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THE BIGGER PICTURE Our article introduces a universal predictive framework for point defect formation
energies and charge transition levels in a wide chemical space of zinc blende semiconductors and possible
impurity atoms selected from across the periodic table. This framework was developed by leveraging high-
throughput quantum mechanical simulations benchmarked using some experimental data from the litera-
ture, as well as machine learning (ML)-based regressions techniques that map uniquematerials descriptors
to computed defect properties and yield optimized and generalizablemodels. The power and utility of these
models is revealed through quick predictions for thousands of new defects and screening of low-energy
impurities, which may tune the equilibrium conductivity in the semiconductor. This work presents, to our
knowledge, the largest density functional theory (DFT) dataset of defect properties in semiconductors
and the largest DFT+ML-based screening of point defects in semiconductors to date.

Development/Pre-production:Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
We develop a framework powered by machine learning (ML) and high-throughput density functional theory
(DFT) computations for the prediction and screening of functional impurities in groups IV, III–V, and II–VI zinc
blende semiconductors. Elements spanning the length and breadth of the periodic table are considered as
impurity atoms at the cation, anion, or interstitial sites in supercells of 34 candidate semiconductors, leading
to a chemical space of approximately 12,000 points, 10% of which are used to generate a DFT dataset of
charge dependent defect formation energies. Descriptors based on tabulated elemental properties, defect
coordination environment, and relevant semiconductor properties are used to train ML regression models
for the DFT computed neutral state formation energies and charge transition levels of impurities. Optimized
kernel ridge, Gaussian process, random forest, and neural network regression models are applied to screen
impurities with lower formation energy than dominant native defects in all compounds.
INTRODUCTION

Compositional manipulation of semiconductors is one of the pri-

mary methods used to obtain optimal properties.1–6 Apart from

alloying, the primary means for compositional control of semi-
This is an open access article under the CC BY-N
conductor properties is the introduction of dopants or impurities,

i.e., guest atoms at a cation, anion, or interstitial site. Such

impurities, even in a very dilute concentration, can potentially

cause major changes in the electronic structure and physical

properties of the material.7–10 A complete understanding of a
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semiconductor’s optoelectronic behavior requires estimating

the formation energies of point defects, whether accidental or

intentionally introduced.3,11,12

While approximately 90% of solar cells still rely on crystalline Si

as the absorber, related group IV semiconductors such as SiC, II–

VI semiconductors such as CdTe, III–V semiconductors such as

GaAs, and various derivative compounds are all viable as photo-

voltaic (PV) materials and are currently in use in single terminal as

well as tandem solar cells.5,13–17 Many of these compounds have

also been used in transistors, photodiodes, lasers, and qubits or

quantum sensors. The chemical space of binary group IV, III–V,

and II–VI semiconductors contains compounds that exist in the

cubic zinc blende (ZB) orwurtzite crystal structures and show sys-

tematic trends in lattice constants, electronic band gaps, optical

absorption coefficients, and defect properties.18 Alloying in these

spaces has frequently been used for tuning properties and perfor-

mance, with some prominent examples including the use of

CdSeTe in solar cells19,20 and AlGaAs in light-emitting diodes.21,22

Although the structure and optoelectronic properties of binary,

ternary, and even quaternary compounds in the group IV, III–V,

and II–VI semiconductor space have been widely studied both

computationally and experimentally,4,5,12,18 a comprehensive

understanding of the formation likelihood and electronic levels

of point defects and impurities is missing. A look at functional

atomic defects in semiconductors reveals that the energy levels

created inside the band gap can (a) reduce PV efficiency via non-

radiative recombination of charge carriers, (b) enable sub-gap

absorption or emission if the levels are partially filled or if they

have low photoionization energies, and (c) enable quantum

computing, quantum sensing, and quantum communication via

their nuclear or electronic spins. A universal prediction frame-

work for impurity behavior in known and novel semiconductor

spaces is thus paramount.12 Given such a framework for group

IV, III–V, and II–VI semiconductors, it would be possible to

perform high-throughput screening of impurity atoms from

across the periodic table in terms of their energetics relative to

dominant native defects (such as vacancies and self-intersti-

tials), the nature of equilibrium conductivity, and the location of

energy levels with respect to band edges.

For years, defect levels and their donor or acceptor type na-

ture have been experimentally measured using methods such

as deep level transient spectroscopy and cathodolumines-

cence,23,24 but such studies have been limited by difficulties in

sample preparation and assigning measured levels to specific

vacancies, interstitials, substitutions, or complex defects.

Computationally, the first principles density functional theory

(DFT) has been widely used to predict the formation energies

of point defects as a function of the net charge in the system,

the chemical potential conditions, and the Fermi level as it

goes from the valence band maximum (VBM) to the conduction

band minimum (CBM).3,8,11,12,25 When an appropriate level of

theory is applied, the DFT-computed defect charge transition

levels have been seen to match well with measured levels and

have helped to identify specific charge transitions of specific de-

fects. DFT can reliably predict defect and impurity behavior in a

variety of semiconductors, but limitations arise from the compu-

tational expense of using large supercells and performing

charged calculations,12 making it difficult to extend calculations

to explore new systems broadly.
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Predictive machine learning (ML) models, trained from

existing or freshly generated data, act as surrogates for DFT

calculations by providing statistical estimates of the desired

properties.12,26–28 The burgeoning field of materials informatics

has led to many successes, with some of the most notable

contributions resulting from the combination of first principle

computations and ML. ML applied on DFT data has seen the

development of predictive and design tools29–31; the discovery

of novel materials for batteries, capacitors, solar cells, and ther-

moelectrics32–36; and the efficient exploration of extremely large

chemical spaces.37,38 Indeed, ML has been instrumental in accel-

erating the prediction of properties related to point defects and

dopants in materials. This includes predicting vacancy formation

and substitutional energies of oxides using regression algorithms

applied onDFT data,39–42ML formation energies, transition levels,

and themigration energies of point defects in known semiconduc-

tors and alloys,43,44 predicting the dopability of semiconductors,45

and improving high-fidelity predictions of point defect properties

using previously unknown correlations.46 Recent work from our

group involved performing high-throughput DFT computations

to study the formation energies and charge transition levels of im-

purities in halide perovskites3 and Cd-chalcogenides,12 following

which MLmodels were trained for the prediction and screening of

impurity atoms that can shift the equilibrium Fermi level as deter-

mined by dominant native defects. An extension of these studies

in terms of semiconductor and impurity chemical spaces as well

asML techniques can pave the path towarda universal framework

for impurity prediction and design.

In this work, we consider atomic impurities from across the pe-

riodic table, in a chemical space of binary group IV, III–V, and II–VI

semiconductors in the ZB structure, and use the DFT + MLmeth-

odology to predict their complete charge, chemical potential, and

Fermi level-dependent formation energies. This is a direct exten-

sion of our work on Cd-chalcogenides,12 which forms a subset of

the computational data presented here. We perform high-

throughput DFT computations on impurity atoms simulated at

the cation, anion, and different interstitial sites in several selected

compounds in the group IV (e.g., Si, SiC, and GeC), III–V (e.g.,

BSb, GaAs, and InP), and II–VI (e.g., ZnSe and CdS) chemical

space and use descriptors encoding information about the semi-

conductor, the impurity atom, and the defect site coordination

environment as input to train ML models that predict the neutral

state formation energy and six types of charge transition levels

for any possible impurity. We used sure independence screening

and sparsifying operator (SISSO) for feature selection and the

K-nearest neighbors (KNN) approach for outlier detection, fol-

lowed by regression techniques such as random forest, Gaussian

process, and neural network to yield the predictive models.

In the following sections, we discuss the exact composition of

the chemical space and visualize the DFT computed data, also

plotting the Fermi level-dependent formation energies of native

defects and impurities for selected compounds. We then delve

deep into the development of the ML framework, explaining

the descriptor choices, methods of feature selection, outlier

exclusion, and the various regression techniques used. We

compare the performances of different models using root

mean square errors (RMSE) and estimate the uncertainties in

prediction for each technique. The best models thus obtained

are used to make predictions for the entire chemical space,



Figure 1. Outline and chemical space

(A–D) (A) The DFT-ML workflow followed in this

work, and the semiconductor-impurity chemical

space in terms of (B) the cation and anion choices

for group IV, II–VI, and III–V compounds, (C) types of

defect sites, and (D) impurity atoms selected from

across the periodic table.
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only approximately 10% of which was used to generate the DFT

data, and make a list of dominating impurities for each com-

pound. We finish with a perspective on what can be accom-

plished using this design framework, the limitations of this

work, and potential next steps. The workflow adopted here is

laid out in Figure 1A, highlighting data generation, feature selec-

tion, regression model development, and high-throughput

screening. The DFT data and ML codes generated through this

work are made available on Github.

RESULTS

Semiconductor and impurity chemical space
The chemical space considered in this work has been pictured in

Figure 1 in terms of the semiconductor compounds (b), possible

defect sites (c), and impurity atoms (d). We include AB semicon-

ductors (with A broadly defined as the cation and B the anion)

belonging to groups II–VI, III–V and IV–IV, leading to 8 group II–

VI compounds (CdO, CdS, CdSe, CdTe, ZnO, ZnS, ZnSe, and

ZnTe), 16 group III–V compounds (BN, BP, BAs, BSb, AlN, AlP,

AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, and InSb),

and 10 group IV compounds (C, Si, Ge, Sn, SiC, GeC, SnC,

SiGe, SiSn, and GeSn). The resulting 34 compounds are
modeled in the cubic ZB structure, with A

atoms occupying an FCC lattice and B

atoms occupying the tetrahedral sites.

The DFT-computed lattice constants and

band gaps (using different levels of theory)

of all the compounds are listed in Table S1,

along with corresponding experimental

measurements collected from the litera-

ture. It can be seen that, although the cubic

lattice constants are reasonably accurate,

the standard generalized gradient approx-

imation-Perdew-Burke-Ernzerhof (GGA-

PBE) functional underestimates the band

gap, as has been well demonstrated in

the past.47–49 Band gaps computed for

some compounds using the hybrid

HSE06 functional, with and without spin-

orbit coupling (SOC), compare better with

experiments.

In any AB compound in the ZB structure,

defects or impurities could be found at the

A site, B site, or several possible symmet-

rically inequivalent interstitial sites. Figure 1

also shows the defect sites considered in

this work, namely, the A and B sites and

three types of interstitial sites: the A site

interstitial (with 4 neighboring A atoms),
the B site interstitial (with 4 neighboring B atoms), and the neutral

site interstitial (with 3 neighboring A and B atoms each). The 5

defect sites are considered in the 30 binary compounds while

in the remaining 4 elemental systems (C, Si, Ge, and Sn), 3 defect

sites are considered (A site, A site interstitial, and neutral site

interstitial). For a few defects, we also tested other possible inter-

stitial sites in the ZB structure, such as anion/cation-split sites

(as described in the literature7), and generally found one of the

three chosen interstitial sites to be lower in energy. In terms of

impurity atoms, we consider nearly all elements from periods II

to VI as well as all lanthanides, leading to a total of 77 species,

as pictured in Figure 1. The total number of possible impurities

in this chemical space can thus be estimated as: 77 3 5 3

30 + 773 33 4 = 12,474. Out of these 12,474 data points, about

10% are considered for DFT computations to determine their

neutral state formation energies, and charge transition levels;

ML models trained on these data based on the properties of

the semiconductor compound, defect site coordination, and im-

purity atom lead to generalized predictions applicable to all the

data points. The 10% of data points chosen for computations

constituted a desirable diversity in semiconductor type, element

type, and defect site type; in other words, while the actual data

points were selected at random (and added to prior data12),
Patterns 3, 100450, April 8, 2022 3



Figure 2. Comparison of DFT-computed defect levels with experi-

mentally measured levels

(Obtained frompublications51–66). Measured versus DFTRMSE values are also

shown for different semiconductor types and for the combined set of points. A

few defect levels have been labeled.
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we ensured that every compound (out of 34), element (out of 77),

and defect site (substitutional or interstitial) is roughly equally

represented, with the exception of CdTe, which is heavily

represented.
Defect properties: Benchmarking DFT and native defect
energy picture
The methodology to compute defect formation energy (Ef) from

DFT as a function of charge (q), chemical potential (m) conditions,

and Fermi level (EF) is described in the Experimental procedures

section. Ultimately, for all native defects and impurities, we

calculate neutral state formation energies at two extreme m con-

ditions, namely A-rich and B-rich, and six types of defect charge

transition levels, namely +3/+2, +2/+1, +1/0, 0/�1, �1/�2, and

�2/�3. An experimental comparison of defect properties

computed at the chosen level of theory is worthwhile before

launching a computational data-driven discovery exercise.

As noted earlier, the standard GGA-PBE functional used in this

work is known to underestimate band gaps, but it has been re-

ported that defect charge transition levels from PBE can

compare well with experiments for various semiconductor clas-

ses such as hybrid perovskites3,10 and even group IV, III–V, and

II–VI semiconductors.11,25,46,50 This contrast can be attributed to

total energy differences in DFT being more accurate than using

Kohn-Sham energy levels to estimate band edges11,25,50 or

band gaps,48 or in the case of hybrid perovskites, a fortuitous

cancellation of errors that leads to PBE being as accurate as

HSE06+SOC.3,10 It has been reported in past work that defect

levels computed from semilocal GGA-PBE for well-known ZB

semiconductors such as Si and GaAs can span the physical
4 Patterns 3, 100450, April 8, 2022
band gap of the material25,50; that is, the defect transition levels

calculated from PBE correspond well with experimental values

up to the experimental band gap, even for transitions that are

further from the VBM than the PBE-calculated band gap. To

ascertain the accuracy of PBE defect and impurity levels in all

II–VI, III–V, and IV–IV compounds, we scoured the published

literature51–66 (in a brute force manner, something we hope to

replace with more efficient and comprehensive natural language

processing-based searches in the future67,68) and collected

measured energy levels for 84 defects across the 34 com-

pounds, adding to the set of 15 points collected for CdTe in

ref12 As presented in Figure 2 and Table S2, the PBE predicted

defect levels are highly correlated with experimental measure-

ments, with a correlation coefficient (R2) of 0.85. We find that

the RMSE of PBE predictions compared with experiments is

less than 0.2 eV for III–V and IV–IV compounds, and 0.24 eV

for II–VI compounds, resulting in a total RMSE of approximately

0.21 eV. This is an acceptable level of accuracy that is similar to

what we found in earlier work,12and is within the recognized ac-

curacy limit of DFT electronic levels; a similar ML versus DFT ac-

curacy would be desired for eventual prediction and screening to

be performed with some degree of experimental precision. To

our knowledge, this is the largest comparison performed to

date between DFT computed defect levels and experimental

measurements.

Before discussing the computational dataset of impurity for-

mation energies and charge transition levels, we take a look at

the complete picture of native point defect formation energies

as a function of q, m, and EF. In each of the 34 semiconductors,

we performed neutral and charged DFT calculations for all

possible vacancy, interstitial, and anti-site substitutional defects.

It should be noted that all interstitial and substitutional native de-

fects are made a part of the impurity DFT data for ML but va-

cancies are not, as in the currentML framework, many descriptor

dimensions aremade up of properties of the atom occupying the

defect site. In Figure 3, we plotted the computed formation en-

ergies as a function of Fermi level (as it goes from the VBM to

the CBM) for all native point defects and selected impurities in

(a) ZnSe at Se-rich conditions, (b) AlAs at As-rich conditions,

and (c) SiC at Si-rich conditions.

From Figure 3, we can deduce the lowest energy donor and

acceptor type native defects, their preferred charged states in-

side the band gap, the p-type or n-type nature of equilibrium

conductivity, and the energetics of impurities relative to domi-

nant native defects. For instance, in ZnSe at Se-rich conditions,

the VZn and Zni are the dominant acceptor and donor type de-

fects respectively, and pin the equilibrium EF (determined by

applying charge neutrality conditions69) closer to the valence

band edge, indicating a p-type conductivity. It can be seen

that impurities PtZn and Cli create higher energy negatively

charged defects in the band gap than the VZn, meaning they

cannot compensate for native defects. Similarly, the VAl and

AsAl form the lowest energy acceptor and donor type defects

in AlAs at As-rich conditions and pin the equilibrium EF around

the middle of the band gap, resulting in an intrinsic type conduc-

tivity, while impurities TlAs and Ci are both higher energy defects.

In SiC at Si-rich conditions, the VC and CSi are the lowest energy

donor and acceptor type defects and lead to intrinsic conductiv-

ity. Also marked in Figures 3A–3C are some neutral state
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Figure 3. Charge- and Fermi-level-dependent formation energy picture

(A–C) Computed formation energies of native defects (solid lines) and selected impurities (dashed lines) in (A) ZnSe under Se-rich conditions, (B) AlAs under As-

rich conditions, and (C) SiC under Si-rich conditions, as a function of the Fermi level as it goes from the VBM (EF = 0 eV) to the CBM (EF = experimental band gap).

The intersection point of the dominant donor and acceptor type native defects (shown using extended dotted colored lines) approximately gives the equilibrium

defect formation energy, and the vertical dotted lines show the equilibrium Fermi level. Some charge transition levels and neutral state formation energies have

been labeled.
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formation energies, DH, and some charge transition levels, ε(q1/

q2). In Tables S3 and S4, we list the dominating acceptor and

donor type defects, and the equilibrium EF, E
f, and type of con-

ductivity in every compound at A-rich and B-rich chemical po-

tential conditions; all impurity formation energies will be

compared against these defects to determine whether they are

dominating or not, and how they might change the equilibrium

conductivity.

Computational dataset
Building on the dataset of impurity properties in Cd-chalcogen-

ides from our previous work12 and the native defects presented

in the previous section, we performed additional impurity calcu-

lations for randomly selected impurity atoms across the space of

34 group IV, III–V, and II–VI semiconductors. For any defect or

impurity, what is ultimately desired is a complete picture of the

formation energy as a function of the charge, Fermi level, and

chemical potential, as shown in Figure 3. We explicitly consid-

ered two types of predictable properties that can yield the entire

formation energy picture, namely, the neutral state formation en-

ergy (DH [A-rich] or DH [B-rich]) and possible charge transition

levels (ε(+3/+2), ε(+2/+1), ε(+1/0), ε(0/-1), ε(�1/�2) and ε(�2/

�3)). Out of a total chemical space of 12,474 impurity types,

we computed using DFT (a) 1568 DH values at either chemical

potential condition and (b) 1004 ε(q1/q2) values for all six charge

transition types. We then trained eight separate ML models for

DH (A-rich), DH (B-rich), and transition levels from ε(+3/+2) to

ε(�2/�3).

In Figure S1, the distributions of semiconductor types (II–VI,

III–V, or IV–IV) and impurity types (A site, B site, or interstitial

site) are pictured for the entire chemical space and for the two

DFT datasets. It can be seen that, based on the chemical space

we selected, almost one-half of the data points belong to III–V

semiconductors and one-quarter of the points each belong to

II–VI and IV–IV; this is, however, not reflected in the DFT data-

sets, owing to a predominance of data available on II–VI semi-

conductors from past and present work. Nevertheless, it is ex-

pected that the III–V and IV–IV semiconductors are adequately

represented because, while choosing data points for DFT calcu-

lations, it was ensured that at least 10 impurities in each com-
pound are selected, and every defect site is considered. Further,

the entire chemical space contains approximately 40% substitu-

tional impurities and 60% interstitial impurities, with the former

being equally divided between A site and B site substitutions,

and the latter divided equally between the three types of intersti-

tial sites; all the defect sites are pictured in an example ZB super-

cell in Figure 1. The defect site distribution is similar for each

defect property (DH or ε), ensuring adequate representation.

To visualize the DFT data, we plotted all the computed charge

transition levels and formation energies in Figure 4. The transition

levels are plotted two at a time against each other in Figures 4A–

4C, as a fraction of the experimental band gap of the compound.

Many transition levels are seen to lie deep inside (>0.2 eV from

the band edges) the shaded region that represents the band

gap, which indicates the tendency of certain impurities to create

deep energy levels. It can also be seen that most of the mid-gap

impurity levels belong to +1/0 and 0/�1 transitions, and to a

lesser extent to +2/+1 and �1/�2, but almost not at all to the

higher charge transitions like +3/+2 and �2/�3. The ranges of

values of the transition levels are fairly wide, from deep inside

the VB to the band gap to deep inside the CB, which reveals a

great variety in the type of impurities based on their preferred

oxidation states and the sites they occupy. In Figure 4D, we

plotted DH (A rich) versus DH (B rich), which shows values that

range from approximately �5 eV to approximately 20 eV. For

the group IV compounds C, Si, Ge, and Sn, the A-rich and B-

rich conditions are the same, leading to many of the red points

lying along the diagonal. In general, DH (A rich) and DH (B rich)

pin two extremes of the impurity formation energy values, and

medium chemical potential conditions would lead to intermedi-

ate formation energies.

Machine learning framework
Descriptors

Aside from generating the computational data, the need for

domain expertise is most evident in creating appropriate de-

scriptors or sets of features that can uniquely represent every

point in the dataset. In the semiconductor and impurity chemical

space used in this work, we can uniquely identify every data

point using the identity of the semiconductor, the identity of
Patterns 3, 100450, April 8, 2022 5
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Figure 4. Visualization of DFT data

(A–D) (A–C) transition levels (+3/+2) to (�2/�3), and

(D) neutral state formation energies at A-rich and B-

rich chemical potential conditions, plotted for

different semiconductor types.

ll
OPEN ACCESS Article

Please cite this article in press as: Mannodi-Kanakkithodi et al., Universal machine learning framework for defect predictions in zinc blende semicon-
ductors, Patterns (2022), https://doi.org/10.1016/j.patter.2022.100450
the impurity atom, and the defect site it occupies. Thus, we

define descriptors for any impurity M at any site S in any com-

pound AB by combining the following three levels of information:

1. ABprop: Available computed or experimental properties of

the semiconductor AB, namely, the formation energy, lat-

tice constant, band gap, and the electronic and ionic

dielectric constants; this leads to five dimensions.

2. Elemprop: Tabulated elemental properties of the impurity M

as well as species A and B, such as ionic radius, ionization

energy, electronegativity, and so on; this leads to 81 di-

mensions.

3. CMprop: Quantifying the chemical coordination environ-

ment around the defect site S in terms of A and B neigh-

bors, using the Coulomb Matrix definition70; this leads to

eight dimensions.

The complete list of descriptors can be found on the x axis of

Figure S2 as well as Table S5, which show the Pearson coeffi-

cient of linear correlation ðjrjÞ between the properties of interest,

DH and ε(q1/q2), and each of the descriptors.

Feature selection

The primary feature set of 94 dimensions are all assumed to be

relevant to describe the targeted predictors, that is, the impurity

transition levels and formation energies. To better explore the

nonlinear relationships that may exist between these descriptors

dimensions and the properties, we used the SISSO71 method to

perform feature engineering. First, a set of operators, namely +,

�, *, /, exp, log, ^(�1), ^2, ^3, sqrt, cbrt, |-|, are implemented recur-

sively for feature spaceexpansion. The total feature sizegoes from

approximately 102 to approximately 105 after two iterations. Next,

sure independence screening72 is used to screen all features from

0D feature space (no iteration) to1D feature space (one iteration) to

2D feature space (two iterations) using a linear correlation metric,
6 Patterns 3, 100450, April 8, 2022
leaving behind only highly correlated fea-

tures. Finally, a sparsifying operation73 is

applied to filter down the feature space to

80–150 for each output.

Outlier identification

The detection of outliers in a dataset helps

identify candidates with unusual proper-

ties, which may either be erroneous or

lead to lower accuracy when used to train

ML models. KNN is a method commonly

applied to identify the outliers in a dataset

based on a feature space.74 KNN assigns

classes to data points based on the most

common assignment of its k-nearest

neighbors; any point that is surrounded

by points belonging to a different class is

denoted an outlier. Here, the DFT

computed transition levels and formation
energy values were used as a combined input to a KNN frame-

work. Another method we considered to detect outliers was

the principal component analysis (PCA),75 which decreases the

number of variables used to describe an output while still main-

taining most of the descriptive information. A covariance matrix

of the data is decomposed to orthogonal eigenvectors, associ-

ated with eigenvalues that signify how much of the variance in

the data that eigenvector captures. Each data point is labeled

with an outlier score as determined by the sum of the weighted

distances to all the eigenvectors, with smaller eigenvalues hav-

ing higher influence (as this is where outliers are more likely to

exist).76 Using both KNN and PCA, we selected 10% of the

data with the highest outlier scores to be removed. We found

that PCA disproportionately removed data points belonging to

IV–IV semiconductors. Ultimately, the KNN filtered inlier points

proved more effective for all models, and were used as the stan-

dard training sets.

Training regression models

In the following sections, we discuss the optimization and perfor-

mance of various regression models trained on the computa-

tional data, starting with linear regression and moving on to

different nonlinear regression techniques, namely, random for-

ests, Gaussian processes, kernel ridge, and neural network

regression. Common to every method used in this work is the

way the training-test split, cross-validation, hyperparameter

optimization, and error evaluation was performed. A separate

model was trained for each of the eight outputs, namely the six

types of transition levels and two formation energies. Five-fold

cross-validation was implemented for each model because of

a strong dependence of the prediction ability on the exact points

chosen for training. Cross-validation helps to reduce the re-

ported bias and variance, and is important for avoiding overfit-

ting. Various important hyperparameters were optimized for



Table 1. ML test set prediction RMSE values for transition levels

Property

ML

method

II–VI

error (eV)

III–V

error (eV)

IV–IV

error (eV)

Total

error (eV)

ε(+3/+2) MLR 0.35 0.37 0.34 0.35

ε(+3/+2) Ridge 0.35 0.35 0.32 0.34

ε(+3/+2) LASSO 0.36 0.36 0.32 0.35

ε(+3/+2) Elastic net0.35 0.35 0.32 0.34

ε(+3/+2) RFR 0.36 0.31* 0.35 0.34

ε(+3/+2) KRR 0.33 0.37 0.31 0.33

ε(+3/+2) GPR 0.32 0.36 0.32 0.33

ε(+3/+2) NN* 0.29* 0.36 0.29* 0.31*

ε(+2/+1) MLR 0.42 0.46 0.46 0.44

ε(+2/+1) Ridge 0.42 0.43 0.45 0.43

ε(+2/+1) LASSO 0.43 0.44 0.45 0.44

ε(+2/+1) Elastic net0.42 0.43 0.45 0.43

ε(+2/+1) RFR 0.39 0.36 0.40 0.38

ε(+2/+1) KRR 0.33 0.38 0.40 0.36

ε(+2/+1) GPR 0.32 0.38 0.41 0.36

ε(+2/+1) NN* 0.29* 0.35* 0.38* 0.33*

ε(+1/0) MLR 0.40 0.39 0.43 0.40

ε(+1/0) Ridge 0.40 0.38 0.42 0.40

ε(+1/0) LASSO 0.41 0.39 0.43 0.41

ε(+1/0) Elastic net0.40 0.38 0.42 0.40

ε(+1/0) RFR 0.38 0.36 0.39 0.38

ε(+1/0) KRR 0.31 0.34 0.38 0.33

ε(+1/0) GPR* 0.29* 0.32 0.38 0.32*

ε(+1/0) NN 0.29 0.31* 0.37* 0.32

ε(0/–1) MLR 0.37 0.42 0.34 0.38

ε(0/–1) Ridge 0.37 0.40 0.34 0.37

ε(0/–1) LASSO 0.37 0.40 0.34 0.37

ε(0/–1) Elastic net0.37 0.40 0.34 0.37

ε(0/–1) RFR 0.37 0.33 0.35 0.35

ε(0/–1) KRR 0.32 0.36 0.32 0.33

ε(0/–1) GPR 0.31 0.34 0.32 0.32

ε(0/–1) NN* 0.28* 0.33* 0.31* 0.30*

ε(–1/–2) MLR 0.33 0.38 0.30 0.33

ε(–1/–2) Ridge 0.32 0.37 0.29 0.32

ε(–1/–2) LASSO 0.32 0.37 0.29 0.33

ε(–1/–2) Elastic net0.32 0.37 0.29 0.33

ε(–1/–2) RFR 0.34 0.35 0.27 0.33

ε(–1/–2) KRR 0.29 0.32 0.27* 0.29

ε(–1/–2) GPR 0.29 0.31 0.28 0.29

ε(–1/–2) NN* 0.26* 0.29* 0.28 0.27*

ε(–2/–3) MLR 0.27 0.26 0.22 0.26

ε(–2/–3) Ridge 0.27 0.26 0.22 0.25

ε(–2/–3) LASSO 0.27 0.26 0.22 0.25

ε(–2/–3) Elastic net0.27 0.26 0.22 0.25

ε(–2/–3) RFR 0.24* 0.28 0.27 0.25

ε(–2/–3) KRR 0.26 0.24 0.21 0.24

ε(–2/–3) GPR 0.25 0.24 0.21 0.24

ε(–2/–3) NN* 0.25 0.22* 0.22* 0.24*

*The gene in closest proximity to the cytokine QTL SNPs.
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each regression technique; for instance, for neural networks,

they include the number of hidden layers, the numbers of nodes

in each layer, the dropout rate, and so on. All regression models

were trained using functions in the Python ML library scikit-

learn.77

The metric for evaluating model performance was chosen to

be the prediction RMSE. Each of the five folds was treated as

a validation set over multiple training cycles, and the prediction

RMSE for each fold was averaged over the number of folds.

This leads to an effective 80–20 training-test split in the dataset,

and an effective test prediction error is obtained for every data

point, providing an unbiased prediction that reveals the true pre-

dictive power of the trainedmodel. The optimal set of hyperpara-

meters is chosen such that the cross-validation error is mini-

mized; we ultimately report training and test errors for every

model, but optimization is based on the validation error, such

that the actual test set in each iteration remains unseen by the

model during the training process. Further, the standard devia-

tion in predictions over the multiple training cycles is defined

as the uncertainty for each predicted point, providing an error

bar that accompanies every prediction. Results are presented

as parity plots of ML predictions versus DFT-calculated proper-

ties, with reported RMSE values in eV, and plots between uncer-

tainties and errors in every data point; the predictions are also

visualized in terms of semiconductor type. The training predic-

tion RMSE values are listed in Tables S6 andS7, and the test pre-

diction RMSE values listed in Tables 1 and 2, divided in terms of

property, ML technique used, and type of data point. The set of

best hyperparameter values obtained for each technique and

each property are included as part of the Supplementary mate-

rials, as are alternative prediction performance metrics, mean

absolute errors, and R2 scores.

Linear regression

Figure S2 shows the Pearson coefficient of linear correlation be-

tween various (primary) descriptor dimensions and the proper-

ties of interest. We see that many of the features are 50%–

70% correlated with the properties, showing a certain degree

of linear relationship. We further plotted the correlation coeffi-

cients for the 10 best SISSO-based compound features (essen-

tially, complex functions of combinations of original features) in

Figure S3. The highest correlated features reveal the specific de-

scriptors or combinations thereof that could best predict the

defect formation energy and charge transition levels. We notice

that atomic radii and ionization energy differences (between

defect atom M and A/B atoms) are most important for ε(+3/+2),

while valence and electronegativity differences dominate for

ε(+2/+1); coefficients for both remain small, at approximately

0.35. The highest correlations are between 0.5 and 0.55 for

ε(+1/0) and ε(0/�1), with ionization energy and atomic radii differ-

ences dominating in both. ε(�1/�2) and ε(�2/�3) show even

higher correlations of between 0.7 and 0.75, with descriptors

such as theMendeleev number, covalent radii, and ICSD volume

of M/A/B atoms being most important. Finally, we find correla-

tion maximums of approximately 0.45 for DH (A rich) and DH

(B rich), determined primarily by the semiconductor lattice con-

stant, ionization potential, boiling point, heat of fusion/vaporiza-

tion, and specific heat capacity. Overall, these correlations

reveal that the relative electronegativities, ionization energies,

and radii of elements are important in placing defect energy
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Table 2. ML test set prediction RMSE values for formation

energies

Property

ML

method

II–VI

error (eV)

III–V

error (eV)

IV–IV

error (eV)

Total

error (eV)

DH

(A rich)

MLR 0.85 1.57 1.81 1.16

DH

(A rich)

Ridge 0.85 1.54 1.78 1.14

DH

(A rich)

LASSO 0.88 1.55 1.79 1.16

DH

(A rich)

Elastic

Net

0.85 1.53 1.78 1.14

DH

(A rich)

RFR 1.05 1.03 1.20* 1.07

DH

(A rich)

KRR* 0.62 1.35 1.32 0.89*

DH

(A rich)

GPR 0.59* 1.33 1.71 0.96

DH

(A rich)

NN 0.62 1.30* 1.40 0.89

DH

(B rich)

MLR 1.04 1.82 1.81 1.31

DH

(B rich)

Ridge 1.04 1.73 1.77 1.29

DH

(B rich)

LASSO 1.08 1.74 1.80 1.32

DH

(B rich)

Elastic

Net

1.05 1.72 1.77 1.28

DH

(B rich)

RFR 1.09 1.25* 1.52 1.18

DH

(B rich)

KRR 0.77* 1.52 1.45 1.03

DH

(B rich)

GPR 0.82 1.52 1.70 1.11

DH

(B rich)

NN* 0.81 1.34 1.44* 1.01*

*Lowest prediction errors.
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levels relative to band edges, while the size of the lattice and heat

of fusion may determine how likely it is for the defect atom to

exist at site in consideration

To explore linear relationships further, we chosemultiple linear

regression (MLR) as the method to train the first predictive

models. Given a vector of properly standardized features XT =

ðX1;X2;.;XpÞ, and calculated output vector Y, the matrix of co-

efficients b corresponding with each feature and the output is

determined by minimizing the least square error
�
�Y � XTb

�
�
2
.

While MLR yields an unbiased predictor, it is prone to overfitting

when several features are highly correlated with the output. To

address this issue, we use three shrinkage methods, namely,

least absolute shrinkage and selection operator (LASSO) regres-

sion, ridge regression, and elastic net regression,78 all of which

yield a biased predictor, but with a lower variance, leading to

less overfitting compared with the standard least square. Ridge

regression shrinks the coefficients b by imposing an L2 penalty,

whereas LASSO uses an L1 penalty.
79 The elastic net is another

regularized linear regression technique that combines both L1
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penalty and L2 penalty. Typically, b shrinkage inside LASSO

regression progress more severely compared with the other

two approaches, and some of the coefficients are brought

down to 0.

In Figures S4–S7, we present parity plots for models trained

using MLR, LASSO, ridge regression, and elastic net regression,

respectively. We see from the plots and from Tables 1 and 2 that

there is a marginal improvement in prediction going fromMLR to

LASSO, ridge, or elastic net regression. The presented results

are using the SISSO features, as they provide better predictions

than using the primary feature set, which is presumably due to

the nonlinear nature of the input-output relationship. We further

find that there is a strong dependence of the prediction error

on semiconductor type and impurity site. We observe these ef-

fects in nonlinear models as well, which will be discussed in sub-

sequent sections. Such prediction error differences can be

attributed to the imbalanced distribution of training data; the

DFT datasets are biased toward II–VI semiconductors and inter-

stitial site impurities, as seen from Figure S1. In general, we get

better performance on II–VI or interstitial data points, since the

models we trained work better on majority groups.

Random forest regression

The improvement in linear regression model performances upon

going from using the primary features to the SISSO-based fea-

tures shows the importance of interpreting nonlinear relation-

ships between the features and properties. However, non-line-

arity is still limited by the set of operators used in the SISSO

method; to further explore this effect, we adopted a popular

nonlinear regression algorithm known as random forest regres-

sion (RFR). RFR is an ensemble measurement method that fits

a designated number of classifying decision trees such that

each tree is fit on a different randomized sub-sample of the data-

set, chosen through bootstrapping. During the construction of

any tree, the best split for each node is found based on some

number of input features. Averaging over all the trees in the forest

can be performed in several ways, and, in this work, the model

combines the results of the trees by averaging their probabilistic

prediction, which improves prediction accuracy and can help to

control overfitting.80

Hyperparameter tuning focuses on the five most important

features in the RFRmodel, namely, the number of trees in the for-

est, the maximum depth of each tree, the number of features to

consider when looking for the best node split, theminimum num-

ber of samples required to split an internal node, and the mini-

mum number of samples required to be at a leaf node. For

each of the eight outputs, Bayesian optimization was per-

formed81 using a function set to minimize both the test RMSE

and the difference between the training and test RMSE to bal-

ance the bias-variance trade off in the model. Figure S9 shows

a comparison between grid search and Bayesian search based

hyperparameter optimization for RFR; it is seen that both

methods produce similar test errors, but the latter mitigates

overfitting (difference between training and test errors) far better,

thus motivating its use. Parity plots for the optimized models for

all eight properties are shown in Figure 5A. Looking at the error

values listed in Tables 1 and 2, there is a general improvement

in all the transition level prediction RMSEs from between 0.3

and 0.45 eV for the linear models to between 0.25 and 0.38 eV

for RFR, and the formation energy RMSEs drop from 1.2 eV or



A

B

C

Figure 5. Parity plots for best regression

models

(A–C) (A) Random Forest, (B) Gaussian process, and

(C) NN regression, plotted for different semi-

conductor types.
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higher to between 1.07 and 1.16 eV. We further plotted the RFR

uncertainties in prediction against the absolute prediction error

values in Figure S8. While uncertainty and error do not correlate

linearly, such plots reveal the degree of confidence one can have

in a given prediction. A large portion of points lie in the low uncer-

tainty, low error region, but a number of points with low uncer-

tainty also show large prediction errors, which highlights the

need to exercise caution in trusting the ML predictions regard-

less of the estimated uncertainty.

As observed in the linear regression results, we found that RFR

was able to predict formation energies of II–VI semiconductor
impurities more accurately than III–V or

IV–IV, owing to the larger portion of II–VI

semiconductor points in the training data-

set. Interestingly, the transition levels

showed much less of a dependence on

semiconductor type; the difference could

be due to the larger range of values in the

formation energy data versus the transi-

tional levels. We found that the points the

model predicted most inaccurately for for-

mation energies are relative outliers as pre-

dicted by KNN and PCA, and of those

points, III–V and IV–IV semiconductor

types make up a larger portion than in the

dataset as a whole. When analyzing the

prediction results by site of impurity defect,

it was once again seen that interstitials are

predicted slightly better than substitu-

tionals, once again owing to the predomi-

nance of the former in the dataset.

Finally, we examined the feature impor-

tance values that are reported as part of

random forest models; these values were

collected for each property and averaged

over five-fold cross validation. The impor-

tance values for the ten best (SISSO-

based) features are plotted for all eight

properties in Figure S10. It is seen that

the most important features for predicting

ε(+3/+2), ε(+2/+1) and ε(+1/0) are the differ-

ences between valence, preferred oxida-

tion states, and electronegativities of the

defect atom M and A/B atoms. The ε(0/

�1) is determined by the difference be-

tween thermal expansion coefficient of M

and thermal conductivity of B, ε(�1/�2)

by the atomic radius of B and electrical

conductivity of A, and ε(�2/�3) by the co-

valent radius of B and Mendeleev number

of A. While many of the important features

for transition levels are similar to those ob-
tained from Figure S3, the emergence of some new features

shows the importance of uncoveringmore complex nonlinear re-

lationships. Finally, the most important features for DH (A rich)

and DH (B rich) are differences between group numbers and

heat of vaporization for the former and differences in thermal

expansion coefficients for the latter.

Kernel ridge regression

The improvement in prediction with RFR provided the motivation

for alternative nonlinear regression techniques that could lead to

further lowering of errors. Kernel ridge regression (KRR) is a sim-

ilarity-based regression technique that uses the kernel trick to
Patterns 3, 100450, April 8, 2022 9



A

B

Figure 6. Gaussian process regression: Error

versus uncertainty

(A and B) Prediction uncertainty as a function of

absolute prediction error for (A) Gaussian process

and (B) NN regression, plotted for different semi-

conductor types.
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solve a nonlinear problem in a linear fashion. The original low-

dimensional features are used as input and mapped to a high-

dimensional kernel space in which they can be linearly

interpreted. In this work, we use different possible choices for

the kernel function, namely polynomial, radial basis function,

and Laplacian. For hyperparameter optimization, we applied

the grid search method to search a dense space for the best

combination of kernel choice and different parameters in the

kernel, separately for each output.

The prediction performances for the eight outputs are shown

as parity plots in Figure S11A and listed in Tables 1 and 2.

KRR shows a marked improvement in formation energy predic-

tion and slight improvements in transition level predictions

compared to RFR. The improvement is heavily owed to signifi-

cant lowering of errors for impurities in the II–VI compounds.

We find the KRR RMSE for DH (A rich) to be 0.89 eV and for

DH (B rich) to be 1.03 eV, while the RMSE values for the six tran-

sition levels range between 0.25 and 0.35 eV. As shown in Fig-

ure S11B, the uncertainties on the KRR predictions range from

0 to 0.25 eV for the transition levels and 0 to 1 eV for the formation

energies. Once again, a large concentration of points lie in the

low uncertainty, low error region, with a few outliers existing in

the opposite end of the spectrum.

Gaussian process regression

Another nonlinear regression technique that uses the kernel trick

is Gaussian process regression (GPR).82,83 GPR uses the kernel
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and the observation to define a likelihood

function on account of the covariance of

a prior distribution over the target func-

tions. The prior and likelihood function is

assumed to have a Gaussian distribution.

Based on Bayes’ theorem,84 we get a pre-

dictive posterior distribution, from which

we can attain a point prediction using its

mean, and an uncertainty value using its

variance. A major difference between

GPR and KRR is that GPR can internally

choose each kernel’s hyperparameters

by applying gradient-ascent on the mar-

ginal likelihood function, while KRR re-

quires a grid or random search using a

loss function.

It can be seen from the GPR parity plots

in Figure 5B and from Tables 1 and 2 that

the prediction RMSE values are very

similar to those obtained with KRR. The

formation energy errors are between 0.96

and 1.1 eV, while the transition level errors

range from 0.24 to 0.36 eV. It can also be

seen from the training prediction errors

listed in Tables S6 and S7 that there is a
greater difference between the training and the test RMSE for

both formation energies and transition levels than KRR. This

can be explained by the flexibility of theGPRmodels, which likely

causes overfitting when dealing with a small dataset and high

dimensional features.85 The uncertainty versus absolute error

plots in Figure 6A show similar trends to KRR, with a majority

of the points occupying the low-error, low-uncertainty region.

Neural network regression

Finally, we used neural networks (NN) to train regression models

and compared the results with nonlinear regression models from

RFR, KRR, and GPR. The Keras functional API model was used

to build a deep feedforward NN to machine learn a multi-output

regression.86 A sequential model trained to predict the six tran-

sition levels and two formation energies was found to be time

consuming and lacked the ability to predict multiple outputs at

once effectively. Further, a grid search used to explore the num-

ber of hidden layers, number of neurons, learning rate, epochs,

batch size, optimizers, and activation functions was found to

be inefficient. Separate models were thus trained for each prop-

erty using the SISSO-generated descriptors, and scikit-optimize

(skopt) was used for Bayesian hyperparameter optimization. To

overcome an overfitting problem arising fromminimizing only the

test RMSE, the optimization function was revised to also include

the difference in train and test RMSE.

Each NN architecture contains two to three dense neuron

layers, through which the input is concatenated before returning
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the output through the final layer. The number of neurons in each

dense layer varies with the input dimensions for each specific

property or output. Kernel and activity regularizers were also in-

tegrated in each dense layer to prevent overfitting. The ‘‘relu’’

activation function was ultimately used for each dense layer,

beating out sigmoid, softmax, softplus, tanh, and selu func-

tions,87 while the Adam optimizer was selected over SGD,

RMSEprop, Adadelta, and Adagrad.88 NN model training

involved 10-repeated 5-fold cross-validation, where the mean

and SD of prediction of every data point were used as the pre-

dicted value and uncertainty value, respectively. Parity plots

for the best models thus obtained are presented in Figure 5C,

while Figure 6B shows the uncertainty versus absolute er-

ror plots.

It can be seen from the parity plots and Tables 1 and 2 that NN

predictions for both transition levels and formation energies are

similar to KRR and GPR. Transition level RMSE values are seen

to range from 0.24 to 0.33 eV, while the formation energy RMSEs

are between 0.9 and 1 eV. A comparison with training set predic-

tions in Tables S6 and S7 further reveals that the gaps in test and

training predictions from NN are similar to those from KRR,

implying less overfitting as compared to GPR. A possible disad-

vantage of the NN models comes from the larger uncertainty

values seen in general compared to other methods, as visible

from Figure 6B, while the absolute error values are similar to

other methods. This is an effect of the stronger dependence of

NN model prediction on the hyperparameter choice, leading to

a larger SD in prediction; this is expected to affect NN predic-

tions over the entire chemical space. We further note that stan-

dard deviations over 10-folds may not be sufficient to converge

the uncertainties, but we use an ensemble of 10 predictions here

to save on training time and keep estimates consistent across

different ML models. Methods such as Monte Carlo dropout89

can help to attain better uncertainty estimates as well, and will

be applied in future work.

High-throughput screening of dominating impurities

The detailed ML analysis presented in this work reveals that mul-

tiple nonlinear regression techniques can be trained tomake pre-

dictions of impurity transition levels and formation energies with

errors that are within 10% of the range of values across the data-

set. In Figure 7A, we present the test set prediction RMSE values

of eight different ML techniques used in this work, namely MLR,

ridge, LASSO, elastic net, RFR, KRR, GPR, and NN, for the six

transition levels and two formation energies. The errors are

plotted separately for the II–VI, III–V, and IV–IV points, as well

as all the points taken together. It can be seen that for all the

data types, the general trend is a reduction in RMSE upon going

from linear to nonlinear techniques. It is also seen that in general,

the RFRperformance is worse than KRR,GPR, andNN,while the

latter three have similar formation energy errors with NN edging

out the other two for most of the transition levels. From these re-

sults, one can expect NN, GPR, and KRR to yield similar results

for the complete formation energy picture of all impurities as a

function of charge, chemical potential, and Fermi level, which

can be formulated using the predicted neutral state formation

energies and all possible charge transitions.

We performed high-throughput prediction of the complete for-

mation energies of the entire dataset of 12,474 impurities, using

the best NN, GPR, KRR, and RFR models. It is important to note
here that a significant amount of time is saved by replacing full

DFT calculations with almost instantaneous ML predictions. On

average, any 1 point defect in a 64-atom supercell simulated in

the neutral state requires approximately 500 core hours, while

6 charged state calculations require a further approximately

2000 core hours (running on 8 Intel Broadwell XEONE5-2695 no-

des with 36 cores each). For the DFT datasets of approximately

1500 neutral state formation energies and approximately 1000

charge transition levels of 6 types, this translates to approxi-

mately 2.75 million core hours. For the entire dataset of 12,474

impurities, approximately 32 million core hours would be

required for complete DFT optimization and prediction of all

defect properties. In contrast, every ML model takes a matter

of minutes to train andmake predictions over the entire chemical

space. Thus, based on computations using 1/10th of the total

computing time required, we can make reasonable predictions

for all the data points. Predictions for the entire set of 12,474 im-

purities using different MLmodels are included as a spreadsheet

as part of the Supplementary materials.

The ML-predicted impurity formation energies across the data-

set were comparedwith the dominant native defect energetics for

each compound, based on which screening is performed for (a)

dominating impurities, i.e., impuritieswith lower energy thannative

defects, which will change the equilibrium Fermi level of the semi-

conductor,and (b) lowenergy impurities (lower thannativedefects)

with mid-gap energy levels. The screening performance of each

MLmodel is determined by comparing theML and DFT screening

for the data points in the original DFT dataset. Given the expected

DFT versus experiments and ML versus DFT errors, we relax the

screening criteria by ± 0.2 eV for the DFT data and by ±0.5 eV for

the ML data. We thus calculated the number of true positives

(TP, dominating/mid-gap from both DFT and ML), true negatives

(TN), false positives (FP) and false negatives (FN) for eachmethod.

Based on these scores, the following metrics were defined:

Accuracy = (TP + TN)/(TP + TN + FP + FN)

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

Figures 7B and 7C show the accuracy, precision, and recall

scores of each ML technique for screening of dominating impu-

rities and low energy impurities with mid-gap levels, respectively.

Results are plotted for the total dataset and for each semicon-

ductor type, for both A-rich and B-rich conditions. The accuracies

(in blue) of RFR, GPR, and KRR for all data types are seen to be

greater than 95% for screening of dominating impurities in Fig-

ure 7B, while the precision (red) and recall (green) range from

80% to 95%. Interestingly, the accuracy, precision and recall

scores of NN predictions are universally seen to lag behind the

scores fromRFR,GPR, andKRR. This surprising lack of predictive

power of the NN models is attributed to their strong dependence

on the hyperparameter choices, which is intimately linked with

the exact nature of the trainingdataset. This leads to the higher un-

certainty values seen in Figure 6B and likely overfitting, whichmay

not manifest in a limited test set, but over the entire set of 12,474

impurities, some predictionsmay bewell off, resulting in lower ac-

curacy, precision, and recall scores. The NN scores are better for

screeningof lowenergy impuritieswithmid-gap levels inFigure7C,
Patterns 3, 100450, April 8, 2022 11
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Figure 7. ML model performance compari-

son

(A–C) The performance of various ML models by

semiconductor type, in terms of (A) prediction

RMSE, and screening accuracy, precision and

recall scores for (B) dominating impurities and (C)

low energy impurities with mid-gap energy levels at

A-rich and B-rich chemical potential conditions.
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and all four techniques (NN,GPR,KRR, and RFR) show similar ac-

curacy, precision, and recall. Scores are seen to be lower for III–V

data points than others, for reasons relating to the general imbal-

ance in the dataset. To further elucidate the effect of this dataset

imbalance,we retrained someGPRandRFRmodelsona reduced

dataset with (a) equal number of II–VI, III–V, and IV–IV points, and

(b) equal number of interstitial and substitutional points, essentially

by removing a large number of II–VI or interstitial points (mostly

belonging to impurities in CdTe). Figures S15 and S16 show,

respectively, the GPR and RFR RMSE values for all properties us-

ing the entire dataset and using reduced balanced datasets. It can
12 Patterns 3, 100450, April 8, 2022
be seen that the overall predictions are

slightly worse with the balanced datasets,

simply because fewer data points are being

used for training, but the gap between II–VI,

III–V, and IV–IV errors reduces, as does the

gap between substitutional and interstitial

errors. However, for formation energy, the

II–VI pointsand interstitialpointsarestill pre-

dicted better than other data types. We

conclude that, although errors for different

data types can be brought closer to each

other using more balanced datasets, we

prefer to use models trained on the entire

dataset since they lead to similar or better

errors for different data types.

In Table 3, we list several impurities

deemed to be dominating from both DFT

andML (GPRused as example here), along

with their stable charge states, the corre-

sponding dominating native defect, the

type of shift induced in the equilibrium EF,

and whether mid-gap energy levels are

created. For example, it can be seen that

Ti at the Al site in AlAs creates a stable +1

charged donor type defect, and, alongwith

a�3 charged As vacancy acceptor, makes

the conductivity more n-type and creates a

transition level in the band gap. Similarly, a

Be interstitial defect in Si induces a p-type

shift in conductivity. Lists of dominating

impurities with or without mid-gap energy

levels were thus generated for all com-

pounds. Finally, we plotted the complete

charge and EF-dependent formation en-

ergies of selected impurities from both

DFT and GPR for a few cases in Figure 8.

There is an impressive match between

the DFT and GPR curves for most of the
impurities, with charge states and transitions in general remain-

ing consistent. A few impurities such as BiZn in ZnS and Ini in AlAs

are seen to show greater disparity between DFT and GPR, but

qualitative trends remain the same. Also plotted for each case

in Figure 8 are the dominant native defects, and it can be seen

that almost all impurities are correctly predicted to be domi-

nating or not dominating from GPR compared with DFT, which

implies a reliable qualitative screening, evenwhen the actual pre-

dicted formation energies or transition levels are off. As a final

test of the generalizability of our ML framework, we selected

25 new impurities deemed to be dominating from GPR and



Table 3. Selected dominating impurities identified by both DFT

and ML (GPR), at A-rich chemical potential conditions

SemiconductorImpurity

Shift in

Eqm. EF Dominating defects

Mid-

gap level?

CdS InCd n-type InCd, q = 1 and VCd,

q = �2

Y

CdS IS n-type IS, q = 1 and VCd,

q = �3

Y

CdS Tii p-type Tii, q = 2 and VS,

q = �1

Y

CdSe CuCd p-type CuCd, q =�1 and Cdi,

q = 2

Y

CdSe Fi p-type Fi, q = �1 and VSe,

q = 2

N

CdSe Nii p-type Nii, q = �1 and VSe,

q = 2

Y

CdTe BiCd n-type BiCd, q = 1 and VCd,

q = �2

Y

CdTe AsTe p-type AsTe, q = �1 and VTe,

q = 2

Y

CdTe Nai n-type Nai, q = 1 and VCd,

q = �2

N

ZnS Lii n-type Lii, q = 1 and VZn,

q = �2

N

ZnS Tii n-type Tii, q = 1 and VZn,

q = �2

Y

ZnSe AlZn n-type AlZn, q = 1 and VZn,

q = �2

Y

ZnSe BrSe n-type BrSe, q = 1 and ZnSe,

q = �1

Y

ZnTe Cri n-type Cri, q = 1 and VTe,

q = �2

N

ZnTe Mni n-type Mni, q = 1 and ZnTe,

q = �2

Y

AlN SeN p-type SeN, q = �1 and VN,

q = 1

Y

AlP HfAl n-type HfAl, q = 1 and AlP,

q = �1

Y

AlP Cri n-type Cri, q = 1 and VAl,

q = �2

Y

AlAs TiAl n-type TiAl, q = 1 and VAs,

q = �3

Y

GaN TlGa p-type TlGa, q = �1 and VN,

q = 1

Y

GaN PN p-type PN, q = �2 and VN,

q = 1

Y

GaP NiGa p-type NiGa, q = �1 and Gai,

q = 2

Y

GaP Lii n-type Lii, q = 1 and GaP,

q = �2

Y

GaAs Sci n-type Sci, q = 3 and GaAs,

q = �2

Y

GaSb AlGa n-type AlGa, q = 1 and VGa,

q = �2

Y

InN Zri n-type Zri, q = 2 and VN,

q = �1

Y

Table 3. Continued

SemiconductorImpurity

Shift in

Eqm. EF Dominating defects

Mid-

gap level?

InP Cui n-type Cui, q = 1 and InP,

q = �2

Y

InAs CaIn p-type CaIn, q = �1 and InAs,

q = 2

N

Si TiSi p-type TiSi, q = �1 and Sii,

q = 2

Y

Si Bei n-type Bei, q = 1 and VSi,

q = �3

Y

SiC VSi n-type VSi, q = 1 and VC,

q = �2

Y

SiC Cri p-type Cri, q = �1 and VC,

q = 1

Y

SnC AsSn n-type AsSn, q = 1 and VC,

q = �2

N

SnC CrSn p-type CrSn, q = �1 and VC,

q = 2

N

ll
OPEN ACCESSArticle

Please cite this article in press as: Mannodi-Kanakkithodi et al., Universal machine learning framework for defect predictions in zinc blende semicon-
ductors, Patterns (2022), https://doi.org/10.1016/j.patter.2022.100450
KRR predictions, and performed additional computations on

them. Figure S14 shows the parity plots between the DFT-

computed formation energies and transition levels and the

GPR/KRR-predicted values. It can be seen that RMSE values

are generally between 0.8 and 1.1 eV for formation energies

and between approximately 0.2 and 0.4 eV for the transition

levels, indicating that prediction accuracy is at a very similar level

to test set predictions.

DISCUSSION

The DFT + ML strategy presented in this work enables the quick

prediction and screening of impurities in semiconductors, but is

still limited by several factors. The primary concern is certainly

the accuracy of the PBE functional, which determines the reli-

ability of the computational dataset and every subsequent step.

Despite the impressive correspondence between measured and

PBE computed defect levels, a generalization over all the semi-

conductor compounds and all types of impurities requires further

caution. The use of advanced levels of theory, such asHSE06 and

GW with and without SOC, may yet be necessary for future im-

provements of prediction models. However, ML models built on

PBE data are still certainly useful for a number of reasons: (a)

although quantitative predictions may be off, they provide qualita-

tive screening of impurities likely to create low energy charged de-

fects and/or consequential energy levels in the band gap, with an

expected accuracy of greater than 95%, and (b) PBE andML-PBE

estimates provide starting points for more advanced calculations,

and can be used in a multi-fidelity learning framework wherein

higher fidelity predictions are improved using lower fidelity data.

We note here that, although we consider mid-gap states that

only arise from defect charge transitions, there are other internal

transitions such as the d-d or f-f transitions of transition metals

and lanthanides that could potentially further affect the absorption

and emission characteristics of a semiconductor.90,91

Going forward, a number of extensions and improvements will

be made to this work, the first being the generation of higher

accuracy DFT data and training multi-fidelity learning models.
Patterns 3, 100450, April 8, 2022 13
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Figure 8. Defect formation energies from DFT and ML
(A–F) A comparison of the complete charge and Fermi level-dependent formation energy picture of selected impurities from DFT (solid lines) and GPR (dashed

lines), presented for (A) CdTe at Cd-rich conditions, (B) ZnS at S-rich conditions, (C) AlAs at As-rich conditions, (D) GaP at Ga-rich conditions, (E) Si at Si-rich

conditions, and (F) SiC at C-rich conditions. The dominant donor and acceptor type native defects are also pictured.
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In ref12, we showed that with a much smaller set of HSE06 data

points, ML descriptors could be combined with models trained

on larger quantities of PBE data to yield excellent predictions for

Cd-chalcogenides; this will be extended to all group IV, III–V,

and II–VI semiconductors. Various types of multi-fidelity learning

models can be developed, from PBE–experiments (using the cur-

rent dataset of 89 points supplemented with more data) to PBE–

HSE to PBE–HSE–experiments, providing a potential pathway

to bridging the DFT versus experiment gap. Further, while all com-

pounds were currently studied in the ZB structure, the DFT data

and MLmodels will be extended to include defects in the wurtzite

and rock salt structures. The current ML framework can also be

extended to semiconductor alloys in the same chemical spaces

using the same type of descriptors, as was demonstrated for

the limited example of Cd-chalcogenides.12 The set of descriptors

and ML methods used can also be expanded, for instance by

including low accuracy unit cell defect calculations as used in

refs.3,12 Finally, tools can be created for the on-demand prediction

of the entire defect formation energy picture of any point defect or

impurity in any compound, and a comparison of said defect with

dominating native defects and other impurities.

In summary, we used a combination of DFT and ML to predict

the charge-, Fermi level-, and chemical potential-dependent for-

mation energy of any substitutional or interstitial impurity or point

defect inZBstructuresofgroup IV, III–V, and II–VI semiconductors.

ADFT dataset was created for the neutral state formation energies

andvariouscharge transition levels of upwardof 1000possible im-
14 Patterns 3, 100450, April 8, 2022
purities across 34 compounds, which formed about 10% of the

entire semiconductor + impurity chemical space. ML models

were built from the data by using descriptors that includedproper-

ties of the compound, the defect site, and the impurity atoms, and

applying algorithms ranging from linear regression techniques to

nonlinear methods such as random forest and NN. For the eight

properties of interest (2 formation energies and 6 transition levels),

KRR,GPR,andNNgenerally lead to similar performances, and the

best models were deployed to predict all impurity properties in a

high-throughput manner. Lists of dominating impurities, which

can change the equilibrium conductivity of the compound as

determined by native defects, were created using the ML predic-

tions. The learning and design framework described in this work

can be extended in terms of new semiconductors and mixed

composition compounds,more involveddescriptors andML tech-

niques, and more advanced levels of theory. The same design

framework is also applicable to other semiconductor classes

such as halide perovskites and I–III–VI semiconductors, and can

lead to novel materials with improved optoelectronic properties

for solar cells and related applications.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Requests for data and additional information should be directed to the lead

contact, Arun Mannodi-Kanakkithodi (amannodi@purdue.edu).
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Materials availability

This study did not generate physical materials.

Data and code availability

DFT data and MLmodels are made available as part of an open-source tool to

facilitate the artificial intelligence-driven prediction and screening of point de-

fects and impurities in semiconductors: https://github.com/lmjacoby/

ai_semiconductors.

Calculating defect properties from DFT

All native defects and impurities were simulated in 64 atom 2 3 2 3 2 super-

cells of the parent compound, based on previously optimized 8 atom ZB unit

cells. DFT optimization was performed in the neutral and charged states (q =

�3, �2, �1, 0, +1, +2, +3) while keeping the supercell shape and size fixed.

All computations were performed using the Vienna ab-initio Simulation Pack-

age92,93 using the PBE94 exchange-correlation functional and projector-

augmented wave atom potentials.95 The kinetic energy cut-off for the plane-

wave basis set was 500 eV, and all atoms were relaxed until forces on each

were less than 0.05 eV/Å. Brillouin zone integration was performed using a

33 33 3 Monkhorst-Pack mesh. For any defect or impurity atomM in a com-

pound AB, the following equations yield the formation energy Ef as a function of

the chemical potential m, charge q, and Fermi level EF, and any impurity charge

transition level, ε(q1/q2):

Ef ðq;EFÞ = EðMqÞ � EðABÞ+Dm+qðEF + EvbmÞ+Ecorr (Equation 1)

εðq1 =q2Þ = Ef ðq1;EF = 0Þ � Ef ðq2;EF = 0Þ
q2 � q1

(Equation 2)

Here, E(AB) is the DFT energy of an AB supercell without defects, E(Mq)

is the DFT energy of the AB supercell containing a defect M in a charge

state q, Evbm is the VBM as computed from an electronic structure

calculation on AB, and Ecorr is the charge correction energy using the

scheme developed by Freysoldt et al.96,97 to account for periodic interac-

tion between image charges. Ef depends on the chemical potential

change Dm involved in creating the defect, and for a given Dm, it is a func-

tion of EF and q, such that the slope of the Ef versus the EF plot is equal to

q. For any defect or impurity M in compound AB, the chemical potentials of

all species are defined with reference to the elemental standard states of

M, A, and B, as well as their lowest formation energy binary or ternary

compounds. For an impurity MA (M occupying an A site), in Equation 1,

Dm = mA � mM; for an impurity Mi (M occupying an interstitial site),

Dm = � mM; for a vacancy at the B site VB, Dm = mB. We calculate

formation energies at two extreme chemical potential conditions,

namely, A rich (where mA = energy of elemental standard state of A) and

B rich (where mB = energy of elemental standard state of B), and note

that by tuning the m conditions, defects can be made more or less

stable, and the equilibrium conductivity—determined by defect charge

neutrality conditions—can be made more p-type or n-type. Equation 2

defines a charge transition level εðq1 =q2Þ, that is, the EF value where the

defect transitions from a charge state q1 to q2, which is independent of

the m conditions; in this work, for every defect or impurity, we calculate

six possible transition levels, namely, +3/+2, +2/+1, +1/0, 0/�1, �1/�2,

and �2/�3.

ML details

The ML approaches used in this work include dimensionality reduction/outlier

identification using SISSO, PCA, and other techniques, and training predictive

models using linear regression and three types of nonlinear regression:

random forests, Gaussian processes, and NN. Necessary introduction to

each technique and relevant information about how hyperparameters are opti-

mized and errors are converged are provided in different subsections within

the manuscript. All ML training and prediction was done using appropriate

functions in Scikit-learn.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100450.
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