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Abstract

We show that 3-uniform hypergraphs with the property that all vertices have a quasirandom link graph with density bigger than 1/3
contain a clique on five vertices. This result is asymptotically best possible.
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1. Introduction
1.1. Turdn problems for uniformly dense hypergraphs

We study extremal problems for 3-uniform hypergraphs and here, unless stated otherwise, a hypergraph will always
be 3-uniform. Recall that given an integer n and a hypergraph F the extremal number ex (n, F) is the maximum number
of hyperedges that an n-vertex hypergraph can have without containing a copy of F'. It is well known that the sequence
ex(n, F)/(3) converges and the limit defines the Turdn density n(F).
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Determining 7(F) is a central open problem in extremal combinatorics. In fact, even the case when F is a clique
on four vertices is still unresolved and known as the 5/9-conjecture of Turdn. Consequently, several interesting and
still challenging variations were considered.

One such variation, suggested originally by Erd6s and Sés [1], restricts the problem only to those F-free hyper-
graphs that are uniformly dense among large sets of vertices. More precisely, given a hypergraph F, Erdés and Sés
asked for the supremum d € [0, 1] such that there exist arbitrarily large F-free hypergraphs H = (V, E) for which
every linear sized subset of the vertices induces a hypergraph of density at least d.

For hypergraphs there are several different notions of “uniform density” (see, e.g., [0, 4, 3, 2]) and we shall focus
on the following notion.

Definition 1.1. For a hypergraph H = (V,E) and reals d € [0, 1], > 0, we say that H is (n,d, &)-dense if for all P,
Q0 < V x V we have

ea(P.Q) = [{ (). (02)) € Ka(P.Q): {x.3.2} € Ef| > | I (P Q)| — VP (M)

where K, (P, Q) = {((x,y), (y’,z)) EPXQ:ry= y'}.
For a fixed hypergraph F, we define the corresponding Turdn density

nia(F) = sup{d € [0, 1]: for every n > 0 and n € IN there exists an F-free,
(n,d, &)-dense hypergraph with |V(H)| > n}.

In [5] the last three authors obtained a general upper bound for n'A(K,(S)), which turned out to be best possible for all
t < 16 exceptfort = 5,9, and 10.

Theorem 1.2. For every integer r = 2

r—2

3
ﬂh(Kz(r)) < 1

Moreover, we have

= 7p(K) = = mu(K) < ma(KY) < ma(KD))

Here we improve the bound for K5(3) and show that the lower bound 1/3 is best possible.

Theorem 1.3 (Main result). We have nA(KSES)) =1

Theorem 1.3 has a consequence for hypergraphs with quasirandom links. For a hypergraph H and a vertex x,
define the link graph of x, Ly(x) by the graph with vertex set V and edges {yz € V®): xyz € E(H)}. Recall that for
givend € [0, 1] and § > 0 we say that a graph G = (V, E) is (8, d)-quasirandom if for every subset of vertices X < V
the number of edges ¢(X) inside X satisfies

le(x) —d(3)| < sV

One can check that if all the vertices of a hypergraph H have a (6, d)-quasirandom link graph, then H is (f(6),d, &)-
dense, where f(§) — 0 as § — 0. In fact, such hypergraphs would even satisfy in addition a matching upper bound
for e, (P, Q) in (1). Hence, having quasirandom links is a stronger property and we arrive at the following corollary.

Corollary 1.4. For every € > 0 there exist 6 > 0 and an integer ny such that every hypergraph on at least ny vertices
with all link graphs being (6, 1/3 + €)-quasirandom contains a copy ofK5(3).
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The lower bound construction for ﬂA(KSO)) (see Example 1.5 below) has quasirandom links with density 1/3 and,
therefore, also Corollary 1.4 is asymptotically best possible.

Example 1.5. Fora map y: V) — 7,/3Z we define the hypergraph H,, = (V,E) by
xyzeE = Y(wy) +y(xz) +yY(zy) =1 (mod 3). 2

Observe that for any set of five different vertices U = {uy, uy,us, us, us} the following equality follows by double
counting

Do (W) + wlwan) + ) =3 > wluu).

uiujueUBG) uiu;€eU®

Since the right-hand side is zero modulo 3 at least one of the ten triplets in the first sum fails to satisty (2). Con-
sequently, Hy is K5(3) -free for every map . Moreover, if  is chosen uniformly at random, then it is not difficult to
show that for every fixed 6 > 0 with high probability the hypergraph Hy has the property that all link graphs are

(6,1/3)-quasirandom.

The proof of the upper bound in Theorem 1.3 is based on the regularity method for hypergraphs and in the next
section we recall the relevant concepts. We then sketch the main ideas of the proof in Section 3. Roughly speaking,
after an application of the hypergraph regularity method, the proof splits into two parts (see Propositions 3.1 and 3.2).
The proof of Proposition 3.1 will appear in the full version of the article and the proof Proposition 3.2 is presented in
Section 3.

2. Hypergraph regularity and reduced hypergraphs

Given a large hypergraph H = (V,E), the regularity lemma for hypergraphs provides a vertex parti-
tion Vi, V,,...,V, together with partitions "/ of the edges of the complete bipartite graphs between all ( ) pairs
of classes V;, V . Each class P/ € P is e-regular in the sense of Szemerédi’s regularity lemma for graphs. Moreover,
the hypergraph H is “regular” among most friads, i.e., among most of the tripartite graphs

PY =Pl UPfUPY)
with Pf{ e PY, Pg‘ e P*, and Pik € P/*. Roughly speaking, here “regular” means, that the hyperedges of H match the
same proportion of triangles for every tripartite subgraph of such a triad.

Important structural properties of a hypergraph H after an application of the hypergraph regularity lemma can be
captured by the reduced hypergraph, which can be viewed as a generalisation of the reduced graph in the context
of Szemerédi’s regularity lemma for graphs. Given a set of indices I of size ¢ and pairwise disjoint, non-empty sets
of vertices P/ for every pair of indices ij € I, let for every triplet of distinct indices ijk € I a tripartite hyper-
graph A with vertex classes P/, P*, and P/ be given. We consider the disjoint union of all those hyperedges and,
hence, we obtain a (I;\) -partite hypergraph A with

via) = | #7 ad  E@A) = | E@AM).

ijel® ijkel®)

We say A is a reduced hypergraph with index set I, vertex classes P, and constituents A,

An application of the hypergraph regularity lemma to a given hypergraph H naturally defines a reduced hyper-
graph A in which the vertices P/ € PV represent sets of pairs between the vertex classes V; and V;. Moreover, a
hyperedge P” P”‘ P’k in the reduced hypergraph signifies that H is regular and dense on the triad P”k

As mentloned above the properties of the hypergraph H are often transferred to the reduced hypergraph. We con-
sider A-dense and K5(3) -free hypergraphs H and below we discuss the corresponding properties for the reduced hyper-
graph A after an appropriate application of the hypergraph regularity lemma.

Roughly speaking, the A-density condition translates into a minimal codegree condition for almost all pairs of
vertices from different vertex classes in almost all constituents of the reduced graphs. However, one can always move
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to a large reduced hypergraph in which all pairs of vertices have large codegree (see [2] for details). This inspires
the following definition of (d, A)-density for reduced hypergraphs. For a given real number d € [0, 1], we say that a
reduced hypergraph A is (d, A)-dense, if for every three distinct indices i jk € I® and vertices P/ € P/ and P* € P*
we have

d(P, P*) = |{P* e pik: PIPKP e E(A)}| > d |[PH|.

As discussed above (see [2] for details), an appropriate application of the hypergraph regularity lemma to a (17,d +

&, &)-dense hypergraph H allows a reduction to a (d + &/2, &)-dense reduced hypergraphs.

Furthermore, we say a reduced hypergraph A with index set I supports a K5(3)

if there are a 5-element subset J < 1
and vertices P/ € P for every ij € J® such that all ten triples PYP*P/* with ijk € J® are hyperedges present
in A. Note that, if the reduced hypergraph A defined from a hypergraph H through an appropriate application of the

regularity lemma supports a K (3), then the embedding/counting lemma yields a K5(3) C H.
The discussion above reduces the proof of Theorem 1.3 to the following statement for A-dense reduced hypergraphs
(see, e.g., [2, Theorem 3.3]).

Proposition 2.1. For every € >0 every sufficiently large (% +e&, A,) -dense reduced hypergraph A supports a K. 5(3).

3. Proof of Proposition 2.1

Our proof of Proposition 2.1 is divided in two main parts. First we reduce the problem to the case in which the
reduced hypergraph A on some index set I can be bicoloured. By this we mean that there is a colouring ¢: V(A) —
{red, blue} of the vertices such that for every ij € I?) we have

o (red) " PV % F  and ¢ ' (blue) " PV % & 3)

and there are no hyperedges in A with all three vertices of the same colour. Given such a colouring ¢, we define the
minimum monochromatic codegree density of A and ¢ by

02(A,¢) = min min

{ d(P, P%)
ijkel®

L Pl e P, Ph e and o(P) = (PY)} .
L o(P) = o(P*)

The following proposition reduces Proposition 2.1 to bicoloured reduced hypergraphs.

Proposition 3.1. Given € > 0 there exists 6 > 0 such that for every t € IN the following holds. If A is a sufficiently
large reduced (% + ¢, A) -dense hypergraph, then one of the following statements holds

; (3)
(i) A supports a K

(ii) or there exists a bicoloured reduced hypergraph A, with §,( A, p) = % + 0 and with an index set of size at
least t, which does not support a KS(S).

For the proof of Proposition 3.1 we mainly analyse holes in the reduced hypergraph (A that do not support a KS(B).
It turns out that essentially the whole vertex set can be covered by two almost disjoint holes, which then can be used
to define an appropriate colouring ¢ (and the details will appear in the full version of the article). The next proposition
completes the proof of Proposition 2.1 by contradicting alternative (ii ) of Proposition 3.1.

Proposition 3.2. For every € > 0 every sufficiently large bicoloured reduced hypergraph A with 6;(A, ¢) > % +¢
supports a K§3).

Proof. Given € > 0 we fix a sufficiently small auxiliary constant ¢ with 0 < & « & such that 16 equals to some
integer s. Moreover, let I be a sufficiently large index set such that its cardinality satisfies the partition relation |I| —>

(5)2,i.e., it is at least as large as the s-colour Ramsey number for the graph clique Ks. Let A be a bicoloured reduced
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hypergraph with index set I and vertex classes P/ for ij € I®) and let : V(A) —> {red, blue} satisfy 6,(A, ) =
1/3+e.

In the proof we shall use the following notation. For two vertices P, P’ € V(A) and a subset U < V(A) we denote
by Ny (P, P') the neighbourhood restricted to U. Similarly, for two subsets U, U’ = V(A) we write Nqsxqp (P) for
the set of ordered pairs (U, U’) € U x U’ such that PUU’ is a hyperedge in A.

For every ij € 1) set

_ IRV

R = ¢~ (red) n P and o = 7

and, analogously, we define B = ¢~ !(blue) N P and B;; = |B"|/|P|. In view of (3), the assumption on 6, (A, @)
implies that all o;;, B;; € [1/3 + €,2/3 — &]. Splitting the interval [1/3 + &,2/3 — £] into s intervals of length 2¢, the
size of I yields a subset J < I of size 5 such that all g8;; with ij € J (@) are in the same interval. Let 3 be the centre of
this interval and set 0 = 1 — 8. We thus arrive at

Bij=pt& and  g=0x¢

for all ij € J@). Without loss of generality we may assume 3 < o, which implies

2
<Q<Q+§<§—s. @)

N =

1
FreSB-E<p<

For i jk € J©®) the codegree condition translates for red vertices R € R/ and R* € R to

S L 1 ) 1 1 . 1 £ ;
Ngie(R7,R*)| = d(RV,R*) > | - I — B = =+ )87, 5
N (R0, R = R 9) > (5 o) P> (3 e) (5 ) 1891 (554 5 ) 18" ®

where we used ¢ « &, 8 for the last inequality. Similarly, for blue vertices we have
|Ngi (B, B¥)| > L |RH*] . (6)
30 2

We may rename the indices in J and assume that J = Z./57.. We shall show that A restricted to J supports a K5(3).

For that we have to find ten vertices p'/ € P/ one for every ij € J® such that for all of the ten triples i jk € J©®)
the vertices p*/, p™, and p/* span a hyperedge in the constituent A, For every i € J = 7 /57 we will select p**!
from B4*! and p*? from R**+2. (In fact, it is easy to see that up to symmetry this choice for the colour classes is
unavoidable, as it corresponds to the unique 2-colouring of E(Ks) with no monochromatic triangle.) We stress the
colour of our choices by writing b*! and 7*? for the chosen p’/ and we begin with the selection of r'4.

Applying (6) to all pairs of vertices B'> € B'5 and B € 8% implies that the total number of hyperedges in A'*
crossing the sets R4 BB and B* is at least

1
55185 (52 + 5 ) IR,

Consequently, we can fix some vertex r'* € R'* such that

1 £
N (] > (- + 5 ) 1818, 0

The following claim fixes the four vertices b'2, b3* and r'3, r?*.
Claim 3.3. There exist blue vertices b'? € B2, b3* € B> and red vertices r'> € R13, r** € R** such that

(i) b2r'*r* and r®r'*b** are hyperedges in A and

WHMMWJ%mMMWﬁW>O—$NW%
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Proof. Owing to (5) for every R'*> € R!> we have d(R'3, r'#) > (ﬁ, + %) |B34] and, hence, there exists a vertex b** €
$3* such that

1
3p

Similarly, we can fix a vertex r** € R?* such that

&
Ngis (r'*, 5*)| > < + 5) IR > %|¢>‘3|. ®)

1
|Nst(r24,b34)| = —|823| . (&)
3o
Recalling that |[R"?| < (o + &)|P'3| for every B'? € 8!% and B € 8% we have
‘ngm (312,323) N Ngis (r14,b34)‘ = (% + S) |¢)13| + ’NRH(FM,Z)M)’ — |R13|
= !ngm (r14,b34)| - (Q + & — % — 8) |7)13|

s (1-38+£) [N (14,624

Hence, the number of hyperedges crossing Ngi2 (r'4, 1?4, Ngos (1?4, b3*), and Ngis (r'4, b3) is at least

|Ngr2 (r14, r24)||N323 (r24,b34)\ . (1 - 38+ E) | Ngia (r14,b34)| .
Q
Consequently, there exist b'2 € Ngio (r'4, ) and r'? € Ngis (r'4, b**) such that

B u O (1L BB 23 1 23
|Ngs (b2, 713) A Ngs (4, 5*)| > (13ﬁ+— INgs (PP, 0| = ( — ==+ | IB®| = |1 — == | |87,
0 30 o 3¢ 3B
where the last inequality follows from the identity o = 1 — . O
The next claim fixes the four vertices b3, b* and r2, r°. Together with Claim 3.3 this fixes all vertices except J2u
and both claims guarantee those seven hyperedges supporting a K5(3) that do not involve b*3.

Claim 3.4. There exist blue vertices b'> € B2, b¥ € B% and red vertices r? € R¥, 13 € R such that
BI2pIS,25  3p15,35  dplspds 2405045 g0 34,3545

are hyperedges in A.

Proof. Consider the following sets of pairs in 8! x 8%

G = {(BY,B%) € B x B%: Ngas (b'?, BY®) n Ngos (r**, B¥®) # &}
and G, = {(B",B*) € B x B%: Ngss(r'?, BY®) n Ngss (0™, B¥) # &1}
Note that for every B'> € B'5 there is some R* € Ngas (b'2, B') and we have
1
[Ngss (r*, R®)| = @lB“jl'
Clearly, {B'>} x Ng:s(r**,R®) < G and, hence, we establish

1
G| = @|815\|B45\- (10)

A symmetric argument yields the same bound for G,. Combining (10) and the same bound for G, with (7) leads to

2 1 & 4)
Gl + 1Gal + V() > (3 + 5+ 3 ) 187181 & 21818,
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Consequently, we can fix a pair (b'3,5%) € G| "Gy N Ngis g (r'*). Moreover, having fixed b'> and b* this defines a
vertex 1> € R? from the non-empty intersection considered in the definition of G,. Similarly, G, leads to our choice
of r¥% e R,

Since (b',b%) € Ngis g5 (r'*), the hyperedge r'*b'3b* exists in A and the other four hyperedges are a result of
the definition of G; and G»,. O

As mentioned above, Claims 3.3 and 3.4 fix all vertices except b** € 823 and all hyperedges not involving b*. For
the three remaining hyperedges it suffices to show that

Ngos (b'2,7%) A Ngos (r?,0°) n Ngos (r?, r°) # & .
Claim 3.3 (ii ) and (5) imply

‘Ngzs (bu, r13) N Ngps (7'24, b34) N Ngps (r25, }’35)|

= ‘Ngzs (blz,rB) N Ngs (r24,b34)| + |N823 (rzs,r35)‘ — }323|

Q) 1 1
><1——+—+f—1)|323|>0.

Hence a choice for b> € Ngxu (b'2,r'3) A Ngos (24, b3*) n N (r?, ) exists and, therefore, A restricted to J

supports a K5(3). O
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