Independent sets in subgraphs of a Shift graph
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Abstract

Erdés, Hajnal and Szemerédi proved that any subset G of vertices of a shift graph
Shfl has the property that the independence number of the subgraph induced by G
satisfies a(Sh¥[G]) > (4 — €) |G|, where £ — 0 as k — co. In this note we prove that
for k = 2 and n — oo there are graphs G C ([g]) with a(Sh2[G]) < (L +0(1)) |G|,
and i is best possible. We also consider a related problem for infinite shift graphs.
Mathematics Subject Classifications: 05C69, 05C63

1 Introduction
For n > k € N the shift graph Sh” with
V(ShF) = {(z1,...,2p) : 1< 2 <--- < <n}
is a graph in which two vertices x = (z1,...,2,) and y = (y1,...,yx) are adjacent if
x; =y foralli e {1,...,k =1} (or y; = ;4 for all i € {1,...,k — 1}). Shift graphs

were introduced by Erdds and Hajnal [3],[4] and are standard examples of graphs with
large chromatic number and large odd girth. More precisely, while the odd girth of Shﬁ is
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2k + 1, they proved* that Sh¥ has chromatic number (1 + o(1))log*~" n, where log*~"
stands for £ — 1 times iterated log,.

Shift graphs have another interesting property: For each finite set G C V(Sh¥) the
induced subgraph Sh*[G] has a relatively large independent set with respect to |G|. In
other words, the property “having a large independent subset” is hereditary for Shfl.
Namely, for

a* = min a(Sh—f‘[G])' K
- { e .@%GgV(sm}, (1)

Erdés, Hajnal and Szemerédi [5, Theorem 1] proved the following.

Theorem 1 (Erdés, Hajnal, Szemerédi). For positive integers k < n

As for the upper bound, for n > 2k + 1 the shift graph Sh* contains an odd cycle and
so af < 1/2. Therefore, Theorem 1 yields a lower bound which for large values of k is
essentially optimal.

Nevertheless, determining the values of o for fixed k and large n seems to represent an
interesting and non-trivial problem. We will concentrate our attention on the case k = 2.
In this case the bound from Theorem 1 is not optimal, as we observe that a2 > 1/4 for
all n, and prove a matching upper bound.

Theorem 2. lim o2 = -.
n—00 4
In [2], Czipszer, Erdés and Hajnal proved that the densest independent set of the
infinite graph Shy has density 1/4 (see Section 3 for precise formulation). We complement
their result by showing that the infinite shift graph Sh?\I does not have a similar hereditary
property, i.e., there exists G C V/(Sh%) such that any independent set in Sh[G] has density
zero in G (see Theorem 7).

2 Proof of Theorem 2

Note that a? = min {O‘(Sh—m £ GC V(Shi)} is a nonincreasing positive sequence,

G| '
so the sequence {2} has a limit. Additionally, we will often view G' C V' (Sh?) as a graph
with V(G) = [n] and set of edges equal to G. Subsequently |G| will denote both a size of
G as a subset of V(Sh?), and the number of edges in G when it is viewed as a graph.

*In [4] authors considered infinite graphs, however their proof can be adapted for finite case (see [1]
and [6] for more detailed description).
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2.1 Lower bound

We first show that the value of the limit in Theorem 2 is at least 1/4.
Claim 3. For every set G C V(Sh2) we have a(Sh2[G]) > 1|G|.

Proof. Let G C V(Sh?) be given. Consider a random colouring c : [n] — {r,b} such that
every i € [n] is coloured red/blue with probability 1/2 independently of other elements of

[n].
Let G. be a random subset of G defined by

G.={(,7) € G :i<j, c(i)=0b, c(j)=r}.

Then such G, is always an independent set in Sh?. Moreover, P(e € G,) = }L for every
e € G, and so E(|G.|) = 1|G|. Therefore a(Sh2[G]) > 1|G|. O

1
2.2 Upper bound

We now proceed and prove the upper bound

(2)

: 2
lim a; <
n—o0

A~ =

In what follows for every ¢ > 0, integer d satisfying 3*;11(;”1 < 5, and for every integer

n > ng(e, d) that is a multiple of 2¢, we will construct a graph G.(n,d) C V(Sh?) with

o(SB2[G.(n, d)]) < G T ) Gu(n, d).

To be more precise, for such € and d we inductively build G.(n, d) satisfying

a(Sh?[G.(n, d)]) 1 3+Ind ¢
G(n, D) <( )

17T T3 )
Since {a2} is nonincreasing, (3) implies that lim, ., o> < 1/4 + &, which subsequently
implies (2) by letting € — 0.

While constructing G¢(n,d) we will use random bipartite graphs. Recall that if G is
a graph and X,Y C V(@) then G[X,Y] is a graph consisting of edges of G with one
vertex in X and another in Y. Finally let eq(X,Y) = |E(G[X,Y])| and we will omit
subscript when G is obvious from the context. The following claim can be easily verified
by considering a random graph and so the proof of Claim 4 is postponed to Appendix.

Claim 4. For e > 0 and d € N there is ng = ng(e,d) such that for all n = ngy that are
divisible by 2¢ the following holds. Let [n] = SUL, where S ={1,...,%2} and L = [n]\ S.
There ezists a bipartite graph B.(n,d) with bipartition V (B.(n,d)) = S U L such that

2

(1) |B:(n,d)| = 5
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(ii) for all X C S andY C L

2

e(X,Y) = o |X |V &

2d 1 2d+2

Construction of G.(n,d).

Definition 5. For every even n let G.(n,1) be such that
Ge(n,1) = {(i,j) : 1<i< 5 <j<n}

i.e., G¢(n,1) is a complete balanced bipartite graph.
For d € N define graph G.(n, d) recursively for all sufficiently large’ n such that 2¢|n.
Let [n] = SUL, where S = {1,...,%} and L = [n] \ S. Then define

Ge(n,d) = G(S,d — 1) UG(L,d — 1) U B.(n,d),

where G.(S,d — 1) = Go(2,d — 1), V(Go(L,d— 1)) = L and G.(L,d — 1) = Go(Z,d — 1),

27
and B.(n,d) is a graph guaranteed by Claim 4.

To summarize, every G.(n,d) = G satisfies the following properties (with S, =
{1,...,5} and L, = [n] \ S,):

n2

() ec(Su Ln) = 5t

(ii) forall X € S, and Y C L,

2

e(X,Y) = s |X |V +

2d 1 2d+2

(i) G[S,] = G[L,] = Gu(3.d— 1)

Using properties (i) and (iii) and induction on d it is easy to verify that for all d € N

and n divisible by 2¢
n2

Gen,d)] = d=. g

We will now proceed with proving (3). First let G C V(Sh?) and let I C G be an
independent set in Shi. In other words there isno 1 < i < j < k < n with both (7, 7)
and (j,k) in I. One can observe that for each such I C G there exists a 2-colouring
c¢:[n] = {r,b} with ¢(i) = r and ¢(j) = b whenever (i, j) € I, and then

ICG. ={(x,y) €G : z <y, c(x)=0b, c(y) =1} (5)

fn > 2ng(e,d — 1) for all i € {0,1,...,d — 2}, where ng(e,d — i) is the number provided by Claim 4.
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Therefore, in order to prove (3) we will show that for G = G.(n,d) and any ¢ : [n] — {r, b}

|IGel] 1 3+Ind ¢
< = 6
Gl S1T T T2 (6)
For the rest of our calculation let € be fixed. We will now prove (6) by induction on d.
In order to make use of recursive structure of G(n,d) we will prove a version of (6) with
an additional assumption that [{i : ¢(i) = b}| = an.
To that end for d € N, a € [0,1] and n > ng(e, d) let

f(n) _d~mgx{l|f;| 0 G =Ge(n,d), |{i : c(i) = b} —om}. (7)

We will prove the following estimate on f§(n).
Claim 6. For everyd € N, a € [0,1] and n = ng(e,d)

1 d
fi(n) < (@+3)(a—a®)+;nd + 75

From (7) it follows that for G = G.(n,d) and any colouring ¢ we have

G| fi(n)
< .
|G| anel[%,)i] d

Then by Claim 6 we get

G| . 1d+3 N lnd+§

IG] ~4 d 4d 2’
establishing (6) and (3). Hence it remains to prove Claim 6 in order to finish the proof
of the upper bound.

Proof of Claim 6. We prove a slightly stronger inequality for all n > ng(e, d)

1d+11
fim) < (@+3)a—a®)+ 7> =+

- (3
=3

de
5 (8)

The proof is by induction on d. For d = 1 recall that G = G.(n, 1) is a complete bipartite

graph between S, and L,. Let ¢ : [n] — {r,b} be such that for B = {i : ¢(i) = b} we
have |B| = an. Then in view of (5) the maximum value of |G,| is achieved when B = [an]

and so
1
fla(n) _ {204, S [0, 5]

2-2a, ac€li1].

Now it is easy to verify that f* < 4(a — a?) for all a € [0, 1], establishing (8) in the case
d=1.

To prove inductive step let G = G.(n,d) and let ¢ : [n] — {r,b} be such that for
B ={i : c(i) = b} we have |B| = an. As before, let S ={1,...,5} and L = [n]\ S. Let
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Bg, Br, Rg and Ry denote the set of blue and red vertices in S and L respectively. We
will further reﬁne our analysis by assuming that |Bg| = % with some z € [0,2a]. Since
|Bs|+|Rs| =%, |Bs| + |BL| = |B| = an, and |Br| + |R.| = %, we have |Rg| = (1 — x)%,
|Br| = (2a0 — :L’) and consequently |RL| =(1—-2a+2z)% (see Figure 1). Then

|Ge| = |Ge[S]| + |Ge[L]| + ec(Bs, RL). (9)

G = G:(n,d):

Figure 1: Proportions of red and blue vertices in G.[S] and G.[L].

Now, by (iii) G[S] = G.(%,d — 1) and we assumed |Bg| = =%, so

2

) fia(3) w n? n
cdsll < 1T e @ g (2. (10)
Similarly, since |B| = (2o — )5 we have
2
n 20—z (T
G2l < gz (5) (11)
And finally, since G = G.(n, d),
(i') en? n? £
ec(Bs, Ri) < 2d 1BslRul + 25 = g7 (¢(1 =20+ 0) +2). (12)

Combining (9) with (10), (11), and (12) we obtain
2

1< g (3 (3) + 7 (3)) o205 3).

@
)| =

Finally, |G| = |G.(n,d)| = d2ﬁ}+1 and so by (7) we deduce that

f(n) < max{%(fffl( >+f2°‘ ”*“( >>+x(1—2a+x)+;}. (13)

z€R
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The last inequality allows us to incorporate induction hypothesis. In particular, by
induction hypothesis we have

d
z (T 1 1 —1
fd_1(§)<(d+2 x— 2 +‘_1?:3Z+

20471( — 1

d—1

d
n 1 1
§)<(d+2)(2a—x)(1—2a+x +ZZ§3;+

and these two inequalities together with (13), after some simple but tedious algebraic
manipulations yield

d
fi(n) < ma]g{—(d+ 1)$2—|—(1+2a(d+1))x—|—(d+2)(a—2a2)+22%4_%}_

In other words f$(n) < max,cr{g(x)}, where g(x) = az*+bx+c with a = —(d+1). Since

a < 0 we have max,egr g(z) = g(32) = ¢ — %. Therefore after another set of algebraic
manipulations we obtain
d+1
1 1 de
) < max{()} < (d+B)a—a?) + 1>+ 5
i=3
finishing the proof of the inductive step and Claim 6. O
3 Infinite graphs
Recall that Theorem 2 states
Shl[G 1
tim min { “B8UD g G cvgnyl 2 L (14)
n—o00 |G’ 4

On the other hand, considering I ={(,7) + 1<i<7% <j<n} we clearly have
a(Sh) > |~ > |. Moreover |5 * | is optimal, since any graph G C V(ShQ) with |G| > | 2J—|—1
contains a trlangle and hence such G is not an independent set in Sh?. Therefore,
a(Sh?) 1

lim $0) _ 2 1
nivso [SRZ| 2 (15)

It may be interesting to note that infinite version of (15) was considered by Czipszer,
Erdés and Hajnal [2] who proved that if I is independent set in countable shift graph
ShZ, then the density of I does not exceed 1/4, i.e.

()

(16)

N

lim inf — <
n—00 (2)
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(Here i is clearly optimal, since I = {(i,j) : i < j, i odd, j even} is independent in

Sh.)
To complete this discussion we provide an infinite variant of (14).

Theorem 7. There is G C V(Shy,) such that if I is an independent set in Sh[G], then
’ rn (i

liminf — = 0.

noree )Gm )

Proof. Consider an infinite ordered tree G with V(G) = N, and with vertices labeled vg ,
where j denotes the “level” L; that vertex vg belongs to and ¢ denotes the order in which
vertices are listed on the level.

Consider a labeling of vertices of G by integers satisfying v < v Cif Jj <j and v' < U}
if i < 4 such that for all v} the finite set N (v]) of all children of v forms an interval (and
these intervals on the 1eve1 Lji: follow the order of their parents on L, see Figure 2).
Finally we will assume that for all vf

Nt ()| > 2/ Z INT(v) (17)

Now, let I C G be an infinite independent set in Shi and let (vk ' Z) € I, where vk !

and v] are parent and child respectively. Let w = maX{N *+(v])} be the largest son of v/
and let W — {1,...,w} (see Figure 2). Then

= U{(v,u) cu€ Nt(v)}. (18)

Figure 2: Infinite tree GG, vertices are ordered top to bottom, left to right. Edges of I are
labeled with red.
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In particular in view of (17)
GW]| = [{(v],u) : we NT(0)} | = [N*(])]. (19)
On other hand, since (vi_l,vlj ) € I and I is independent set in Sh?\;7 the set I does not
contain any other edge incident to v;. Consequently,

W) < U () = ue N )] € 2N )l (20)

In view of (19) and (20) we have |I[W]|/|G[W]| < 5. Now, since I is infinite there are
edges (vl ', v!) € I with sufficiently large j, hence the ratio |I[W]|/|G[W]| can be made

» Y

arbitrary small, finishing the proof. O

4 Concluding remarks

In [5] it was proved* that for any n, k

l o l . .
047]2 S )i w if k is even, (21)
3 — 5, if kis odd.

It remains an open problem to determine for any k > 3 the exact value of lim,,_,, af. For
k = 4 we were able to improve the constant in the lower bound (21) from }L to %§ and for
k = 3 we believe that estimate in (21) is sharp.

[y

Problem 8. Show that lim,_, a}) = 3.

Finally, all of the results in this paper can be reformulated in terms of subgraphs with
no increasing paths of length two. For instance, Theorem 2 implies that for any ¢ > 0
there exists an vertex-ordered graph G such that if G’ C G with |G’| > (1 + ¢) |G], then
G’ contains an increasing path of length two, i.e. there arei < j < k with (4, 5), (7, k) € G".
One can ask similar questions for longer increasing paths.

Problem 9. For any € > 0 does there exist an ordered graph G such that if G’ C G with
|G'| > (% + 5) |G|, then G’ contains an increasing path of length three?

Note that in regards to Problem 9, one can consider a random coloring ¢ of V(G)
with colors {0, 1,2} and define G’ to be the collection of all (i, j) € F(G) with i < 7 and
¢(i) < ¢(j). Then such G’ on average contains 3|G| edges and has no increasing paths of
length three, motivating the constant % in the problem.

tthe result follows from the proof of Theorem 1 in [5]
Sa(Shi[G)) > 3]G/ can be proved by considering a random colouring ¢ : [n] = {0,1} and forming an
independent set in Shi by taking hyperedges of G of form 1000, 1110, or 201y for some z,y € {0,1}.
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Appendix

Proof of Claim /. Let B.(n,d) = G, where G is a random graph between S and L ob-
tained by selecting a random subset of size 2[7}% without replacement from Kg ; (complete
bipartite graph between S and L). Then G satisfies (i) and we will show that G satis-
fies (ii) almost surely.

Forevery X C Sand Y C L, e(X,Y) = eq(X,Y) is distributed as a hypergeometric

random variable H (”72, 22‘%, |X||Y|> with expectation 57|X|[Y|. Let By,y be the event

that
en?

2d+2’

1
cal(X.Y) = gl XIVI| >

i.e., Bxy is the event that (ii) fails for given X and Y.

We will use a concentration inequality for hypergeometric random variables (this ver-
sion is a corollary of Theorem 2.10 and inequalities (2.5),(2.6) of Janson, Luczak, Rucin-
ski [7]).

Theorem 10. Let Z ~ H(N,m,k) be a hypergeometric random variable with the expec-
tation p = ka, then fort >0

P(|Z — p| >t) < 2exp (Q(U_Ttt/?))) :
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For a given X C L and Y C R, as a consequence of Theorem 10 with Z = eq(X,Y),
2 2
t = 5 and p = 57 | X||V] < 57 we get

P(BX,Y) — e—Q(nz)7

where constant in () term depends on € and d only. Therefore,

P ( U BXy) <) P (Bxy) < 2% ) = o(1).
XY XY

In particular, P(G satisfies (ii)) = P (ﬂx,y BX7Y> = 1—o0(1). Hence, G almost surely
satisfies (ii). O

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(1) (2022), #P1.26 11



	Introduction
	Proof of Theorem 2
	Lower bound
	Upper bound

	Infinite graphs
	Concluding remarks

