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We show that 3-uniform hypergraphs with the property that all vertices have a quasirandom link graph with density bigger than 1{3
contain a clique on five vertices. This result is asymptotically best possible.
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1. Introduction

1.1. Turán problems for uniformly dense hypergraphs

We study extremal problems for 3-uniform hypergraphs and here, unless stated otherwise, a hypergraph will always
be 3-uniform. Recall that given an integer n and a hypergraph F the extremal number expn, Fq is the maximum number
of hyperedges that an n-vertex hypergraph can have without containing a copy of F. It is well known that the sequence
expn, Fq{

`n
3

˘

converges and the limit defines the Turán density πpFq.
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Schachta,1,8

aFachbereich Mathematik. Universität Hamburg. Hamburg, Germany
bDepartment of Mathematics. Emory University. Atlanta, USA

Abstract

We show that 3-uniform hypergraphs with the property that all vertices have a quasirandom link graph with density bigger than 1{3
contain a clique on five vertices. This result is asymptotically best possible.

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the XI Latin and American Algorithms, Graphs and Optimization
Symposium.

Keywords: Hypergraphs; extremal graph theory; Turán’s problem; quasirandomness

1. Introduction

1.1. Turán problems for uniformly dense hypergraphs

We study extremal problems for 3-uniform hypergraphs and here, unless stated otherwise, a hypergraph will always
be 3-uniform. Recall that given an integer n and a hypergraph F the extremal number expn, Fq is the maximum number
of hyperedges that an n-vertex hypergraph can have without containing a copy of F. It is well known that the sequence
expn, Fq{

`n
3

˘

converges and the limit defines the Turán density πpFq.

1 Authors are supported by ERC Consolidator Grant PEPCo 724903.
2 Author is supported by ANID/CONICYT Acuerdo Bilateral DAAD/62170017 through a Ph.D. Scholarship.
3 Author is supported by NSF grant DMS 1764385.
4 Email: soeren.berger@uni-hamburg.de
5 Email: simon.piga@uni-hamburg.de
6 Email: christian.reiher@uni-hamburg.de
7 Email: vrodl@emory.edu
8 Email: schacht@math.uni-hamburg.de

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2021.11.050&domain=pdf


	 Sören Berger  et al. / Procedia Computer Science 195 (2021) 412–418� 413
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Determining πpFq is a central open problem in extremal combinatorics. In fact, even the case when F is a clique
on four vertices is still unresolved and known as the 5{9-conjecture of Turán. Consequently, several interesting and
still challenging variations were considered.

One such variation, suggested originally by Erdős and Sós [1], restricts the problem only to those F-free hyper-
graphs that are uniformly dense among large sets of vertices. More precisely, given a hypergraph F, Erdős and Sós
asked for the supremum d P r0, 1s such that there exist arbitrarily large F-free hypergraphs H “ pV, Eq for which
every linear sized subset of the vertices induces a hypergraph of density at least d.

For hypergraphs there are several different notions of “uniform density” (see, e.g., [6, 4, 3, 2]) and we shall focus
on the following notion.

Definition 1.1. For a hypergraph H “ pV, Eq and reals d P r0, 1s, η ą 0, we say that H is pη, d, q-dense if for all P,
Q Ď V ˆ V we have

e pP,Qq “
ˇ

ˇ

ˇ

!

`

px, yq, py, zq
˘

P K pP,Qq : tx, y, zu P E
)

ˇ

ˇ

ˇ
ě d

ˇ

ˇK pP,Qq
ˇ

ˇ ´ η|V|3, (1)

where K pP,Qq “
�`

px, yq, py1, zq
˘

P P ˆ Q : y “ y1(.

For a fixed hypergraph F, we define the corresponding Turán density

π pFq “ suptd P r0, 1s : for every η ą 0 and n P N there exists an F-free,
pη, d, q-dense hypergraph with |VpHq| ě nu .

In [5] the last three authors obtained a general upper bound for π pKp3q
t q, which turned out to be best possible for all

t ď 16 except for t “ 5, 9, and 10.

Theorem 1.2. For every integer r ě 2

π pKp3q
2r q ď r ´ 2

r ´ 1
.

Moreover, we have

0 “ π pKp3q
4 q ă 1

3
ď π pKp3q

5 q ď 1
2

“ π pKp3q
6 q “ ¨ ¨ ¨ “ π pKp3q

8 q ď π pKp3q
9 q ď π pKp3q

10 q

ď 2
3

“ π pKp3q
11 q “ ¨ ¨ ¨ “ π pKp3q

16 q .

Here we improve the bound for Kp3q
5 and show that the lower bound 1{3 is best possible.

Theorem 1.3 (Main result). We have π pKp3q
5 q “ 1

3 .

Theorem 1.3 has a consequence for hypergraphs with quasirandom links. For a hypergraph H and a vertex x,
define the link graph of x, LHpxq by the graph with vertex set V and edges tyz P Vp2q : xyz P EpHqu. Recall that for
given d P r0, 1s and δ ą 0 we say that a graph G “ pV, Eq is pδ, dq-quasirandom if for every subset of vertices X Ď V
the number of edges epXq inside X satisfies

ˇ

ˇepXq ´ d
`|X|

2

˘ˇ

ˇ ď δ|V|2 .

One can check that if all the vertices of a hypergraph H have a pδ, dq-quasirandom link graph, then H is p f pδq, d, q-
dense, where f pδq ÝÑ 0 as δ ÝÑ 0. In fact, such hypergraphs would even satisfy in addition a matching upper bound
for e pP,Qq in (1). Hence, having quasirandom links is a stronger property and we arrive at the following corollary.

Corollary 1.4. For every ε ą 0 there exist δ ą 0 and an integer n0 such that every hypergraph on at least n0 vertices
with all link graphs being pδ, 1{3 ` εq-quasirandom contains a copy of Kp3q

5 .
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The lower bound construction for π pKp3q
5 q (see Example 1.5 below) has quasirandom links with density 1{3 and,

therefore, also Corollary 1.4 is asymptotically best possible.

Example 1.5. For a map ψ : Vp2q ÝÑ Z{3Z we define the hypergraph Hψ “ pV, Eq by

xyz P E ðñ ψpxyq ` ψpxzq ` ψpzyq ” 1 pmod 3q . (2)

Observe that for any set of five different vertices U “ tu1, u2, u3, u4, u5u the following equality follows by double
counting

ÿ

uiu jukPUp3q

`

ψpuiu jq ` ψpuiukq ` ψpu jukq
˘

“ 3
ÿ

uiu jPUp2q

ψpuiu jq .

Since the right-hand side is zero modulo 3 at least one of the ten triplets in the first sum fails to satisfy (2). Con-
sequently, Hψ is Kp3q

5 -free for every map ψ. Moreover, if ψ is chosen uniformly at random, then it is not difficult to
show that for every fixed δ ą 0 with high probability the hypergraph Hψ has the property that all link graphs are
pδ, 1{3q-quasirandom.

The proof of the upper bound in Theorem 1.3 is based on the regularity method for hypergraphs and in the next
section we recall the relevant concepts. We then sketch the main ideas of the proof in Section 3. Roughly speaking,
after an application of the hypergraph regularity method, the proof splits into two parts (see Propositions 3.1 and 3.2).
The proof of Proposition 3.1 will appear in the full version of the article and the proof Proposition 3.2 is presented in
Section 3.

2. Hypergraph regularity and reduced hypergraphs

Given a large hypergraph H “ pV, Eq, the regularity lemma for hypergraphs provides a vertex parti-
tion V1,V2, . . . ,Vt together with partitions Pi j of the edges of the complete bipartite graphs between all

` t
2

˘

pairs
of classes Vi, Vj. Each class Pi j P Pi j is ε-regular in the sense of Szemerédi’s regularity lemma for graphs. Moreover,
the hypergraph H is “regular” among most triads, i.e., among most of the tripartite graphs

Pi jk
αβγ “ Pi j

α Y Pik
β Y Pjk

γ

with Pi j
α P Pi j, Pik

β P Pik, and Pjk
γ P P jk. Roughly speaking, here “regular” means, that the hyperedges of H match the

same proportion of triangles for every tripartite subgraph of such a triad.
Important structural properties of a hypergraph H after an application of the hypergraph regularity lemma can be

captured by the reduced hypergraph, which can be viewed as a generalisation of the reduced graph in the context
of Szemerédi’s regularity lemma for graphs. Given a set of indices I of size t and pairwise disjoint, non-empty sets
of vertices Pi j for every pair of indices i j P Ip2q, let for every triplet of distinct indices i jk P Ip3q a tripartite hyper-
graphAi jk with vertex classes Pi j, Pik, and P jk be given. We consider the disjoint union of all those hyperedges and,
hence, we obtain a

`|I|
2

˘

-partite hypergraphA with

VpAq “
ď

¨
i jPIp2q

Pi j and EpAq “
ď

¨
i jkPIp3q

EpAi jkq .

We sayA is a reduced hypergraph with index set I, vertex classes Pi j, and constituentsAi jk.
An application of the hypergraph regularity lemma to a given hypergraph H naturally defines a reduced hyper-

graph A in which the vertices Pi j P Pi j represent sets of pairs between the vertex classes Vi and Vj. Moreover, a
hyperedge Pi j

αPik
β Pjk
γ in the reduced hypergraph signifies that H is regular and dense on the triad Pi jk

αβγ.
As mentioned above the properties of the hypergraph H are often transferred to the reduced hypergraph. We con-

sider -dense and Kp3q
5 -free hypergraphs H and below we discuss the corresponding properties for the reduced hyper-

graphA after an appropriate application of the hypergraph regularity lemma.
Roughly speaking, the -density condition translates into a minimal codegree condition for almost all pairs of

vertices from different vertex classes in almost all constituents of the reduced graphs. However, one can always move
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to a large reduced hypergraph in which all pairs of vertices have large codegree (see [2] for details). This inspires
the following definition of pd, q-density for reduced hypergraphs. For a given real number d P r0, 1s, we say that a
reduced hypergraphA is pd, q-dense, if for every three distinct indices i jk P Ip3q and vertices Pi j P Pi j and Pik P Pik

we have

d
`

Pi j, Pik˘

“
ˇ

ˇtPjk P P jk : Pi jPikP jk P EpAi jkqu
ˇ

ˇ ě d |P jk| .

As discussed above (see [2] for details), an appropriate application of the hypergraph regularity lemma to a pη, d `
ε, q-dense hypergraph H allows a reduction to a pd ` ε{2, q-dense reduced hypergraphs.

Furthermore, we say a reduced hypergraphA with index set I supports a Kp3q
5 if there are a 5-element subset J Ď I

and vertices Pi j P Pi j for every i j P Jp2q such that all ten triples Pi jPikP jk with i jk P Jp3q are hyperedges present
in A. Note that, if the reduced hypergraph A defined from a hypergraph H through an appropriate application of the
regularity lemma supports a Kp3q

5 , then the embedding/counting lemma yields a Kp3q
5 Ď H.

The discussion above reduces the proof of Theorem 1.3 to the following statement for -dense reduced hypergraphs
(see, e.g., [2, Theorem 3.3]).

Proposition 2.1. For every εą0 every sufficiently large
`

1
3 `ε,

˘

-dense reduced hypergraphA supports a Kp3q
5 .

3. Proof of Proposition 2.1

Our proof of Proposition 2.1 is divided in two main parts. First we reduce the problem to the case in which the
reduced hypergraphA on some index set I can be bicoloured. By this we mean that there is a colouring ϕ : VpAq ÝÑ
tred, blueu of the vertices such that for every i j P Ip2q we have

ϕ´1predq X Pi j ‰ H and ϕ´1pblueq X Pi j ‰ H (3)

and there are no hyperedges in A with all three vertices of the same colour. Given such a colouring ϕ, we define the
minimum monochromatic codegree density ofA and ϕ by

δ2pA, ϕq “ min
i jkPIp3q

min
!dpPi j, Pikq

|P jk|
: Pi j P Pi j, Pik P Pik, and ϕpPi jq “ ϕpPikq

)

.

The following proposition reduces Proposition 2.1 to bicoloured reduced hypergraphs.

Proposition 3.1. Given ε ą 0 there exists δ ą 0 such that for every t P N the following holds. If A is a sufficiently
large reduced

`

1
3 ` ε,

˘

-dense hypergraph, then one of the following statements holds

(i ) A supports a Kp3q
5

(ii ) or there exists a bicoloured reduced hypergraph A‹ with δ2pA‹, ϕq ě 1
3 ` δ and with an index set of size at

least t, which does not support a Kp3q
5 .

For the proof of Proposition 3.1 we mainly analyse holes in the reduced hypergraph A that do not support a Kp3q
5 .

It turns out that essentially the whole vertex set can be covered by two almost disjoint holes, which then can be used
to define an appropriate colouring ϕ (and the details will appear in the full version of the article). The next proposition
completes the proof of Proposition 2.1 by contradicting alternative (ii ) of Proposition 3.1.

Proposition 3.2. For every ε ą 0 every sufficiently large bicoloured reduced hypergraph A with δ2pA, ϕq ě 1
3 ` ε

supports a Kp3q
5 .

Proof. Given ε ą 0 we fix a sufficiently small auxiliary constant ξ with 0 ă ξ ! ε such that 1{6´ε
ξ

equals to some
integer s. Moreover, let I be a sufficiently large index set such that its cardinality satisfies the partition relation |I| ÝÑ
p5q2

s , i.e., it is at least as large as the s-colour Ramsey number for the graph clique K5. LetA be a bicoloured reduced
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hypergraph with index set I and vertex classes Pi j for i j P Ip2q and let ϕ : VpAq ÝÑ tred, blueu satisfy δ2pA, ϕq ě
1{3 ` ε.

In the proof we shall use the following notation. For two vertices P, P1 P VpAq and a subsetU Ď VpAq we denote
by NUpP, P1q the neighbourhood restricted to U. Similarly, for two subsets U, U1 Ď VpAq we write NUˆU1 pPq for
the set of ordered pairs pU,U 1q P U ˆU1 such that PUU 1 is a hyperedge inA.

For every i j P Ip2q set

Ri j “ ϕ´1predq X Pi j and �i j “
|Ri j|
|Pi j|

and, analogously, we define Bi j “ ϕ´1pblueq X Pi j and βi j “ |Bi j|{|Pi j|. In view of (3), the assumption on δ2pA, ϕq
implies that all �i j, βi j P r1{3 ` ε, 2{3 ´ εs. Splitting the interval r1{3 ` ε, 2{3 ´ εs into s intervals of length 2ξ, the
size of I yields a subset J Ď I of size 5 such that all βi j with i j P Jp2q are in the same interval. Let β be the centre of
this interval and set � “ 1 ´ β. We thus arrive at

βi j “ β˘ ξ and �i j “ �˘ ξ

for all i j P Jp2q. Without loss of generality we may assume β ď �, which implies

1
3

` ε ď β´ ξ ă β ď 1
2

ď � ă �` ξ ď 2
3

´ ε . (4)

For i jk P Jp3q the codegree condition translates for red vertices Ri j P Ri j and Rik P Rik to

|NB jk pRi j,Rikq| “ dpRi j,Rjkq ě
ˆ

1
3

` ε
˙

|P jk| ě
ˆ

1
3

` ε
˙ ˆ

1
β` ξ

˙

|B jk| ě
ˆ

1
3β

` ε
2

˙

|B jk| , (5)

where we used ξ ! ε, β for the last inequality. Similarly, for blue vertices we have

|NR jk pBi j, Bikq| ě
ˆ

1
3�

` ε
2

˙

|R jk| . (6)

We may rename the indices in J and assume that J “ Z{5Z. We shall show thatA restricted to J supports a Kp3q
5 .

For that we have to find ten vertices pi j P Pi j one for every i j P Jp2q such that for all of the ten triples i jk P Jp3q

the vertices pi j, pik, and p jk span a hyperedge in the constituent Ai jk. For every i P J “ Z{5Z we will select pi,i`1

from Bi,i`1 and pi,i`2 from Ri,i`2. (In fact, it is easy to see that up to symmetry this choice for the colour classes is
unavoidable, as it corresponds to the unique 2-colouring of EpK5q with no monochromatic triangle.) We stress the
colour of our choices by writing bi,i`1 and ri,i`2 for the chosen pi j and we begin with the selection of r14.

Applying (6) to all pairs of vertices B15 P B15 and B45 P B45 implies that the total number of hyperedges in A145

crossing the sets R14, B15, and B45 is at least

|B15||B45| ¨
ˆ

1
3�

` ε
2

˙

|R14| .

Consequently, we can fix some vertex r14 P R14 such that

|NB15ˆB45 pr14q| ě
ˆ

1
3�

` ε
2

˙

|B15||B45| . (7)

The following claim fixes the four vertices b12, b34 and r13, r24.

Claim 3.3. There exist blue vertices b12 P B12, b34 P B34 and red vertices r13 P R13, r24 P R24 such that

(i ) b12r14r24 and r13r14b34 are hyperedges inA and

(ii ) |NB23 pb12, r13q X NB23 pr24, b34q| ě
´

1 ´ 1
3β

¯

|B23|.
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Proof. Owing to (5) for every R13 P R13 we have dpR13, r14q ě
`

1
3β ` ε

2

˘

|B34| and, hence, there exists a vertex b34 P
B34 such that

|NR13 pr14, b34q| ě
ˆ

1
3β

` ε
2

˙

|R13| ě �

3β
|P13| . (8)

Similarly, we can fix a vertex r24 P R24 such that

|NB23 pr24, b34q| ě 1
3�

|B23| . (9)

Recalling that |R13| ď p�` ξq|P13| for every B12 P B12 and B23 P B23 we have

ˇ

ˇNR13 pB12, B23q X NR13 pr14, b34q
ˇ

ˇ ě
`

1
3 ` ε

˘

|P13| `
ˇ

ˇNR13 pr14, b34q
ˇ

ˇ ´ |R13|

ě
ˇ

ˇNR13 pr14, b34q
ˇ

ˇ ´
`

�` ξ ´ 1
3 ´ ε

˘

|P13|
(8)
ě

´

1 ´ 3β` β
�

¯

ˇ

ˇNR13 pr14, b34q
ˇ

ˇ .

Hence, the number of hyperedges crossing NB12 pr14, r24q, NB23 pr24, b34q, and NR13 pr14, b34q is at least

|NB12 pr14, r24q||NB23 pr24, b34q| ¨
ˆ

1 ´ 3β` β
�

˙

|NR13 pr14, b34q| .

Consequently, there exist b12 P NB12 pr14, r24q and r13 P NR13 pr14, b34q such that

|NB23 pb12, r13q X NB23 pr24, b34q| ě
ˆ

1 ´ 3β` β
�

˙

|NB23 pr24, b34q|
(9)
ě

ˆ

1
3�

´ β
�

` β

3�2

˙

|B23| ě
ˆ

1 ´ 1
3β

˙

|B23| ,

where the last inequality follows from the identity � “ 1 ´ β.

The next claim fixes the four vertices b15, b45 and r25, r35. Together with Claim 3.3 this fixes all vertices except b23

and both claims guarantee those seven hyperedges supporting a Kp3q
5 that do not involve b23.

Claim 3.4. There exist blue vertices b15 P B15, b45 P B45 and red vertices r25 P R25, r35 P R35 such that

b12b15r25, r13b15r35, r14b15b45, r24r25b45, and b34r35b45

are hyperedges inA.

Proof. Consider the following sets of pairs in B15 ˆ B45

G1 “ tpB15, B45q P B15 ˆ B45 : NR25 pb12, B15q X NR25 pr24, B45q ‰ Hu
and G2 “ tpB15, B45q P B15 ˆ B45 : NR35 pr13, B15q X NR35 pb34, B45q ‰ Hu .

Note that for every B15 P B15 there is some R25 P NR25 pb12, B15q and we have

|NB45 pr24,R25q|
(5)
ě 1

3β
|B45| .

Clearly, tB15u ˆ NB45 pr24,R25q Ď G1 and, hence, we establish

|G1| ě 1
3β

|B15||B45| . (10)

A symmetric argument yields the same bound for G2. Combining (10) and the same bound for G2 with (7) leads to

|G1| ` |G2| ` |NB15ˆB45 pr14q| ě
ˆ

2
3β

` 1
3�

` ε
2

˙

|B15||B45|
(4)
ą 2 |B15||B45| .
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Consequently, we can fix a pair pb15, b45q P G1 XG2 X NB15ˆB45 pr14q. Moreover, having fixed b15 and b45 this defines a
vertex r25 P R25 from the non-empty intersection considered in the definition of G1. Similarly, G2 leads to our choice
of r35 P R35.

Since pb15, b45q P NB15ˆB45 pr14q, the hyperedge r14b15b45 exists in A and the other four hyperedges are a result of
the definition of G1 and G2.

As mentioned above, Claims 3.3 and 3.4 fix all vertices except b23 P B23 and all hyperedges not involving b23. For
the three remaining hyperedges it suffices to show that

NB23 pb12, r13q X NB23 pr24, b34q X NB23 pr25, r35q ‰ H .

Claim 3.3 (ii ) and (5) imply

ˇ

ˇNB23 pb12, r13q X NB23 pr24, b34q X NB23 pr25, r35q
ˇ

ˇ

ě
ˇ

ˇNB23 pb12, r13q X NB23 pr24, b34q
ˇ

ˇ `
ˇ

ˇNB23 pr25, r35q
ˇ

ˇ ´
ˇ

ˇB23
ˇ

ˇ

(5)
ě

ˆ

1 ´ 1
3β

` 1
3β

` ε
2

´ 1
˙

|B23| ą 0 .

Hence a choice for b23 P NB23 pb12, r13q X NB23 pr24, b34q X NB23 pr25, r35q exists and, therefore, A restricted to J
supports a Kp3q

5 .
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[5] Reiher, C., Rödl, V., Schacht, M., 2018b. Some Remarks on π . Cambridge University Press. pp. 214—-239. doi:10.1017/9781316650295.

014.
[6] Towsner, H., 2017. σ-algebras for quasirandom hypergraphs. Random Structures Algorithms 50, 114–139. doi:10.1002/rsa.20641.


