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ABSTRACT: Magnetic doping in halide perovskite semiconductors Trapped electron Hole spin + Ni coupling
is of timely interest in the pursuit of new optical and magnetic spin (V IV )

properties that surpass those of the existing undoped materials. Here, M
we report a thorough investigation of the optical and magneto-optical w

properties of Ni**-doped cesium lead halide perovskite with a m

chemical formula CsPb(Br,_,Cl,);, implementing steady-state and [

transient photoluminescence (PL), polarized magneto-PL, and E e

optically detected magnetic resonance (ODMR) spectroscopies. D o ‘_‘o :

The magneto-PL measurements revealed three PL features with O § N~ -
different degrees of circular polarization, associated with recombina- . o Ni Pb(Br1_x 'lx)3
tion from band-edge and trapping states. The ODMR measurements | S T T T

probed magnetic resonance transitions of photogenerated electrons () 2 0.4 0.6 0.8 B(T)

and holes with phenomenological g-factors that deviate from those of

band-edge states. Simulations of the ODMR spectra suggested

carriers’ trapping in shallow traps with a slight anisotropic surrounding and with weak electron—hole exchange coupling.
Furthermore, we observed substantial broadening of the hole resonance, due to its spin-exchange coupling with the Ni?* unpaired
spins. Overall, these ODMR measurements uncovered the role of the dopant in localizing photogenerated carriers by stiffening
(becoming more rigid by decreasing the structural dynamics) the crystal structure and, for the first time, provide a direct observation
of carrier-dopant spin exchange interactions in metal-halide perovskite nanocrystals. These results offer insight into the influence of
magnetic dopants on the electronic structures of metal-halide perovskites, with a view toward emerging spin-based devices made
from perovskites.

B INTRODUCTION structures.**~*® Subsequently, the optical properties of perov-

. . . 1 47-36 .
Metal halide perovskite semiconductors have garnered intense skite materials were studied extensively. Their photo-

scientific and technological interest during the past decade, luminescence is characterized by excitonic transitions, uniquely

triggered by their unprecedented performance in photovoltaics possessing bright triplet emission at low temperagtougr7e§8and dark
(pvs)’lj6 X/y-ray detectors,””’ light sources, and display singlet recombination at room temperature.” ”?" A few
devices.”'"~"* These materials are composed of metal-halide different magneto-optical measurements, monitoring single
octahedrons that share corners, forming a network with voids erovskite nanocubes*”*” or thin films,*~%* revealed inversion
7] g p )
filled by organic or atomic ions. Halide perovskites with the symmetry breaking in both 3D and 2D compounds, originating
general chemical formulla_ AMX,; (e.g, A = Cs, CH;NHy;; M = from an internal anisotropy caused by the composition
S . . . _
Pb, Sn; X = Cl, Br, I), ” have been extensively studied, with heterogeneity, surface area, or surrounding interfaces.*> ™%

properties imparting a soft nature, ' self-healing,"’ ' tolerance
to defects,'”*°"** long carrier diffusion length,”** nearly
unity emission quantum yield,"®***! large phonon anharmo-

Lol 24,32-37 ; :
nicity,”™ strong carrier—phonon coupling, and polaron

formation. 38—+ Received: November 4, 2021

The halide perovskites in their nanoscale forms have been a Revised:  January 6, 2022
focus of scientific interest during the past decade, based on the
pioneering development of colloidal synthetic procedures by
Kovalenko and co-workers,”® who stimulated preparation of
different morphologies from zero- to three-dimensional

The lack of inversion symmetry combined with spin—orbit
coupling, as often found in these materials, leads to a Rashba
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effect in both the conduction and the valence band; viz.,
creation of an effective internal magnetic field that splits band-
edge states in k-space into two valleys, each of which
accommodates photocarrier spins of opposing polar-
ity,"7576265970 The Rashba field is a source for the bright
triplet recombination, as well as for spin-polarized recombina-
tion emission, with a typical lifetime of subnanoseconds.””>*”"
These intriguing discoveries stimulated a search for the spin
lifetime, spin coherence time, and values of the phenomeno-
logical g-factors.”””>~”7 Most recent studies report a low-
temperature spin-relaxation time (T;) comparable with the
radiative lifetime (~250 ps) and a spin coherence time varying
from ~4 to ~70 ps*”’°7’® and the exceptional case of 300
ps,’” all rivaling that of the classic III-V self-assembled
quantum dots.””*" Besides the fast and bright excitonic
emission, long emission tails of uncertain origin, up to a
tenth of a nanosecond, were reported and may be related to
shallow trap recombination,®” to electron—phonon polaron
formation,”"*’ or to delayed luminescence after charge
separation and release.”"*"** Moreover, recent studies have
revealed superfluorescence in self-assembled halide perovskite
nanocubes, characterized by a rise of emission intensity,
accelerated radiative decay, a spectral shift, and photon
bunching, with respect to dispersed particles.*”®* The
observed absolute g-factors, reflecting the electronic character-
istics of photogenerated carriers, were reported to vary from
2.3 to 2.6 for the electron (lg,!) and 0.3 to 0.7 for the hole (|
gil), with anisotropy with respect to the reference axis, but with
variability in magnitude or/and si_gn that depends on the
specific chemical composition.”*”>””*%% In any event, recent
explorations of spin properties in halide perovskites show
promising potential for implementation in spin-based tech-
nologies such as memory and quantum computation/
information.

Currently, a new area of investigation is being developed,
incorporating dopant ions in halide perovskite semiconductors
to engineer new optical, electronic, and magnetic properties
beyond those of undoped samples. The embedding of dopant
ions was accomplished either by their incorporation during the
host growth®” or as a post-treatment while using cation/anion
exchange processes.”® Both reactions can be carried out at
relatively low temperatures, thus avoiding thermally activated
out-diffusion of the dopants, as well as good control of their
position and concentration.”” Previous publications reported
the incorporation of iso-valent as well as heterovalent ions into
halide perovskite structures.”” Heavy metals (Sn**, Sb*', and
Bi**)?*™"” have been incorporated to reduce toxicity in Pb**-
based perovskite compounds.

The possibility of enhanced spintronic functionality has
stimulated vast interest in magnetic doping of perovskites by
transition metal cations such as Mn*', Co®', Ni**, and
Cu®",”*~""® aiming to couple the dopant spins with those of
the host carriers. Surprisingly, current reports designate that
magnetism of first-row transition metals stays mostly silent
within halide perovskite host crystals, for reasons that are not
currently understood.''””'** Nevertheless, metal impurities
could have an indirect impact on the host magneto-optical
properties. In particular, first row transition metal cations
possess stronger M—X chemical bonding with respect to Pb—
X, according to extended X-ray absorption fine structure
(EXAFS) observations.'** Reduction in M—X lengths shrinks
the octahedrons’ volume and subsequently leads to reduction
of the A-site cation’s motion. Thus, dopants provide structural

stability, but at the same time, may generate an anisotropic
crystal field accompanied by electrostatic polarization that
could intensify the Rashba effect.”” Depending on the
electronic band alignment between the perovskite host and
dopant d-states, a host excitation energy can be transferred into
the dopant d-states resulting in d—d recombination (e.g., the
yellow-orange Mn d—d emission). Should be noted that d—d
transitions of Ni** ions in octahedra sites fall in the infrared
spectral regime and, thus, will not be monitored in the current
study. Recent studies of Ni doping described the general
influence of the ions on the host properties, showing significant
improvement of emission quantum yields, absorption and
emission spectral shifts, and extension of radiative lifetimes,
with respect to the undoped hosts.””'?'~'%>19%1% Qpe study
proposed that the improved quantum yield results from an
outward diffusion of Pb** ions toward surfaces, followed by the
formation of a PbX, epitaxial shell (under halide rich
conditions); viz.,, creating passivation by a lamellar capsule
via van der Waals forces."”* The Lifshitz group recently
prepared Ni-doped CsPb(Br;_,Cl,); perovskite nanocrystals
(NCs)''"" using a unique postsynthesis treatment which
involved a coexchange of anion and cation and demonstrated
an emission quantum yield of ~45%, far beyond that of the
parent host materials (~7%). It is noteworthy that Cl-based
perovskites show a tendency to form Cl vacancies with a direct
impact on the emission quantum eﬂ'iciency.125

Other exotic elements from the lanthanide family (Yb*,
Eu®, Gd*, Ce’, Tb3+)126_134 have been used as dopants,
which are characterized by their atomistic f—f or f—d
transitions, tunable from the blue edge of the visible to the
near-infrared (NIR) spectral regimes. These dopants enhance
host materials with new optical properties for display
devices."*>'*° Despite wide interest in doping perovskite
materials, critical knowledge regarding the dopant’s effect on
magneto-optical properties of APbX; halide perovskites
remains elusive.

Here, we report an extensive spectroscopic investigation of
Ni**-doped cesium lead halide perovskite nanocrystals (NCs)
with a chemical formula CsPb(Br,_,Cl);. To elucidate the
role of the dopants, specialized spectroscopic means have been
employed, including steady-state and transient (magneto)
photoluminescence (PL) spectroscopies, recorded at various
temperatures. Additionally, optically detected magnetic reso-
nance (ODMR) spectroscopy has been implemented for the
first time for the study of halide perovskites. The
unprecedented magneto-PL measurements revealed the
occurrence of three recombination events in the Ni**-doped
NCs with different degrees of circular polarization (DCP), all
slightly red-shifted from the band-edge energy, demonstrating
obvious contrasting behavior between the undoped and doped
NCs. The ODMR measurements on the doped NCs provide
rich information about the recombination processes, whereas
similar magnetic resonance effects were absent in the undoped
NCs. The ODMR revealed spin-flip processes of both electron
and hole with phenomenological g-factors deviating from those
of the electronic band-edge, indicating carrier localization at
shallow traps (e.g, vacancies). The magnetic resonance
observations are corroborated by a theoretical spin Hamil-
tonian model. These results show weak spin-exchange
interaction between the localized carriers and, more
importantly, also indicate a spin-exchange coupling between
a hole spin and Ni** unpaired electronic spins. These magnetic
resonance data uncover the effect of the dopant in stiffening
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the entire crystal, supposedly inducing metal/halide vacancies,
and enabling local host—dopant spin—spin interactions which
are otherwise blurred in soft perovskite undoped materials.

B RESULTS AND DISCUSSION

The investigated samples included undoped CsPb(Br,_,ClL,),
and Ni*"-doped CsPb(Br,_,Cl,); perovskite NCs. Doping was
accom})lished via a postsynthesis coexchange of cation and
anion."'" A schematic of the Ni**-doped halide perovskite
structure is shown in Figure 1a, where the various elements are

(b)

O undoped

Intensity (norm.)
Intensity (norm.)

24 245 25 255 26
Energy (eV)

24 245 25 255 26
Energy (eV)

Figure 1. Structural details and optical observations: (a) Schematic
structure of Ni**-doped CsPb(Br,_,Cl,); structure. (b) HR-TEM
image of a single NC. (c, d) Reflectance and photoluminescence (PL)
spectra of the undoped (c) and Ni** doped (d) CsPb(Br,_,Cl,); NCs,
recorded at 4 K. E,, Electronic band-edge energy; Gaussian best fit
curves (purple, blue, and green) show the PL of the doped NCs. All
data were recorded under low-power illumination (<0.5 kW/cm?).

presented in different colors. Figure 1b represents a high-
resolution transmission electron microscope image (HR-TEM)
of a single NC. The cube-shaped NCs have an average size of
~9.0 nm, possessing high crystallinity, with the chemical
formula CsPbg¢gNig g, (Bro4oClys;)s- The composition was
verified by scanning TEM along with energy dispersive
elemental mapping, inductively coupled plasma atomic
emission spectrometry, and X-ray photoelectron spectroscopy
(XPS) as reported in ref 111. These measurements showed a
slight composition variability in different batches, where the
Ni** atomic percentage varied between 1.3 and 2.0%. The XPS
measurements verified the integration of Ni** in the bulk
position with a minor amount of Ni—O contribution at the
surface (mainly related to Ni—oleic acid bonding).

Ni** is a non-Kramers ion with an integer electron spin value
S = 1 in its ground state. A few previous studies'>”'**
identified Ni** doping in various crystals (e.g, NiBr,, Ni*-
doped CsMgBr;) using Q-band electron spin resonance (ESR)
spectroscopy, which released an isotropic g-factor ~ 2.3 and
crystal field that varied between 7000 and 20000 cm™,'**
depending on the host composition. In the current study, an
attempt to identify the Ni*" doping site via X-band ESR
spectroscopy was enabled, more likely due to its exceptionally
large crystal field. However, the influence of Ni** unpaired
electronic spins on other physical properties of metal halide
perovskites is strongly pronounced, as elaborated below.

The optical and magneto-optical properties of the Ni**-
doped CsPb(Br,_,Cl,); NCs described above were inves-
tigated by recording PL spectra at various temperatures and in
the presence of an external magnetic field (so-called magneto-
PL). The data were compared with those collected for the
parent compounds with the same stoichiometry of CsPb-
(Br,_,Cl,)5 Figure 1c,d depicts PL spectra of the undoped and
doped CsPb(Br,_,Cl,); ensembles of NCs, recorded at 4 K.
The PL spectra in Figure lc,d were best-fitted by three
Gaussian functions (purple, blue, and green) with energy gaps
of 5—7 meV, slightly above values of a Rashba splitting for
NCs of similar size,”"*”°” hence, raising questions about their
origins. Figure Slab in the Supporting Information (SI)
displays the absorption and PL curves of the undoped and
doped NCs recorded at room temperature, revealing Stokes
shifts of ~4 meV between the PL maxima and the band-edge
energy, hence proposing an excitonic character to the high
energy side of the band. Figure Slc depicts a set of PL spectra
of randomly dispersed NCs recorded at 4K under a variable
illumination power from 0.5 W/ cm? to 35 kW/cm?. The latter
measurement reveals an energy blue shift with increased
pumping intensity, attributed to suppression of a high-energy
band and the appearance of a lower energy feature, which may
be related to the formation of multiple excitons or a charged
exciton. Note that the PL data presented in Figure 1c,d, as well
as those described below, were all recorded under low-power
illumination (<0.5 kW/cm?) to ensure the formation of single
photogenerated electron—hole pairs. Superfluorescence is
unlikely due to these low powers and to a dispersity of
individual NCs.

Figure 2a,b shows contour maps of normalized PL
intensities of the ensemble of undoped CsPb(Br,_,Cl,); NCs
(a) and their Ni**-doped derivatives (b) plotted versus the
temperature. The high energy side of the spectra experiences a
spectral shift with increasing temperature, typical for lead-
halide perovskite band-edge recombination."*”'*” The changes
with temperature are accompanied by broadening of the
emission bands toward lower energies due to thermally
induced phonon coupling.l“’142 Also, the spectra of the
undoped samples show a pronounced extra deep emission
band at elevated temperatures, which is absent in the spectra of
the doped derivatives. Three-dimensional plots of the temper-
ature dependent PL measurements are shown in the SI, Figure
S2. Transient PL curves of the undoped and doped NCs (from
the full spectral range) plotted on a log—log scale are shown in
Figure 2¢,d. These curves display three distinctive regions:
Single exponential decays with lifetimes between 50 ps and 250
ps (see insets) which were assigned before to neutral exciton
recombination;’®’® an exponential component identified by
the simulated red line, with a lifetime of ~15 ns at the doped
and undoped NCs, where such a decay can be related to a
bound or a trapped exciton or even to a long-lived trion as
proposed recently;'** and a power-law component emphasized
by the green simulated line in the range above 100 ns,
associated with out-diffusion of carriers toward surface sites
and a consequent delayed luminescence. It is worth noting that
a small power-law coefficient (a) in doped NCs reveals a
minor diffusion process of carriers to the surface which avoids
the quenching of the luminescence intensity. Also, the
transient PL curves measured under intense pumping were
dominated by a picosecond decay process and saturation of the
delayed recombination. In contrast, the delayed processes were
mainly pronounced under mild pumping. A measure of a
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Figure 2. (3, b) Contour plots of the temperature dependence PL spectra of undoped (a) and doped (b) NCs. (c, d) Transient PL curves of the
undoped (c) and doped (d) NCs (log—log presentation). The fast transient component, measured on a streak camera, is shown in the insets of the
panels. (e, f) Bottom: The circularly polarized PL spectra (o+), recorded at B = 0 and at 4 K for the undoped (e) and doped (f) NCs. Top: The
corresponding DCP spectral trends, recorded at B = 0 and +9 T (see legend).

component that is recognized by a power-law slow process
under a mild pumping condition was further investigated,
employing the ODMR technique. This method is solely
limited for a measure of radiative/nonradiative processes that
is compatible with or longer than the spin—lattice relaxation
time (~nanoseconds)’® for band-edge carriers in halide
perovskites; however, it is expected to be substantially longer
(~hundreds of microseconds) for localized carriers at trapping
sites.'**

Figure 2e,f, bottom curves, illustrate the circularly polarized
PL spectra (o+) of undoped (e) and doped (f) NCs,
monitored in the absence of an external magnetic field (B =
0) at 4 K. Note, the polarized PL spectra relate to NCs which

were dispersed onto a Si substrate with partial self-assembly, in
contrast to the measurements shown in Figure 2a—d. The top
curves in Figure 2e,f present three trends (recorded at B = 0
and +9 T) of the degree of circular polarization, which is
defined as DCP = (I — I-)/(I; + I,), when I, is the
emission intensity at the indicated polarization. Complemen-
tary DCP plots recorded over the range of =9 < B < 9 T are
shown in the SI, Figure S4. A careful examination of the DCP
plots reveals interesting trends: (i) The circularly polarized
bands of the doped NCs experience a slight energy shift with
respect to the corresponding undoped ones. (ii) The DCP
trends offer a merit beyond that of the PL raw data, by
resolving a few different recombination events. A careful
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examination of the DCP plots reveals interesting trends. (iii)
The DCP curves of the doped sample expose three main
spectral regions: the two highest energy features (2.54 eV, 2.50
eV) refer to the two opposed polarized triplet exciton
components (e.g., Rashba split), while the low energy feature
(2.35—2.45 eV) may refer to recombination at a trapping site.
(iv) The triplet exciton components (2.58 eV) are degenerate
in the DCP of the undoped sample. (v) Two different deep
emission processes with opposing polarities are pronounced in
the undoped sample (2.45 and 2.53 eV), when the lowest
energy one is absent in the doped sample. Interestingly, the
magneto-PL spectra were found also to be linearly polarized
(~33%) at a zero external magnetic field (SI, Figure S3);
nevertheless, this polarization diminished gradually upon the
increase of the magnetic field. Linearly polarized PL has been
identified as a signature of a weak Rashba splitting in previous
studies of lead-halide perovskites performed close to a zero
magnetic field,"””***” due to a mixing of close lying triplet and
singlet states with a small spread across ~1—2 meV. The larger
interspread gained at the highest magnetic field exposes the
circular polarization of individual triplet states.

Optically detected magnetic resonance (ODMR) spectros-
copy has been implemented to further understand long-lived
magneto-optical properties in the studied NCs. An ODMR
experiment measures a differential change in the luminescence
intensity (AI/I, where I = PL intensity) due to a magnetic
resonance effect in the excited state, versus the strength of an
external magnetic field. For such an experiment, the sample
was placed within a microwave (MW) cavity operating as an
antenna at a fixed frequency of ~10.78 GHz, and the cavity
was mounted into a magneto-optical cryostat. All reported data
were measured at 2.17 K. The emission has been monitored
either parallel (Faraday) or in the normal direction (Voigt)
with respect to that of the magnetic field. Furthermore, the
MW radiation was modulated with variable audio frequencies
from 100 Hz to ~10 000 Hz. This modulation enables lock-in
detection of the differential luminescence intensity and
furthermore had a substantial influence on the ODMR spectral
pattern itself. Further details about the ODMR setup are given
in the Methods section.

Notably, whereas the Ni**-doped perovskite NCs show rich
ODMR spectra, the corresponding undoped NCs solely stayed
silent regarding magnetic resonance transitions (viz., absence
of any ODMR spectrum). The appearance of the ODMR
signal in the doped sample can be explained by stabilization of
the crystal skeleton by the stronger bonding between Ni—Br
and Ni—ClI with respect to Pb-based bonds. Accordingly, the
following sections exposed in detail the ODMR spectra of the
Ni-doped CsPb(Br,_,Cl,); NCs, while monitoring different
spectral windows of their PL spectrum.

Figure 3a depicts an ODMR spectrum monitoring the entire
emission as in Figure 1d, recorded at 4 K with a Voigt
alignment (BL excitation beam). The spectrum is dominated
by a sharp, intense negative resonance centered around 0.383
T and another weak and broad negative resonance around 0.67
T. The red curve in Figure 3a shows a simulated spectrum
generated using a spin-Hamiltonian, revealing average g-factors
of 2.01 for the low field resonance and 1.15 for high resonance
band, both of which deviate from those of band-edge carriers (|
gl: 2.3 to0 2.6; Igl: 0.3 to 0.6).°"7*""” These differences reflect
the involvement of environmental distortions and/or local-
ization of the photogenerated carriers. Details of the spin-
Hamiltonian simulations are elaborated in the text below.
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Figure 3. ODMR spectra of Ni** doped CsPb(Br,_,Cl,);NCs: (a, b,
c) The ODMR spectra recorded under Voigt configuration at 2.17 K
when monitoring: the full PL spectral range (a), the blue region (b),
and the green region (c) from the PL band (see Figure 1d). The
experimental raw data are shown by the black symbols and the
theoretical simulations by the colored curves. (d) The spectral
dependence ODMR (red line) spectrum is displayed in comparison
with the PL spectrum (black line). The corresponding blue and green
PL spectral regions refer to spectral scans with 490 or 500 nm
centered band-pass filters, respectively.

The black symbols in Figure 3b depict an ODMR spectrum
of doped NCs, monitored at the blue spectral window of the
PL band. This spectrum was recorded in-phase (IP) with the
MW pulse, which was chopped at an audio frequency of ~180
Hz under Voigt optical alignment. The blue line corresponds
to a theoretical simulation. Similar spectra recorded with the
same MW conditions but optically monitored along the
Faraday direction (BIl excitation beam) and through circular
polarizers (6+) are shown in the SI, Figure SS. The polarized
spectra illustrate a pattern compatible with that shown in
Figure 3b, suggesting that the Voigt spectrum consists of the
sum of the two circular polarized components. Based on this
interpretation, the following discussion focuses on the ODMR
observations obtained under the Voigt alignment which offers
the largest signal/noise ratio.

Figure 3c displays an ODMR spectrum recorded in the
Voigt configuration while monitoring the green spectral
window of the PL band. The spectrum comprises a positive
resonance. The opposing signs in the ODMR spectra of the
blue and green spectral windows indicate dissimilar recombi-
nation mechanisms, although the resonance extrema possess a
very similar g-factor value around g ~ 2.00 and suggest an
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Figure 4. Influence of MW audio modulation frequency on the ODMR spectral patterning: ODMR spectra measured under various audio
frequencies when monitoring: the blue spectral region (a), the green spectral region (b), and the full PL spectral window (selectively at the far-field
resonance) (c). The solid (open) symbols correspond to a measure of the luminescence in-phase (out of phase) with respect to the rising edge of

the MW pulse.
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Figure S. Scheme of optical and spin manifolds related to the following: (a) Proposed recombination routes associated with the green and blue
emission bands, involving shallow traps at Vi and Vp, sites and a single electronic band-edge. (b) Trap-to-band or trap-to-trap recombination
involving an electron and hole pair in turn with S, and S, spin momentum, with a weak mutual spin exchange interaction (J,_;,). The wavy arrows

designate radiative recombination. Spin flip of an electron or a hole

is marked by the yellow and orange arrows, respectively. (c) Similar spin

manifold to that in (a) which is populated via intersystem crossing and the consequence differential change in the exciton emission (see marked by

the wavy arrow) comprises the ODMR signal.

involvement of a common electronic state in the recombina-
tion processes.

Figure 3d shows the spectral dependence of the ODMR
(SD-ODMR), plotted by red symbols, in comparison with the
low temperature PL spectrum (black curve) of the doped NCs.
The blue and green shades refer to spectral scans of the PL
band while using 490 or 500 nm band-pass filters, respectively,
thus isolating the lowest DCP components in the PL and the
MPL spectra (see Figures 1d and 2f).

The SD-ODMR curve is associated with a scan of the PL
spectrum under continuous magnetic resonance conditions
(i.e, MW radiation of ~10.78 GHz and a magnetic field of
0.38 T). The figure shows that the SD-ODMR curve tends
toward negative values at the blue side of the spectrum and
switches to a positive response in the green spectral region.
This behavior confirms the opposing signs seen in Figure 3b,c.
The change in the sign of an ODMR signal is explained below,
by a differentiation between a thermalized (depletion) and
unthermalized (enhancement) behavior, mainly dictated by
the ratio between a radiative time (7g) and the spin relaxation
time (Tl).145

Beyond the steady-state ODMR measurements, temporal
information was deduced from inspecting changes in the
ODMR pattern upon variation of the audio-modulation
frequency of the MW. Figure 4a,b presents the ODMR spectra
of the blue () and green (b) spectral windows recorded under
variable MW audio frequencies, in-phase (IP, solid symbols)
and out-of-phase (OP, open symbols) with respect to the MW

pulses. This set of spectra brings to light a few interesting facts:
(i) The OP signals imply events occurring in the dwell times
between adjacent MW pulses (e.g., spin relaxation). (ii) The IP
signals reflect the radiative relaxation during the MW pulse.
The audio frequency in which the OP component nearly
vanishes provides an upper limit to the spin relaxation time,
thus revealing a spin—lattice relaxation of T, = 0.2 ms for an
electron involved in the blue and green emission processes.
Figure 4c plots the frequency dependence of the high-field
ODMR resonance (as shown in Figure 3a), from which hole-
spin relaxation of T, = 0.75 ms was deduced, obviously
differing from that found for an electron spin. Furthermore, the
hole spin experiences exchange coupling with the Ni** dopant
spins, and that fact persuades an extension of its spin-relaxation
time.

The ODMR spectra shown in Figures 2 and 3 were
simulated using the following spin-Hamiltonian:

Hs = 'uB]e(t)Z(t)Bo + /’lBSh(t)?h(t)BO + HBSNENI'BO

F Jooy—n@ecoySno) F gy -niShioySwi (1)
The first three terms in eq 1 correspond to the Zeeman
interactions of a free or trapped electron/hole (J, (), t = trap),
a hole (S(), and the Ni** dopant (Sy;). The fourth and fifth
terms are associated with the electron—hole (J,_;,) and hole—
dopant (J,)_ni)* """ **"*” spin exchange coupling, respectively.
As a preliminary assumption, the hyperfine interactions
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Table 1. Parameters Used for the ODMR Simulations (Based on the Spin Hamiltonian in Equation 1)

& & i &’
full spectral range 1.99 1.99 1.12 1.14
blue component 1.994 1.994 1.12 1.14
green component 2.01 2.01 112 1.14

“A Gaussian distribution of J values. “Reference 138.

e Jeoi (ueV) (AJ._j, peV)* Jo-ni (1eV) (A peV)”

23° 0.10 (0.05) 2 (1)
2.3 0.10 (0.05) -
23 0.10 (0.05) -

involving abundant spin-bearing isotopes from dopants or
resident atoms were neglected, and a justification is further
elaborated below. Also, the nonlinearity of a Zeeman-like term
owed to a contribution of a Rashba field was excluded from the
simulation, due to a focus in the ODMR study on sub-band
gap transitions rather than band-edge luminescence.

Figure Sa illustrates the proposed optical transition
correlated with the ODMR observations, comprised of an
electron at a donor site (e.g,, V) and a hole either at a band-
edge or at an acceptor site (e.g, Vp;). The corresponding
magnetic resonance transitions are illustrated schematically in
Figure Sb, showing a spin manifold under the presence of a
magnetic field. The diagram describes an electron—hole pair in
the excited state, where each individual carrier possesses a spin-
moment of § = 1/2 (mg = +1/2), hence generating a total pair
momentum of S,_, = 1, 0 (mg = +1, 0 and mg = O,
respectively). The relative energies of these states at B, = 0
depend on the electron—hole exchange splitting (J,_;,) and the
surrounding anisotropy. Note that, in the case of halide
perovskites, individual carriers with S = 1/2 are associated with
band-edge states,”” #4819 byt such a moment is also retained
upon localization or trapping of one or both of those carriers.
The bright radiative relaxation processes from triplet states (mg
= +1 components) are indicated by the wavy arrows. The
magnetic resonance transitions (e.g,, spin-flip of an electron
or/and a hole) are indicated by the orange/yellow arrows.
Upon nonresonant excitation and in the case of fast
recombination (short 7;), the increase of population of a
radiative state (with mg = +1) by the magnetic resonance
transition leads to an enhanced luminescence differential (viz.,
to a positive ODMR signal). In contrast, a slow recombination
process (e.g, band-to-trap, trap-to-trap, or delayed lumines-
cence) with 7 longer than the value of T; would allow
population thermalization within the spin manifold and would
consequently generate a negative ODMR signal. Significantly, a
negative resonance can also appear when the entire manifold is
related to a nonradiative trapped center; however, the
luminescence is monitored in resonance with a band-edge
transition, as illustrated schematically in Figure Sc. Indeed,
Figure 3a,b displayed dominancy of negative signalg, related to
either one of the cases shown in Figure Sb,c 4150

Spin Hamiltonian simulations were carried out based on the
spin manifold shown in Figure Sb. The magnetic parameters
deduced from simulating the ODMR spectra in Figures 3 and
4 are summarized in Table 1, and the simulated spectra are
shown next to the experimental data in Figure 2a—c. The
resonance at low magnetic field in Figure 3a is associated with
an electron spin-flip with a mean g, value of 1.998. The high-
field signal is associated with a hole spin-flip with a g, value of
1.12, meaning that the carrier feels spin—orbit interaction and
anisotropy in the chemical surrounding. Importantly, the hole
resonance is much broader than the electron resonance,
despite observations that electrons in perovskites have much
shorter spin coherence times (T),), as revealed from the time-
resolved Faraday rotation measurements.”’ Simulation of this

excess broadening of the high-field resonance required the
introduction of exchange coupling between Ni** spins (S = 1)
and the perovskite hole, parametrized in eq 1 by Uh(t)_Ni). The
fine structure anticipated for this resonance is weakly resolved
due to its low intensity and presumed inhomogeneous
broadening. Simulations illustrating the high-field resonance
dependence on (Jj(;)—n;) are shown in the SI, Figures S6 and
S7, confirming a substantially narrower band in the absence of
h—Ni*" coupling, and best fit upon the consideration of such a
coupling with a magnitude of J,_; = 2 peV with width of 1
pueV. These results demonstrate that although magnetic
resonance transitions within Ni** stay silent, the dopant’s
unpaired spins are indeed coupled to a spin of a photo-
generated carrier, with a preference for interaction with a hole
spin, due to a contribution of p-orbits of the halides. The value
of g, deviates from that of a band-edge carrier and also from
the value of a free carrier, owing to the surplus h—Ni*"
exchange.

The value of J,_;, deduced from the ODMR simulations is
relatively small (~peV) compared to those reported for
excitons in perovskites, reflecting a relatively weak electron—
hole interaction and corroborating the interpretation that each
carrier experienced a localization at a different crystallographic
site. Although the halide perovskites are known for their defect
tolerance, this does not exclude the existence of trapping
centers, which might be associated with self-trapping after
excitation,"”'™'*° a trapping at above band gap states, or
shallow in-gap states. In addition, in recent studies, the source
of a long recombination time has been associated with an
Auger process that involves carrier trapping at a defect surface
site.'*® Thus, whether a photogenerated carrier diffuses directly
or is first ejected by an Auger process to a remote state and is
then trapped, it is sustained for some time before
recombination with a counter charge. Meanwhile, the
ODMR experiment can be detected following either one of
the routes displayed in Figure 5. A few options have been
proposed theoretically as shallow trapping states,'** mostly
related to vacancies at metal or halide sites in close proximity
to the exterior NC surfaces. Note that the preparation of Ni**-
doped NCs was accompanied by anion exchange of about 50%
of Br for Cl. A chloride agent was used in Ni** doping to assist
uniform exchange with Pb** ions that resulted in a stronger
M-X bond. However, the combined cation/anion exchange
process may create vacancies, with a well-known tendency for
chloride vacancies."”” Antisite defects including M** in the Cs*
site can be excluded, as those are predicted to generate deep
traps,”” but our data show only minor Stokes shifts of ~4—7
meV from the absorption edge. Furthermore, previous DFT
calculations (ref 111) have indicated an energetic preference
for Ni** to exchange for Pb*" ions at the lattice B site. Based on
these considerations, the blue- and green-emission compo-
nents are associated either with trap-to-band or with trap-to-
trap recombination, where Vp,* is considered a likely acceptor
and Vr is considered a potential donor (see scheme in Figure
Sa). At last, a preliminary assumption was made earlier,
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neglecting hyperfine interactions emanating from neutral
abundance isotopes of a Ni** or host elements (Pb, Br). The
Ni** hyperfine constant is ~0.1 ueV,"*® while that of Pb** was
recently evaluated to be ~20 peV in relation with a band-edge
hole.”” The hyperfine of Ni** is negligible with respect to the
Ju—ni exchange, while that of Pb** normally induces a giant
broadening, which is obviously absent in our case.
Furthermore, most monitored carriers by the ODMR method
were localized at a trapping site, without an eflicient overlap
with Pb** nuclei. Thus, the simulations illustrated in Figures S6
and S7 gain a high conformity in exposing the h—Ni electron
spin exchange coupling.

B SUMMARY

The current work has examined the effect of dilute Ni** doping
on the photophysics of CsPb(Br,_,Cl,); NCs (nanocubes)
with an average size of ~9 nm. The study implemented
multiple different spectroscopic methods to follow changes in
the (magneto-)optical properties of the halide perovskites
induced by doping. A combination of variable-temperature
photoluminescence (PL), transient PL, and circularly polarized
PL spectroscopies exposed the presence of three distinct near-
band-edge components in the NC PL spectrum, one having an
extremely fast radiative lifetime (~picoseconds) and two
others with nanosecond decay times. All three show circular
polarization. The extended lifetime processes were correlated
with delayed luminescence as justified above and are most
likely associated with localized or trapped carriers induced by
stiffening of the entire perovskite structure by the presence of
dopants. ODMR spectroscopy confirmed the existence of
carrier trapping, as deduced from the phenomenological g-
factors and the spectra patterns. Above all, the ODMR data
also revealed direct evidence of magnetic-exchange coupling
between the Ni** unpaired spins and the spin of a hole carrier,
with an extended spin-relaxation time (T, < milliseconds).
Carrier-dopant spin exchange coupling has not been measured
previously, but such coupling is of paramount importance for
practical application of diluted magnetic perovskites in spin-
based devices.

B METHODS

Sample Preparation. Pristine CsPbBr; and Ni**-doped CdPb-
(Br,_,Cl,); NCs were prepared following the procedures discussed in
ref 111. The incorporation of Ni** was done in a post-treatment
process, involving the coexchange of cation and anion, starting from
the NiCl, precursor. The coexchange assisted in introducing the Ni
cation into the heart of the nanocrystal. The uniform spread of the
dopant atoms across the crystal was approved by scanning TEM
combined with EDX spectroscopy (see ref 111).

Optical and Magneto-Optical Spectroscopy. The photo-
luminescence (PL) spectra recorded at various temperatures and
the magneto-PL and the transient-PL curves were measured by
mounting an ensemble of NCs (drop-casted onto a Si substrate) into
a fiber-based confocal microscope. The microscope was embedded
into a cryogenic system (attoDRY1000 closed cycle cryostat). The
microscope included a focal lens with NA of 0.65 and a 473 nm long-
pass dichroic mirror. The target sample was excited using a
continuous-wave unpolarized 405 nm laser diode, and emission was
detected using a FERGIE spectrograph. The transient PL curves were
recorded using a pulse laser with a peak energy at 450 nm and a pulse
length of 70 ps. The fast transient PL was measured via an Optronis
streak camera with a repetition rate of 0.3/0.5 MHz and a scan speed
of 250 ps/mm with laser pulse energy of 2 mJ/cm® The slow
transient PL was measured with an MPD single photon avalanche
diode connected to a PicoHarp300 time-correlated single photon

counter (TCSP) using very low laser pulse energy of 203—510 nJ/
cm’. Magneto- and temperature-dependent PL spectra were recorded
under illumination power between 254—509 W/cm?, ensuring
creation of a single electron—hole pair at the excited state (exciton
or trapped carriers).

PL Decay Fitting. The exponential decay component was fitted to
the equation A exp(—t/7) for each decay component. A is the
amplitude, ¢ is the time, and 7 is the mean lifetime in which the
intensity reduced to 1/e of its starting value A. The power law
component was fitted to f(t) = £ * by linear fitting of the logarithm of
the measured intensity (f(x) = log(f(¢))) and the logarithm of t (x =
log(t)) to f(x) = mx + b.

ODMR Spectroscopy. In the ODMR experiment, a sample was
mounted into a custom-made microwave (MW) cavity operating at
the x-band frequency (~10.7 GHz), when the end is positioned at the
center of a superconducting magnet (split Helmholtz coil). All parts
mentioned were immersed in a liquid helium cryostat, operating at a
superfluid helium temperature (2.17 K). The sample was excited by a
continuous-wave diode laser at 405 nm. The MW signal was
generated by a MW generator, while the power output was modulated
via a square-wave generator, with audio-frequencies ranging from 40
Hz to 5 kHz. The PL emission was monitored by a Si photodiode and
was fed into a lock-in amplifier. The lock-in detection was
synchronized with the MW modulation frequency, monitoring either
in-phase (IP) or out-of-phase (OP) with respect to the rising edge of
the MW pulse.
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