy, precision, and recall scores. The NN scores are better for
screening of low energy impurities with mid-gap levelsin Figure 7C,
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Figure 7. ML model performance compari-
son

(A-C) The performance of various ML models by
semiconductor type, in terms of (A) prediction
RMSE, and screening accuracy, precision and
recall scores for (B) dominating impurities and (C)
low energy impurities with mid-gap energy levels at
A-rich and B-rich chemical potential conditions.

be seen that the overall predictions are
slightly worse with the balanced datasets,
simply because fewer data points are being
used for training, but the gap between II-VI,
I1I-V, and IV-IV errors reduces, as does the
gap between substitutional and interstitial
errors. However, for formation energy, the
II-VI points and interstitial points are still pre-
dicted better than other data types. We
conclude that, although errors for different
data types can be brought closer to each
other using more balanced datasets, we
prefer to use models trained on the entire
dataset since they lead to similar or better
errors for different data types.

In Table 3, we list several impurities
deemed to be dominating from both DFT
and ML (GPR used as example here), along
with their stable charge states, the corre-
sponding dominating native defect, the
type of shift induced in the equilibrium Eg,
and whether mid-gap energy levels are
created. For example, it can be seen that
Ti at the Al site in AlAs creates a stable +1
charged donor type defect, and, along with
a —3 charged As vacancy acceptor, makes
the conductivity more n-type and creates a
transition level in the band gap. Similarly, a
Be interstitial defect in Si induces a p-type
shift in conductivity. Lists of dominating
impurities with or without mid-gap energy
levels were thus generated for all com-
pounds. Finally, we plotted the complete
charge and Eg-dependent formation en-
ergies of selected impurities from both
DFT and GPR for a few cases in Figure 8.

ML Technique

and all four techniques (NN, GPR, KRR, and RFR) show similar ac-
curacy, precision, and recall. Scores are seen to be lower for IlI-V
data points than others, for reasons relating to the general imbal-
ance in the dataset. To further elucidate the effect of this dataset
imbalance, we retrained some GPR and RFR models on areduced
dataset with (a) equal number of II-VI, llI-V, and IV-IV points, and
(b) equal number of interstitial and substitutional points, essentially
by removing a large number of II-VI or interstitial points (mostly
belonging to impurities in CdTe). Figures S15 and S16 show,
respectively, the GPR and RFR RMSE values for all properties us-
ing the entire dataset and using reduced balanced datasets. It can
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There is an impressive match between

the DFT and GPR curves for most of the
impurities, with charge states and transitions in general remain-
ing consistent. A few impurities such as Biz, in ZnS and In; in AlAs
are seen to show greater disparity between DFT and GPR, but
qualitative trends remain the same. Also plotted for each case
in Figure 8 are the dominant native defects, and it can be seen
that almost all impurities are correctly predicted to be domi-
nating or not dominating from GPR compared with DFT, which
implies areliable qualitative screening, even when the actual pre-
dicted formation energies or transition levels are off. As a final
test of the generalizability of our ML framework, we selected
25 new impurities deemed to be dominating from GPR and
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Table 3. Selected dominating impurities identified by both DFT
and ML (GPR), at A-rich chemical potential conditions

Shift in Mid-
SemiconductorlmpurityEgm. Er Dominating defects gap level?

Cds Inca  n-type INnca, d=1and Vgg, Y
q=-2

Cds Is n-type Is, g =1and Vggq, Y
q=-3

Cds Ti; p-type Ti, 9 =2 and Vs, Y
q=-1

CdSe Cqu p-type Cquv q=-1and Cd,Y
q=2

CdSe Fi p-type Fi,g=—-1and Vs, N
q=2

CdSe Ni; p-type Ni, g=—-1and Vge, Y
q=2

CdTe Bicg  n-type Bicg, 9 =1and Vg, Y
q=-2

CdTe Aste  p-type Aste, 9 = —1 and VY
q=2

CdTe Na; n-type Naj,g=1and Vgq, N
q=-2

ZnS Li; n-type Li, g=1and Vg, N
q=-2

ZnS Ti; n-type Ti,g=1andVz, Y
q=-2

ZnSe Alz, n-type Alz,,g=1and Vz, Y
q=-2

ZnSe Brse n-type Brse, d = 1 and Znge, Y
q=-1

ZnTe Cr; n-type Cr,g=1and Vs, N
q=-2

ZnTe Mn; n-type Mn;, g=1and Znre, Y
q=-2

AIN Sen p-type Sen,g=—-1and Vy, Y
q=1

AlP Hfp n-type Hfa, g=1and Alp, Y
q=-1

AP Cr; n-type Cr,g=1andVy, Y
q=-2

AlAs Tial n-type Tia,g=1and Vas, Y
q=-3

GaN Tlga p-type Tlgas 9=—1and Vy, Y
q=1

GaN Pn p-type Pnv,g=—-2andVy, Y
q=1

GaP Niga  p-type Nigas 9 = —1 and Ga;, Y
q=2

GaP Li; n-type Li,g=1and Gap, Y
q=-2

GaAs Sc; n-type Sci,g=38and Gaps, Y
q=-2

GaSb Alga  n-type Alga, g=1and Vg, Y
q=-2

InN Zr; n-type Zri, q =2 and Vy, Y
q=-1

Table 3. Continued

Shift in Mid-
SemiconductorlmpurityEgm. Er~ Dominating defects gap level?

InP Cuy; n-type Cu,qg=1andlInp, Y
q=-2

InAs Cay, p-type Cajn, g = —1 and Inag,N
q=2

Si Tig; p-type Tisi, g=—1and Si;, Y
q=2

Si Be; n-type Be,g=1and Vg, Y
q=-3

SiC Vsi n-type Vsi, =1 and Vg, Y
q=-2

SiC Cr; p-type Cr,q=—-1and Vg, Y
q=1

SnC Ass, n-type Assn, q=1and Vg, N
q=-2

SnC Crsn  p-type Crsn,g=—-1and Vg, N
q=2

KRR predictions, and performed additional computations on
them. Figure S14 shows the parity plots between the DFT-
computed formation energies and transition levels and the
GPR/KRR-predicted values. It can be seen that RMSE values
are generally between 0.8 and 1.1 eV for formation energies
and between approximately 0.2 and 0.4 eV for the transition
levels, indicating that prediction accuracy is at a very similar level
to test set predictions.

DISCUSSION

The DFT + ML strategy presented in this work enables the quick
prediction and screening of impurities in semiconductors, but is
still limited by several factors. The primary concern is certainly
the accuracy of the PBE functional, which determines the reli-
ability of the computational dataset and every subsequent step.
Despite the impressive correspondence between measured and
PBE computed defect levels, a generalization over all the semi-
conductor compounds and all types of impurities requires further
caution. The use of advanced levels of theory, such as HSE06 and
GW with and without SOC, may yet be necessary for future im-
provements of prediction models. However, ML models built on
PBE data are still certainly useful for a number of reasons: (a)
although quantitative predictions may be off, they provide qualita-
tive screening of impurities likely to create low energy charged de-
fects and/or consequential energy levels in the band gap, with an
expected accuracy of greater than 95%, and (b) PBE and ML-PBE
estimates provide starting points for more advanced calculations,
and can be used in a multi-fidelity learning framework wherein
higher fidelity predictions are improved using lower fidelity data.
We note here that, although we consider mid-gap states that
only arise from defect charge transitions, there are other internal
transitions such as the d-d or f-f transitions of transition metals
and lanthanides that could potentially further affect the absorption
and emission characteristics of a semiconductor.”*

Going forward, a number of extensions and improvements will
be made to this work, the first being the generation of higher
accuracy DFT data and training multi-fidelity learning models.
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Figure 8. Defect formation energies from DFT and ML
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(A-F) A comparison of the complete charge and Fermi level-dependent formation energy picture of selected impurities from DFT (solid lines) and GPR (dashed
lines), presented for (A) CdTe at Cd-rich conditions, (B) ZnS at S-rich conditions, (C) AlAs at As-rich conditions, (D) GaP at Ga-rich conditions, (E) Si at Si-rich
conditions, and (F) SiC at C-rich conditions. The dominant donor and acceptor type native defects are also pictured.

In ref'2, we showed that with a much smaller set of HSE06 data
points, ML descriptors could be combined with models trained
on larger quantities of PBE data to yield excellent predictions for
Cd-chalcogenides; this will be extended to all group IV, llI-V,
and II-VI semiconductors. Various types of multi-fidelity learning
models can be developed, from PBE-experiments (using the cur-
rent dataset of 89 points supplemented with more data) to PBE-
HSE to PBE-HSE-experiments, providing a potential pathway
to bridging the DFT versus experiment gap. Further, while all com-
pounds were currently studied in the ZB structure, the DFT data
and ML models will be extended to include defects in the wurtzite
and rock salt structures. The current ML framework can also be
extended to semiconductor alloys in the same chemical spaces
using the same type of descriptors, as was demonstrated for
the limited example of Cd-chalcogenides.'? The set of descriptors
and ML methods used can also be expanded, for instance by
including low accuracy unit cell defect calculations as used in
refs.®'2 Finally, tools can be created for the on-demand prediction
of the entire defect formation energy picture of any point defect or
impurity in any compound, and a comparison of said defect with
dominating native defects and other impurities.

In summary, we used a combination of DFT and ML to predict
the charge-, Fermi level-, and chemical potential-dependent for-
mation energy of any substitutional or interstitial impurity or point
defectin ZB structures of group IV, llI-V, and II-VI semiconductors.
A DFT dataset was created for the neutral state formation energies
and various charge transition levels of upward of 1000 possible im-

14 Patterns 3, 100450, April 8, 2022

purities across 34 compounds, which formed about 10% of the
entire semiconductor + impurity chemical space. ML models
were built from the data by using descriptors that included proper-
ties of the compound, the defect site, and the impurity atoms, and
applying algorithms ranging from linear regression techniques to
nonlinear methods such as random forest and NN. For the eight
properties of interest (2 formation energies and 6 transition levels),
KRR, GPR, and NN generally lead to similar performances, and the
best models were deployed to predict all impurity properties in a
high-throughput manner. Lists of dominating impurities, which
can change the equilibrium conductivity of the compound as
determined by native defects, were created using the ML predic-
tions. The learning and design framework described in this work
can be extended in terms of new semiconductors and mixed
composition compounds, more involved descriptors and ML tech-
niques, and more advanced levels of theory. The same design
framework is also applicable to other semiconductor classes
such as halide perovskites and I-1I-VI semiconductors, and can
lead to novel materials with improved optoelectronic properties
for solar cells and related applications.

EXPERIMENTAL PROCEDURES

Resource availability
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Requests for data and additional information should be directed to the lead
contact, Arun Mannodi-Kanakkithodi (amannodi@purdue.edu).
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Materials availability

This study did not generate physical materials.

Data and code availability

DFT data and ML models are made available as part of an open-source tool to
facilitate the artificial intelligence-driven prediction and screening of point de-
fects and impurities in semiconductors: https://github.com/Imjacoby/
ai_semiconductors.

Calculating defect properties from DFT

All native defects and impurities were simulated in 64 atom 2 x 2 X 2 super-
cells of the parent compound, based on previously optimized 8 atom ZB unit
cells. DFT optimization was performed in the neutral and charged states (q =
-3, -2, -1, 0, +1, +2, +3) while keeping the supercell shape and size fixed.
All computations were performed using the Vienna ab-initio Simulation Pack-
age® % using the PBE® exchange-correlation functional and projector-
augmented wave atom potentials.®® The kinetic energy cut-off for the plane-
wave basis set was 500 eV, and all atoms were relaxed until forces on each
were less than 0.05 eV/A. Brillouin zone integration was performed using a
3 x 3 x 3 Monkhorst-Pack mesh. For any defect or impurity atom M in a com-
pound AB, the following equations yield the formation energy E' as a function of
the chemical potential u, charge g, and Fermi level Eg, and any impurity charge
transition level, e(g1/g2):

E'(q,EF) = E(M7) — E(AB) + Ap+q(Er + Evom) +Econ (Equation 1)

E'(q1,EF=0) — E'(g2,EF =0)
92 — g4

e(q1/qz) = (Equation 2)

Here, E(AB) is the DFT energy of an AB supercell without defects, E(M9)
is the DFT energy of the AB supercell containing a defect M in a charge
state q, E,pm is the VBM as computed from an electronic structure
calculation on AB, and E.,, is the charge correction energy using the
scheme developed by Freysoldt et al.°®°” to account for periodic interac-
tion between image charges. E' depends on the chemical potential
change Au involved in creating the defect, and for a given Ay, it is a func-
tion of Er and g, such that the slope of the E' versus the Er plot is equal to
q. For any defect or impurity M in compound AB, the chemical potentials of
all species are defined with reference to the elemental standard states of
M, A, and B, as well as their lowest formation energy binary or ternary
compounds. For an impurity M (M occupying an A site), in Equation 1,
Ap = pa — un; for an impurity M; (M occupying an interstitial site),
Au = — pup; for a vacancy at the B site Vg, Au = ug. We calculate
formation energies at two extreme chemical potential conditions,
namely, A rich (where ua = energy of elemental standard state of A) and
B rich (where ug = energy of elemental standard state of B), and note
that by tuning the u conditions, defects can be made more or less
stable, and the equilibrium conductivity—determined by defect charge
neutrality conditions—can be made more p-type or n-type. Equation 2
defines a charge transition level ¢(q1 /q2), that is, the Ef value where the
defect transitions from a charge state g4 to g,, which is independent of
the u conditions; in this work, for every defect or impurity, we calculate
six possible transition levels, namely, +3/+2, +2/+1, +1/0, 0/-1, —1/-2,
and —2/-3.

ML details

The ML approaches used in this work include dimensionality reduction/outlier
identification using SISSO, PCA, and other techniques, and training predictive
models using linear regression and three types of nonlinear regression:
random forests, Gaussian processes, and NN. Necessary introduction to
each technique and relevant information about how hyperparameters are opti-
mized and errors are converged are provided in different subsections within
the manuscript. All ML training and prediction was done using appropriate
functions in Scikit-learn.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
patter.2022.100450.
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