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ABSTRACT: The string method with swarms of trajectories (SMwST) is an algorithm
that identifies a physically meaningful transition pathwaya one-dimensional curve,
embedded within a high-dimensional space of selected collective variables. The SMwST
algorithm leans on a series of short, unbiased molecular dynamics simulations spawned at
different locations of the discretized path, from whence an average dynamic drift is
determined to evolve the string toward an optimal pathway. However conceptually simple
in both its theoretical formulation and practical implementation, the SMwST algorithm is
computationally intensive and requires a careful choice of parameters for optimal cost-
effectiveness in applications to challenging problems in chemistry and biology. In this
contribution, the SMwST algorithm is presented in a self-contained manner, discussing
with a critical eye its theoretical underpinnings, applicability, inherent limitations, and use
in the context of path-following free-energy calculations and their possible extension to
kinetics modeling. Through multiple simulations of a prototypical polypeptide, combining
the search of the transition pathway and the computation of the potential of mean force
along it, several practical aspects of the methodology are examined with the objective of optimizing the computational effort, yet
without sacrificing accuracy. In light of the results reported here, we propose some general guidelines aimed at improving the
efficiency and reliability of the computed pathways and free-energy profiles underlying the conformational transitions at hand.

1. INTRODUCTION

Many important phenomena of physical, chemical, and
biological relevance occur on time scales that largely exceed
milliseconds (ms), e.g., large conformational transitions in
complex biological objects. Observing by means of all-atom
simulations broad movements between protein domains
connected allosterically could be valuable to complement
experiment, and help address important biological challenges.
In spite of significant advances on the hardware and the
software fronts, the time scales amenable to molecular
dynamics (MD)commonly from tens of microseconds
(μs) on commodity clusters to a few milliseconds (ms) on
special-purpose computers1 and large arrays of computing
nodes equipped with graphics processing units (GPUs)
remain orders of magnitude less than those spanned by
biological processes. Computational investigation of such rare
events, over ms and beyond, requires more than brute-force
simulations on faster computers to dilate both time and length
scales. The limitations that brute-force MD impose require
other avenues to be examined to sample the underlying slow
degrees of freedom.
The string method goes directly to the heart of this

challenge by trying to determine the dominant transition
pathway connecting two metastable states constructed as a
one-dimensional curve within a reduced subspace of selected

degrees of freedom, for example, a set of atomic Cartesian
coordinates (CCs) or some mathematical transformations of
CCs that are already known (also commonly referred to as
“collective variables” or CVs).2,3 In practice, the string method
represents the curvilinear pathway as a chain of M discrete
“images” or “nodes” in the subspace of the CVs or CCs, each
node corresponding to a full copy of the entire system. One of
its variants, the string method with swarms-of-trajectories
(SMwST),4 consists of progressively refining a trial transition
pathway on the basis of the average dynamic local drift at each
node. Toward this end, multiple short, unbiased trajectories
are spawned at each node, forming a swarm, from which the
mean dynamic drift is estimated on the fly. The string
connecting two metastable basins is then refined through
successive iterations, until the local drift at each node is zero in
directions orthogonal to the tangent of the path, hence the
name “zero-drift pathway” (ZDP). To put the significance of
the string method into proper context, it is helpful to first
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review the computational approaches that are commonly used
to study slow molecular processes and rare events.
Enhanced-sampling approaches, notably free-energy calcu-

lations,5 have long been an essential tool to characterize the
dynamics of slow degrees of freedom. Exploring with all-atom
computer simulations biological events involving entangled,
slow movements of large amplitude remains, however,
thwarted by conceptual and methodological hurdles rooted
in (i) the definition of the CVs capable of describing the
conformational transitions associated with these events and (ii)
the algorithm that encourages sampling along these CVs.
Enhancing sampling to investigate phenomena spanning long
time scales is commonly achieved by defining a general-extent
parameter, ξ(x), i.e., a model of the reaction coordinate (RC),
and encouraging exploration of important regions of configura-
tional space through (i) the application of an external force
along ξ(x), as is commonly done with free-energy-oriented
approaches, like the adaptive biasing force (ABF),6,7

metadynamics (MtD),8 and umbrella sampling (US)9

algorithms; (ii) the definition of interfaces along ξ(x) and
determination of transition probabilities between them, which
forms the basis of schemes like milestoning10 and simulation-
enabled estimation of kinetic rates (SEEKR);11 (iii) the
definition of regions in the direction of ξ(x), and preferential
sampling of these regions, as is done in weighted-ensembles
simulations;12 (iv) spawning short trajectories, beginning and
ending at the reference state, and pushing further along ξ(x),
which is the central idea of the adaptive multilevel splitting
(AMS) algorithm.13

Still, each method is plagued by slow degrees of freedom in
orthogonal space, which hampers efficient sampling. This
limitation, due to a misrepresentation of the RC, results in
sampling nonuniformity and quasi non-ergodicity in the
direction of ξ(x). To address these shortcomings, common
to nearly all importance-sampling algorithms,5,14 a number of
options should be considered, namely, (i) turning to ergodic-
sampling algorithms,15 like bias-exchange US,16 or multiple-
walker ABF (MW-ABF),17,18 hoping to populate important
regions in orthogonal space; (ii) modifying the definition of
ξ(x), notably through a dimensionality reduction scheme,19−21

{x1, ..., xN} → {z1, ..., zn}, where {x1, ..., xN} represents the
complete set of Cartesian coordinates (CCs) of the molecular
object of interest, and {z1, ..., zn}, the set of CVs, with n ≪ N;
(iii) turn to specialized importance-sampling algorithms,5,14

like the most recent well-tempered MtD-extended adaptive
biasing force (WTM−eABF) scheme,22,23 which introduces
ergodicity in the sampling. There is a strong connection
between the choice of the importance-sampling algorithm and
the representation of ξ(x), which necessarily impacts not only
sampling efficacy, but also the underlying dynamics. This
connection naturally raises the questionwhat constitutes a
suitable set of CVs, or, said differently, what are the important
degrees of freedom that contribute predominantly to ξ(x),
which has been tackled by many research groups in the past 20
years with a host of approaches that cannot all be cited
here.2,4,10,21,24−30

Failure to model the RC in complex biological objects and
erroneous description of the underlying dynamics stem from
our reductionist view of the CV spacee.g., describing the
permeation of a substrate across the cell membrane in terms of
a Euclidian distance projected onto the normal to the interface
results in non-Markovian dynamics.31 A number of methods, in
particular, Markov state models (MSMs),25,32 have been

devised to identify from multiple short MD simulations the
relevant CVs associated with conformational transitions. Tools
like time-structure independent components analysis (tICA)27

can be utilized in conjunction with MSMs to extract the
slowest movements from time series of linear combinations of
input CVs. In stark contrast with principal component analysis
(PCA),33 which identifies motions corresponding to the largest
variance, tICA targets through time-correlation analysis the
slowest degrees of freedom. Variants of PCA, like relative PCA
(RPCA),34 have recently emerged, and offer a more
satisfactory approach for singling out the relevant degrees of
freedom in geometric transitions. MSMs and tICA are,
however, costly, requiring usually long simulations and
knowledge of the metastabilities to infer meaningful
information.35 It might be argued that the necessity of ms-
simulations to address ms-biological phenomena defies the
purpose of time scale bridging. Furthermore, assumption that
the Markov chain yields perforce the correct kinetics
constitutes a conceptual leap of faith.36 This methodological
ceiling in our ability to define a proper RC from scratch has
limited our ability to investigate slow and complex processes
that are underlying the function of large protein assemblies.
It is in this broad context that the string method,2−4 which is

built upon transition-path theory (TPT),37,38 helps deepen our
understanding of the concept of RC. In TPT, the RC is
fundamentally associated with the concept of committor,24,39

defined as the commitment probability that a trajectory
starting from a given initial condition will reach target state
B before crossing state A. In the vicinity of states A and B,
which are metastabilities of the free-energy landscape, the
committor approaches 0 and 1, respectively. The transition
region is foliated into isocommittor surfaces crossed by
reactive trajectories. One statistically important pathway
connects state A to state B by following the probability flux
densities (see Figure 1).40 The string method aims at
determining such a pathway, thereby helping better define an
optimal RC for a slow process of interest.
Up until now, the string method has been applied to capture

conformational transition pathways in various molecular
processes, such as the hydrophobic collapse of a hydrated
chain,41 activation of c-Src kinase,42−44 mechanical coupling in
myosin,45,46 substrate selection in DNA polymerase,47

amyloidogenic isomerization of β2-microglobulin,48 ligand-
induced transition in adenylate kinase,49 DFG-flip in insulin
receptor kinase,50,51 ion-channels gating,52,53 V0-

54 and V1-
ATPase,55 ATP-driven calcium pumping in SERCA,56 drug
permeation through porins,57 and membrane transport
proteins.58−61 For illustrative purposes, results of the SMwST
algorithm applied to the activation of c-Src kinase42 and the
multidrug transporter MsbA58 will be briefly described.
In the first application of the SMwST algorithm, Gan and

Roux investigated the molecular basis of the activation process
in human tyrosine kinases.42 The calculated transition pathway
between two crystallographic structures of human tyrosine
kinases62,63 revealed a two-step activation process in which
opening of the activation loop is followed by rotation of the
αC helix. More extensive SMwST calculations later confirmed
the main conclusions.44 Subsequent MSM-based computations
exploited the information from the string pathway to provide
additional insights into the activation/deactivation mechanism
of the Src kinase.64 It is noteworthy that alternative approaches
to the SMwST have also been employed to study conforma-
tional transition in kinases, including the adaptively biased path
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optimization (ABPO) approach for the determination of the
principal curve defining a conformational transition between
two known end states. The adaptively biased path optimization
strategy utilizes unrestricted, enhanced sampling in the region
of a path in the subspace of the CVs to identify a broad path
between two stable end-states.65 For instance, Post and co-
workers turned to ABPO to examine the transitions within the
catalytic domain of c-Src and CDK2 kinase.66−68

In a different application, the SMwST algorithm was
employed to gain mechanistic insights behind the complex,
large-scale conformational changes in a class of ATP-binding
cassette (ABC) transporter called MsbA.58 MsbA is involved in
exporting a variety of substrates across the lipid bilayer. In
order to fulfill its function this transporter undergoes large-
scale structural transitions between inward- and outward-facing
states. However, the static snapshots of the protein in different
conformational states suggest that ATP-mediated dimeriza-
tion/dissociation of nucleotide-binding domains (NBDs) is
coupled to the structural changes in the transmembrane-
binding domains (TMDs). The most relevant transition
pathway captured from the SMwST algorithm highlighted a
highly coupled NBD−TMD interaction (which follows
alternating access model) and engages orientational change
in the NBDs to facilitate cytoplasmic opening.
Once the optimal path is obtained through the SMwST

algorithm, the associated thermodynamic properties, such as
the free-energy difference between the initial and the final
states, and the free-energy barrier along the string, can be
computed by using enhanced-sampling methods14,15,69 with
path collective variables (PCVs)70 or path-metadynamics
variables (PMVs).71 These thermodynamic properties are
essential in practical biophysical and chemical applications, e.g.,

determining the binding affinity of protein−ligand complexes
and the spontaneity of a chemical reaction. In addition, kinetic
properties, such as transition rate and permeation coefficients,
can be computed by employing models of diffusive
motions.72,73 Alternatively, nonequilibrium pulling with
Jarzynski equality and Weiertrass transform74,75 along the
string also provides insight into the thermodynamic and kinetic
properties and computes the system free energy. Our work
presented herein examines the effectiveness of different PCVs
and parameters in the computation of potential of mean force
(PMF) along the string, and also discusses the determination
of kinetic properties.
By exploiting developments for asynchronous communica-

tion between copies,16 the virtual absence of overhead for
threads running in parallel makes the SMwST algorithm ideally
suited for distribution over large arrays of computing units.
Still, the search for the optimal path by means of the iterative
SMwST algorithm is computationally intensive and, depending
on the complexity of the molecular objects at play and the
implementation of the code, may require substantial resources,
which explains why this methodology has not been hitherto
applied in a more routine fashion. Furthermore, cost-
effectiveness of the SMwST algorithm is subservient to the
optimal choice of their different parametersi.e., from the
discretization scheme of the string to the simulation times
guaranteeing a suitable estimation of the average dynamic drift,
as well as the initial guess of the pathway connecting the basins
of free-energy landscape, which, for the intricate string
underlying large conformational transitions, can be critical.58

Defining a set of guidelines to optimize the computational
investment of SMwST calculations by choosing the most
suitable parameters is, therefore, eminently desirable. In the
present contribution, after outlining the theoretical under-
pinnings of the SMwST algorithm, we examine in a series of
simulations of the well-documented prototypical alanine
tripeptide28,76 how the choice of the string parameters impacts
the optimization process and ultimately the resulting path.
Next, beyond SMwST calculations, we review how PMFs can
be determined along the string, focusing on PCVs70,71 and
their applicability. We close on suggestions of an optimum
strategy for the identification of minimum free-energy
pathways, comparing alternate schemes, whereby SMwST
calculations are followed by importance-sampling simulations,
and multidimensional free-energy calculations are associated
with a post-hoc path search. We also show how kinetic
properties like diffusivities can be readily inferred from the
PMF computed along the string.

2. METHODS
2.1. Theoretical Underpinnings. Following pioneering

work from Pratt,77 and Elber and Karplus,78 the nudged elastic
band79 method was introduced nearly three decades ago as a
path-finding algorithm to determine the minimum energy path
(MEP) between two stable states, or metastabilities, as a chain
of copies of the system of interest. The zero-temperature string
method formalized these ideas by considering a chain of
discrete images evolving along the potential energy gradient
while keeping the length of each link identical through a
reparametrization procedure.2 It is worth noting that keeping
the length of all the links along the chain identical is a
necessary condition to prevent images from pooling together
into the metastabilities. This procedure also allows the reaction
path to remain well-resolved, especially in high-energy

Figure 1. Localized tube connecting the end states of a geometric
transition. Shaded contours represent the different free-energy levels.
In the vicinity of states A and B, which are metastabilities of the free-
energy landscape, the committor approaches 0 and 1, respectively. A
commitment probability, pB(x), of 1/2 corresponds to the ensemble
of transition states from which random trajectories have an equal
probability to commit to state A or state B. The committor foliates the
transition region between A and B into a set of so-called isocommittor
surfaces characterized by pB(x) = α, for α ∈ (0, 1) (dashed lines), and
is a convenient representation of the RC. It is generally accepted that
most paths connecting states A and B lie in a tube, where
isocommittors are planar and crossed by a number of trajectories,
which, per unit area, corresponds to successive transition flux
densities. The tube embraces a concentration of reactive trajectories
(magenta), and the thick curve at its center is a zero-drift pathway
(ZDP), denoted here as s(z).
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transition regions. Maragliano et al.3 expanded this framework
to define the string on a free-energy surface in CV space, where
each node evolves according to the mean force and a metric
tensor that can be determined as conditional averages. To
avoid calculating these average quantities, the SMwST,4 also
called the “drift method”,80 relies on a large number of short,
unbiased trajectories, launched from the positions of the
images distributed along the curvilinear abscissa to determine
the optimal pathway. The drift method is formally equivalent
to the mean force method of Maragliano et al.,3 in the limit
where the trajectories of the swarms are extremely short.81 As
discussed below, the SMwST algorithm is, however, a much
simpler and scalable approach from a computational point of
view.
Let us consider a molecular system of N atoms described by

the atomic coordinates ∈x N3 and the potential energy
U(x). The equilibrium distribution of the molecular config-
uration at a temperature T is given by the Boltzmann
distribution:

∫
=

β

β

−

−p x
x

( )
e
d e

U

U

x

x

( )

( )
(1)

where β = 1/kBT, in which kB is the Boltzmann’s constant. We
are interested in characterizing the slow transitions between
two basins corresponding to stable states defined by a set of n
CVs z = {z1, z2, ..., zn}, such that n ≪ N. We define W(z), the
PMF in terms of the CV z, such that
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We assume that at some temporal resolution characterized
by time scale δτ, the CVs evolve according to an overdamped
Langevin dynamics:
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where Dij is the diffusion tensor and ξi(0) is a Gaussian white
noise, with ⟨ζi(0)⟩ = 0, and ⟨ζi(0)ζj(0)⟩ = 2Dijδτ. It should be
emphasized, however, that no assumptions are made here
about the underlying microscopic dynamics that govern the
evolution of the atomic coordinates x(t), giving rise to this
effective overdamped Langevin dynamics of the collective
variables z. The atomic coordinates x(t) may evolve according
to any typical stochastice.g., Langevin, or deterministic
e.g., Newtonian, dynamics. Taking an average over eq 3 and
using the vector notation, we have

δ δτ
δτ

β
⟨ ⟩ = − ·∇ + ∇·W
z

D z z D z
( )

( (0)) ( (0)) ( (0))
(4)

where δz(δτ) = z(δτ) − z(0) represents the evolution of the
CVs. For ⟨δz(δτ)⟩ to stay along a path for any z(0) on the
path, the right-hand side of eq 4 needs to be parallel to the
path, or, in brief, β− ·∇ + ∇· =⊥WD D( ) 0. At convergence,
the images along the optimal string display a zero drift
orthogonal to the path. For this reason, we call this object the
zero-drift path (ZDP). The ZDP has the property that a

system initiated anywhere on the path, and let free to evolve
dynamically for a short period of time ( δτ( )), will only
evolve on average along the path, and not orthogonal to the
path (i.e., when repeated multiple times from the same initial
point). This is the most general condition for the ZDP within
the overdamped Langevin assumption above. If the diffusion
tensor is independent of z, then the condition is reduced to

·∇ =⊥WD( ) 0. Finally, if D is proportional to the identity
matrix (i.e., D is a scalar and not a tensor), then the optimal

path from SMwST is the MFEP, i.e., ∇ =⊥W( ) 0.
Let us assume that an arbitrary path is represented by a

string of M equidistant images {z(1), z(2), ..., z(M)}, where z(1)

and z(M) represent states A and B, respectively, and |z(i) −
z(i−1)| = |z(i) − z(i+1)|. An algorithm for converging an arbitrary
initial string would evolve path until ⟨δz(δτ)⟩⊥ ≈ 0 for any
z(0) = z(i). To evolve an initial path toward the ZDP, the
SMwST algorithm uses the average drift evaluated from
multiple unbiased trajectories of simulation time δτ initiated
from each image z(i), with or without white noise, as an
approximation of ⟨δz(i)(δτ)⟩ above. For each image i, the
system x is first restrained to keep the CVs close to the image
center z(i). The restraint is then released to generate an
unbiased trajectory of length δτ. For each image i, the above
procedure can be repeated multiple times to generate multiple
unbiased trajectories of length δτ, all starting around the same
image center z(i), hence the idea of a swarm of trajectories. The
restraining part could be done either in one shot for all copies
of the same image as in the serial version of SMwST4 or
independently for each copy as in the parallel version of the
SMwST algorithm.16,60 In the latter, each copy is an
independent simulation including a restraining and a release
part, while in the former, a single biased simulation is
performed first to generate a number of initial conformations
to initiate multiple independent unbiased simulations. After
each iteration, the new image centers are moved, either
deterministically or in a randomized fashion, from z(i) to

δ δτ δτ+ ⟨ ⟩ ≈z z z( ) ( )i i( ) ( ) , where δτz( ) is the average
collective variable position of all copies of image i at the end
of the unbiased simulation of length δτ. The image centers are
then modified to satisfy the reparameterization condition to
keep them equidistant. This procedure can be repeated until
the image centers converge within a desired accuracy.

2.2. Potential-of-Mean-Force Calculations and Path-
Collective Variables. Now that we have the ZDP, i.e., a
parametrized curvilinear abscissa in the subspace of the CVs,
we need to associate the latter to a progress variable, which will
allow a free-energy change between the reference and the
target statei.e., metastabilities of the multidimensional free-
energy landscape, to be calculated. The concept of progress
variable provides a convenient framework for dimensionality
reduction and the compact description of the conformational
transition by means of a one-dimensional free-energy profile,
or PMF, reflecting, in principle, the correct dynamics of the
molecular objects. The introduction of a progress variable
necessarily implies a projection of the CV or CC space onto
the string that represents the average transition path, resulting
in differentiable geometric expressions, along which a free-
energy change can be calculated. An example of such
expressions is furnished by the PCVs,70 which are presented
here in a variant of their original formulation
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where z is a vector modeling the RC, discretized with the
positions of the images of the string. In the actual numerical
implementation, a discretized version of eq 5 is employed.70

The function f is a mean-square displacement (MSD), and λ is
a smoothing parameter, related to the inverse of the MSD
between two consecutive images. While s(z) is a progress
variable along the string, varying between 0 (state A) and 1
(state B), the ancillary variable z(z) may be construed as the
radius of a tube that embraces the string82 and confines
sampling in its vicinity. A convenient framework for the
determination of the PMF, notably from a coarse approx-
imation of the ZDP, consists of mapping the free energy in two
dimensions, s(z) and z(z), and recovering the one-dimensional
free-energy profile from the marginal distribution of s(z).
The proposed metric, leaning on MSDs between consec-

utive images, proved, however, unsatisfactory in the event of
conformational degeneracies. In addition, while the free energy
is expected to be resilient to λ for simple curvilinear abscissas,
like that of toy models,70 complexity of the CV or CC space
and crookedness of the string impede the choice of λ, inducing
severe instabilities in the trajectories due to singularity of the
MSD as it approaches 0. Slight deviations from the ideal value
of λ results in not just sampling inefficiency, but clear signs of
artifacts that render sampling outright nonphysical. Moreover,

due to distinct relaxation times, finding a common value of λ
for both s(z) and z(z) has proven challenging. These
limitations have motivated the design of alternate geometric
expressions,71,76 more robust to the choice of their parameters,
e.g., path-metadynamics variables (PMVs),71 which, unlike the
original PCV formulation, produce unique values of s(z) and
z(z), and are defined as
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where v1 = sm − z is a vector connecting the current position to
the closest image, v2 = z − sm−1 is a vector connecting the
second closest image to the current position, v3 = sm+1 − sm is a
vector connecting the closest image to the third closest one,
and v4 = sm − sm−1 is a vector connecting the second closest
image to the closest one. m and M are, respectively, the current
index of the closest image and the total number of images of
the string. If the current position is on the left of the closest
reference image, the ± in the expression of s(z) is a positive
signotherwise, it is a negative sign.

Figure 2. Schematic representation of an iteration in the SMwST. The string shown as a dashed, white line with its eight images is overlaid on top
of the free-energy landscape, ΔG(ξ1, ξ2), determined along two CVs, ξ1 and ξ2. (A) Initial string generated by SMD and equilibrium simulations.
(B) Forming a swarm of short and unbiased trajectories for each image. (C) Measuring the average displacements and moving the images
accordingly. (D) Reparametrizing the string to make the images equidistant.
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A limitation of both sets of PCVs discussed above and those
from similar approaches is the reliance on the position of
images, which needs to be known prior to calculating the
PCVs. If the images are ill-defined (e.g., parts of the path are
cluttered with multiple images), the PCVs will be ill-defined as
well. In the case of cluttered regions of the path, the numbering
of images could also be another source of inaccuracies, as the
image numbers may not represent the progress along the path
accurately.
In the context of SMwST and other variations of the string

method, the image centers are being updated iteratively. A
reparametrization procedure is often used to ensure the images
are equidistant along the path, and sometimes the curvature of
the path is also adjusted to avoid cluttering of images, which is
prone to occur in the case of high curvature. However, a more
robust approach would be the use of Voronoi tessellation,
where each image represents a Voronoi cell. The approach may
not be ideal as an on-the-fly reparametrization for SMwST due
to its computational cost. Note that in a parallel SMwST, all
simulations need to stop during the reparametrization process,
which is typically done in a single processor and thus imposes a
considerable cost. On the other hand, the Voronoi tessellation
or other parametrization methods can be used at the end of the
SMwST simulations to redefine the image centers for the
purpose of having well-defined PCVs for free energy
calculations. An example of a centroidal Voronoi tessellation
approach for finding optimized image centers from existing
MD data along a given path is the so-called post-hoc string
method.60 One may for instance use the SMwST generated
conformations from the post-convergence iterations to build
centroidal Voronoi cells and then place the image centers at
the centroids of the cells that consecutively connect state A to
B.
2.3. Computational Details. String Protocol and

Convergence Assessment. In SMwST, the path from state A
to B is represented by M discretized images in either the CV
space or the CC space, and these images undergo a number of
iterative optimization steps. The iterative protocol has been
discussed in detail elsewhere.3,4 Here, for the sake of
completeness and consistency, we summarize the iterative
process into five steps as follows:
1. An initial path discretized with M images from state A to

B is generated by steered molecular dynamics (SMD).
Alternatively, the positions of images on the initial path can
be obtained from a direct linear interpolation in CV or CC
space, as shown in Figure 2A.
2. For each image on the string, a swarm of N trajectories are

formed by running δτ unbiased simulations, as shown in Figure
2B. The displacement of the jth trajectory of ith image, Δzi,j, is
measured and collected.
3. The average displacement of ith image and the

corresponding standard deviation are computed as

Δ = ∑ Δ=z zi N j
N

i j
1

1 , and σ Δ = Δ − Δz z z( )i i i
2 2

, respectively.

The ith image is then moved toward a random displacement
that is drawn from a Gaussian distribution with a mean Δzi,
and a standard deviation σ(Δzi). To be more specific, the new
position of image i, ′zi, is updated as

ασ′ = + Δ + Δ Xz z z z( )i i i i (7)

where X is a random number drawn from the standard normal
distribution (0, 1), and α is a factor regulating the random

fluctuations. It ought to be noted that eq 7, termed randomized
updating, is different from the deterministic updating
employed in the original SMwST algorithm,4 which uses
only the average displacement. Akin to simulated annealing,
the introduction of α enables to search within a broader
configurational space, and as the iterative process goes on, α
linearly decreases to zero. This step is illustrated in Figure 2C.
4. The images are reparametrized to ensure that they are

equidistant on the string, as shown in Figure 2D.
5. Each image undergoes an equilibrium simulation of time τ

with its position restrained at ′zi. The resultant string is then
treated as a new initial string and goes over this iterative
process from step 2 again.
The above iterative process should be continued until the

convergence is reached. Assuming that a total number of K
iterations are performed, and zi

k refers to the ith image of the
kth iteration, then the convergence can be measured by the
root-mean-square deviation (RMSD) of zk and a reference
path zref:
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i
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(8)

If RMSD(zk, zref) remains constant as k grows, or RMSD(zk,
zk+1) is near zero at the kth iteration, then the images on the
path can be considered unchanged in the iterative process,
which also indicates that there are no perpendicular move-
ments of the images, and thus, the convergence is reached.
After the convergence, the ZDP is obtained, and the PMF
along it can be estimated by employing CV-based enhanced
sampling methods,5,14 such as meta-eABF,22 with PCVs like eq
5 and eq 6. For a string optimized in CC space, the initial end
points must be selected very carefully to get rid of
conformations lying in an physically unrealistic high-energy
space. In other words, the initial end points ought to be
optimized in all degrees of freedom that the CCs involve. If
this is not possible, or computationally prohibitive, it is highly
recommended to transform the resultant pathway in CC space
into one in CV space, and then constitute the PCVs using the
corresponding CVs toward PMF calculations.
It should be noted that in theory, ZDPs are not unique. If

possible, one should try to generate different ZDPs by varying
the parameters of the optimization, the initial pathway, or the
CVs utilized and then identify amid the PMFs determined with
these ZDPs which one possesses the lowest free-energy barrier.
A more accurate approach consists of computing rate
constants, which, in turn, requires determining first the
diffusivities, D s z( ( )). Therefore, in this work, we employed a
Bayesian scheme to determine the position-dependent
diffusivities from a cubic interpolated D s z( ( )),73 and computed
the rate constant, kA→B,

83 as follows:
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where sA and sB are the PCVs of end points, and s* is a point
between sA and the nearest free-energy barrier, chosen so that
ΔG(s*) is several kBT above ΔG(sA). The most probable
transition path (MPTP) can then be determined as the ZDP
that has the highest rate constant.

Application and Simulation Details. In order to examine
the sensitivity of SMwST calculations on the choice of different
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parameters, namely, the number of images (M), unrestrained
simulation time (δτ), restrained equilibration time (τ), number
of copies in a swarm (N), initial pathway, updating strategy
deterministic or randomized, and the selection of CVs, we
systematically performed these simulations on a toy model,
alanine tripeptide (Figure 3A). The three-dimensional PMF
along the dihedral angles ϕ1, ϕ2, and ϕ3, previously shown to
be an important low-dimensional phase space for trialanine,28

is mapped by the extended generalized ABF (egABF)
method,84 and its projections on (ϕ1, ϕ2), (ϕ1, ϕ3), and (ϕ2,
ϕ3) are shown in Figure 3B,C,D, respectively. In the three-
dimensional PMF, we selected two notable local minima,
namely, A(60°, −70°, 60°) and B(−70°, 60°, −70°), and
attempted to find the MPTPs from A to B via SMwST with
different combinations of M, N, τ, δτ, and updating strategy
deterministic or randomized, as shown in Table 1. The initial
pathways from A to B were generated by SMD, and in CC-
space simulations, different initial pathways (detailed in the
Supporting Information) were explored, while the other
parameters were kept identical. In order to avoid undesired
translations and rotations of the capped trialanine that may
break the string reparametrization, the orientation and the
center-of-mass of the peptide are fixed in CC-space SMwST
simulations.
The SMwST simulations were carried out by NAMD 2.1485

while running all copies in parallel. The trialanine system was
modeled by the AMBER ff14SB force field,86 and the
temperature was kept at 300 K by a Langevin thermostat. A
time step of 0.5 fs was used to integrate the equations of
motion for both short-range and long-range interactions.
After running the SMwST simulations, it was observed that

by varying the parameters, the simulations result in different
pathways, namely, A-M1-M3-B, A-M2-M3-B, A-M1-M4-B, A-M2-
M6-B, and A-M5-M6-B as listed in Table 1. For reference
purposes, the five pathways are also plotted on top of the

three-dimensional free-energy landscape in Figure 4A, and the
PMFs along them (shown in Figure 4B) in Figure 4A are
extracted by a post-hoc path search method.87 To examine
whether the resultant pathways are exactly the MPTPs in
configurational space, we also compute the PMFs with
eABF88−90 with two different sets of variables, namely, the
PMVs proposed by Ensing co-workers71 (eq 6) and the PCVs
proposed by Parrinello and co-workers70 (eq 5), and
subsequently determine the rate constants defined in eq 9.
To better visualize and differentiate the captured pathways, we
employed a dihedral-angle principal component analysis
(dPCA)91 to the path ensembles, and projected all paths in
the (ϕ1, ϕ2, ϕ3) space onto the two leading principle
components (PCs), as depicted in Figure 5.

3. RESULTS
3.1. Miscellaneous Aspects of the SMwST Algorithm.

Coarse-Graining of the String. To address the key question of
the minimum number of images required for the successful
application of SMwST, we performed independent simulations
on the capped alanine tripeptide for four different discretiza-
tion schemes of the string, namely, 5, 15, 25, and 35 images,
with varying equilibration time and number of copies per
image (Table 1). First, we gauged the convergence of these
simulations by monitoring the propagation of the images, on a
low-dimensional space, at each iteration of the string
optimization. After 100 iterations, we do not observe any
significant movement of the images perpendicular to the path,
suggesting that convergence is achieved in all the simulations
(see Figures S1−S3). Furthermore, to dissect the effect of
adding images to the string, we calculated the PMF along the
pathway obtained from the converged SMwST optimizations,
using two different approaches, namely, PCVs and PMVs. As
depicted in Figures 6 and 7, by adding images to the string, we
observe significant improvement in the energy basins and

Figure 3. (A) Illustration of the prechosen CVs in the CV-space string calculations, namely, the three dihedral angles (ϕ1, ϕ2, and ϕ3) of the
trialanine example. The heavy atoms involved in the CC-space string calculations are marked by pink bubbles. States A and B represent the starting
and the ending configurations of the path, respectively. Panels (B), (C), and (D) depict the two-dimensional maps inferred from the marginal
distributions of the three-dimensional free-energy landscape determined along ϕ1, ϕ2, and ϕ3. The green dots denote the positions of the
metastabilities A and B of the free-energy landscape.
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barriers (simulations 1, 6, 11, and 15 in Figure 6). More
specifically, 5 images resulted in a very coarse PMF, precluding
clean demarcation of the intermediate conformations of the
peptide chain. Moreover, although the PMFs of simulations 6−
10 in Figure 6 correctly feature the relevant free-energy

minima, marked deviations between the PCVs and PMVs
imply that using 15 images may still be suboptimal. We
conclude that for the capped alanine tripeptide, both 25 and 35
images constitute reasonable choices. In addition, as may be
observed from Table 1, it is found that varying the number of

Table 1. Summary of Simulation Setups and Parameters

Figure 4. (A) Three-dimensional free-energy landscape of trialanine determined along torsional angles ϕ1, ϕ2, and ϕ3. The local minima are
marked as A, B, and M1 through M6, respectively. The positions of the local minima in the (ϕ1, ϕ2, ϕ3) space are listed on the right-hand side of the
three-dimensional free-energy landscape. (B) Free-energies along the five pathways extracted from the three-dimensional PMF in (A): A-M1-M3-B
(green), A-M2-M3-B (pink), A-M1-M4-B (blue), A-M2-M6-B (cyan), and A-M5-M6-B (orange).
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images may result in different ZDPs. Simulations 6 and 7,
which rest on 15 images, lead to pathway A-M1-M3-B, while
simulations 11 and 12, which rest on 25 images, lead to
pathway A-M2-M3-B. Interestingly enough, the different PMFs
generated from the SMwST optimizations suggest that the
conformational transition of the capped alanine tripeptide
obeys a three-step mechanism with an energetic difference of
∼3 kcal/mol between the two end states. This difference can
be ascribed, at least in part, to the formation of main-chain
hydrogen bonds (see Figure S4A,B). We also observe that the
PMFs determined using eq 5 are somewhat more sensitive to
the coarseness of the string, specifically near the two end states,
A and B. This observation might be rooted in the singularity of
the MSD in these regions.
Number of Copies. We also examined the effect of varying

the number of copies per image by performing SMwST
calculations with 20, 100, and 200 copies per image. These
simulations were performed for both 5- and 15-image strings,
with τ = 10 ps per image (i.e., simulations 3−5 and 8−10 in
Table 1). Although the simulations using 5 images only result
in very coarse pathways, convergence is, indeed, faster when
using more copies, as shown in Figure S1C,D. Furthermore,
comparing simulations 6 (20 copies), 9 (100 copies), and 10
(200 copies) in Table 1, increased convergence rate is also
observed for the 15-image SMwST simulations, as shown in
Figure S1F, I, and J. Considering that the SMwST is actually a
path-optimizing process in a free-energy landscape, a possible
reason for the improvement of convergence is that when more
copies per image are used, the average displacement of each
image is closer to the optimal direction toward the ZDP.

Effects of the Unrestrained MD Simulation Time to Form
the Swarm (δτ). The length of the short, unbiased trajectories
forming the swarm, δτ, is one of the most distinct parameters
of the SMwST algorithm. It has been shown recently that δτ
should be chosen to ensure that the CVs evolve according to
Markovian dynamics.92 While the present work does not focus
on this fundamental aspect of δτ, we have performed a series of
35-image, 20-copy, and 10-ps SMwST simulations in CV
space, and the value of δτ was varied from 1 to 100 fs, as
detailed in Table 1 (simulations 15−19) to evaluate the effects
of this parameter in practice. Simulation 19, which uses a
shorter δτ than simulations 20−23, lead to a final pathway
different from A-M1-M4-B. Its rate of convergence is also
slower than that of simulations 20−23, as shown in Figure
S2C. In addition, we find that simulations 22 and 23 actually
result into a folded pathway with loops like A-M1-M3-B-M3-B-
M6-B, as depicted in Figure 5E. A possible reason for this
artifact is that for a large enough δτ, the images at the middle
of the string evolve quickly and aggregate in local minima such
as B, M3, and M6. Moreover, we observe that this process can
occur in a nonsequential fashion, resulting in the formation of
loops. For instance, images zi and zi+k share the same local
minimum. Consequently, if eq 7 is used to update the positions
of the new images, δτ ought to be as short as a few
femtoseconds. Theoretically, the images lying on the pathway
and their neighborhood can be regarded as vertices on an
undirected graph, and the artifactual loops or cycles can be
detected and removed by forming a tree using various path-
searching algorithms.93 Another strategy to detect and remove
loops consists of finding the nearest image of image i and
remove the intermediate images between the nearest image

Figure 5. Images of the strings of the last iteration projected to the leading principle components (PC1 and PC2). The annotations A, B, and M1−
M6 in the subfigures correspond to the local minima in Figure 4. The gray line and the numbered dots shown with different colors represent,
respectively, the MFEP, as determined from a post-hoc path search of the three-dimensional free-energy landscape,87 and the pathways identified
from the simulations detailed in Table 1.
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and image i + 1 or image i − 1. Alternatively, one may consider
scaling the drifts by a small factor, k, between 0 and 1, to slow
down the evolution of the drifts, thereby avoiding spurious
loops. In other words, the positions of the different images
could be updated as

ασ′ = + Δ + Δk k Xz z z z( )i i i i (10)

This strategy, however, may greatly slow down convergence.
To summarize, convergence of finding a ZDP by the SMwST
can be accelerated using a large δτ, but in doing so, we also
increase the probability to encounter loops in the final
pathway, especially for rugged free-energy landscapes featuring
multiple minima. Nevertheless, this issue could be safely
avoided by turning to loop-removing algorithms, which are
detailed in the Supporting Information. After running the
simulations, the standard deviations of the drifts for all images
were averaged over all iterations and plotted in Figure S1. To
further analyze the drifts, their variances associating different
δτ were also averaged over all iterations and images. As shown
in Figure S6, the average variances grow linearly with respect
to δτ.
Effects of Randomization during Position Update. Tradi-

tionally, the SMwST algorithm only updates in a deterministic
manner the positions of the different images of the path on the
basis of the average drifts, that is

′ = + Δz z zi i i (11)

which is precisely how we proceeded for simulations 1−17 and
27−32 (see Table 1). In this contribution, we explored a
randomized updating strategy embodied in eq 7, which takes
into account the standard deviations of the copies of the
different images. This randomization strategy was employed in
35 image SMwST optimizations in CV space, as well as 25-
image and 35-image SMwST optimizations in CC space,
corresponding to simulations 18−26 and 33−38 (see Table 1).
The PMFs along the pathways from these simulations are
shown in Figures 7 and 8. As shown in the calculation of the
rate constants below, the new ZDP, A-M1-M3-B, found by
means of the randomized updating is, indeed, the MPTP.
Comparing the group of simulations without (simulations 14−
17, 27−32) and with randomization (simulations 18, 20, 24,
25, 33−38), we observe that in either CC-space or CV-space
SMwST simulations, the introduction of white noise as the
positions of the images are updated broadens the search in
configurational space, induces diversity in the generated ZDPs,
and, thus, increases the probability of identifying the MPTP.

Effects of the Restrained MD Equilibration Time. A
potentially important parameter of the SMwST is the
simulation time, τ, needed to equilibrate each image after the
reference positions of the CVs have been updated and the

Figure 6. PMFs along the PCV and PMV of simulations 1−16 in Table 1. The red and blue lines correspond the PCV defined in eq 5 and the PMV
defined in eq 6, respectively.
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string has been reparametrized. To address this point, we
performed additional SMwST optimizations, varying τ, namely,
10, 50, and 100 ps, with a fixed number of copies per image,
referred to as simulations 1−3 (5 images), 6−8 (15 images),
11−13 (25 images), and 15−17 (35 images). Although no
significant difference is observed between the different PMFs
upon increase of the equilibration time, we, nonetheless,
identify two pathways, namely, A-M1-M3-B and A-M2-M3-B,
when the string is discretized with 15 images (see simulations
6−10 in Figure 6). Conversely, when the discretization scheme
involves 25 images, all the ZDPs go from A to B via the A-M2-

M3-B pathway. It is worth noting that our test system,
trialanine, is small and can be equilibrated within a short
period of time, so that varying τ has little impact on the
generated pathways. In SMwST simulations of larger, more
realistic biomolecular objects, a longer τ may, however, be
required to update the images to the correct new positions.

3.2. String Optimizations in CC and CV Spaces. We
have observed that the images of the pathways resulting from
CC-space SMwST optimizations tend to gather in the local
minima of the three-dimensional CV space (see Figure S7 and
Figure 5F−I). Yet, in CC space, the images remain

Figure 7. PMFs along the PCV and PMV of simulations 17−21 and 24−34 in Table 1. The red and blue lines correspond the PCV defined in eq 5
and the PMV defined in eq 6, respectively.

Figure 8. PMFs along the PCV and PMV of simulations 35−38 in Table 1. The red and blue lines correspond the PCV defined in eq 5 and the
PMV defined in eq 6, respectively.
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equidistantly separated from each other. Such is not the case in
three-dimensional space, owing to the higher degeneracy
around the minima. Poor description of the free-energy
landscape by means of the PMF calculation stems from the
exaggerated number of images occupying the same region of
the “intrinsic manifold”i.e., the intrinsic CV space containing
the slow degrees of freedom, (ϕ1, ϕ2, ϕ3) being an
approximation of it. In other words, the CC space is a bad
approximation of the latter. Consequently, to determine the
PMF along a pathway resulting from a CC-space SMwST
optimization, it may still be necessary to find a proper set of
CVs to transform the pathway in CV space prior to calculating
the PMF along the PCV or PMV. In this contribution, we
transformed the pathways from CC-space SMwST simulations
to the (ϕ1, ϕ2, ϕ3) space, and reparametrized them again as a
preamble to the PMF calculations.
Furthermore, it ought to be noted that in CC-space SMwST

optimization, string reparametrization requires measuring the
optimal RMSDs between consecutive images. In theory, this
step can be achieved following two different strategies, namely,
(i) aligning structures on-the-fly during reparametrization, or
(ii) fixing the orientation and center-of-mass of the system to
avoid undesired rotations and translations. These strategies,
however, cannot guarantee a perfect reparametrization, that is,
the best fits, or optimal RMSDs, between images being
approximately equivalent. Consequently, for small, paradig-
matic biological objects like trialanine, reparametrization is
markedly affected by roto-translational invariance, which may
also introduce artifacts into the resultant pathways, inducing
ruggedness. This limitation of the reparametrization step
performed in CC-space is detailed in the Supporting
Information. Conversely, for larger, more realistic biological
objects, such as ATPase,54,55 this may not be the case. As a
result, it is recommended to employ SMwST optimization in
CV space whenever a suitable set of CVs can be identified. If
the molecular object at hand is, however, excessively complex,
and the CVs describing the conformational transition of
interest cannot be readily identified, SMwST optimization in
CC space may be the only viable choice available.

3.3. Determining the PMF along the String. A key
difference between eq 6 and eq 5 is that the former is
constructed in a geometric way, without the need of the
auxiliary variable λ, thereby simplifying the setup of the
simulations. Nevertheless, one may argue that there is a useful
rule of thumb for choosing λ, for example, the inverse of the
mean squared displacement between successive images,70

namely,

∑
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=
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z z

1 1
1
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i i
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1

1
2

(12)

In the case of our toy model of a capped alanine tripeptide,
setting λ according to eq 12 is perfectly appropriate. However,
for biological objects involving complex conformational
transition, whereby the path is defined in a CV space of
higher dimensionality, the use of eq 12 may not be the optimal
choice for setting λ. Said differently, although in our
application, both the PCV and PMV definitions work well,
robustness of λ in PCV-based free-energy calculations remains
a matter of concern, most notably when the biological process
at hand corresponds to very intricate pathways.
Aside from λ, another parameter that affects the PMF

calculation along PCVs70 or PMVs71 is the discretization of the
CV s(z), which is determined by δs(z), the width of the bins,
wherein the instantaneous collective forces are accrued along
s(z). While lowering the value of δs(z) increases the resolution
of the PMF, it also reduces the efficiency of its computation,
since longer simulation time is required to collect the
instantaneous forces in every bin along the pathway. Moreover,
to keep in an eABF free-energy calculation the extended CV
synchronized with s(z), in approximately the same bin, a stiffer
spring connecting the extended CV to s(z) is required, which,
in turn, may render the simulation unstable. Based on the
pathway obtained from simulation 20 in Table 1, we ran PMF
calculations along PMV and PCV, by varying δs(z) from 0.001
to 0.05. As shown in Figure 9A, the simulation crashes when
using the PMV in eq 6 with low δs(z). Conversely, in Figure
9E and F, the free-energy landscapes obtained with a high
δs(z) are coarse due to an inadequate discretization of s(z). In
summary, as shown in Figure 9C, balancing computational

Figure 9. Free-energy landscapes along s(z) with different choices of bin width δs(z), which determines how fine-grained in eABF calculations. In
(A) and (B), the eABF simulations using the bin widths of 0.001 and 0.002 with the PMV resulted in severe instabilities of the trajectory, and the
corresponding PMFs are, therefore, not plotted.
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efficiency and accuracy, a value of 0.01 should constitute a
reasonable choice for δs(z), which was then used for all PMF
calculations in Figures 6−8.
3.4. Determining the MPTP amid Candidate ZDPs.

Although Figures 6 and 7 indicate that the PMFs along the
pathway A-M1-M3-B possess the lowest free-energy barrier,
which can also be verified in Figure 4, the possibilities of the
five pathways happening in the transformation from A to B
remain unknown. To solve this issue, following PCV- or PMV-
based free-energy calculations, the CV-dependent diffusivity
along s(z) was determined by means of a Bayesian inference
scheme (see Figure S8).73 In a nutshell, knowing the
probability of the trajectory, given the force acting along s(z)
and the diffusivity, we sought the probability of these quantities
given the trajectory generated in the course of the PMF
calculation. Next, the rate constants for the different ZDPs
were computed with eq 9, and listed in Table 2. It can be

observed that the ZDP going from A to B via the free-energy
minima M1 and M3 has the largest rate constant and, therefore,
corresponds to the shortest mean first-passage time
(MFPT),83,94 which is equal to the inverse of kA→B. Although
the rate constants computed in light of PCV- and PMV-based
PMF calculations are somewhat quantitatively different, the
ZDP A-M1-M3-B is likely the MPTP that we want.

4. CONCLUSION
In this contribution we have examined with a critical eye the
merits and the limitations of the SMwST, a method designed
for identifying likely transition pathways between distinct
conformational states in a broad range of molecular objects
undergoing complex structural transitions. While SMwST
undoubtedly represents a powerful tool for the investigation
of conformational equilibria by finding a probable pathway
the stringconnecting well-characterized basins of high-
dimensional free-energy landscapes, it must be emphasized
that this pathway is not necessarily the MPTP, but rather one
plausible candidate amid a number of other likely pathways
sharing the common property of being devoid of an average
drift. Said differently, what a suitably converged SMwST
optimization supplies is a ZDP, which, for a given conforma-
tional transition, is not unique. Among the different ZDPs
associated to this conformational transition, one is the MPTP,
identifiable from the corresponding rate constants describing
the diffusion between the two free-energy minima of interest.
We further note that the MFEP is a ZDP parallel to the
gradient of the PMF, i.e., literally the gradient of the PMF with
respect to the CVs, and may not necessarily always coincide
with the MPTP.

Though conceptually simple in its formulation and practical
implementation, the SMwST rests on a number of assumptions
and parameters generally underappreciated, or overlooked, and
that ought to be considered with great care. Most important, a
meaningful optimization of the transition pathway is
subservient to the appropriate choice of three highly critical
parameters:

a. Definition of the CV space. This is the most crucial
aspect to obtain a physically meaningful transition
pathway in any application of the string method. The
set of CVs ought to be chosen with care, so that they can
describe the conformational transition of interest with
suitable accuracy. On the other hand, if the dimension-
ality of the CV is excessive, this can burden convergence
of the string optimization, and potentially lead to the
wrong ZDP, as will be discussed in greater detail
hereafter.

b. The number of images, M, along the string. If M is too
small, the pathway will be oversimplifiedor ill-defined.
Conversely, if M is too large, the string may be prone to
generate loops and spurious fluctuations.

c. The unrestrained simulation time, δτ. This is one of the
key parameters underlying the assumptions of the
SMwST algorithm. Fundamentally, δτ should be chosen
such that the dynamics of the CVs is truly Markovian.92

In practical applications of the SMwST algorithm, this
parameter can also impact the string optimization in
various ways. On the one hand, in a free-energy
landscape featuring multiple minima, loops may form
if δτ is too large, and in this case, turning to a loop-
removing algorithm employed at the reparametrization
stage becomes necessary. On the other hand, if δτ is too
small, progress at each iteration may be small, and, as a
result, convergence would be slowed down.

In addition, the computed transition pathway depends also
on a number of parameters that are important in practice

d. The restraining force constant, k, to tether the images of
the discretized pathway. As depicted in Figure S9, if k is
too small, the different images may not coincide with the
desired position prior to the drifting process, resulting in
a lack of accuracy. Conversely, too large a value of k may
entail trajectory instabilities, and even possible dis-
tortions of the molecular object at hand.

e. The restrained simulation time, τ, of the swarms of
trajectories. If τ is too small, here again, an offset of the
different images from the desired position may occur. In
addition, equilibration prefacing the drifting process may
be suboptimal, and likely to propagate throughout the
string optimization.

f. The number of trajectories, N, generated in the swarms
to determine the drift along the string. The accuracy and
the computational cost increase as N gets larger. On the
other hand, if N is too small, convergence will be slowed
or impeded due to noise.

g. Choice of the initialor guess string. Ideally, the choice
of the initial string should have minimal bearing on the
SMwST algorithm. However, in particular for large
molecular objects, should the guess pathway be too far
from the actual ZDP, optimization could be very costly,
as will be also discussed further hereafter.

h. Randomized updating. Randomizing the update of the
new positions of images can help optimize the string in a

Table 2. Rate Constants Determined from the Different
ZDPs Identified by the SMwST for Trialanine, and Using
Two Metrics for the Computation of the PMFs along the
Pathways

kA→B (ns−1)

ZDP PCV70 PMV71

A-M1-M3-B 3.62 × 10−2 4.10 × 10−2

A-M2-M3-B 2.04 × 10−3 1.55 × 10−3

A-M1-M4-B 2.52 × 10−3 1.54 × 10−3

A-M2-M6-B 7.40 × 10−4 8.71 × 10−4

A-M5-M6-B 1.01 × 10−4 9.59 × 10−5

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c01049
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

M

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c01049/suppl_file/ct1c01049_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c01049/suppl_file/ct1c01049_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c01049?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


larger configurational space, and, thus, lead to different
resultant ZDPs, which increases the probability of
finding the correct MPTP.

The above parameters are also inter-related with some deep
ramifications as to which ZDP the SMwST optimization might
converge toand how fast convergence will be reached. For
instance, the selection of coarse variables, and, hence, the
definition of the CV space necessarily impact which ZDP is
identified by the algorithm, as illustrated in the comparison of
the pathways generated by the CC-based and dihedral-based
path optimizations detailed in Table 1. However rudimentary,
the toy model used herein, consisting of a terminally capped
alanine tripeptide, provides a cogent demonstration of how
different parameters can change the outcome of a SMwST
optimization. Although the choice of the initial pathway may
be of lesser relevance for a tripeptide, and was, thus, only
marginally discussed here, it is particularly important for larger
biological objects undergoing intricate conformational tran-
sitions. It is reasonable to assume that under these premises,
the SMwST algorithm will in most cases find the closest ZDP
to the initial string.
An assessment of convergence constitutes a critical aspect of

SMwST simulations. Once a pathway has been optimized, its
characterization remains incomplete without the associated
PMF calculation along the identified ZDP. As has been
discussed in detail here, this free-energy calculation can be
performed, employing a well-suited importance-sampling
algorithm in association with PCVs or PMVs. The choice of
the CVs that define the PCV is not without consequences. We
may choose the same CVs that were utilized in the SMwST
optimization, or other CVs to define PCVs. For instance, as we
indicate it here, it is possible, and sometimes even advanta-
geous, to turn to dihedral-based PCVs to perform the PMF
calculation, even though the pathway has been optimized in
CC space. Moreover, although both PCVs and PMVs proved
satisfactory for the determination of the PMF along the
pathways identified in our study, the PCVs require an
additional parameter, namely, λ, the value of which may
need to be tuned for intricate pathways associated to complex
biological processes.
The PMF per se is, however, insufficient to not only

ascertain whether the SMwST optimization has converged
appropriately, but also characterize the generated ZDP. As a
function of the topology of the computed one-dimensional
free-energy profile, a committor analysis may not be always
feasible. As an alternative, employing Bayesian inferences, it is
possible to determine the CV-dependent diffusivity, from
whence the MFPT and, hence, the rate constant can be
obtained. The ZDP that corresponds to the largest rate
constant, or the shortest MFPT, is the MPTP. Ideally, it would
be desirable to replicate the SMwST optimization, using, for
instance, distinct guess strings and distinct noises, as a way to
identify different ZDPs in high-dimensional CV or CC space,
and pinpoint which, amid the ensemble of plausible pathways,
is the actual MPTP. While this strategy represents the best
practice for the discovery of transition pathways using SMwST
simulations, it is most unfortunately not amenable to the
investigation of complex conformational changes in large
biological objects, owing to the prohibitive cost of one string
optimization, which ordinarily marshals significant computa-
tional resources. Under these premises, one is limited to a
single SMwST optimization and left to speculate that the

generated ZDP constitutes a reasonable approximation of the
MPTP.
In the arsenal of algorithms developed in recent years to

treat processes involving very slow conformational changes in
molecular objects, the SMwST algorithm constitutes an
appealing option owing to its conceptual simplicity and
amenability to very high-dimensional CV or CC space.
Because the algorithm is embarrassingly parallelizable and
scalable, the search of transition pathways connecting
metastable states on a complex free-energy landscape can be
distributed onto large arrays of computing units, resulting in
rapid optimization of the trial string. The strength of the
algorithm lies not only in its ability to successfully yield
physically plausible pathways in very large and complex
biomolecular systems,42−61 but also in the possibility to
combine it with other methods such as milestoning,10,47,95

weighted-ensemble simulations,96 or MSMs,64,97 thereby
helping advance our mechanistic insights into these systems.
Our hope is that the set of guidelines compiled in the present
contribution will help deepen our understanding of the
algorithm to gain efficiency in the preparation, practical
application, and post-hoc analysis of SMwST simulations of
intricate conformational transitions.
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