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ARTICLE INFO ABSTRACT

Editor: Dr. Menghua Wang Snow cover affects a diverse array of physical, ecological, and societal systems. As such, the development of

optical remote sensing techniques to measure snow-covered area (SCA) has enabled progress in a wide variety of

Keywords: research domains. However, in many cases, the spatial and temporal resolutions of currently available remotely
g}anets sensed SCA products are insufficient to capture SCA evolution at spatial and temporal resolutions relevant to the
anetScope

study of fine-scale spatially heterogeneous phenomena. We developed a convolutional neural network-based
method to identify snow covered area using the ~3 m, 4-band PlanetScope optical satellite image dataset
with ~daily, near-global coverage. By comparing our model performance to snow extent derived from high-
resolution airborne lidar differential depth measurements and satellite platforms in two North American sites
(Sierra Nevada, CA, USA and Rocky Mountains, CO, USA), we show that these emerging image archives have
great potential to accurately observe snow-covered area at high spatial and temporal resolutions despite limited
radiometric bandwidth and band placement. We achieve average snow classification F-Scores of 0.73 in our
training basin and 0.67 in a climatically-distinct out-of-sample basin, suggesting opportunities for model
transferability. We also evaluate the performance of these data in forested regions, suggesting avenues for further
research. The unparalleled spatial and temporal coverage of CubeSat imagery offers an excellent opportunity for
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Seasonal snow

Snow covered area
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Supervised classification

satellite remote sensing of snow, with real implications for ecological and water resource applications.

1. Introduction

The development of optical remote sensing techniques to measure
snow-covered area (SCA) over time has enabled progress in a wide va-
riety of research domains. Satellite observations of SCA from sensors
such as Landsat Thematic Mapper (TM)/Operational Land Imager (OLI),
MODIS Terra, and Sentinel-2 Multispectral Instrument (MSI) have ap-
plications in hydrology and water resource management (Andreadis and
Lettenmaier, 2006; Schattan et al., 2020), atmospheric science (Fer-
nandes et al., 2009; Painter et al., 2009), ecology (Boelman et al., 2019;
Carlson et al., 2015; Dedieu et al., 2016) and in climate adaptation and
mitigation (Immerzeel et al., 2009).

In many cases, the spatial and temporal resolutions of currently
available remotely sensed SCA products are insufficient to capture SCA
evolution at spatial and temporal resolutions relevant to the study of
fine-scale spatially heterogeneous phenomena. For example, high-
resolution SCA observations, when employed in a data-assimilation
context, may improve runoff projections and similar hydrologic
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simulations by capturing fine-scale variability in snow cover (Clark
et al., 2011; Luce et al., 1999; Lundquist and Dettinger, 2005). In
mountain ecosystems, the composition of plant communities and asso-
ciated phenological events such as flowering and growth vary as a
function of snow cover extent and snow duration (Choler, 2005; Ford
et al., 2013; Theobald et al., 2017; Venn et al., 2011), which exhibit
significant heterogeneity over small spatial and temporal scales (1-10
m; hours to days during ablation) (Clark et al., 2011; Little et al., 1994;
Rochefort et al., 1994).

Airborne lidar surveys (ALS) surveys can provide snow observations
at fine spatial resolution (e.g., 3 m, Airborne Snow Observatory; Painter
etal. (2016)), but are limited to a relatively small spatial extent, leading
to sparse temporal coverage. Comparatively, existing satellite platforms
are able to observe snow at a much broader spatial extent but at coarser
spatial resolution and variable temporal resolution. Instruments carried
by orbiting platforms like Sentinel-2 and Landsat 8, for example, can be
used to generate snow observation products (e.g., Normalized Differ-
ence Snow Index (NDSI), Hall and Riggs (2011) or fractional snow-

Received 13 July 2020; Received in revised form 9 March 2021; Accepted 12 March 2021

Available online 22 March 2021

0034-4257/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


www.sciencedirect.com/science/journal/00344257
https://www.elsevier.com/locate/rse
https://doi.org/10.1016/j.rse.2021.112399
https://doi.org/10.1016/j.rse.2021.112399
https://doi.org/10.1016/j.rse.2021.112399
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2021.112399&domain=pdf
http://creativecommons.org/licenses/by/4.0/

A.F. Cannistra et al.

covered area [fSCA], Painter et al. (2009)) at 10 m (Sentinel-2) or 30 m
(Landsat 8) resolution. These platforms have mid-latitude revisit times
of between 5 and 16 days (though harmonized products can offer shorter
revisit times). Despite these opportunities, a planetary-scale observa-
tional SCA dataset with both high spatial (< 5-10 m) resolution and
frequent temporal (~daily) resolution does not yet exist.

Emerging constellations of small imaging satellites (CubeSats) can
potentially bridge the temporal and spatial resolution gap between ALS
surveys and satellite observations, but methods to derive SCA from these
platforms have yet to be studied in detail. Planet, a CubeSat developer/
vendor in California, USA, operates the PlanetScope constellation of
over 150 small (3U CubeSat form factor) optical imaging satellites. This
constellation offers 4-band multispectral imagery (red [R], green [G],
blue [B] and near-infrared [NIR]) at ~3-5 m resolution with ~daily
revisit times across most of the earth’s land surface (+81.5 degrees
latitude), amounting to a cumulative observational footprint of over
200 M kmzday_1 (Planet Labs, Inc., 2019b). However, the spectral
bandwidth and available calibration options for these instruments limits
the ability of traditional radiometric or spectral analyses for snow. In
particular, the visible and shortwave infrared (SWIR) bands typically
used for computation of NDSI (e.g. MODIS Terra bands 4 [545 nm — 565
nm] and 6 [1628 nm - 1652 nm] [Riggs and Hall (2015)]; Landsat 8 TM
bands 2 [450 nm — 515 nm] and 5 [845 nm — 885 nm] (Dozier, 1989))
[or Landsat 8 OLI bands 3 (533 nm — 590 nm) and 6 (1567 nm - 1651
nm)] are not measured by satellites in the PlanetScope constellation
(Fig. 1).

Despite radiometric quality limitations, the PlanetScope imagery still
provides useful snow observations that can be extracted using modern
computer vision techniques. Motivated by methodological de-
velopments in machine learning on images that have been successful in
other domains (e.g. biomedical imaging, Ronneberger et al. (2015)),
remote sensing researchers are now applying these techniques to satel-
lite imagery (e.g. for the identification of human structures (Iglovikov
et al., 2018) or glacier calving fronts (Mohajerani et al., 2019)). Here we
focus on developing and evaluating a convolutional neural network-
based approach to enable the delineation of snow-covered area in
high-resolution PlanetScope imagery. We use high-resolution, airborne
lidar-derived snow cover data to serve as “ground truth” for co-located
and contemporaneous PlanetScope imagery, providing a labeled data-
set for neural network model training. We train and evaluate the model
for well-studied snow sites, and assess both the absolute model perfor-
mance compared to the ALS ground truth and the relative model per-
formance across particular variables of interest (e.g. F-Score, Balanced
Accuracy). Here, we develop a convolutional neural network (CNN)
approach to derive snow-covered area from the 4-band PlanetScope
imagery. We use high-resolution airborne lidar surveys (ALS) in the
Sierra Nevada (California, USA) and Rocky Mountains (Colorado, USA)
(Painter et al., 2016)) to train the model (Section 2.2.3) and evaluate
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model performance relative to ALS and other optical satellite SCA data
products.

2. Methods and data

This study has three components: paired imagery and airborne lidar
acquisition within the Tuolumne Basin, CA, USA and Upper Gunnison
Basin, CO, USA study sites, convolutional neural network classification
model development and training, and model performance evaluation.
These steps are laid out in detail in this section and schematically
described in Fig. 2. We describe the convolutional neutral network
methodology and corresponding data requirements, our chosen study
sites, the data acquisition procedure, and our performance evaluation
methodology.

2.1. Study sites

We considered two study sites for our analysis: the Upper Tuolumne
Basin in the Sierra Nevada mountains of California, USA (37.89°N,
—119.25°W), and the Gunnison/East River Basin in the Central Rocky
Mountains of Colorado, USA (39.08°N, —107.14°W). As demonstrated
in Fig. 3, our area of analysis in the Colorado zone is actually located in
the upper headwaters of the Crystal River/Roaring Fork River basin.
However, ALS data for this region (see Section 2.2.3) are labeled with
the Gunnison/East River dataset label, so we use that reference to
maintain consistency with the data library. These sites were selected
based on their temporally dense archives of airborne lidar-derived snow
depth data and the fact that they span multiple climatological zones
(Fig. 3), which enabled more thorough snowcover model performance
evaluation. Primarily within a maritime climate, the Tuolumne region
exhibits higher and more variable snow water equivalent accumulation
when compared to the Gunnison site. While temperature patterns are
similar, precipitation patterns exhibit more variability at the Tuolumne
site. Tuolumne temperature, precipitation, and SWE observations were
derived from a corrected time series at a California Department of Water
Resources snow pillow site at Dana Meadows (SWE: 1980-2015; Temp.
+ Precip.: 2002-2015). Gunnison climatological observations were ob-
tained from the United States Department of Agriculture National Re-
sources Conservation Service SNOTEL site at North Lost Trail, CO
(1985-2019; site No. 669; https://nrcs.usda.gov). We leveraged
data from the Upper Tuolumne Basin for model training and evaluation,
and performed additional evaluation in the Gunnison/East River basin
(see Section 2.5).

2.2. Data acquisition and processing

2.2.1. PlanetScope satellite imagery
Planet is a commercial satellite imagery company that operates Earth
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Fig. 1. Comparison of bands for Earth Observing
satellites and reflectance of snow. Planet PlanetScope
(cyan) observes a limited region of the snow reflec-
tance spectrum (from Painter et al., 2009; solid blue
line) compared to other optical sensors. Sentinel-2
(dark blue), Landsat 8 (orange), and MODIS (green)
platforms observe a broad range of the visible, NIR
and SWIR spectrum and thus are able to more readily
differentiate snow using radiometric indices such as
NDSI (e.g. Hall and Riggs (2007)). Bands used to
compute NDSI for each observing platform are
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Fig. 2. Conceptual data processing and model training workflow. Our model training begins with contemporaneous, co-located PlanetScope imagery and ALS snow
depth data, which are pre-processed into standardized, gridded GeoTIFFs. These GeoTIFF files are then used to train a convolutional neural network. The neural
network structure is derived from Iglovikov et al. (2018), and uses 4 band PlanetScope GeoTIFF files as input.
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Fig. 3. Maps and plots of median daily snow water equivalent (bottom; black line; all years shown in gray) are shown for the Upper Tuolumne site in California, USA
(37.89°N, —119.25°W) and the Upper Gunnison site in Colorado, USA (39.08°N, —107.14°W).. Maps show elevation, primary rivers, and tree canopy coverage (green
shading). Tuolumne observations (1980-2015) were obtained from the Dana Meadows snow pillow via the California Department of Water Resources. Gunnison
observations were obtained from the United States Department of Agriculture National Resources Conservation Service SNOTEL site at North Lost Trail, CO
(1985-2019); site No. 669; https: //nrcs.usda.gov. Red circles on maps indicate SWE measurement site locations. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)
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observing satellite constellations, including the “PlanetScope” (PS)
constellation of approximately 130 small (“3U” form factor: 10x10x30
cm) satellites in sun-synchronous orbit. This constellation collects
approximately 200 M km? day* of optical (red, green, blue, and NIR)
land-surface imagery at ~3.7 m GSD (at nadir) between +81.5 degrees
latitude, with approximately daily revisit times. With ongoing sensor
development and satellite launches, the PlanetScope constellation
currently includes multiple generations of instruments, including the
Dove and Dove-R satellites (corresponding to “PS2” and “PS2.SD” data
products, respectively). These instruments have similar design, with
comparable (but not identical) spectral band centers and bandwidths
(Table 1). For this study, we use the PS and PS2.SD products inter-
changeably, and develop a method that can leverage the full Planet-
Scope archive.

We used the Level-3B PlanetScope “Analytic Ortho Scene” orthor-
ectified multispectral surface reflectance data products. Planet’s internal
data processing pipeline converts Level-1B top-of-atmosphere radiance
(derived by applying sensor darkfield and flat field corrections to raw
image data) to Level-3B surface reflectance using near-real-time MODIS
data and the 6SV2.1 radiative transfer code (Kotchenova et al., 2008;
Planet Labs, Inc., 2019b). These products have geo-location errors of less
than 10 m RMSE (Planet Labs, Inc., 2019b). We contend that small errors
in PlanetScope pixel alignment manifest relatively minor errors in our
computed performance metrics, especially because we compare two
binary snow maps: even a 2-3 pixel (6-9 m) misalignment would only
cause misclassifications to be assigned at the edges of snow patches.
Since we are working at high resolution, the number of pixels subject to
these misclassifications would be lower than in a data source with coarse
resolution. Only small errors in pixel alignment are likely to be present
in these data, and the central results of this study are affected in only a
minor way by them.

2.2.2. Scene selection and acquisition

For model training, we selected archived PlanetScope scenes with
spatial and temporal overlap with our airborne lidar “ground truth”
snowcover data. We selected images within a 7 day window around the
lidar acquistion dates to ensure a higher probability of cloud-free im-
agery for similar snow conditions. PlanetScope imagery was available
contemporaneously (on the same day) with airborne lidar data for both
Gunnison and Tuolumne sites (see Tables A.2 and A.3). PlanetScope
images were manually inspected for relative cloud fraction, and images
with the best cloud-free coverage and shortest time offset were selected
for inclusion into our analysis. Planet offers a cloud mask for the purpose
of excluding cloudy pixels from analysis, but we found that the cloud
mask often incorrectly classifies snow as cloud. Due to this limitation we
chose to inspect images for clouds manually.

We used porder version 0.5.7, an open-source tool (Roy, 2019) for
the Planet Orders v2 Application Programming Interface (API) (Planet

Table 1

Snow cover datasets used in this study for comparison to PlanetScope-derived
snow cover. The “binary procedure” column describes the technique used to
derive binary snow cover mask from continuous data fields. The Ref. column
describes the reference used to derive the binarization threshold used.

Data Obs. Type  Spatial Temporal Binary Ref.
Res. Res. Procedure
ASO Airborne 3m Weekly- Threshold: Painter et al.
Snow lidar Monthly, Depth > 10 (2016)
Depth during cm
ablation
season
Sentinel Satellite 10 m 5 days Threshold: Drusch et al.
2 NDSI NDSI >0.42 (2012)
Landsat Satellite 30 m 16 Days Threshold: U.s.
8 fSCA fSCA >0.5 Geological
Survey
(2018)

Remote Sensing of Environment 258 (2021) 112399

Labs, Inc., 2019a), to both query the PlanetScope catalog and submit
orders. Analytic Ortho Scene assets were queried via the “PSScene4-
Band” identifier and the “analytic_sr” bundle identifier. We used the
Planet Clips API to return only those pixels overlapping our areas of
interest (e.g., lidar footprints), both to conserve our imagery quota and
reduce data volume.

2.2.3. Airborne lidar

Training and evaluating a neural network model requires high-
resolution snowcover classification products to serve as “ground truth”
per-pixel labels of snow presence/absence. For this study, we use
snowcover masks derived from NASA/JPL Airborne Snow Observatory
(ASO) data products (Painter et al., 2016). ASO releases gridded 3-m
snow depth rasters for select watersheds across the western United
States with monthly-weekly repeat intervals from mid-winter through
late spring (March — June). These data are available from the National
Snow and Ice Data Center’s Distributed Data Access Center
(https://nsidc.org/data/ASO_3M SD). We defined a snow depth
threshold to produce binary snow classification masks (snow, not snow)
from the lidar-derived snow depth products, assuming the ASO pixels
with snow depth above this threshold were completely snow covered
and ASO pixels below this threshold were completely snow free. Our
chosen threshold value was intended to reflect a conservative estimate
of the vertical accuracy of lidar measurement of snow. Painter et al.
(2016) observed vertical accuracy of 8 cm based on an assessment of
ASO data in unforested terrain without topographic complexity, and
Currier et al. (2019) observed a range of ALS vertical accuracy between
8 and 16 cm in mixed terrain. Our assessment of the literature combined
with the heterogeneous nature of the Tuolumne watershed (both in
vegetation cover and topographic complexity, which can reduce ALS
accuracy) led us to conservatively choose a 10 cm threshold to generate
a binary snow mask from the ASO observations. Using an ASO-derived
snow depth collection in the Tuolumne basin from May 2018 (ID #
ASO_3M_SD_USCATE_20180528), we observed a 0.97% difference in
SCA between the 8 cm and 10 cm thresholds, which represents a
discrepancy of only 4.43 km2 We believe that our chosen threshold
represents a conservative estimate of the uncertainty present in ALS
measurements of the Tuolumne watershed. In addition, we derived a
tree canopy mask from these data by applying a threshold of 1 m to a
canopy height model derived from the ASO ALS survey data (see Ferraz
et al. (2018) for methodology). These canopy height model data were
obtained via personal correspondence with Jeff Deems (Upper Gunnison
Basin) and Kat Bormann (Tuolumne basin). The threshold of 1 m was
chosen following from previous efforts demonstrating differential ALS
performance in shrub-covered vs. canopy-covered regions when
compared to terrestrial surveys (Currier et al., 2019).

2.3. Convolutional neural network model

A convolutional neural network is a type of machine learning model,
or algorithm. “Machine learning” is a term that is used to describe a set
of statistical techniques to build predictive models of an outcome vari-
able from data. Models are “trained” or “fit” to data by selecting a
“training” subset of examples from the population of data. These ex-
amples are used to derive a predictive relationship with the response
variable, and the methodology used to derive this relationship varies for
different machine learning approaches. Once fit, models are assessed for
their ability to accurately predict response variables given “unseen”
samples of data (the “test” subset) which is disjoint from the training set.

In this study we employed a “supervised learning” approach,
wherein the presence of the response variable in the data (known as a
data “label”) guides an algorithmic search for a statistical relationship
between the input data (“features™) and the response (“label”). Once a
supervised learning model is fit using data that contains the response
variable, the resulting statistical relationship can be employed to predict
the response variable from unlabeled data.
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Identifying the spatial extent and categorical classification of regions
within images is known as “image segmentation” or “instance segmen-
tation.” Identification of snow-covered regions in satellite imagery fits
well within this task definition. In our version of the task, the four bands
of PlanetScope imagery at each pixel represent the input data to our
model (the “features”, see Section 2.2.1), and airborne lidar-derived
binary snow presence represent the response variable (“labels”, see
Section 2.2.3).

We employ a convolutional neural network to accomplish this image
segmentation task. Neural networks are specific types of machine
learning methods designed to extract statistically meaningful linear
combinations of input features from data (PlanetScope bands) and
model a dependent variable (snow presence/absence) as a nonlinear
function of these derived linear combinations (Hastie et al., 2009, Sec-
tion 11.1). The particular network used in this study is based in the “U-
Net” network architecture, a network previously shown to perform well
in biomedical image segmentation (Ronneberger et al., 2015), modified
by Iglovikov et al. (2018) to perform building detection in satellite
remote sensing imagery. We use the resulting network, known as “Ter-
nausNetV2”, for our satellite image segmentation task. The input to this
model is a 512 x 512 pixel segment of a 4-band PlanetScope image,
paired with it’s corresponding ASO snow mask for training, and the
output is a binary (0/1) snow mask. The TernausNetV2 network em-
ploys an “encoder-decoder” architecture with skip connections—this
type of network allows for the identification and combination of both
high-level (e.g. coarse) and low-level (e.g. fine) feature maps, or spatial
representations of desired features (in our case: snow-covered regions).
A desirable characteristic of this type of network is the potential for
“transferability” across a wide variety of input types: for example, a
single trained model could potentially perform well across different
snow types or geography, despite not being “trained” on all input types.
For further details regarding the precise layering architecture of the
neural network, refer to Iglovikov et al. (2018). To our knowledge this
method has not been applied to the segmentation of snow in satellite
imagery. It is worth noting that many other machine learning method-
ologies exist, most of which would perform suitably given the snow
classification task presented above, given well-formed training data.
However, we have chosen this method due to its demonstrated successes
with other types of classification in satellite imagery.

2.4. Model training

The neural network was trained using data from the Upper Tuolumne
Basin site. For training, we paired a given set of binary snow mask tiles
from a single ASO collection with the corresponding set of co-located,
contemporaneous PS imagery tiles acquired within 7 days of the ASO
acquisition date (Fig. 2), and divided this set of image-mask pairs into
training and testing subsets via a 70/30% split. Our neural network and
model training routines were modified from the implementation known
as “Robosat.pink” (Courtin and Hofmann, 2019). Each training effort
involved 50 epochs with a batch size of 7 and a learning rate of 2.5 x
1077 (these values were chosen based on the sensible defaults presented
in the Robosat.pink source neural network implementation, Courtin and
Hofmann (2019)). We leveraged two ASO collection dates (Table A.2) in
the Tuolumne region by repeating the above procedure for each ASO
collection, initializing each subsequent model training procedure with
the weights derived from the previous model training run. This allowed
the training process to build upon previous training runs. The open-
source implementation of this procedure and all associated data pro-
cessing workflows are available on GitHub at https://github.
com/acannistra/planet-snowcover.

2.5. Model performance evaluation

We use the ASO-derived snow cover mask as “ground truth” for
evaluation of our PS model SCA, and compute pixel-based metrics of
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performance of our PS-derived snow mask with reference to the ASO
snow mask. Additionally, to compare against existing SCA datasets, we
acquired SCA products from Sentinel-2 and Landsat-8 that were both
contemporaneous and co-located with the PlanetScope and ASO lidar
snow masks described above for each study site. We computed
normalized difference snow index (NDSI) from Sentinel-2 bands 3 (10
m) and 11 (nearest-neighbor resampled to 10 m) as:

B3 - Bl11

NDSI = ———
B3 +Bl11

and generated snowcover masks using an NDSI threshold of 0.42
(Drusch et al., 2012). We used 30-m Landsat 8 fSCA products available
from the United States Geological Survey (U.S. Geological Survey,
2018), and generated snowcover masks using an fSCA threshold of 0.5.
A summary of all SCA products used in this study is presented in Table 1.

For each snowcover dataset (e.g. CubeSat SCA, Landsat-8 fSCA, and
Sentinel-2 NDSI) we computed precision, recall, F-score and balanced
accuracy with reference to contemporaneous airborne lidar-derived
snow cover (see Table 1).

Precision is the percentage of snow classifications predicted by our
model that are also snow classifications in the compared dataset:

True Positives

Precision = 1
True Positives + False Positives M

Recall is the percentage of true snow classifications predicted by our
model that are also true snow classifications in the compared dataset
True Positives

Recall = — - 2)
True Positives + False Negatives

F-Score or F1 score is the harmonic mean of precision and recall:

FScore — 2 x Prec?s?on x Recall 3)
Precision + Recall

Balanced accuracy normalizes the true positive and true negative
predictions by the number of true positive and true negative samples to
allow for a less biased assessment of accuracy given the relative accuracy
of each prediction type. For the binary (two-class) case (e.g. snow/no-
snow), it is computed as the arithmetic mean of sensitivity (true posi-
tive rate) and specificity (true negative rate) (see Mosley (2013) and
Kelleher et al. (2015)):

True Positive Rate + True Negative Rate
2

4

Balanced Accuracy =

2.5.1. Within-region assessment and out-of-region transferability

We created an assessment regime using the above metrics to assess
the model performance within the training region (Upper Tuolumne,
CA) and compared it to model performance outside of the training re-
gion (Gunnison, CO). This strategy to allowed us to determine the
transferability of a given trained model to a geographically/climatically
distinct region. To do this we identified PS imagery that overlapped with
an ASO “ground truth” snow cover mask in each basin, excluding any
individual image with an overlap footprint of less than 2 M pixels
(roughly 18 km?2). In assessing Tuolumne (within-region) performance,
we selected a subset of PS imagery via the 30% “test set” identified
during the model training procedure which overlapped with a single
ASO collection (ASO_3M_SD_USCATE_20180528, see Table A.2 and
Fig. 4). This ensured that the chosen imagery was not part of the model
training procedure. For the Gunnison (out-of-region) assessment, we
selected a set of PS images that overlapped a single ASO collection
(ASO_3M_SD_USCOGE_20180524, see Table A.3). We then used the
trained model from the Tuolumne basin to predict snowcover for these
Gunnison images, and computed the mean and standard deviation of
each metric outlined above.
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2.5.2. Comparison with other satellite datasets

We compared our PS model results with co-located snowcover
products generated from other satellite datasets (Table 1) acquired
within 5-15 days of the ASO observation acquisition date. We applied
nearest-neighbor resampling to the ASO snow cover rasters to upsample
ASO to match the native spatial resolution of each satellite snow cover
dataset. Means and standard deviations of each metric described above
were then computed with reference to the contemporaneous binarized
ASO collection.

2.5.3. Performance under tree canopy

We also examined the effect of tree canopy cover on our PS model
performance. In particular, we evaluated the ability of high-resolution
PlanetScope imagery to identify snow in canopy-covered regions
versus uncovered regions, and compared this performance to the
snowcover products from other satellite sources. We applied the tree
canopy mask described above to PS-based model predictions and each of
the alternative SCA datasets and computed snow identification perfor-
mance as above. We performed this analysis for all images included in
earlier performance analyses at both the Tuolumne and Gunnison sites.
Percentage of tree canopy coverage in these images was computed to be
between 22 and 55%.

3. Results

We divide the evaluation of our snow classification model into three
assessments. We first show that the PS snow classification model trained
using data from the Upper Tuolumne Basin, California, USA produces
improved snow classification results when compared with other satellite
sources. Second, we find comparable performance when assessing the
same model (fitted with Tuolumne data) using out-of-region data from

the Gunnison River/East River Basin, Colorado, USA. Finally, we
demonstrate mixed model performance under tree canopies in both the
Tuolumne and the Upper Gunnison basins when compared to other SCA
products.

3.1. Within-region model performance (Tuolumne, CA)

We used out-of-sample data from Tuolumne to compare our PS
model output to the reference ASO snow cover, and snowcover products
derived from Sentinel-2 NDSI and Landsat 8 fSCA across four metrics of
performance (Fig. 5C). The PS model consistently outperforms the other,
lower-resolution satellite products, though the standard deviation
computed across test images do overlap between the PS model statistics
and those of other products. For example, the PS model produces results
with a mean F-score of 0.73 (S.D. = 0.12), compared to 0.64 (Landsat 8,
S.D.=0.15) and 0.63 (Sentinel-2, S. D. = 0.14). We also find differences
in balanced accuracy, with a mean score of 0.82 (S. D. = 0.07) for our PS
model, compared to 0.75 (Landsat 8, S. D. = 0.07) and 0.75 (Sentinel-2,
S. D. = 0.13). See Fig. 5 and Table A.4.

3.2. Out of region model performance (Gunnison/East River basin, CO)

When evaluating performance using out-of-region PS imagery from
the Gunnison/East River Basin, CO, the Tuolumne-trained model ex-
hibits comparable performance to Landsat 8 fSCA- and Sentinel-2 NDSI-
derived snow masks across three of four classification metrics (precision
differs; Fig. 6C). For example, balanced accuracy for our PS Model was
0.75 (S. D. = 0.08), comparable to 0.77 (Landsat 8, S.D. = 0.10) and 0.76
(Sentinel-2, S.D. = 0.10); similarly, F-score for the PS Model was 0.67 (S.
D. = 0.18), comparable to 0.73 (Landsat 8, S.D. = 0.19) and 0.68
(Sentinel-2, S.D. = 0.23). Fig. 7 provides an illustration of a 2 km by 2
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Fig. 5. Metrics of SCA segmentation performance, Tuolumne, CA. A) Example out-of-sample (“test”) RGB PS tiles, gray shading indicates regions randomly withheld
for training and therefore not suitable for evaluation; B) binary snow classification from PS model (blue) and ASO (red). Overlap is shown in darker hue. Gaps in ASO
snow-covered area are due to the threshold value of 0.1 m during the binarization of ASO snow depth. C) Aggregate performance comparison across all Tuolumne
out-of-sample imagery, compared to Sentinel-2 and Landsat 8 snow classifications. Bars indicate standard deviation across imagery. PS model snow masks perform as
well or better than other classifications. D) Mean tree canopy-mediated model performance of PS model-derived snow cover, aggregated across all imagery. Bars
indicate standard deviation. Canopy cover decreases model performance across all four metrics. Full statistics available in Tables A.4 and A.6. Includes copyrighted
material of Planet Labs, Inc. All Rights Reserved. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of

this article.)

km segment of the data used to compute these metrics, highlighting the
improved performance of PS-based snow masks over other methods. In
addition, we observe that the presence of tree canopy (e.g. vegetation
with height greater than 1 m from a lidar-derived canopy height model)
causes all four performance metrics to decline in this single scene (Fig. 6,
panel D). Complete metrics are available in Tables A.5 and A.7.

3.3. Model performance beneath tree canopy

For the Gunnison site, the PS model performance across three of four
metrics (Recall, F-Score, and Balanced Accuracy) was lower for canopy-
covered areas compared to both canopy-free areas and mean perfor-
mance across entire images (Fig. 8A). Similar reduced accuracy under
canopy was also observed in the 10 m Sentinel 2 SCA data product
(Fig. 8B), but was considerably less prominent in the 30 m Landsat 8
fSCA data product (Fig. 8C). Full metrics are available in Table A.7.

4. Discussion

We demonstrated, through evaluation across two climatically
distinct sites, that PlanetScope imagery can offer reliable discrimination
of snow-covered regions at high spatial (~3 m) and temporal (~1-2 d)
resolution (Figs. 5; 6C). Our convolutional neural network methodology
enables SCA identification from PlanetScope data through deep learning
and spectral-spatial pattern recognition. This approach leverages all
available PlanetScope bands and proved successful to exploit the RGB
and NIR band placements that posed challenges in deriving SCA via
traditional radiometric indices (Fig. 1). This contribution represents
both a novel application of an existing method (convolutional neural
networks) to the detection of snow in remotely sensed optical imagery
and a detailed assessment of PlanetScope imagery for snow remote

sensing applications.

4.1. Comparison to current SCA approaches

Existing efforts to measure SCA at similarly high resolutions often
rely upon layered methodologies, where each additional processing step
(e.g. statistical or physically-based downscaling, fractional SCA algo-
rithms) has the potential to add complexity, external data dependence,
and error. While effective, these approaches can be limited by the
methodological and technical assumptions inherent in downscaling
coarse observational data. For example, while downscaling MODIS ob-
servations is a reliable approach in most cases, observational factors
such as sensor viewing angle and forest presence have been shown to
significantly degrade fSCA quality and ultimately to affect the down-
scaled SCA product (Cristea and Lundquist, 2016; Rittger et al., 2019).
Fractional SCA derived from sensors with large field of view such as
MODIS can be affected by viewing angle and resampling strategy, with
errors as large as 50% over forested areas at the end of MODIS scan line
(Xin et al., 2012). These errors will be smaller in PlanetScope data.
PlanetScope images are released with nadir view angles of less than 5
degrees and fewer than 20% saturated pixels. Here we have demon-
strated the effectiveness of a SCA retrieval method at native ~3 m GSD
from daily, near-nadir PlanetScope observations. We note that the
choice of 0.5 as our Landsat 8 fSCA binarization threshold is one that
could introduce bias into our comparative results: 30 m pixels that have
fSCA values of <0.5 certainly are not necessarily “snow-free,” though we
take them as such in our comparative analysis. However, we examined
both 0.3 and 0.75 fSCA binarization thresholds, and discovered rela-
tively minor differences in F-Score and Balanced Accuracy (with respect
to ASO coarsened to 30 m, as above) when compared to a binarization
threshold of 0.5. These differences were a result of compensatory offsets
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Fig. 6. Out-of-region performance of Tuolumne-trained snow-covered area identification model in the Gunnison River Basin, Colorado, USA. A) Sample PS image. B)
Classification results. Our model exhibits systematic misclassification behavior, demonstrated here in a selected image (Planet Scene ID#:
20180524_172637_0£2d, Panel A). Regions of the selected image that contain snow (Panel B; red coloring) are mis-classified as being snow-free by our model
(Panel B; absence of blue coloring). C) Comparison with other satellite data. The PS model shows comparable performance to SCA derived from Sentinel-2 and
Landsat 8 platforms across four metrics with reference to ASO ground truth (Panel C; Bars represent mean metric values across multiple distinct images covering a
single ASO collection, error bars show standard deviation). D) Performance under canopy. Model performance metrics decline in the presence of tree canopy cover
(canopy height > 1 m, Panel D) as determined by an ASO-derived canopy height model. Bars show means; error bars indicate standard deviation across all Gunnison
imagery. Includes copyrighted material of Planet Labs, Inc. All Rights Reserved. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

52 RGE (10 m)  JLS8 RGB (30 m)

Fig. 7. Fine-scale patterns of snow distribution can be observed in 3 m PlanetScope derived SCA in contrast to coarser observations. This figure compares
contemporaneous RGB observations and derived SCA for three optical satellite platforms (PlanetScope, Sentinel 2, and Landsat 8, see Table 1) to lidar-derived SCA
within a 2 km by 2 km region selected from a single PS Scene (Planet Scene ID# 20180524_172637_0£2d) within the Upper Gunnison River basin domain,
depicted by dotted-line region and in Fig. 6. Includes copyrighted material of Planet Labs, Inc. All Rights Reserved.

of precision and recall: lower fSCA thresholds, for example, caused an recall are factors in computing F Score and Balanced Accuracy, these
increase in Recall (the fraction of True Positives), but a decrease in compensatory differences led to relatively small changes in those met-
Precision, compared to the 0.5 threshold. Because both precision and rics (see Fig. A.1).
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Fig. 8. Effects of tree canopy on SCA identification performance for a single Gunnison, CO PS scene (Percent Tree Canopy: 55%). Panels show impact of tree canopy
on snow classification performance with A) the CubeSat (PS) model B) Sentinel-2 NDSI, and C) Landsat 8 fSCA for a single PlanetScope image (ID#:
20180524_172637_0£24d, Fig. 6A) in the Upper Gunnison Basin, CO. Finer resolution SCA products (3 m CubeSat ML and 10 m Sentinel 2 NDSI, panels A and B)
exhibit more pronounced performance differences between canopy-covered areas (green bars) and canopy-free areas (brown bars) than a coarser observational
product (Landsat 8), where the discrepancies are less pronounced. (For interpretation of the references to colour in this figure legend, the reader is referred to the web

version of this article.)

Comparisons of PS-derived SCA with other high-resolution optical
satellite SCA data products (e.g. Figs. 5 and 6C) show that our method
offers an accurate observational SCA technique. This finding is also
promising for emerging multi-sensor fusion methodologies. Combining
multisource and multitemporal remote sensing data with machine
learning models has been suggested as a suitable method to overcome
limitations of individual data sources (e.g. resolution, measurement
type) (Ghamisi et al., 2019). For example, the global PlanetScope
archive of daily imagery is an avenue for sourcing high-resolution im-
agery which could be further refined by other sensing methodologies
with improved spectral bandwidth and band placement. Our method-
ology, when applied to this fused data product, may demonstrate further
improved SCA segmentation performance while maintaining desirable
spatial and temporal resolution characteristics. The advantages of using
high-resolution snow data are once again shown in Fig. 7, where finer-
scale patterns of snow distribution can be observed in PlanetScope-
derived SCA relative to coarser products. The ability to observe these
fine-scale patterns is a principal advantage of PS-derived data for sci-
entific applications.

4.2. Utility of high-resolution snow cover

With the potential to be applied to the global catalog of PlanetScope
imagery, our method is well-poised to serve as a useful tool across
myriad scientific domains. For example, in studies of alpine ecology,
snow disappearance date (SDD) has been shown to be a strong control on
the regimes of ecological disturbance that mediate plant diversity and
species persistence in heterogeneous alpine environments (Choler,
2005). Changing SDD has also been shown to cause reassembly in
mountain wildflower communities (Theobald et al., 2017). However,
due to the intensive nature of observing snow cover in the field, such
ecological insights are necessarily accompanied with caveats regarding
the accuracy of observed SDD or geographic scope. As such, high reso-
lution SCA, both in space and time, could serve to both improve the
accuracy of ecological studies reliant on SDD observations and allow for
existing geographically distributed ecological datasets to be used in
understanding the relationship of SDD to other ecological variables.
Hydrologic modeling is another domain with a potential need for this
approach; the spatially heterogeneous distribution of snow can be more
accurately observed with higher-resolution SCA, with applications in
predicting streamflow timing (Lundquist and Dettinger, 2005) and
validating hydrologic model parameterizations (Clark et al., 2011; Luce
et al., 1999).

4.3. Observed limitations

Similar to other studies focused on optical remote sensing of snow,
tree canopy cover presents a challenge for our methodology. This is also
illustrated in Fig. 7, where PlanetScope-derived SCA fails to identify
snow cover in canopy-covered regions containing snow (as seen from
ASO and PS RGB), but other radiometric approaches (e.g. Sentinel-2
NDSI and Landsat 8 fSCA) are more successful. More generally, the
performance difference between canopy-present and canopy-absent re-
gions observed in PS-derived snow masks is substantial (Figs. 5D; 6D;
8A), but compares to the difference observed in the Sentinel-2 NDSI-
derived SCA product when examined at the Gunnison site (Fig. 8B).
Though Landsat 8 fSCA performance exhibits a more muted decline in
response to canopy presence (again at Gunnison site; Fig. 8C), previous
studies have shown that both Landsat and MODIS experience degraded
snow observation performance in tree-covered and tree-shadowed areas
(Kane et al., 2008; Raleigh et al., 2013). It is also worth noting that both
data source and snow-identification methodology play a role in snow-
identification performance, thus it is prudent to consider the role of
both variables when comparing across datasets. In addition, though we
do not formally investigate the impact on cloud cover on snow identi-
fication performance, clouds are likely to present a challenge to SCA
identification for our PS model, either via obfuscation or as a source for
false-positives. This is especially true in comparison to other optical
platforms due to the limited 4-band nature of PS imagery. However,
future work in this area is warranted to examine whether the neural
network model architecture can leverage the available PlanetScope
bands and the unique spatial characteristics of cloud (e.g. texture,
orientation) to better differentiate snow from cloud. In addition, Planet
and other satellite imagery vendors continue to improve upon meth-
odologies for discriminating clouds in their imagery products, which
may improve the general applicability of our method in future itera-
tions. The high temporal frequency of PlanetScope imagery acquisitions
is another potential avenue for improving SCA detections over cloudy
areas, as frequent collections could better enable cloud-free scenes to be
captured. Finally, we have observed that topographical shadowing of
snow is a factor that influences the quality of model-based identification
of snow. Shadows from topography often “confuse” the neural network
method, causing shadowed regions to be labeled snow-free. This effect is
likely to be strongest at mid- to high-latitudes mid-winter, when sun
illumination angles are lowest. In a similar fashion to cloud discrimi-
nation, future work should investigate the ability of a neural network
methodology to discriminate snow from shadowed snow to improve the
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utility of this methodology.

It is worth noting that we believe the F-score performance achieved
here (0.73, compared to 0.64 and 0.63 for Landsat 8 fSCA and Sentinel-2
NDSI; Fig. 5 and Table A.4) is well within the range necessary for the
operational use of this approach. The high-resolution nature of both the
observational data and our “ground truth” lidar data make F-score at
these resolutions a particularly conservative measure of performance.
The F-score metric is the weighted harmonic mean of precision (“How
well does the model avoid labeling a snow pixel as a non-snow pixel?”) and
recall (“How well does the model correctly identify all snow pixels?”). Both
of these metrics are challenging to achieve when comparing across
observational modes (e.g. optical and lidar), but recall is particularly
susceptible to the spatial heterogeneity present at high resolutions in our
study sites when lidar is used as a ground-truth. Airborne lidar’s ability
to “see through” features such as forest canopies and be unaffected by
shadows enables a “ground truth” dataset which is biased toward
identifying all snow, compared to satellite-based observational meth-
odologies. Any optical obfuscation (trees, rock shadow) dramatically
reduces PlanetScope (and other optical observation platforms’) capa-
bility when compared to airborne lidar. This obfuscation places a
technical upper-bound on recall, thus affecting maximum F-score per-
formance. We claim that the performance achieved here, especially
when compared with that of similarly high-resolution SCA products
(Sentinel-2, Landsat 8), represents a state-of-the-art observational
contribution given the technical constraints discussed here.

Importantly, we do not consider snow identification beneath tree
canopies to be a useful metric of the utility of this method, as canopy
obfuscation puts a hard technical upper-bound on possible performance
in these regions, as above. However, the ability of our methodology to
identify snow in forested regions and in forest gaps is an important issue
for further inquiry. Several techniques have been proposed to improve
snow mapping in vegetated areas and among forest gaps. These include
corrections using canopy reflectance models (Klein et al., 1998),
observation-based approaches (Rittger et al., 2019), new radiometric
indices (Wang et al., 2015), as well as combination of data from multiple
sensors (Dressler et al., 2006; Durand et al., 2008; Raleigh et al., 2013).
Although the current iteration of our neural network-based method does
not yet achieve desirable performance in mapping snow in forested or
cloudy areas, this methodology holds promise. A major contributor to
the desirable performance of the convolutional “U-Net” architecture
employed here is an underlying ability to “learn” meaningful spatial
patterns from training data (Ronneberger et al., 2015), a quality that
will perhaps improve canopy/cloud differentiation and improve SCA
performance for these cases. A more robust approach for differentiating
clouds from snow is also key to taking advantage of the global Planet-
Scope archive, as our current approach to training the model requires
cloud-free scenes and thus considerable manual intervention. To
leverage this potential opportunity, future work could incorporate forest
canopy cover or cloud detection algorithms during the model training
process, potentially allowing the model to differentiate canopy/cloud
from non-obstructed snow, improving performance; however, we hy-
pothesize that utilizing this methodology to enhance SCA segmentation
performance among and between tree canopies may limit the
geographic extensibility of a given model due to regional differences in
forest structure.

PlanetScope imagery offers a novel lens into snow dynamics via a
unique combination of spatial resolution and high revisit frequency.
However, there are important technical considerations to acknowledge
when utilizing these relatively new observational data. First, when
compared to rigorously calibrated platforms such as MODIS or Landsat 8
OLI, imagery from Dove satellites (that comprise the PlanetScope fleet)
exhibits radiometric calibration errors that can impact any analyses
reliant upon them. Recent research has investigated methods to re-
calibrate PlanetScope imagery using coarser Landsat observations
(Houborg and McCabe, 2016). Furthermore, two sensor types (“in-
struments™) are present in the PlanetScope constellation (“PS2” and
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“PS2.SD”) resulting from ongoing sensor development and satellite
launches. These instruments have comparable (but not identical) spec-
tral band centers and bandwidths (Table A.1). The inconsistency of the
bandwidth and band centers in these PlanetScope data may affect the
ability of our modeling methodology to identify snow. In addition,
preliminary work in generating digital elevation models (DEMs) from
PlanetScope imagery has revealed limitations in georeferencing accu-
racy, especially in remote or mountainous regions, potentially leading to
offsets and RGB vs NIR band misalignment (Bhushan et al., 2021). These
shortcomings are unlikely to be significant in applications such as snow
cover identification, but future work to assess the magnitudes of error in
these data is warranted.

4.4. Future work

This study demonstrates the continued utility of publicly available
snow depth measurements derived from airborne lidar. Without the
accurate snow depth products from the Airborne Snow Observatory, we
would lack high-resolution “ground truth” data necessary for model
training. Some opportunities for future work exist regarding the optimal
approach to creating a binary snow mask from these snow depth data,
and to integrate ASO spectrometer data for improved classification. We
chose to use a threshold of 10 cm to convert the ASO snow depth field
into a binary snow mask based on currently available field-validated
assessments of ASO accuracy (see Section 2.2.3). However, it is likely
that this choice had a significant impact on our results (see Section 4.1);
qualitative examination of PlanetScope-derived SCA compared to actual
contemporaneous imagery reveals that our method identifies snow-
covered regions that in many cases are “no-snow” regions in the ASO-
derived snow masks. This suggests that our model’s identification of
shallow/seasonal snowpacks may in some cases be incorrectly counted
as a misclassification, lowering performance metrics. Future work
should investigate the choice of threshold to determine the impacts of
this choice on model performance.

The potential for our method to extract high-resolution snow cover
over time across regions without ground-truth data is an important facet
of our work. Given the global observational footprint of the PlanetScope
imagery and the relative sparsity of repeat lidar snow depth observa-
tions, determining the skill of a model trained in a lidar-rich region and
in other regions without lidar snow depth data is an important metric. In
our assessment of model performance in the Upper Gunnison River
Basin, CO (Fig. 6C) we observed good model performance compared to
contemporaneous ALS observations when using the Tuolumne-based
model to identify SCA. This result is perhaps not surprising because
we chose to evaluate model performance during the ablation season (e.g.
when lidar ground-truth is available), during which time the snowpack
is more easily comparable between the Sierra Nevada and the Rockies.
While it is necessary to take into account the above caveats regarding
tree canopy structure differences across sites, this result suggests
transferability potential—models trained in ALS-rich regions can be
used in other regions to identify snow covered area without re-training
the model in those new regions. This finding also suggests that the large
but spatially constrained archive of existing ALS SCA data can be
leveraged to create a model, or set of models, which is able to provide 3
m SCA observations across a much larger spatial footprint. Furthermore,
the rich temporal archive of PlanetScope imagery, paired with a well-
trained model as presented here, could mitigate some of the chal-
lenges of less-frequent observational platforms (such as cloudiness), and
should be investigated as an avenue to supplement the temporal catalog
of coarser SCA products. In summary, future work is warranted to better
examine the role of the extensive PlanetScope catalog in improving
training volume, investigating performance differences across
geographic and topographic gradients, and improving remotely sensed
SCA identification performance in cloudy areas.
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5. Conclusions

We developed a method to identify snow covered area using Plan-
etScope CubeSat imagery, a ~3 m, ~daily, 4-band optical image dataset
with ~global extent. Our method performs comparatively to other state-
of-the-art remotely-sensed measures of snow cover (F-Score: 0.73,
compared to 0.64 and 0.63 for Landsat 8 fSCA and Sentinel-2 NDSI). We
show that these emerging image archives have great potential to accu-
rately observe snow-covered area at high spatial and temporal resolu-
tions despite limited radiometric bandwidth and band placement. We
used a machine-learning based image segmentation approach, powered
by a convolutional neural network modeling framework, to meet the
challenge of producing a snow-covered area product from these data.
Metrics of snow classification performance at our primary training and
assessment site (the Upper Tuolumne Basin, CA, USA) show levels of
classification accuracy comparable both to high-resolution airborne
lidar surveys (ASO) and snow classifications derived from other plat-
forms (Sentinel-2 and Landsat 8). The transferability potential of our
model was examined via validation in a climatically and geographically
distinct basin (Upper Gunnison, CO, USA), where we found slightly
lower performance levels when compared to the model training basin.
Finally, we demonstrate our model’s diminished performance as a result
of tree canopy cover in both study sites, suggesting the potential for
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future work in assessing the utility of the PS archive in identifying snow
covered area in vegetated regions. The unparalleled spatial and tem-
poral coverage of CubeSat imagery offers an excellent opportunity for
satellite remote sensing of snow, with real implications for ecological
and water resource applications.
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Fig. A.1: Comparison of Landsat 8-derived binary snow classification performance metrics (with reference to ASO) for different fSCA binarization thresholds in the
Tuolumne basin. These values are generated from Landsat 8 pixels that overlap PlanetScope imagery and ASO snow depth observations, used elsewhere (e.g. Results,
Discussion, Tables A.4-A.7) for comparision to ML-derived and Sentinel-2-based snow classification. Bars represent mean performance metric value and error bars
represent standard deviation across N = 6 PlanetScope image footprints. Changes in recall and precision can be attributed to the changing specificity of pixel
classification as fSCA threshold values change, but the opposing effects of fSCA on these two metrics leads to relatively consistent F-Score and Balanced Accuracy

values with different fSCA thresholds.

Table A.1

Spectral bandwidth of PS2 and PS2.SD instruments within the Plan-
etScope constellation, (Planet Labs, Inc., 2019a).

PSs2 PS2.SD
Blue: 455-515 nm 464-517 nm
Green: 500-590 nm 547-585 nm
Red: 590-670 nm 650-682 nm
NIR: 780-860 nm 846-888 nm
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Table A.2

Data used for training the Tuolumne regional model. Two ASO observations in the Greater Tuolumne region (ASO_3M_SD_USCATE_20180528 and
ASO_3M_SD_USCASJ_20180601) are overlapped with contemporaneous Planet imagery for training. These data together represent over 368 M labeled

3.7 m pixels with a footprint of approximately 5000 km?.

ASO/Ground Truth ID

ASO Basin ID

ASO Basin Name

Planet Scene ID

ASO_3M_SD_USCATE_20180528 USCATE TOLUMNE + CHERRY/ELEANOR 20180528.180846_1002
ASO_3M_SD_USCATE_20180528 USCATE TOLUMNE -+ CHERRY/ELEANOR 20180528_180847_1002
ASO_3M_SD_USCATE_20180528 USCATE TOLUMNE + CHERRY/ELEANOR 20180528.181108_1025
ASO_3M_SD_USCATE_20180528 USCATE TOLUMNE + CHERRY/ELEANOR 20180528.181109_1025
ASO_3M_SD_USCATE_20180528 USCATE TOLUMNE + CHERRY/ELEANOR 20180528.181110_1025
ASO_3M_SD_USCATE_20180528 USCATE TOLUMNE -+ CHERRY/ELEANOR 20180528.181111_1025
ASO_3M_SD_USCATE_20180528 USCATE TOLUMNE + CHERRY/ELEANOR 20180528.181112.1025
ASO_3M_SD_USCATE_20180528 USCATE TOLUMNE + CHERRY/ELEANOR 20180528.181113.1025
ASO_3M_SD_USCATE_20180528 USCATE TOLUMNE -+ CHERRY/ELEANOR 20180528_181319.1005
ASO_3M_SD_USCATE_20180528 USCATE TOLUMNE + CHERRY/ELEANOR 20180528.181320_1005
ASO_3M_SD_USCATE_20180528 USCATE TOLUMNE + CHERRY/ELEANOR 20180528.181322_1005
ASO_3M_SD_USCATE_20180528 USCATE TOLUMNE -+ CHERRY/ELEANOR 20180528_181323_1005
ASO_3M_SD_USCASJ_20180601 USCASJ SAN JOAQUIN MAIN FORK 20180601_181447_0f32
ASO_3M_SD_USCASJ_20180601 USCASJ SAN JOAQUIN MAIN FORK 20180601_181448_0f32
ASO_3M_SD_USCASJ_20180601 USCASJ SAN JOAQUIN MAIN FORK 20180601_181450_0f32
ASO_3M_SD_USCASJ_20180601 USCASJ SAN JOAQUIN MAIN FORK 20180601_181451_0f32

Table A.3

Data used for model evaluation in Upper Gunnison, CO basin. One ASO observation (ASO_3M_SD_USCOGE_20180524) was used to identify

contemporaneous PlanetScope imagery.

ASO/Ground Truth ID

ASO Basin ID

ASO Basin Name

Planet Scene ID

ASO_3M_SD_USCOGE_20180524 USCOGE GUNNISON - EAST RIVER 20180524_.172142_103d
ASO_3M_SD_USCOGE_20180524 USCOGE GUNNISON - EAST RIVER 20180524_172143.103d
ASO_3M_SD_USCOGE_20180524 USCOGE GUNNISON — EAST RIVER 20180524.172144.103d
ASO_3M_SD_USCOGE_20180524 USCOGE GUNNISON — EAST RIVER 20180524.172145.103d
ASO_3M_SD_USCOGE_20180524 USCOGE GUNNISON - EAST RIVER 20180524_172326_0f51
ASO_3M_SD_USCOGE_20180524 USCOGE GUNNISON - EAST RIVER 20180524_172327_0f51
ASO_3M_SD_USCOGE_20180524 USCOGE GUNNISON — EAST RIVER 20180524_172329_0f51
ASO_3M_SD_USCOGE_20180524 USCOGE GUNNISON - EAST RIVER 20180524_172330_0f51
ASO_3M_SD_USCOGE_20180524 USCOGE GUNNISON - EAST RIVER 20180524_172331_0f51
ASO_3M_SD_USCOGE_20180524 USCOGE GUNNISON — EAST RIVER 20180524_172634_0f2d
ASO_3M_SD_USCOGE_20180524 USCOGE GUNNISON - EAST RIVER 20180524_172635_0f2d
ASO_3M_SD_USCOGE_20180524 USCOGE GUNNISON - EAST RIVER 20180524_172637_0f2d

Table A.4

Metrics of Snow Covered Area products in the Tuolumne basin as compared to ASO-derived “ground
truth.” Mean and Standard deviation are computed across 6 regions defined by PlanetScope scene

boundaries. Only data not included in model training procedure are used in evaluation.

SCA Metric Mean Std. Dev.
CubeSat ML Balanced Accuracy 0.82 0.07
F-Score 0.73 0.12
Precision 0.69 0.15
Recall 0.82 0.12
Landsat 8 fSCA Balanced Accuracy 0.75 0.07
F-Score 0.64 0.15
Precision 0.65 0.16
Recall 0.68 0.19
Sentinel 2 NDSI Balanced Accuracy 0.75 0.13
F-Score 0.63 0.13
Precision 0.63 0.17
Recall 0.67 0.14

Table A.5

Metrics of Snow Covered Area products in the Upper Gunnison River basin as compared to ASO-
derived “ground truth.” Mean and Standard deviation are computed across 12 regions defined by
PlanetScope scene boundaries.

SCA

Metric

Mean

Std. Dev.

CubeSat ML

Balanced Accuracy

12

0.75

0.08

(continued on next page)
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Table A.5 (continued)

SCA Metric Mean Std. Dev.
F-Score 0.67 0.18
Precision 0.85 0.12
Recall 0.58 0.20

Landsat 8 fSCA Balanced Accuracy 0.77 0.10
F-Score 0.73 0.19
Precision 0.76 0.16
Recall 0.71 0.21

Sentinel 2 NDSI Balanced Accuracy 0.76 0.10
F-Score 0.68 0.23
Precision 0.94 0.03
Recall 0.58 0.25

Table A.6

Metrics of classification performance of snow covered area products, including our PS Model, in vegetated and unvegetated regions of the
Tuolumne basin. “Vegetation Only” corresponds to pixels containing vegetation >1 m as derived from the ASO Canopy Height Model.
Mean and Standard deviation are computed across 6 regions defined by PlanetScope scene boundaries. Only data not included in model
training procedure are used in evaluation.

SCA Veg. Type Metric Mean Std. Dev.
CubeSat ML No Vegetation Balanced Accuracy 0.83 0.08
F-Score 0.76 0.12
Precision 0.71 0.16
Recall 0.87 0.10
Vegetation Only Balanced Accuracy 0.73 0.04
F-Score 0.57 0.08
Precision 0.59 0.11
Recall 0.61 0.19
Landsat 8 fSCA No Vegetation Balanced Accuracy 0.75 0.08
F-Score 0.65 0.17
Precision 0.69 0.18
Recall 0.67 0.20
Vegetation Only Balanced Accuracy 0.76 0.06
F-Score 0.59 0.06
Precision 0.52 0.08
Recall 0.72 0.11
Sentinel-2 NDSI No Vegetation Balanced Accuracy 0.75 0.13
F-Score 0.66 0.15
Precision 0.68 0.19
Recall 0.67 0.14
Vegetation Only Balanced Accuracy 0.73 0.13
F-Score 0.50 0.07
Precision 0.45 0.10
Recall 0.61 0.14
Table A.7

Metrics of classification performance of snow covered area products, including our PS Model, in vegetated and unvegetated regions of the
Upper Gunnison River basin. “Vegetation Only” corresponds to pixels containing vegetation > 1 m as derived from the ASO Canopy
Height Model. Mean and Standard deviation are computed across 12 regions defined by PlanetScope scene boundaries.

SCA Veg. Type Metric Mean Std. Dev.
CubeSat ML No Vegetation Balanced Accuracy 0.83 0.06
F-Score 0.82 0.09
Precision 0.88 0.06
Recall 0.77 0.13
Vegetation Only Balanced Accuracy 0.68 0.08
F-Score 0.55 0.19
Precision 0.84 0.07
Recall 0.43 0.20
Landsat 8 fSCA No Vegetation Balanced Accuracy 0.78 0.12
F-Score 0.75 0.23
Precision 0.78 0.20
Recall 0.73 0.25
Vegetation Only Balanced Accuracy 0.75 0.09
F-Score 0.70 0.17
Precision 0.72 0.15
Recall 0.68 0.19
Sentinel-2 NDSI No Vegetation Balanced Accuracy 0.81 0.10
F-Score 0.77 0.21

(continued on next page)
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Table A.7 (continued)
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SCA Veg. Type Metric Mean Std. Dev.
Precision 0.94 0.06
Recall 0.69 0.24
Vegetation Only Balanced Accuracy 0.72 0.09
F-Score 0.60 0.23
Precision 0.94 0.02
Recall 0.48 0.24
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