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Abstract

Molecular dynamics (MD) simulations are routinely used to study structural dynamics of membrane
proteins. However, conventional MD is often unable to sample functionally important conformational
transitions of membrane proteins such as those involved in active membrane transport or channel activation
process. Here we describe a combination of multiple MD based techniques that allows for a rigorous
characterization of energetics and kinetics of large-scale conformational changes in membrane proteins.
The methodology is based on biased, nonequilibrium, collective-variable based simulations including
nonequilibrium pulling, string method with swarms of trajectories, bias-exchange umbrella sampling, and
rate estimation techniques.
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1 Introduction

With advances in supercomputing technology, continued improve-
ment of all-atom force fields, and increasing number of available
structures of membrane proteins, molecular dynamics (MD) simu-
lation technique [1-3] has emerged as a prominent computational
method for determining the structural dynamics of membrane
proteins in their membrane environment. MD is a technique that
is routinely used to study the local fluctuations of membrane pro-
teins around given functional states, often determined by X-ray
crystallography, cryogenic electron microscopy (cryoEM), or
homology modeling. The timescale gap between local fluctuations
and large-scale conformational changes, however, has hindered the
use of MD to study the functionally important conformational
changes such as those involved in the state transition of transporters
or activation of channels and receptors.
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Conformational dynamics of proteins can be modeled as a
diffusion in the protein conformational landscape [4-6]. The con-
formational free energy landscape has various basins and saddle
points that represent the stable and transition states, respectively.
A membrane protein, whether it is a channel, transporter, receptor,
etc., is associated with many free energy minima, most of which are
clustered around a few major free energy basins, representing the
functional states of protein. For instance, a channel may have
various closely related free energy minima around a large free
energy basin that represents its active state, and one or a few free
energy basins that represent its inactive state(s). Similarly, a mem-
brane transporter has at least three free energy basins: one for the
outward-facing (OF) state, one for the inward-facing (IF) state, and
one for the occluded (Occ) state. Although the conformational
landscape of a protein is generally very vast, most of this landscape
is associated with large free energies and can be ignored. This is due
to the presence of intra- and intermolecular forces that restrict the
movement of atoms and molecular domains. These forces allow
fluctuations around free energy basins and “rarely” allow the system
to jump between these free energy basins by crossing the free
energy barriers.

MD practitioners often use the available structures to study the
local fluctuations of proteins around given free energy basins
employing MD simulations of tens to hundreds of nanoseconds,
and more recently up to several microseconds. Jumping between
major free energy basins, however, rarely happens. In order to
induce such jumps, one often needs to employ biased and/or
nonequilibrium MD simulations. Many enhanced sampling techni-
ques have been developed that can be employed to facilitate the
sampling of rare events [7-18]. A handful of these methods are
used routinely for the study of functionally relevant transitions;
however, applying many of these methods to complex biological
systems such as membrane proteins is challenging. Here we outline
a number of methods to be used in finding and characterizing the
membrane protein conformational transition pathways through the
use of path-finding algorithms and enhanced sampling techniques.
The specific techniques include: nonequilibrium pulling simula-
tions (such as targeted MD, steered MD, and similar methods),
path optimization algorithms (such as string method with swarms
of trajectories [19, 20]), along-the-path free-energy calculations
(such as bias-exchange umbrella sampling [20]), and transition
rate estimation methods. The following section outlines the theory
behind some of the techniques employed in this protocol.
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2 Theory

2.1 Introduction

Dimensionality reduction is a necessary part of computational
studies of protein dynamics due to the large number of degrees of
freedom in the atomic coordinate space of proteins. Collective
variable (colvar) based enhanced sampling techniques such as
umbrella sampling (US) [7, 8] and its nonequilibrium counterparts
[9-11, 13,21, 22] effectively work within a reduced space. Collec-
tive variables can be defined intuitively to describe the slow degrees
of freedom associated with functionally important protein confor-
mational changes [23], for example, an interdomain molecular
distance as in steered MD (SMD) [11] or the root-mean-square
deviation (RMSD) from a reference structure as in targeted MD
[9]. Several collective variable suites/modules [24-27] have
recently been developed to allow for the system-specific design of
collective variables such as path colvars [28, 29] and orientation
colvars [26, 30].

An ideal collective variable could represent the “reaction coor-
dinate” [31] as often described in transition state theory. However,
even if a one-dimensional reaction coordinate exists, it is not known
a priori. This has led to the development of several path-finding
algorithms, which implicitly or explicitly approximate the reaction
coordinate by the arc-length of a curve in the multidimensional
space of atomic coordinates [32, 33] or colvars [4, 19]. Many of the
colvar based enhanced sampling techniques implicitly or explicitly
use a diffusion model to describe the effective dynamics in the
colvar space [4, 5]. We have recently developed a Riemannian
diffusion model for protein conformational dynamics that provides
a robust framework for conformational free energy calculation
methods and path-finding algorithms [34]. Unlike their Euclidean
counterparts, the Riemannian potential of mean force (PMF) and
minimum free energy path (MFEP) are invariant under coordinate
transformations [ 34 ]. However, the protocol discussed here can be
used with or without the Riemannian treatment of the colvar space.

Suppose that the dynamics of a high-dimensional atomic sys-
tem (x) can be simplified as effective dynamics in a reduced but
generally multidimensional colvar space, €. The effective dynamics
can be described by a Brownian motion in the ¢ space with an
effective potential energy G(&), that is the PMF of the atomic
system in the ¢ space:

G(8o) = —kpTlog(5(5(x) — &o)) (1)

is an ensemble average, kg and T are the Boltzmann constant and
temperature, respectively, and 6 is the Dirac delta function.

One may sample the regions around a given point &, in the
colvar space by adding a biasing term to the potential of the atomic
systemsuchas Up(§) =4 (£ —¢ o) in which kis the force constant.
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The free energy of the biased system (or the perturbed free energy)
is:

F(&,) = —ksTlog / dexp (“GE) + Us@)  (2)

where = (kgT)~'. For large force constants, the PMF can be
approximated using the perturbed free energy K¢). Otherwise,
other methods can be used to estimate the PMF as briefly described
below. If the biasing center is different in different simulations
(or windows/images), we have U;({) =% (¢ — )%, where i is the
window,/image index.

Methods such as US rely on calculating the relative free energy
of different points by biasing the system around those points
in different simulations. Alternatively, the biasing center could
change by time, for example, replacing &; by 5(z). Examples of
such simulations are SMD and targeted MD. Here, we refer to
such methods as nonequilibrium pulling simulations, which may
use any colvar(s) with any schedule of change (i.e., () may or
may not be linear in time). The biasing potential is described
by:U(L,t) =% (¢ - 7(£))* The accumulated nonequilibrium work
at any given time is: W(z) = f;dt'% U(¢,¢) . Nonequilibrium
work can be used to estimate the perturbed free energy using the
Jarzynski relation [35] or other nonequilibrium work relations
[36, 37]. In this protocol, we use pulling simulations only to
generate initial pathways for other simulation protocols. The non-
equilibrium pulling simulations may use multidimensional colvars;
however, a specific 1D pathway needs to be selected in order to
perform the simulations.

Ideally, one may use a 1D collective variable for defining the
effective dynamics as well as the biasing protocol. In practice,
however, this may only be possible for extremely simple systems.
A practical solution to this problem is to keep the collective variable
space multidimensional, while sampling only around a particular
pathway, represented by a 1D curve &(&), parametrized by & The
choice of the pathway is obviously crucial here and determines the
relevance of the free energy results to the transition of interest.
Now &(x) can be treated as a 1D colvar defined as a function of
atomic coordinates &, and G(&) is the PMF associated with &,

exp(=pG(So)) = (8(6(%) = &o))- (3)

Assuming & dynamics can be effectively described by a diffusive
model, we have,

d = (4D 60 + D@ )ds + VIDEAB, (4
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in which D(¢) is a position-dependent diffusion constant, and B(#)
is a Wiener process such that (B(#)) = 0 and (B*(#)) = ¢. Fokker—
Planck (or Smoluchowski) equation associated with this process is

f0:0) = 5 (Dexp(—FG(&)) 3 (w(FGO)PE 160,0)) ), (5)
in which p(&, ¢ &, 0) is the likelihood of finding the system at £ after
time #, given it was at & at time 0. If two major free energy minima
exist at points A and B, with no other basins outside the region
spanning from A to B, the mean-first-passage time (MFPT) from
A to B (7pp) can be estimated using the following relation [38]:

. _/‘de J; € exp (—pG(&))
)., T D@ exp (—pG(E)

The aim of the protocols described here is to find the MFEP in
a multidimensional colvar space, representing the most probable
transition path between two free energy basins associated with two
functional states of a protein. We start by generating an approxi-
mate path using nonequilibrium pulling simulations [23] (path
generation), followed by path optimization in the multidimen-
sional colvar space using string method [19, 20], followed by
along-the-path free energy calculations using bias-exchange US
[20], and finally followed by estimating the transition rate between
the two states using the estimated free energies and diffusion
constants.

(6)

The SMwST algorithm [19, 20] starts from an initial string, defined
by N points/images {x;}, where 7is any integer from 1 to N. Colvar
¢ primarily defines the biasing potential, which is U;(§) =
L (s —&,)* for M copies of image i. The initial values for the
image centers are determined from the initial string: §; = &(«;).
The SMwST algorithm consists of three iterative steps as follows.
(Step I) Restraining: Each system is restrained for 7z (restraining
time) using the harmonic potential described above centered at the
current image &;. (Step II) Drifting: The simulations are continued
after being released from restraints for 7, (drifting time). (Step 11I)
Reparameterization: The new center for each image 7is determined
by averaging over all observed {(x) values of M systems associated
with image 7 at time 7z + 7p and using a linear interpolation
algorithm to keep the image centers equidistant. By iterating over
these steps, the string will converge to the zero-drift path, around
which the string centers oscillate (upon convergence). The zero-
drift path is an approximation of the MFEP [6, 34].

Once the MFEP (parametrized by &) is known, F&) can be esti-
mated using a generalization of US [39], termed BEUS [20]. Simi-
lar to the SMwST method, & is discretized and N umbrella
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windows/images are defined with biasing potentials U;() =

L- &) fori=1, ..., N . This scheme can be thought of as a
1D US along the reaction coordinate £ with an additional restraint
on the (shortest) distance from the &(&) curve. Perturbed free
energies F; = F¢&;) can be estimated (up to an additive constant)
by self-consistently solving the equations [40—42]:

e PEi — Z

in which X, sums over all collected samples (irrespective of which
replica or image they belong to) and 7 is the number of samples
collected for image j. With appropriate reweighting, PMF can be
reconstructed in any arbitrary collective variable space, given suffi-
cient sampling in that space. %', the unnormalized weight of con-
figuration x* can be estimated via [41]:

-1
w = (ZTigﬁ(Ui@t)Fi)) (8)

in which {F;} are estimated via Eq. (7). Alternatively [41 ], one may
estimate {w'} and
{F;} by iteratively solving Eq. (8) and:

E=N " ¢ PUE) (9)
t

The PMF in terms of 5(x), an arbitrary collective variable, is
estimated (up to an additive constant) as:

e PUIE) -
> -Tje‘ﬂ(Uf(§t>—Ff') 7)
j

G(ny) = —p' log (ZWtK(ﬂ(xt) - ’10)) (10)

in which Kis a kernel function. The above estimator is not accurate
if the sampling in 5(x) is not converged which is the case if 5(x) is
associated with slow dynamics and is not strongly correlated with €.
For the special case of n = £, the perturbed free energies { F;} can be
used directly to estimate the PMF only within the stiff-spring
approximation.

Finally, for averaging an arbitrary quantity A(x) along the
pathway &(£), one may use the weighted average A(z) =
S wtA(x')8(E — &(&)). However the unweighted estimator A; =

_ (@),

for the Var1ance giveng =142 ;” is the statistical inefficiency in
which 74 is the autocorrelauon time associated with quantity A and
Tiny 18 the lag time between the data points used in the analysis [23].

(A(x")), is more efficient. 5,2 provides an estimate
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Discretizing Relation (5) results in [43]:
P(6t) = (1 + Rét)P(0), (11)

where P(#) is a vector with elements P; = p(&, # &, 0), 6t is a
small-time step, and R is a tridiagonal matrix with elements
Rii= —R;is1—R;; 1,and:

R; jz1 = 88 D(&p)exp(—p(G(&) — G(€m1))), (12)

where 66 = &;, | — &; for any 7. More generally, for any lag time
At and any time #, we have

P(t+ At) = exp (RA2)P(t), (13)

which implies that the likelihood of finding a system at bin jat time
t+ At, given it was at bin 7 at time ¢, is proportional to exp(RA?); ;.
Therefore, assuming neither G(&) nor D(£) is known, one may find
both, as in Ref. [43], by maximizing the likelihood L =
1, (exp(RAZ)), ;. (g runs over all observations of trajectories

starting at the bin 7, at a given time zand being found at the bin j, at
time ¢ + 6¢). Assuming G(£) is known, one may find D(£) using a
similar maximum likelihood approach [44]. For any given D(£), R
can be evaluated, resulting in the log-likelihood,

1= log((exp(RAL)), ), (14)

which can be maximized using a Metropolis Monte Carlo algo-
rithm. We first estimate the factors exp(—f(G(&;) — G(&i +1,2))) in
R; ; + 1, where G(¢)) is determined for 2 = 1, 2, ..., N from the
BEUS simulations and G(¢; . 1 ») is estimated by interpolation. An
arbitrary series D; , 1,2, 1, ..., N— 1 can be used as an initial guess
for D(&; . 1,2). Ri i + 1 and R; ; values are then calculated to
estimate the log-likelihood /. For a faster convergence, one may
start with the estimates of R associated with the Az — 0 limit of
Relation (12) (i.e., Relation (11)) to maximize the log-likelihood in
(14). It is easy to show that the following values for R, ; 4 ;
maximize the log-likelihood in (14) at the Az — 0 limit:

1 Niijz1+ Ny
AL N, exp( —ﬂ<G(fm’) - G(fi)) + Nix1 it

R;in = , (15)

in which Nj ;is the number of observed jumps from bin 7 to j
with lag time Az. Diagonal values of R can be also estimated using
R; ;= — R, ;.1 — R, ; _1,while the other elements are zero. For
an arbitrary lag time Az, the log-likelihood in Relation (14) can be
evaluated using the values of N matrix as

=3 N, log((exp(RAL)), ,). (16)
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Starting from Az — 0 limit of R, one can use a Metropolis
Monte Carlo algorithm to maximize the log-likelihood /in Rela-
tion (16). D;;1/> can be estimated using

D1 =88R, ix1exp(B(G(&;) — G(Ei1)2)))- (17)

D(&;) can be estimated by interpolation (D; , 1 2 + D; 1 s2)/2.
Finally, the MPFT (7gp) can be estimated numerically using

. _iz’;l exp (—AG(¢)))
T 2 D) exp (-G(E)

(18)

3 Methods

3.1 Initial 1. Begin by preparing a membrane-embedded, water-solvated
Preparation model of protein using one of its available structures. The

suggested protocol here may use information from multiple
structures in the next steps, but only one initial model needs to
be prepared for all MD simulations (se¢ Notes 1 and 2).

2. Before employing any biased or nonequilibrium simulations, it
is important to run an equilibrium, unbiased simulation of the
protein as in a conventional MD simulation. The next steps of
the protocol will suffer particularly in terms of convergence if
they are initiated from unequilibrated structures.

3. The length of the initial equilibration simulation can vary on
how quickly a stable conformation can be reached. This is
typically examined by monitoring the RMSD of the protein
(see Note 3).

4. The last snapshot of the equilibrium MD simulation can be
used as the initial conformation for the pulling simulations. If
longer simulations have been performed, multiple snapshots
may be used to examine the reproducibility as long as the
selected structures resides in the equilibrated region.

3.2 Path Generation: 1. The choice of colvars should be specific to the protein of
Nonequilibrium Pulling interest. A set of colvars used successfully to induce the transi-
Simulations tion of interest in one protein may not be applicable to another

protein. Some common examples include the RMSD with
respect to a target structure (as in targeted MD) and the
distance between the mass centers of two specific molecules
or molecular domains (as in SMD). The orientation based
colvars have particularly proven to be very effective in describ-
ing the orientations of transmembrane helices or helical bun-
dles of transmembrane proteins and are highly recommended
as an alternative to RMSD and distance (see Note 4).
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2. When determining what colvar to use, it is important to be
familiar with the proposed conformational transition of the
protein, in particular the target state. It is always useful to
have a model of the target state even if the model is not
complete or not accurate. The target model will not be used
to run an actual MD simulation, so it can typically only contain
the C, atoms of the protein or the domains that will be steered
(e.g., transmembrane helices).

3. Once a target model is available, one may run a targeted MD
simulation with the target model to generate a transition path.
The targeted MD based transition pathways are not often
reliable since they typically generate pathways that are not
close to the MFEP. However, they could provide a reference
to compare other protocols that are based on other colvars.
Multistep targeted MD simulations also provide an alternative
method for generating initial pathways, if intermediate target
models are available (se¢ Note 5).

4. The number of colvars used is completely dependent on how
simple or complex the transition pathway may be. Multiple
colvars may be used in a single nonequilibrium pulling proto-
col; however, a specific schedule needs to be provided for
changing the center of bias for each colvar. In other words,
the system is steered along a specific path in the colvar space, if
multiple colvars are used.

5. The choice of force constant is also dependent on both the
colvar type—the unit of force constant is that of energy divided
by the square of the colvar unit—and the particular transition
of interest—the barriers that need to be crossed as the system is
driven along the predetermined pathway is particularly impor-
tant. The force constant should be large enough to induce the
conformational transition of interest. If the force constant is
too large, however, the simulation could become unstable, and
the molecular system could undergo deformation or distor-
tion. One may need to start with an educated guess and per-
form a short simulation to determine whether or not the
colvars change according to their schedule. If not, the force
constant can be increased. If there is very little deviation from
the schedule, the force constant can be lowered to allow some
deviation without introducing a delay in the schedule that
increases significantly over time (see Note 6).

6. The simulation time is also dependent on the choice of the
colvars, the desired transition, and even the force constant
chosen. Itis reasonable to start with relatively short simulations
(a few nanoseconds) to roughly determine the quality of the
protocol and fine tune the parameters; however, the final simu-
lation that will seed the next step of our protocol (i.e., SMwST)



298 Dylan Ogden and Mahmoud Moradi

3.3 Path
Optimization: String
Method with Swarms
of Trajectories

should be long enough (at least 100 ns) to allow for relaxation
of orthogonal degrees of freedom not involved in the colvars
used at least to some extent.

. Since pulling simulations are relatively inexpensive, it is advan-

tageous to repeat and try many different protocols to identify
one or more that may lead to a reasonable transition pathway
for the given protein of interest (see Fig. 1).

. A reasonable protocol must satisfy the following four criteria:

(a) The desired transition must occur (see Note 7). To moni-
tor this, one may use various measures depending on the
particular transition of interest. For instance, for the acti-
vation of'a channel, one may monitor the number of water
molecules within the transmembrane region of protein

(see Fig. 1) or measure the pore radius using programs
such as HOLE [45].

(b) The protocol must not introduce undesired structural
distortions such as major secondary structural changes
(unless it is part of the transition mechanism).

(¢) The protocol should not require large amounts of work
(e.g., over 500 kcal/mol). Large work indicates that the
generated transition pathway is too far from equilibrium
and it may not easily relax to a converged pathway in the
next step (i.e., SMwST).

(d) Finally, it is important to follow up the pulling simulations
with an equilibrium simulation to release the system of all
restraints and to ensure that the system will maintain a
relatively stable conformation following the transition.
This is to be done by slowly releasing all restraints and
then allowing the system to converge toward a new equi-
librium state. A protocol may satisty all three criteria above
but the final conformation may not maintain the desired
functional state (e.g., the channel may not stay open). In
this case, the protocol is not considered a successful pro-
tocol (see Note 8).

. After performing the pulling simulations and the post equilib-

rium simulations, an initial set of conformations along the
generated transition pathway can be extracted from the non-
equilibrium trajectories to initiate the SMwST algorithm (see
Note 9).

. The number of conformations extracted as snapshots from the

trajectory files will be the number of images used in the algo-
rithm. The number of images to be used in the algorithm may
depend on the complexity of the pathway that is to be refined
(see Note 10).
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Fig. 1 Comparing two nonequilibrium pulling protocols to induce an IF— OF transition in membrane transporter
GIpT [20]. Both protocols induce rotational changes on the N- and C-bundle domains of GIpT using spin angles
(Ieft) or orientations (right) of the two domains. Both protocols use a force constant of 3 kcal/mol deg?. (a) Time
series of spin (left) and orientation (right) angles. The black line shows the schedule of the time-dependent
center of harmonic potentials. (b) Time series of nonequilibrium work. (¢) Snapshots of protein at the beginning
and end of simulations. The water molecules within the transmembrane region are shown. (d) The number of
water molecules in the periplasmic side of the transmembrane region as a function of time
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3.4 Free Energy
Calculations:
Bias-Exchange
Umbrella Sampling

3.

1.

SMwST may be performed as a series of simulations, as origi-
nally implemented or it may be run in parallel as a single job as
currently implemented in NAMD (using a TCL script) and
Amber (using the NFE suite). In the parallel version, each
image is represented by a number of independent copies that
are first restrained to stay around the current image center (the
restraining step) and then released (drifting stage). The total
number of replicas is determined by the number of copies of
each image multiplied by the number of images (see Note 11).

. The collective variables to be used in the string method simula-

tions may or may not be similar to those used in the pulling
simulations. Obviously, there needs to be more than one colvar
to have a meaningful path optimization. There is no particular
limitation on the number of colvars used as long as the colvar
space represents a smooth space (see Note 12).

. The force constants to be used for the restraining step may be

at least as large as those used in previous pulling simulations if
the same colvars are used. However, it is recommended to use
larger force constants at this stage to ensure that the restrained
conformations reach and stay around the desired image center
during short restraining simulations. Distortion is unlikely in
these short simulations and thus larger force constants can be
employed (see Note 13).

. The number of iterations to be employed in the string method

simulations will be dependent on the initial pathway generated.
The closer to the MFEP the initial pathway is, the faster the
SMwST simulations converge. It is thus important to ensure a
reasonable pulling protocol is used to generate the initial path-
way before employing computationally costly SMwST
simulations.

. The convergence of the SMwST can be monitored using mea-

sures such as string RMSD from a reference structure such as
initial string or final string. The string RMSD between two
strings (of N images) is defined as the root mean square dis-
tance of the individual colvars. For instance, if »# colvars are
used, the string RMSD between strings 7 and j would be

\/ﬁ22;27:1”1(@,1,1',@,14)2 , where d(a,b) is the distance

between colvars 2 and 4, and &, ; ; is the /th colvar of the
k’th image of string 7 (see Fig. 2).

The converged SMwST string provides an approximation for
the MFED. To estimate the free energy along this pathway, the
US simulations can be carried out using the converged SMwST
image centers as the center of US windows with the same
colvars used for the SMwST simulations and the last snapshots
of SMwST simulations as the initial conformations of the US
simulations.
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Fig. 2 Monitoring the convergence of the SMwST algorithm. String RMSD at each
iteration with respect to the last string from SMwST simulations of IF—OF GlpT
transition using 12 transmembrane orientations. Comparing the horizontal line
with measured RMSD string shows that after about 400 iterations, the SMwST
does not significantly change

2. The BEUS scheme is recommended over the conventional US
scheme since it allows for the diffusion of the individual replicas
along the pathway through the exchange procedure of the
BEUS scheme. The faster and more reliable convergence is
expected as a result.

3. Rather than using one copy per image /window, one may use
multiple copies of each image in the BEUS scheme. This is
particularly convenient since the SMwST algorithm already
provides us with multiple copies of each image if the fully
parallel version is used (sec Note 14).

4. BEUS uses a similar restraining bias as that used by the SMwST
simulations, but unlike the restraining used in SMwST, the
force constant cannot be too large. The restraining is used to
keep the protein from drifting away from the current image
centers as in the SMwST method; however, an additional fea-
ture of BEUS is that the biasing potentials are also used to
determine the exchange criteria. Therefore, the force constant
cannot be too high, otherwise, there will not be adequate
exchange between the neighboring windows. The force con-
stant can be selected such that all replicas have 10 to 50% of
successful exchange at every attempt (se¢ Note 15).

5. By employing a nonparametric reweighting scheme as dis-
cussed above in Subheading 2, the perturbed free energies
can be estimated to reconstruct the free energy profile (see
Fig. 3) and various other ensemble averages along the MFED.
The perturbed free energies are only a good estimate of the
PMF along the path, if the force constant is large enough (see
Note 16).
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Fig. 3 BEUS simulation results of IF—OF GlpT transition. (a) Snapshots of the
first (f = 1) and last (/ = 50) images, representing the IF and OF state,
respectively. (b) The pore radius along the pore based on the snapshots of the
first (IF) and last (OF) as well as an intermediate (Occ) image. The latter
represents an occluded state. (c) The perturbed free energies estimated from
the BEUS simulations [20]



3.5 Transition Rate
Estimation

1.
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. An alternative method to estimate the PMF is to use the

weighting factors (w”s) to construct a PMF along a given 1D
collective variable such as the first principal component
obtained from the principal component analysis of C, atoms
of proteins. The latter method has an advantage over the
former method in that it does not require the large force
constant condition.

Assuming that we have identified the MFEP relatively accu-
rately in a relevant colvar space such that the effect dynamics of
the system can be assumed to be diffusive along the identified
MEFEP, we can use a 1D diffusion model to describe the effec-
tive kinetics of the system as described in Subheading 2 above.

. To determine the transition rate, the free energy profile (or the

PMF) along the MFEP is needed, which is already obtained
from BEUS simulations. In addition, the position-dependent
diffusion constant along the MFEP is also needed to accurately
estimate the transition rate using Relation (6). The diffusion
constant estimation can be carried out by estimating inter-
image transition rates measured using unbiased simulations
along the MFEP.

. Multiple copies of conformations per image/window will be

extracted from BEUS trajectories to initiate these unbiased
simulations. If multiple copies of images were used in BEUS
simulations as reccommended, one may simply use the last snap-
shots of all BEUS trajectories as the starting point for these
unbiased simulations.

. Although these are unbiased simulations, it is recommended to

collect the colvar values during the simulations to monitor
jumps between the images. These are the same colvars used in
the BEUS simulations and the colvar values can be used to first
assign an image to each sampled conformation at any given
time and then count the number of transitions between differ-
ent images. One may then build an empirical transition matrix
based on these counts. The empirical transition matrix will be
dependent on the lag time used to collect the data (or to count
the jumps). It is recommended to use multiple lag times to
determine the behavior of the estimated transition rates as a
function of the lag time (see Note 17).

. Once an empirical transition rate is constructed for a given lag

time, a Metropolis Monte Carlo algorithm will be used as
described in Subheading 2, to estimate diffusion constants
D(&;) from the empirical transition matrix and the BEUS esti-
mate free energies G(&;) and eventually estimate the MFPT and
the overall transition rate (see Fig. 4 and Note 18).
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Fig. 4 The diffusion constant as a function of image index estimated based on
GIpT BEUS simulations (for free energies) and follow-up equilibrium simulations
using a lag time of 0.5 ns, which was determined to be the optimum lag time.
The MFPT estimated based on these calculations for the IF—OF GIpT transition
is approximately 6 s

4 Notes

Initial Preparation:

1. In the case of membrane transporters, a typical crystal struc-
ture, cryo-EM structure, or homology model will be in an
inward-facing (IF), outward-facing (OF), or occluded (Occ)
state. The choice of the starting point is often based on the
quality and reliability of the structure. For example, a homol-
ogy model is less reliable than a crystal structure; a mutant or
engineered crystal structure is less reliable than a wild-type one.

2. The choice of lipid composition, salt type and concentration,
protonation states of titratable amino acids, force field para-
meters, temperature, box size, and other MD simulation para-
meters is determined at this stage. Care must to be taken in
making these choices as any changes of these parameters in the
next steps may complicate the interpretability of the results.

3. Although it is common to monitor the RMSD of the protein
with respect to initial frame (or preferably initial model that
usually represents the known (e.g., crystal) structure), it is
recommended to also monitor the RMSD with respect to the
last frame. If the RMSD with respect to the last frame stays
small for a long enough period, it is a much stronger evidence
for the stability of the final conformation than if the RMSD
with respect to the initial frame stays constant.

Nonequilibrium Pulling:

4. The orientation based colvars as implemented in NAMD,
LAMPS, and Amber are based on the orientation quaternion
formalism that measure the rotation of a semirigid-body
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molecule or molecular domain with respect to the same mole-
cule or molecular domain in a reference conformation. The
colvar may fully describe all three rotational degrees of freedom
(that is in the form of a unit orientation quaternion) or only
describe the angle of rotation (orientation angle) or the angle
of rotation with respect to a specific axis (tilt angle or spin
angle). A 1D orientation based colvar such as an orientation,
spin, or tilt angle is typically easier to use particularly at this
stage of protocol. In SMwST /BEUS simulations, the orienta-
tion colvar that contains all three degrees of freedom is more
appropriate to use.

5. Another method to employ the pulling simulations is the defi-
nition of individual initial, final, and hypothetical intermediate
state along the transition pathway. This will be carried out in
many individual targeted simulations until the final state has
been reached. Targeting of the intermediates allows to target
local minima which would otherwise not be sampled by
employing a single target. The intermediate may be based on
available crystal structures (e.g., the Occ state of a transporter)
or they may be generated using other modeling techniques
(e.g., coarse-graining or isotropic network models).

6. Although a short simulation could be quite informative with
regards to the choice of the force constant, one needs to also
examine whether the force constant is large enough for the
other stages of the transition. Due to the presence of many
metastable states and barriers, it is quite possible for the system
to get trapped in one of the metastable states along the pathway
and may never reach the final desired state. Increasing the force
constant may help overcoming such issues; however, often-
times, changing the choice of the colvars or their schedule is
more effective.

7. The first step to monitor whether the desired transition has
occurred is to monitor the colvars and how they follow their
imposed schedule. However, it is important to note that the
final targeted value may not be always reached, which admit-
tedly, such is the case for TMD simulations. As long as the final
conformation has the desired functional features (e.g., it is an
open channel), the desired transition is considered to have been
induced.

8. The postpulling equilibrium MD simulations must be long
enough to allow for the relaxation of the system. If the system
relaxes to a conformation that is at the desired functional state
but significantly differs from the initial target used for pulling
simulations, one may use the equilibrated conformation as a
new target to generate an alternative transition path.
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Path Optimization:

9.

10

11.

12.

13.

The extracted snapshots maybe extracted from the nonequilib-
rium pulling simulations in an equitemporal manner. In addi-
tion, one may include a few snapshots from the post-pulling
equilibrium simulation trajectory as well. This often helps
speeding up the convergence of the SMwST simulations.

. If the number of images is small, the reparameterization step

may introduce large changes to the image centers that cannot
be easily achieved during the restraining step. Using too many
images, on the other hand, introduces unnecessary curva-
tures. The ideal number of images is highly dependent on
the nature and number of the colvars. A typical number of
images would be between 50 and 200.

Depending on the computational resources available, one
may use a hybrid version of serial and parallel SMwST. This
is again implemented in both NAMD (smwst script) and
Amber (NFE suite). In this version, fewer number of copies
(or only one copy) per image is used, but each copy generates
more than one sample before averaging the drift and updating
the image centers. One may choose to use one copy per image
and 20 samples per copy, or 20 copies per image and only one
sample per copy, or anything in between, for example, 5 copies
per image and 4 samples per copy. The recommended number
of copies x number of samples is at least 20.

One may even use the atomic coordinate space (of select
atoms, e.g., C,’s). The orientation based colvars, however,
provide a smoother space and are expected to provide a faster
and more reliable convergence.

It is important to monitor the progress of the SMwST simula-
tions, particularly in the first few iterations, to ensure the
appropriateness of the parameters chosen. For instance, one
should check whether all copies of each image end up around
the desired image center during the restraining stage before
they are released. For instance, one may plot both the image
centers and the actual colvar values of the sampled conforma-
tions in different 2D colvar spaces to ensure the sampled
colvar values are closely distributed around each image center
at the end of each restraining stage.

Free Energy Calculations:

14

. Using multiple copies of an image /window in a BEUS simu-

lation, given the availability of supercomputers that allow
executing large jobs, not only allows for faster sampling but
more importantly also allows for a better uncertainty estima-
tion. The multiple copies of images are effectively indepen-
dent simulations and provide uncorrelated data points for
unbiased uncertainty estimation.



15.

16.
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Having adequate sampling overlap between the neighboring
windows is important in US simulations. Similarly, having
adequate exchange rate is important in BEUS simulations.
Care must be taken in choosing the number of images and the
force constants to ensure each image is close enough to its
neighboring image, allowing some exchange between the
neighboring replicas. This can be remedied by either lowering
the force constant between neighboring images that may be
experiencing lower exchange rates or by adding more images
allowing for more evenly spaced neighboring images and
promoting a much greater exchange rate between neighbor-
ing images. The above parameters can be optimized iteratively
using short runs with the goal of achieving similar rates of
exchange between neighboring replicas.

Within the stiff-spring approximation, that is, the large force
constant assumption, the perturbed free energy and the PMF
are equal. However, the first-order correction of the approxi-
mation can be estimated by some posteriori from the estimated

perturbed free energy F(¢) as: %ﬂk (ﬁ (d% F(?j))2 - ;—; F(f)) :

Transition Rate Estimation:
17. If the lag time is too short, the data will be too correlated and

18.

the diffusion constants and transition rates will be overesti-
mated. If the lag time is too long, given the limited simulation
time, few transitions will be observed and the estimated diffu-
sion constants and transition rates will be associated with large
errors. Using multiple lag times allows for identifying the
optimum lag time.

The simulation time is again system dependent; however,
since the estimated free energies already provide relative inter-
image transition rates ﬁjj}“{ =exp(—p(G(&;) — G(&41))), the
only information needed to fully construct the transition rate
matrix is the downhill interimage transition rates. Without the
BEUS free energy estimates, both uphill and downbhill inter-
image transition rates need to be estimated, which requires

considerably more time.
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