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ABSTRACT
We initiate the study of information elicitation mechanisms for

a crowd containing both self-interested agents, who respond to

incentives, and adversarial agents, who may collude to disrupt the

system. Our mechanisms work in the peer prediction setting where

ground truth need not be accessible to the mechanism or even exist.

We provide a meta-mechanism that reduces the design of peer

prediction mechanisms to a related robust learning problem. The

resulting mechanisms are ϵ-informed truthful, which means truth-

telling is the highest paid ϵ-Bayesian Nash equilibrium (up to ϵ-
error) and pays strictly more than uninformative equilibria. The

value of ϵ depends on the properties of robust learning algorithm,

and typically limits to 0 as the number of tasks and agents increase.

We show how to use our meta-mechanism to design mecha-

nisms with provable guarantees in two important crowdsourcing

settings even when some agents are self-interested and others are

adversarial.

CCS CONCEPTS
• Theory of computation→Algorithmic mechanism design;
Unsupervised learning and clustering; • Information systems →
Incentive schemes; •Mathematics of computing→ Probabilistic

inference problems.
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1 INTRODUCTION
Crowdsourcing, the process of employing workers to complete

concise tasks, enables the requester (mechanism designer) to col-

lect valuable information. Image annotation, relevance judgment,
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sentiment analysis, and language translation are now routinely com-

pleted through crowdsourcing on platforms like Amazon Mechani-

cal Turk and CrowdFlower. One major challenge for crowdsourcing

is ensuring reliable results from a diverse set of workers.

To effectively elicit reliable information, a crowdsourcing mech-

anism needs to account for agents’ incentives, which may vary

between individual agents: agents could be strategic, adversarial,

and altruistic [16]. Workers who are strategic can be motivated

with monetary payments. However, the values of such payments

must be chosen carefully; self-interested strategic agents may ma-

nipulate their information or effort level to try to gain additional

payments from the mechanism. For example, an agent participating

in a mechanism that pays agents based on the total number of tasks

they complete may hurry through the tasks without investing the

effort necessary to complete each task well. A good mechanism

must appropriately reward truthful and effortful work.

Workers who are adversarial may have some external incentive

to collude to sabotage the mechanism [10, 11, 13, 15]. Such agents

are unlikely to respond to monetary incentives and thus are often

outside of the purview of the models of agent behavior tradition-

ally considered in mechanism design. However, a rich history of

compromised computer systems serves as a warning of the peril of

ignoring the possibility of these non-strategic agents attempting

to disrupt the system. Examples include denial-of-service attacks

against websites [12], computer viruses [17], Google Bombing [25],

Goldfinger attacks [20] against nascent cryptocurrencies [3], and,

recently, Zoom Bombing [2].

Finally, agents motivated by altruism or honesty may both exert

effort and report truthfully regardless of incentives. If every agent

is honest, eliciting information reduces to a statistical inference

problem illustrated in Figure 1 (a).

One potential way to handle the possible presence of all these

different types of workers is to insert random “gold-standard” ques-

tions whose answers are known. However, these questions can

be cumbersome to construct (e.g., calibrating examples for peer

grading is a costly use of instructors’ time). Another solution is to

pay agents for agreeing with a trusted reviewer. However, this begs

the question of how one can determine which reviewers are trust-

worthy. Moreover, mechanisms employing either of these solutions

necessarily incur additional costs—either paying workers to answer

questions with known answers or employing additional trusted

workers. Furthermore, neither of these methods applies when there

is no accessible ground truth, e.g. on matters of opinion.

Peer prediction (sometimes called information elicitation with-

out verification) literature has introduced new techniques to cir-

cumvent these hurdles. However, peer prediction in the presence

of rowdy crowds with both strategic and adversarial agents faces

several challenges. Adversarial inputs may degrade the quality of

the output. Additionally, adversarial reports may also malign the
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incentives for strategic agents causing even strategic agents to act

unpredictably. For example, strategic agents may answer incor-

rectly believing this will increase their payments due to the effects

of adversarial agents. Removing the effects of the adversarial behav-

ior in crowdsourcing systems is made additionally difficult because

crowdsourcing workers are often transient and/or anonymous.

Our Contributions. We design crowdsourcing mechanisms that

can elicit information from rowdy crowds, where a constant fraction

of the crowd can adversarially collude and the remaining agents are

strategic. Our mechanisms are asymptotically informed truthful.

This means that for any ϵ > 0, for a sufficient number of tasks

and/or agents that: 1) truth-telling is an ϵ-Bayesian Nash equilib-

rium; 2) in expectation, the truth-telling equilibrium pays each

agent within ϵ of their optimal payment under any ϵ-Bayesian
Nash equilibrium and strictly more than under any uninformative

strategy profile, (i.e. where the agents’ strategies do not depend on

their information). In particular, this means that the effect of the

adversaries goes to zero in limit.

In such mechanisms, truth-telling is essentially the best that

each agent can expect to do. Thus, strategic agents should always

report truthfully and effortfully, just as an honest agent would.

We present ameta-algorithm, theRobustMutual Information
Framework (RMIF), for designing asymptotically informed truth-

ful mechanisms for rowdy crowds (Sect. 4). This meta-algorithm

reduces the mechanism design problem to a certain robust learning

problem. As shown in Figure 1. (d), the key is to use the output

of the robust learning algorithm to both compute payments and

produce outputs that are robust against adversarial influence. To

our knowledge, this is the first work that considers information

elicitation from a combination of strategic and adversarial agents.

We apply our meta-algorithm to the multi-task setting, where

each agent is asked a batch of a priori similar questions, e.g., "is

there a bus in the picture?" First, we focus on a general model of

peer prediction, where each task need not to have a ground truth,

but agents’ information for each task is assumed to be correlated

(Sect. 5). Second, we consider the Dawid-Skene model [7], where

each task has a ground truth, and agents’ information is indepen-

dent conditioned on the ground truth.

For both models, we provide asymptotically informed truth-

ful mechanisms for rowdy crowds that are minimal—i.e. agents

need not report any additional information—and detail free—i.e.

the mechanism requires no foreknowledge of agents’ beliefs or

distribution of answers.

1.1 Related Work
The literature on information elicitation without verification fo-

cuses on capturing the strategic aspect of human agents (c.f. Fig-

ure 1 (c)). In the multi-task setting, Dasgupta and Ghosh [6] pro-

posed a seminal informed truthful
1
, minimal, detail-freemechanism.

Shnayder et al. [24] and Kong and Schoenebeck [19] independently

generalized this beyond binary signals. The former also introduced

the concept of informed truthfulness. The latter work proposed a

1
Actually, it is strongly truthful, a slightly stronger notion.

mutual information based meta-algorithm, which our Robust Mu-

tual Information Framework (RMIF) builds upon. The prior mecha-

nism design work does not consider adversarial agents, and offers

no guarantees in the presence of adversaries.

Issues of adversarial inputs are broadly studied by the robust

learning literature. In particular, the multi-tasks setting corresponds

to robust batch learning which is studied in Qiao and Valiant [22]

and Chen et al. [5]. In both works, an adversary controls an α
fraction of the input samples, while the other 1 − α fraction of

data are i.i.d. sampled from an unknown target distribution. The

proposed learning algorithms are shown to be robust such that

as the number of samples increases, the error between the output

and the target distribution decreases. In addition, empirical works

like Goodfellow et al. [14] and Papernot et al. [21] also provide

promising approaches to defend against adversary who can alter

input data in a separate manner. This approach is illustrated in (b)

in Figure 1. Notice that these papers do not consider the mechanism

by which the non-adversarial data is procured. Instead, it implicitly

assumes that all non-adversarial data is solicited from honest rather

than strategic agents.

(a) Honest agents (b) Honest & adversarial agents

(c) Strategic (d) Rowdy crowds

Figure 1: Pipeline models for information elicitation from
diverse crowds.

2 MODEL
There are n agents andm tasks. Each agent will report on all the

tasks. There is a finite set of possible signals X. As is common in

the literature [1, 6, 18], we assume that the tasks are a priori similar

where the signals for all agents on each tasks are i.i.d. sampled from

some prior P onXn
. We useX to denote the random variable of the

joint distribution of all agents’ signals on all tasks (e.g. with support

Xn×m
). We use Xi to denote agent i’s signals; Xi,s to denote agent

i’s signal on task s; and X−i to denote the signals of all agents

except i . Moreover, X̂ , X̂i , X̂i,s and X̂−i are similar notions for

agent’s reports. We often consider a set of permissible priors P,

and it is a common knowledge among the agents that the actual

prior is permissible, i.e., P ∈ P.

A multi-task peer prediction mechanism M = (n,m,X,L) col-

lectsm reports in the set X from each of n agents, denoted as X̂ ,
and rewards the agents according to the function L : Xn×m → Rn .

Li (X̂ ) denotes the i−th index of the reward function, which is agent
i’s payoff.

Our model assumes agents have no cost while obtaining signals.

However, by scaling the payments, our techniques can be general-

ized to the setting where agents incur a cost to obtain signals.
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2.1 Model for Rowdy Crowds
In this paper, we disregard the existence of the honest agents so

that all agents are either rational, acting in their selfish interest to

maximize their utility, or adversarial, acting arbitrarily. We use A

to denote the set of adversarial agents and R the set of rational

agent where [n] = A∪R. Honest agents will be discussed in future

work (section 7).

Let α be the fraction of adversarial agents so that |A| = αn.
Adversarial agents first observe their signals, {Xi,s : i ∈ A and s ∈
[m]}. Then they can collude and submit arbitrary reports x̂i,s . Since
the adversarial agents can collectively decide their reports, we

model this as one adversary controlling all adversarial agents be-

havior. We define the adversary’s mapping from their signals to

reports as σA : Xαn×m → Xαn×m
. We use SA to denote the set

of strategies available to the adversary.

A rational agent i ∈ R wants to maximize her expected payment

by reporting strategically. Her strategy σi : Xi → X̂i can be seen as

a (random) mapping from her signalsXi to reports X̂i . We make the

common assumption from the peer prediction literature [1, 6, 19]

that agents’ strategies are task-independent. This means agent i
chooses a mapping σi : X → ∆X, which is applied independently

to each signal. Thus, X̂i,s is a random variable drawn from σi (Xi,s ).
We use Si to denote the set of agent i’s possible strategies. We use

SR :=
∏

i ∈R Si to denote the set of rational strategy profiles.
Importantly, note that once all agents’ strategies are fixed, X̂ is

itself a random variable which depends on the randomness of X
and the randomness of the strategies.

We call the above setting multi-task information elicitation
from rowdy crowdswith parameters (P,α)—RowdyCrowds(P,α),
for short. Given a mechanismM, with prior P , strategies σR ∈ SR ,

and σA ∈ SA , for agent i we denote agent i’s ex-ante payment as

uP,Mi (σR ,σA ) := E
X ,σR,σA

[
Li (X̂ )

]
.

Definition 2.1. In RowdyCrowds(P,α), a (rational) strategy pro-

file σR ∈ SR is called an ϵ-Bayesian Nash equilibrium (ϵ-BNE)
in M if σ is an ϵ-BNE regardless of the adversary’s strategy or

P ∈ P. Formally, for all i ∈ R, σ ′
i ∈ Si , and all adversarial strate-

gies σA ∈ SA with |A| = αn,

uP,Mi (σR ,σA ) ≥ uP,Mi

(
σR\{i },σ

′
i ,σA

)
− ϵ .

2.2 Mechanism Design
In the literature of information elicitation, there are two partic-

ularly important classes of task-independent strategies: the first

is the truth-telling strategy profile, τ , where all rational agents’
reports are equal to their private signals. The second is an unin-
formed strategy profile, θ , where all rational agents’ strategies
are independent of their signals. Ideally, truth-telling should be an

equilibrium. It should also be a desirable equilibrium for the agents,

so that they play it rather than any other equilibrium.

The below definition of an ϵ-informed truthful mechanism rig-

orously formulates this goal by adapting the informed truthful

definition from Shnayder et al. [24] to our setting.

Definition 2.2. A mechanism M for the RowdyCrowds(P,α)
setting is ϵ-informed-truthful if the mechanism is ϵ-informed

truthful regardless of adversary’s strategy. Formally,

(1) The truth-telling strategy is an ϵ-Bayesian Nash equilibrium;

(2) The truth-telling strategy has the highest payment with ϵ
additive error for each agent: for all adversarial strategies

σA and σA
′
(which need not be the same), rational strategy

profileσR , and i ∈ R,uP,Mi (τR ,σA ) ≥ uP,Mi (σR ,σA
′)−ϵ ;

(3) For any uninformed strategy profile θR , adversary strategies
σA and σA

′
(which need not be the same), and i ∈ R,

uP,Mi (τR ,σA ) > uP,Mi (θR ,σA
′).

It is required that truth-telling pay more (up to additive error ϵ)
than any other equilibrium and strictly more than any uninforma-

tive equilibrium. This implicitly accounts for the cost to the agents

of observing the signal. By scaling up the payments, the payment

gap between the truthful and uninformed strategies can be made

arbitrary large to overcome the cost of observing the signal. Note

that only uninformative strategies can be played without incurring

the cost of observing the signal.

Furthermore, we say a mechanism M is asymptotically
informed-truthful, if for all P ∈ P and ϵ > 0, the mechanism is

ϵ-informed-truthful against an α adversary when n andm are large

enough.
2

As shown by Kong and Schoenebeck [19], f -mutual information

can serve as an important tool for truthful mechanism design. Here,

we consider a special case of this tool which is used throughout

this paper— total variation distance mutual information.

Definition 2.3. Let PX ,Y be the joint distribution of random vari-

ables X and Y , and PX , PY be the marginal distributions of X , Y
respectively. The total variation distance mutual information is the

total variation distance between PX ,Y and PX PY , i.e.

∥PX ,Y − PX PY ∥TV =
1

2

∑
x ∈X,y∈Y

|PX ,Y (x ,y) − PX (x)PY (y)|.

We will simply use MI(X ;Y ) := ∥PX ,Y − PX PY ∥TV.

In this paper, we usually deal with the mutual information be-

tween random vectors with i.i.d. entries. For simplicity, we in-

troduce the termwise mutual information (twMI). Formally, if X ,
Y are two random vectors with length of m and i.i.d. entries,

MI(Xs ,Ys ) = MI(Xs ′ ,Ys ′) for all s, s
′ ∈ [m]. The termwise mutual

information of the vectors denotes the mutual information of any

pair of entries, i.e. twMI(X ,Y ) = MI(Xs ,Ys ) for all s ∈ [m].

The empirical estimator of termwise mutual information,�twMI(X ,Y ), uses a realized version of two random vectors X and

Y of lengthm with i.i.d entries with support X and Y respectively

to estimate their termwise mutual information:

1

2

∑
x,y

���� |{s : Xs = x ,Ys = y}|

m
−

|{s : Xs = x}| |{s : Ys = y}|

m2

���� (1)

The data-processing inequality (DPI) is a well-known (and

very useful for our purposes) property of mutual information: sup-

pose the X and Y are two random variables andM(X ) is a (random)

2
Here we assume there exist ρ > 0 such that in permissible priors P , the termwise

mutual information between any pair of agents i and j is great than ρ .
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function applied to X so thatM(X ) and Y are independent condi-

tioned on X , then

MI(M(X );Y ) ≤ MI(X ;Y ). (DPI)

Because MI is symmetric, the analogous statement holds if M is

applied to Y .
The data-processing inequality implies that applying any strat-

egy on agents’ signals can only decrease the mutual information.

This property plays an important role in mechanism design. Note

that (DPI) also applies to termwise mutual information.

3 PRELIMINARY: ROBUST LEARNING
The problem of learning a discrete distribution given access to

independent samples has been intensely studied in the statistics

community. In this section, we introduce two different settings for

density estimation for a distribution P on a finite space Ω.
In the first setting, estimation is from i.i.d. samples (with no cor-

ruption). If we havemL samplesw1, . . . ,wmL from P , the empirical

distribution P̃ from thosemL samples is defined as

P̃(w) :=
1

mL

∑
l ≤mL

1[wl = w] for allw ∈ Ω.

The following show that the empirical distribution P̃ has a small

total variation distance from the real distribution P

Lemma 3.1 (Theorem 3.1 in [8]). For any ϵ , δ > 0, finite domain

Ω, and distribution P on Ω, there existsM = O
(
1

ϵ 2 max(|Ω |, (1/δ ))
)

such that for allmL ≥ M the empirical distribution withmL i.i.d. sam-
ples, P̃mL , satisfies Pr[∥P − P̃mL ∥TV ≤ ϵ] ≥ 1 − δ .

Now, we introduce the setting of density estimation with an α
fraction of corrupted batches. Specifically, the input consists of nL
batches and each batch has kL dataW ∈ ΩnL×kL

. At lease a (1− α)
fraction of the batches draw their samples from the distribution P
i.i.d. which are called honest batches. The remaining α fraction of

batches can be arbitrarily corrupted. The following result shows

if the corruption has this batched structure. We can accurately

recover the density function P such that the error approaches zero

as the number of batches and the size of batches are large enough.

Formally,

Theorem 3.2 (Qiao and Valiant [22]). Let α ≤ α
batch

= 1/900,
δ ∈ (0, 1), and kL ≥ 1. Given nL = O((|Ω | + kL + log(1/δ )) /α

2)

batches of samples of which a (1−α) fraction of batches consists of kL
iid draws from a distribution P with support Ω, there is an algorithm
L
batch

that runs in time poly(2 |Ω | ,kL , 1/α , log(1/δ )) and returns a
distribution P̃ such that ∥P − P̃ ∥TV = O(α/

√
kL) with probability at

least 1 − δ .

Note that we can estimate the distribution P with vanishing error

as kL increases. That is because the adversary in the batch model

can only corrupt α rows of the data inW ∈ ΩnL×kL
instead of an

arbitrary α fraction of data. This structure allows the algorithm to

better detect corrupted data. (See [5] and [22] for more discussion.)

4 META ALGORITHM
Now we provide a framework for designing information elicitation

mechanisms for rowdy crowds. We pay each agent i a robust es-
timation of the termwise mutual information between i’s reports

X̂i and a (potentially randomly chosen) projection function of the

other agents’ reports f (X̂−i ). A projection function f : Xn′

→ Z

maps a collection of n′ agents’ reports to a finite signal space Z.

We can extend this to f : Xn′×m → Zm
by applying f to each

task independently.

Definition 4.1. In the RowdyCrowds(P,α) setting, let L :

Xn×m → Rn be a payment function, and let F be a distribution over

projection functions, f . Then (L, F ) is a robust mutual information
estimation pair with ϵ1, ϵ2 error if:

For any prior P , truth-telling strategy profile τ , any rational

strategy profile σR ∈ SR , and any adversary strategy σA ∈ SA ,

the expected payment of agent i ∈ R satisfies:

uP,Li (τR ,σA ) = E
X ,τR,σA

[
Li (X̂ )

]
≥ Ef ∼F [twMI(Xi ; f (X−i ))] − ϵ1, and (2)

uP,Li (σR ,σA ) = E
X ,σR,σA

[
Li (X̂ )

]
≤ Ef ∼F [twMI(Xi ; f (X−i ))] + ϵ2. (3)

Moreover, if additionally, we insist the prior is permissible, P ∈ P,

we require:

E
f ∼F

[twMI(Xi ; f (X−i ))] > ϵ1 + ϵ2 for all i ∈ R. (4)

Under this definition, when the (non-adversarial) agents report

truthfully, the expected payment Li of each agent i ∈ R is approx-

imately lower bounded by a certain mutual information (Eq. 2).

Moreover, under any reports, the expected Li is approximately

upper bounded by this same mutual information (Eq. (3)).

Our Robust Mutual Information Framework uses the fol-

lowing theorem to create an (ϵ1+ϵ2)-Informed Truthful Mechanism

from a (L, F ) robust mutual information estimation pair.

Theorem 4.2. For the RowdyCrowds(P,α) setting, for anyn,m,X,
if (L, F ) is a robust mutual information estimation pair with (ϵ1, ϵ2)
error, then M = (n,m,X,L) is (ϵ1 + ϵ2)-informed truthful.

Intuitively, the framework can provide (approximate) informed

truthful mechanisms because, first, for strategic agents, truth-

telling is an approximately optimal BNE by (2) and (3). Second,

in any uninformed equilibrium with information structure P , since
X̂R\{i } = {X̂ j,s : j ∈ R \ {i}, s ∈ [m]} does not depend on XR\{i } ,

in (3), the rational agents’ report is unchanged if we replace the

signals to all always be zeros. This renders the right hand side of

Eq. (3) equal to zero. Thus, as long as the information structure P
and the projection function F satisfy (4), the truth-telling payment

exceeds that of any uninformed equilibrium. We leave the complete

proof of Theorem 4.2 to Appendix A.

We illustrate two ways to deploy our framework. First, we can de-

sign f to be very simple, i.e. projecting onto one variable, and then

L will use robust learning to estimate the termwise mutual infor-

mation (Sect. 5). Second, we can make f itself robust to adversarial

noise (Sect. 6).

5 PEER PREDICTION IN THE GENERAL
SETTING

The general setting of peer prediction considers the case where

agents’ signals are correlated while ground truth need not exist [6,

3977



Information Elicitation from Rowdy Crowds WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

19, 24]. In this section, we focus on designing L to be robust while

considering F that uniformly outputs a random rational agents’

report, i.e. f (X̂−i ) = X̂ j , where j is selected from R\{i} uniformly

at random. We can rewrite Theorem 4.2 as follows.

Corollary 5.1. In general RowdyCrowds(P,α) setting, if ∀P :����uP,Li (σR ,σA ) − Ej ∈R\{i }

[
E

σi ,σj
[twMI(σi (Xi );σj (X j ))]

] ���� ≤ ϵ

(5)

for all i ∈ R and Ej ∈R\{i }[twMI(Xi ,X j )] > 2ϵ , then RMIF(L, F )
is 2ϵ-informed truthful.

Corollary 5.1 follows directly from Theorem 4.2. On one hand,

if all rational agents report truthfully, Eq. (5) is sufficient to show

Eq. (2). On the other, Eq. (5) is sufficient to showEq. (3) since the data

processing inequality implies that Eσi ,σj [twMI(σi (Xi ),σj (X j )] ≤

E[twMI(Xi ,X j )] for all j ∈ R\{i}. Thus, we transform the original

problem into a problem of estimating twMI(X̂i , X̂ j ) robustly.

Now, we provide two ϵ-informed truthful mechanisms as ap-

plications of our framework. The first is a naive mechanism with

ϵ = Θ(α); the second is a mechanism based on a robust learning

algorithm that is asymptotically informed truthful.

5.1 Naive mechanism
The idea of the naive mechanism (Mechanism 1) is straightforward.

We randomly select a peer j and pay i the empirical termwisemutual

information between i and j’s reports, i.e.

Li (X̂ ) = �twMI

(
X̂i , X̂ j

)
for a random j ∈ [n] \ {i}, (6)

MECHANISM 1: Naive mechanism for average mutual information

between i and other rational agents

Input: Agents’ report profile X̂ onm tasks, and an index i ∈ [n]
Result: Payment for agent i
Pick j ∈ [n]\{i } uniformly at random.

Compute the empirical joint distribution from agent i ’s and j ’s reports,
for x, y ∈ X

P̃i j (x, y) =
| {s : X̂i,s = x, X̂ j,s = y } |

m
,

and compute the empirical marginal distribution, for x, y ∈ X

P̃i (x ) =
| {s : X̂i,s = x } |

m
and P̃j (y) =

| {s : X̂ j,s = y } |
m

Output

Li (X̂ ) := �twMI(σi (Xi ), σj (X j )) =
1

2

∑
x,y∈X

|P̃i j (x, y) − P̃i (x )P̃j (y) | (7)

The following theorem shows that this indeed yields an ϵ-
informed truthful mechanism. However, the error of the naive

algorithm is ϵ = Θ(α), where α is the fraction of adversary, which

implies that Mechanism 1 is not asymptotically informed truthful.

Theorem 5.2. In the general RowdyCrowds(P,α) set-
ting with m tasks and n agents, the naive mechanism is(
4(1 + 1

n−1 )α +On (

√
logm
m )

)
-informed truthful.

We leave the proof in Appendix B.1, while we sketch how to

employ Corollary 5.1 to prove the theorem here.

We must bound the error between �twMI (payment in Eq. (6))

and the ground truth twMI. On one hand, a rational agent i has

probability 1−α to be paired with a rational peer j . In this case, �twMI

is close to twMIwith an error ofO(
√
logm/m)when the number of

tasks ism. In addition, there is an extra error bounded by α which

is caused by taking the average over different sets (j ∈ [n]\{i} and
j ∈ R\{i}). Furthermore, with probability α the selected peer j is

adversarial. In this case, since �twMI is bounded between 0 and 1,

the error is bounded by α .
Theorem 5.2 shows the naive mechanism isΘ(α)-informed truth-

ful. Thus, with a large α , the naive mechanism has a poor truthful-

ness guarantee. In the next section, we will show that in a general

symmetric setting, we can obtain ϵ ≪ α .

5.2 Mechanism for Symmetric Priors
We denote Psymm as the set of symmetric priors such that the joint

distributions between any pair of agents are identical. Formally,

for all P ∈ Psymm there is a distribution Q on X2
, such that for

all i, j ∈ [n] Pi, j = Q . Furthermore, we say a joint distribution

P is ε-informative if the mutual information between any pair of

agents’ signals is greater than ε . Let Pε
symm ⊂ Psymm be the set

of symmetric prior such that all P ∈ Pε
symm are ε-informative.

The main idea of our mechanism for symmetric priors (Mech-

anism 2 in Appendix B.2) is to learn this underlying Q robustly

and use it to compute the MI as the payments, and then to appeal

to Corollary 5.1. We employ the batch learning algorithm L
batch

[22] which can robustly learn an unknown distribution with finite

samples. The input of L
batch

is an N × K matrix where a 1 − α
fraction of the rows contain K i.i.d. sample from the distribution

Q , and the remaining α fraction of rows are adversarially chosen.

Then, L
batch

returns an estimate of Q with an error asymptotically

decreasing with K . (Theorem 3.2)

Theorem 5.3. Given any ε > 0, for RowdyCrowds(Pε
symm ,α), if

and α < α
batch

, Mechanism 2 is asymptotically informed truthful for
symmetric strategy profile. 3

Compared with the naive mechanism, in Mechanism 2, we are

able to make the error approach 0 by increasing the number of

tasks. Details of the proof are included in Appendix B.2. Here we

provide a sketch.

Our algorithm for symmetric agents has two phases. First, for a

given rational agent i , the joint distributions between σi (Xi,s ) and
σj (X j,s ) are the same for all j ∈ R\{i} and s ∈ [m], and we denote

this as simply Qi,∗. We create an (n − 1) × K matrix as follows: for

each j ∈ [n] \ {i} samples (about) K new tasks to obtain a row of

K fresh samples from Qi, j , where K = ⌊m/(n − 1)⌋. Because an α
fraction of rows are corrupted and the rest are i.i.d. samples from

Qi,∗, we can apply L
batch

to learn an estimate Q̃i,∗ of Qi,∗. Once

we have Q̃i,∗, we can explicitly estimate the estimated termwise

mutual information and pay each agent i accordingly.
Remark. In order to guarantee allK(n−1) samples are independent,

agent i is paired with each j ∈ [n]\{i} K times and each task is used to

3
We cannot rule out the possibility that there exists an asymmetric equilibrium in

which some rational agent is paid more than in the truth-telling equilibrium.
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MECHANISM 2: Algorithm for symm prior on agent i

Input: Agents’ report profile X̂ onm tasks, and an index i ∈ [n]
Result: Payment for agent i
SetW := [n] \ {i } , K := ⌊m/ |W | ⌋ and Zj = ∅ for all j ∈W ;

// the set of K pairs of reports of agent i and j
for s ∈ [m] do

while pick j ∈W randomly do
if |Zj | < K then

Zj = Zj ∪ (X̂i,s , X̂ j,s );

break;
Run L

batch
on {Zj }j∈W and get a distribution Q̃i,∗ on X2

;

// {Zj }j∈W consists of |W | = n − 1 batches of
i.i.d. samples, and only O (α ) fraction of batches are
corrupted.

Compute the product of the marginal distribution denoted as ˜R, ∗i on
X2

where for all x, y ∈ X

R̃i,∗(x, y) =
∑
z∈X

Q̃i,∗(x, z) ·
∑
w∈X

Q̃i,∗(w, y).

Output

Li (X̂ ) :=
1

2

∑
x,y∈X

|Q̃i,∗(x, y) − R̃i,∗(x, y) | (8)

generate one sample from Qi, j . Thus, we require the number of tasks
to be at leastn−1, i.e.K = ⌊m/(n−1)⌋ ≥ 1. However, to accommodate
small values ofm, we can make n small by random selecting a small
number the workers and pay them according to our mechanism, and
pay the rest of agents zero. Specifically, given α

batch
,α and ϵ , there ex-

ists n0 = O
(
max

{
ϵ−2, (log 1/ϵ)max{(α

batch
− α)−2, (α)−2}

})
, such

that our mechanism is ϵ-informed truthful mechanism when n ≥ n0
andm ≥ ϵ−2α2n0. See Appendix B.3.

Furthermore, we can use the batch learning algorithm as a black

box, such that the truthfulness guarantee of our mechanism can be

improved with any improvement in the batch learning algorithms

(see in Appendix B.3.) Our reduction does not lose anything in α ,
so our mechanism can handle the same fraction of adversaries that

the best batch learning algorithm can.

6 PEER PREDICTION ON DAWID AND SKENE
MODEL

The RMIF can be particularly powerful if the prior P on agents’

signals is a latent variable model where agents’ signals are mutually

independent conditioned on the latent variables. Examples include

Dawid Skene models, Gaussian mixture models, hidden Markov

models, and latent Dirichlet allocations.

The key insight is that if P is a latent variable model, using our

RMIF, it is sufficient to design a robust latent label recovery algorithm
r that, for each task s ∈ [m], can robustly recover the latent variables

Ys ∈ Y from the signals on the task, whereY is the space of possible

latent variables. Armed with such a robust latent label recovery

algorithm r : Xn′

→ Y, we can set the projection function F to

deterministically be r . We define the payment function of agent

i ∈ [n] to be L(X̂ ) = �twMI(X̂i ;r (X̂−i )), the empirical estimator of

the termwise mutual informational between agent i’s reports and
the recovered latent variables. The pair (L, F ) is a robust mutual

information estimation pair.

Here we sketch the general idea while showing a rigorous

instantiation in Sect. 6.1. Eq. (2) holds by our definition of L

and F and because the empirical estimate of the mutual informa-

tion is close to the real value. For Eq. (3), there are three parts.

First, by (DPI), the payment at the non-truthful strategy profile

is weakly less than the termwise mutual information between

agents’ signals. In other words, uP,Li (σR ,σA ) = E[Li (X̂ )] =�twMI(X̂i ; F (X̂−i )) ≈ twMI(X̂i ; F (X̂−i )) ≤ twMI(Xi ;X−i ). Then,

because for any s ∈ [m], Xi,s and X j,s are independent con-

ditioned on the latent variable Ys and r (X−i,s ) ≈ Ys , we have

twMI(Xi ;X−i ) ≤ twMI(Xi ;Y ) ≈ MI(Xi ; F (X−i )). Finally, because

r is a function on the signals on each task s ∈ [m], X−i,s , by

(DPI), twMI(Xi ; F (X−i )) ≤ twMI(Xi ;X−i ). Combining these, we

have Eq. (3), since:

uP,Li (σR ,σA ) ≈ twMI(X̂i ; F (X̂−i ))

≤ twMI(Xi ;X−i )

≈ twMI(Xi ; F (X−i )) ≈ uP,Li (τR ,σA ).

In order to satisfy the above conditions, we desire that the robust

latent label recovery algorithm r only requires signals on one task

as input, instead of all the signals on all tasks. However, we may

use other signals to learn the latent label recovery algorithm and

use this fixed function to recover latent variable of each tasks.

6.1 Crowdsourcing on Symmetric Dawid and
Skene Model

We give an example of this approach by considering the symmetric

Dawid and Skene model [7].

Definition 6.1. The symmetric Dawid Skene model (symm DS

model) has parameters (X,Y,w, Γ) where X is a set of signals, Y

is the set of latent labels, e.g., {good, bad}, w ∈ ∆Y is the prior

distribution of latent labels, and Γ ∈ R |Y |×|X |
which encodes a dis-

tribution of X conditional on each y ∈ Y, i.e. Γy,x = Pr[X =
x |Y = y]. Formally, for the multitask setting, P(x1, . . . ,xn ) =∑
y∈Y wy

∏
i ∈[n] Γy,xi . We use Γy to denote the row vector of Γ.

Now we use the RMIF from Sect. 4, and design an asymptotically

informed-truthful mechanism for rowdy crowds. Note that in the

DS model, for any agent i and task s , her signal Xi,s is independent
of other agents’ signalsX−i,s on the tasks conditioned on the latent

label of task s , Ys . Suppose we have a robust latent label recovery
algorithm r (X−i,s ) which outputs the latent label Ys for each s and
set the projection function F ≡ r . Then Eq. (2) and (3) are satisfied

by the above derivation. Therefore, by Theorem 4.2, we can design

an approximate informed-truthful mechanism for rowdy crowds by

designing an accurate an robust latent label recovery algorithm r .
To successful recover the latent labels, the DS model can-

not be “singular”. A common assumption requires each row

of Γ to be independent. Additionally, we require the fraction

of adversary to be smaller than the distance between each

row of Γ, γDS :=
miny,y′:y,y′ DKL(Γy ;Γy′ )

4maxy,x | log Γy,x |
where DKL(Γy ; Γy′) :=∑

x Γy′,x log(Γy′,x /Γy,x ) is the KL-divergence from Γy′ to Γy .

Theorem 6.2. Let α∗ = min {α
batch

/3,γDS }, where α
batch

is defined in Theorem 3.2 and γDS is defined above. For
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RowdyCrowds(PDS ,α) setting on the symmetric DS model such that
α < α∗, Mechanism 3 is asymptotically informed-truthful.

We first state our mechanism formally, and then provide a proof

of Theorem 6.2 in Appendix C.

To minimize the required number of agents and tasks for our

mechanism, we can use the subsampling idea in the remark after

Theorem 5.3. Formally, given small enough ϵ > 0 and α ≤ α∗, there

exists n0 = O
(
max

{
(α∗ − α)−2 log 1/ϵ,

(
d−2r + α

−2
log 1/ϵ

) 1

2

})
where dr =

1

8
minx,y Γy,x min

{
4,miny,y′ DKL(Γy ; Γy′)

}
, such that

if n > n0,m > d−2r α2 n3
0
, we have an ϵ-informed truthful mecha-

nism.

Furthermore, we also provide a black-box reduction for Mech-

anism 3. The main difference is that in addition to the black-box

batch learning algorithm, we write the latent label recovery algo-

rithm in a black-box form. The details of the subsampling trick and

the black-box reduction are provided in Appendix C.4.

6.2 Mechanism details
Our mechanism (Mechanism 3) has three stages.

(1) Estimate the parameters of the DS model (w, Γ) from agents’

report profile X̂ .

(2) For each task s ∈ [m] infer the latent label ỹs based on the

reports {X̂i,s }i ∈[n].
(3) Finally, pay each agent with the empirical estimation of

termwise mutual information between her reports and the

estimated latent labels.

In the first stage, we estimate the parametersw and Γ robustly. First,
we observe that to recover the parameters w and Γ, it suffices to

estimate the moments of the distribution P . [26] The first moment

M1 is the marginal distribution of one agent’s signal where (M1)x =∑
y wyΓy,x for all x ∈ X, and the second and third moments are

(M2)x1,x2 :=
∑
y

wyΓy,x1Γy,x2 for all x1,x2 ∈ X (9)

(M3)x1,x2,x3 :=
∑
y

wyΓy,x1Γy,x2Γy,x3 for all x1,x2,x3 ∈ X, (10)

where M2 is the probability of two agents’ signals and M3 is the

probability of three agents’ signals. Because M2 andM3 are distri-

butions on a finite space (X2
and X3

respectively), we can use a

robust batch learner (Theorem 3.2) for density estimation to derive

estimations M̃2 and M̃3 for second and third moments respectively.

Algorithm 1 shows how to use the L
batch

algorithm to estimate

the second moment M2. The idea is very similar to Mechanism 2

in section 5. The algorithm ofM3 can be defined similarly. These

moments are indeed density functions on finite domains. Therefore,

with a careful decomposition of tasks, we can use a robust density

estimation algorithm for batch learning setting [22], to derive esti-

mations of the moments and offset the adversary’s attack. Thus, as

the number of tasksm increases, the error between (w̃, Γ̃) and the

real parameter (w, Γ) vanishes.
In the second stage, with accurate parameters (w̃, Γ̃), we can use

maximum likelihood estimator to infer the latent label for each

tasks ŷs for each s in [m]. If the fraction of adversaries α is smaller

than some constant α∗, which depends on the parameters of DS

model (w, Γ), we can recover latent labels for all tasks with high

probability when the number of agents n is large enough.

Finally, in the third stage, for each agent i ∈ [n] we use the

empirical estimation of the termwise mutual information between

her reports X̂i and the estimated latent labels Ŷ .

MECHANISM 3: Mechanism for symmetric DS model

Input: Agents’ reports X̂ onm tasks

Randomly partition agents [n] into three groups {G0, G1, G2 } with

size at least ⌊n/3⌋ and tasks [m] into {TL, TR } with size at least

⌊m/2⌋ which partition the reports into six blocks:

X̂ (д,h)
:= {X̂i,s : i ∈ Gд, s ∈ Th } for д = 0, 1, 2 and h = L, R .

for д ∈ {0, 1, 2} do // Estimate the parameters

Estimate the second and the third order moments M̃ (д)
2

∈ R|X|×|X|

and M̃ (д)
3

∈ R|X|×|X|×|X|
defined in (9) and (10) by running the

robust batch learning algorithm L
batch

(in Theorem 3.2) on

X (д,L)
.

Compute the whitening matrix Q ∈ R|X|×|Y|
where

M̃ (д)
2

(Q, Q ) := Q⊤M̃ (д)
2

Q = I |Y| ∈ R
|Y|×|Y|

.

Use the robust tensor power method to compute

eigenvalue-eignevector pairs {(λy, vy ) : y ∈ Y} of the

whitened tensor M̃ (д)
3

(Q, Q, Q ). Then compute w̃ (д)
y = λ−2y and

Γ̃
(д)
y = λy (Q⊤)−1vy ∈ R|X|

.

Set w̃ (д) ∈ ∆Y and Γ̃(д) ∈ R|Y|×|X|
naturally combine the w̃ (д)

y

and the Γ̃
(д)
y respectively.

for д ∈ {0, 1, 2}, s ∈ TR do // Estimate the latent labels

Estimate the latent label of task s , Ỹ (д+1) (mod 3)
s with a maximum

likelihood estimator using the parameters from group Gд ,

(w̃ (д), Γ̃(д)), and reports from group Gд+1 (mod 3),

{X̂ j,s : j ∈ Gд+1 (mod 3) },

Ỹ (д+1 (mod 3))
s = argmax

y∈Y

log w̃ (д)
y +

∑
j∈Gд+1 (mod 3)

log Γ̃
(д)
y, x̂j,s

 . (11)

for i ∈ [n] do // Compute the payment for each agent

Set Ỹ = Y (д)
when i ∈ Gд+1 (mod 3)

Compute and pay agent i with the empirical total variational

distance mutual information �twMI from the at least ⌊m/2⌋

samples {(X̂i,s , Ỹs ) : s ∈ TR } in X × Y.

Recall that for our RIMF, we desire that 1) the robust latent label

recovery algorithm r only requires signals on one task as input,

but 2) we may use other signals to learn the latent label recovery

algorithm and use this fixed function to recover the latent variable

of each tasks.

In order to achieve these, we need to decompose the agents into

three groupsG0,G1, andG2. We also decompose the tasks into two

blocks: TL and TR . We use TL to estimate the parameters (w, Γ),
and recover the latent labels for tasks in TR . Thus, agents’ reports
X̂ ∈ Xn×m

are decomposed into six blocks. In Figure 2, we use an

example to show how to use this decomposition in our mechanism.

7 CONCLUSION AND FUTUREWORK
We provide a framework (RMIF) for the design of informed truthful

mechanisms that uses robust learning algorithms to thwart adver-

sarial attacks. This can be used to understand which properties of
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Figure 2: Suppose agent i is in G2 and we want to recover a
latent label of task s ∈ TR to pay agent i: The mechanism
consists of three stages: 1) We use reports in gray area (tasks
in TL from agents in G0) to obtain estimate (w(0), Γ(0)). 2) To
infer the latent label Ỹ (1)

s for task s ∈ TR , we applymaximum
likelihood estimator on reports in dark orange area (group
G1), with estimated parameters (w(0), Γ(0)) from stage 1. 3) Fi-
nally, we pay i ∈ G2 the empirical estimate of the termwise
mutual information between her reports in dark blue area
({X̂i,s : s ∈ TR }) and the estimated latent labels {Ỹ (1)

s : s ∈ TR }.

ALGORITHM 1: Algorithm for moments M2

Input: An α̃ -corrupted reports X̂ ∈ ΩnL×mL

Let k2 =mL/
(nL
2

)
and B = {ι = (i, j) : i < j ∈ [nL ]}. ;

// Generate
(nL
2

)
batches B and each batch has k2 samples

for ι ∈ B do
Set Xι = ∅ and lι = |Xι |.

for s ∈ [mL ] do
while pick ι = (i, j) ∈ B randomly do

if lι < k2 then
lι = lι + 1;
X(i, j ),lι = (X̂i,s , X̂ j,s );

break;
Run L

batch
on {Xι : ι ∈ B } and output a distribution M̃2 on Ω2

;

robust learning algorithms are useful for information elicitation

from rowdy crowds. In particular, under two commonly used set-

tings, we provide three mechanisms based on our framework to

show that both robust recovery of joint distributions and robust re-

covery of latent variables lead to asymptotically informed truthful

mechanisms for rowdy crowds.

The current paper focuses on handling the setting with strategic

and adversarial agents and the truthful guarantee is the informed

truthfulness. In future work, we believe it is possible to achieve

even stronger truthfulness guarantees by considering the existence

of honest agents or mechanisms in Schoenebeck and Yu [23]. More-

over, in this paper, our truthfulness guarantee only considers pay-

ments to strategic agents. An interesting future direction is to study

how to detect and punish adversarial agents.
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2014). arXiv:1406.3824 [stat.ML]

A PROOF OF ROBUST MUTUAL
INFORMATION FRAMEWORK

By Definition 2.2, there are three steps to prove ϵ-informed truth-

fulness. We first show that truth-telling is an approximate BNE,

where any agent who deviates from truth-telling cannot achieve

an extra payment larger than ϵ . Suppose all other rational agents
report truthfully. Agent i’s expected payment under strategy σ ′

i is

uP,Li (σR\{i },σ
′
i ,σA ) ≤Ef ∼F [twMI(Xi ; f (X−i ))] + ϵ2 (Eq. (3))

≤uP,Li (τR ,σA ) + ϵ1 + ϵ2 (Eq. (2))

Therefore, the truth-telling strategy profile is an (ϵ1 + ϵ2)-BNE.
Next, we show that the truth-telling strategy profile is paid ap-

proximately the highest by similar derivations.

uP,Li (σR ,σA ) ≤Ef ∼F [twMI(Xi ; f (X−i ))] + ϵ2 (Eq. (3))

≤uP,Li (τR ,σA ) + ϵ1 + ϵ2 (Eq. (2))

Finally, we show that the truthful equilibrium is paid strictly

higher than any uninformed strategy profile. Note that any unin-

formed strategy profile is equivalent to the situation that agents

receive uninformative signals but report truthfully. Thus, for an

arbitrary uninformed strategy profile θR (for rational agents), it’s

equivalent to say the agents receive the signals that are all zeros

while reporting truthfully, i.e. θi (Xi ) = τi (0). Thus,

uP,Li (θR ,σA ) ≤Ef ∼F [twMI(0; f (X−i ))] + ϵ2 = ϵ2
(by Eq. (2) and uninformed strategy)

Moreover, we require the prior is permissible (Eq. (4)), so that

ϵ1 + ϵ2 < Ef ∼F [twMI(Xi ; f (X−i ))], and thus,

ϵ2 < Ef ∼F [twMI(Xi ; f (X−i ))] − ϵ1 ≤ uP,Li (τR ,σA )

where the second inequality is by Eq. (2). Putting this together with

Eq. (4), we have that uP,Li (θR ,σA ) ≤ ϵ2 < uP,Li (τR ,σA ).

B PROOF OF THEOREMS IN GENERAL
SETTING

B.1 Proof of Theorem 5.2
By Eq. (5), we aim to upper bound the expected difference between

the estimated termwise mutual information �twMI and the ground

truth twMI. First, we break this difference into three terms. Then,

we derive the upper bound of the three terms separately.

To simplify notation, we define �twMIi j := �twMI(σi (Xi );σj (X j )),

E
[�twMIi j

]
= EX ,σi ,σj

[�twMI(σi (Xi ),σj (X j ))
]
, and E

[
twMIi j

]
=

EX ,σi ,σj

[
twMI(σi (Xi ),σj (X j ))

]
.

Suppose i is rational, we can bound the left hand of Eq. (5) as

���Ej∈[n]\{i } [
E

[�twMIi, j

] ]
− Ej∈R\{i }

[
E

[
twMIi, j

] ] ���
≤

1

n − 1

������∑j∈A E
[�twMIi, j

] ������ + 1

n − αn − 1

������ ∑
j∈R\{i }

(
E

[�twMIi, j

]
− E

[
twMIi, j

] )������
+

αn
(n − 1)(n − αn − 1)

������ ∑
j∈R\{i }

E
[�twMIi, j

] ������ . (12)

This inequality follows directly from separating the summations

and use triangle inequality.

We derive the upper bound of the above three terms separately.

As for the first, though we have no knowledge of what the adver-

sarial agents can do, we know that the total variation distance of

two distributions is always between 0 and 1. Therefore, we know

that the first term in Ineq. 12 is upper bounded by
n

n−1α . Similarly,

because there are n−αn−1 rational agents, we can derive an upper

bound for the third term which is also
n

n−1α .
To bound the second term, we have to derive the upper bound

of

����twMIi, j − twMIi, j

��� for rational agents.
We first note that the difference

����twMIi, j − twMIi, j

��� is less than
1

2

∑
(x,y)∈X2

��P̃i j (x ,y) − Pi j (x ,y)
��+1

2

∑
(x,y)∈X2

��P̃i (x)P̃j (y) − Pi (x)Pj (y)
��

(13)

Also, notice that the second term in Eq. (13) can be bounded as∑
(x,y)∈X2

��P̃i (x)P̃j (y) − Pi (x)Pj (y)
��

=
∑

(x,y)∈X2

���(P̃i (x) − Pi (x)
)
P̃j (y) +

(
P̃j (y) − Pj (y)

)
Pi (x)

���
≤

∑
x ∈X

��P̃i (x) − Pi (x)
�� + ∑

y∈X

��P̃j (y) − Pj (y)
��

(14)

Therefore, in order to bound

����twMIi, j − twMIi, j

���, we only have

to bound the error of the estimated marginal distribution and the

estimated joint distribution. Here, we use a standard result that any

distribution with finite domain Ω is learnable within total variation

distanced andwith 1−δ probability inO
(
|Ω |+log(1/δ )

d2

)
samples. [9].

Therefore, we can learn the joint distribution with an error bounded

by ϵ and probability 1−δ withO
(
|X |2+log(1/δ )

ϵ 2

)
samples. Similarly,

we can learn the marginal distribution with an error bounded by

ϵ/2 and probability 1−δ withO
(
4 |X |+4 log(1/δ )

ϵ 2

)
samples. Since we

consider |X| as a constant, whenm = O
(
log(1/δ )

ϵ 2

)
the following

two upper bounds hold with probability 1 − δ .∑
(x,y)∈X2

��P̃i j (x ,y) − Pi j (x ,y)
�� ≤ ϵ , and

∑
x ∈X

��P̃i (x) − Pi (x)
�� ≤ ϵ

2

.

Combining these two bounds with Eq. (13) and Eq. (14), we know

that

����twMIi, j − twMIi, j

��� ≤ ϵ (with probability 1 − δ ). Furthermore,

we know that

����twMIi, j − twMIi, j

��� is upper bounded by 1 always

holds since both �twMIi, j and twMIi, j belong to [0, 1]. Therefore,
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Ineq 12 can be further written as���Ej ∈[n]\{i } [
E

[�twMIi, j

] ]
− Ej ∈R\{i }

[
E

[
twMIi, j

] ] ���
=

2n

n − 1

α(1 − (1 − δ )ϵ − δ ) + (1 − δ )ϵ + δ = 2(1 +
1

n − 1

)α + ϵ + δ .

Then, what’s left is to rewrite the error ϵ + δ in terms of m.

Furthermore, we want both ϵ and δ are asymptotically equal to

zero asm is large. We know thatm = O(− logδ/ϵ2). An intuitive

way is to set δ = O(1/m) and ϵ = O(
√
logm/m). Thus,���Ej ∈[n]\{i } [

E
[�twMIi, j

] ]
− Ej ∈R\{i }

[
E

[
twMIi, j

] ] ���
≤2(1 +

1

n − 1

)α +O

(√
logm

m

)
. (15)

Therefore, combining Eq. (15) with Corollary 5.1, Mechanism 1

is

(
4(1 + 1

n−1 )α +On

(√
logm/m

))
-informed truthful.

B.2 Proof of Theorem 5.3
To show that Mechanism 2 is asymptotically informed truthful,

we will show the error of the inform truthfulness, denoted as ϵ ,
is asymptotically decreasing in n andm. With the batch learning

algorithm introduced in Theorem 3.2, we will prove ϵ = O(α/
√
K),

where K = ⌊m/(n − 1)⌋. To do so:

First, for a given rational agent i , the joint distributions between
σi (Xi,s ) and σj (X j,s ) are the same for all j ∈ R\{i} and s ∈ [m], and

we denote this as simply Qi,∗. We use Q̃i,∗ to denote an estimation

ofQi,∗ learned byLbatch
with adversarial reports. Moreover, we use

Ri,∗ to denote the product of marginal distributions computed from

Qi,∗, i.e. Ri,∗(x ,y) =
∑
z∈X Qi,∗(x , z) ·

∑
w ∈X Qi,∗(w,y). Similarly,

R̃i,∗ is an estimation of Ri,∗ computed from Q̃i,∗.

Following the idea of Corollary 5.1, we want to upper bound

the difference between the expected payment (Eq. (8)) and the

underlying twMI, i.e. the left hand of Eq. (5). This difference can be

rewritten as follows.���EX ,σR,σA

[
Li (X̂ )

]
− Ej∈R\{i }

[
EX ,σi ,σj

[
twMI(σi (Xi ), σj (X j ))

] ] ���
=
1

2

������EX ,σR,σA

] |Q̃i,∗(x, y) − R̃i,∗(x, y) | −
∑

x,y∈X

|Qi,∗(x, y) − Ri,∗(x, y) |

������

Thus, in order to prove the theorem, it is sufficient to prove the

following equation.������ ∑
x,y∈X

|Q̃i,∗(x, y) − R̃i,∗(x, y) | −
∑

x,y∈X

|Qi,∗(x, y) − Ri,∗(x, y) |

������ = O
(
α
√
K

)
.

The upper bound of the estimation error of Q̃i,∗(x ,y) can be

obtained directly from the results of L
batch

[22]. Let ϵ = α√
K
. From

the results of L
batch

(Theorem 3.2), we know that if every agent

is symmetric and n = O((|X| + K + log(1/δ )) /α2), where X is the

signal space,K is the size of each batch (in our caseK = ⌊m/(n−1)⌋),
and δ ∈ (0, 1), then with probability at least 1 − δ the error of

learning the joint distribution isO (ϵ), i.e.
��Qi,∗(x ,y) − Q̃i,∗(x ,y)

�� =
O (ϵ) for ∀x ,y ∈ Ω. Next, we want to derive the upper bound of

the error of R̃i,∗(x ,y).

Claim B.1. |R̃i,∗(x ,y) − Ri,∗(x ,y)| = O(ϵ).

Since R̃i,∗(x ,y) =
∑
z∈X Q̃i,∗(x , z) ·

∑
w ∈X Q̃i,∗(w,y). The claim

is true because every Q̃i,∗ is at most O(ϵ) away from Qi,∗, and |X|

is considered as constant.

Thus, we have a upper bound of the error of the product of

marginal distributions which is also O(ϵ). Now, we can write the

average M̃I as∑
(x,y)∈X2

|Q̃i,∗(x, y) − R̃i,∗(x, y) | =
∑

(x,y)∈X2

��Qi,∗(x, y) − Ri,∗(x, y)
�� ±O (ϵ ).

Note that the above derivation holds with probability 1 − δ .
However, by the same argument in section B.1, we know that with

(the other) probability of δ , the payment is bounded at 1. Therefore,

by increasing n, we can make δ arbitrarily small and the difference

between the expected payment and the expected underlying twMI

is bounded by O( α√
K
). Then combining this with Corollary 5.1, we

complete the proof.

B.3 Optimizing Parameters for Symmetric
Priors

We focus now on minimizing the parameters n and m. First, we

can randomly select a small number of agents, pay those selected

agents according to our mechanism, and pay the rest of agent zero.

Second, we use the batch learning algorithm as a black box for

the design of our mechanism, such that the truthfulness guarantee

of our mechanism can be improved with any improvement in the

batch learning algorithm. Finally, we integrate these two parts and

rewrite Theorem 5.3 with a proof.

For the first part, note that the only requirement on the size

of selected agents is the fraction of adversary in the group is ap-

proximately equal to the original fraction α with high probability.

Therefore, the size of the selected group is depending on the error

and independent of the total number of agents n. Consequently,
the number of tasksm required is only depending on the error and

independent of n.
Now, before we rewrite a new version of Theorem 5.3, we define

the black-box version of the batch learning algorithm.

Definition B.2. Black-box Batch learning algorithm (αb ,hb ,ψb ):
If the fraction of adversarial agents is upper bounded, i.e. α < αb ,
δb ∈ (0, 1), ϵb > 0 and the size of each batch kb = Ω(hb (α , ϵb )).
There exists an nb = O(ψb (α ,δ ,kb )) where nb batches of samples

of which a (1−α) fraction of batches consists of kb i.i.d. draws from

a distribution P with support Ω (|Ω | is considered to be a constant),

there is an algorithm L
b
that returns a distribution P̃ such that

∥P − P̃ ∥TV = O(ϵb )

with probability at least 1 − δb .

Any batch learning algorithm can be written in this form with

three parameters, i.e.αb , the upper bound of the adversarial fraction,
hb , a function of α and ϵb that determines the requirement of the

size of batch to achieve error ϵ , andψb , a function that determines

the lower bound of the number of batches. Now, we are ready to

write Theorem 5.3 in a black-box form.

Theorem B.3. Given a batch learning algorithm Lb with pa-
rameters (αb ,hb ,ψb ), in general RowdyCrowds(P,α) setting with
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symmetric prior and strategies, α < αb , then, there exists an n∗ =

O
(
max

{
log 1/ϵ ∗

(αb−α )2
,ψb (α , ϵ

∗,hb (α , ϵ
∗))

})
, such that if n > n∗ and

m > hb (α , ϵ
∗)n∗, an O (ϵ∗)-informed truthful mechanism exists.

The proof is mostly identical to Theorem 5.3. We omit the proof

due to space constrain.

Theorem 5.3 is a special case of Theorem B.3 using L
batch

(The-

orem 3.2) as Lb . We can recover Theorem 5.3 by setting αb =
α
batch

= 1/900, hb (α , ϵb ) = α
2/ϵ2b ,ψb (α ,δ ,kb ) = (kb + log 1/δ )/α

2
.

This leads to an n∗ = O

(
max

{
log 1/ϵ ∗

(α ∗−α )2 ,

((
1

ϵ ∗
)
2

+
log 1/ϵ ∗

α 2

)})
, and

the requirement onm becomes

( α
ϵ ∗

)
2

n∗. This gives us the following
corollary, which is another version of Theorem 5.3.

Corollary B.4. In the general RowdyCrowds(P,α) setting,with
symmetric prior and strategies, α < α

batch
, then, there exists an

n∗ = O

(
max

{
log 1/ϵ ∗

(α
batch

−α )2 ,

((
1

ϵ ∗
)
2

+
log 1/ϵ ∗

α 2

)})
, such that if n > n∗

andm >
( α
ϵ ∗

)
2

n∗, a O (ϵ∗)-informed truthful mechanism exists.

C PROOF OF THEOREM 6.2
With basic understanding of those three stages in Mechanism 3 in

Sect. 6, the proof idea of Theorem 6.2 is straightforward. If we can

estimate the parameters (w, Γ) accurately (Lemma C.2), and recover

all latent labels {Ys : s ∈ TR } correctly (Lemma C.6), we can pay an

agent by the termwise mutual information between her reports and

estimated latent labels, and asymptotically informed-truthfulness

can be derived from Theorem 4.2.

Before we dive into the proof, we first need to control the frac-

tion of adversary agents in all groups G0,G1 and G2. Let α
(д)

be

the fraction of adversary in group Gд where д = 0, 1, 2. Since we

partition the agents after they reports, in RowdyCrowds(P,α) we

can use a Chernoff bound to show α (д) are close to α for all д.

Lemma C.1. Given RowdyCrowds(P,α)withn agents, for all ϵα >

0 and δα > 0, there exists nα = Ω
(
log 1/δα

ϵ 2α

)
such that if n ≥ nα ,

Pr[∀д = 0, 1, 2, |α (д) − α | > ϵα ] ≤ δα .

Now we prove Lemma C.2 and C.6. Due to the symmetry of

Mechanism 3, without loss of generality, we only need to prove

Theorem 6.2 in the perspective of agent i who is in G2.

C.1 Estimate the parameters
In the perspective of agent i inG2, for the first stage, she only cares

about the value of Γ̃(0), w̃(0)
in G0 illustrated in Figure 2.

Lemma C.2. For all positive ϵpara and δpara, let npara
= poly(log 1/δpara, 1/αbatch) where constant αbatch is defined in The-
orem 3.2. In group G0, if the fraction of adversary α (0) ≤ α

batch
/3,

the number of agents in group 0, ⌊n/3⌋ ≥ npara and the number of
tasks |TL | = Ω(ϵ−2

para
n3), there exists a permutation π (0) on Y such

that with probability at least 1 − δpara

max

y
|w̃

(0)
y −wπ (0)(y) | ≤ ϵpara and max

y
∥Γ̃

(0)
y − Γπ (0)(y)∥2 ≤ ϵpara,

where w̃(0)
y and Γ̃

(0)
y are the estimated parameters learned from G0.

The above lemma shows if the number of tasks in TL is large

enough, we can have an accurate estimation ofw and Γ. The proof
of Lemma C.2 consists of two parts: First, Lemma C.3 and C.4

ensure the estimated moments M̃
(0)

2
and M̃

(0)

3
are accurate. Then,

in Lemma C.5, we show the spectral method can approximate the

parameter (w, Γ) when the estimated moments are accurate. We

omit the proof due to the space constrain.

LemmaC.3 (EstimateM2). Let the fraction of adversarial in group
G0 to be α (0) < αbatch/2. For all δ > 0, there exist nL ≥ ⌊n/3⌋ and
mL ≥ ⌊m/2⌋ depending on log 1/δ and α

batch
/2 such that the output

M̃
(0)

2
is close toM2. Formally,∑
x1,x2∈X

|M̃
(0)

2
(x1,x2) −M2(x1,x2)| = O

(
α (0)

√
n2L/mL

)
with probability at least 1 − δ .

The above lemma follows directly from Theorem 3.2. A major dif-

ference is the upper bound of the fraction of adversary is changing

from α
batch

to α
batch

/2. This is because if the fraction of adversarial

agents in group G0 is at most α (0), the fraction of the corrupted

batches in that group is at most 2α (0).
By similar an augment we have the following lemma.

LemmaC.4 (EstimateM3). Let the fraction of adversarial in group
G0 α

(0) < α
batch

/3 be a constant. For ∀δ > 0, there exist nL ≥ ⌊n/3⌋
andmL ≥ ⌊m/2⌋ depending on |X|, log 1/δ and α

batch
/3. There is

an algorithm that outputs M̃3 close toM3. Formally,∑
x1,x2,x3∈X

|M̃
(0)

3
(x1,x2,x3) −M3(x1,x2,x3)| = O

(
α (0) ·

√
n3L/mL

)
with probability at least 1 − δ .

The following lemma shows if the estimated M2 and M3 are

accurate, we can recover (w, Γ) accurately.

Lemma C.5 (Lemma 4 [4]). There exists a constant K depending
on Γ andw , such that for all ϵ1 ≤ 1/2, if ∥M̃(0)

2
−M2∥op and ∥M̃

(0)

3
−

M3∥op
4 are both less than Kϵ1, there exists a permutation π on latent

labels Y such that

max

y
|w̃

(0)
y −wπ (y) | ≤ ϵ1 and max

y
∥Γ̃

(0)
y − Γπ (y)∥2 ≤ ϵ1.

C.2 Infer the latent labels
For the second stage, we simply compute the most likely label given

the parameters and the reports (of the appropriate group of agents).

For lemmas below, we consider agent i in groupG2 and a tasks j
inTR . The proof is by a union bound and Chernoff bound argument.

We omit the proof here due to space constrain.

Lemma C.6. Given a symmetric DS model with parameter (w, Γ),

recall that γDS =
miny,y′ DKL (Γy ;Γy′ )

4maxy,x | log Γy,x |
, and ϵkl =

1

8
minx,y Γy,x

min

{
4,miny,y′ DKL(Γy ; Γy′)

}
. If Γ̃(0) is accurate wheremaxy ∥Γ̃

(0)
y −

4
Here ifM is a matrix, ∥M ∥op is the operator norm (largest singular value). WhenM
is in RC×C×C

, ∥M ∥op =
1

C
∑
i∈C ∥Mi, ·, · ∥op which is the average operator norm

over all C unfoldings.
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Γy ∥2 ≤ ϵkl , and the fraction of adversaries in G1, α (1), is less than
γDS , then for all s ∈ TR

Pr[Ỹ
(1)
s , Ys ] ≤ exp(−Θ(nL)),

thus, the latent labels for all the tasks are correct with probability
greater than 1 −mL exp(−Θ(nL)).

In Lemma C.5, we can only show the estimation of parameter is

accurate up to some permutation. Therefore, we can only recover

the latent variable Ys accurately up to some permutation. However,

this is sufficient to our mechanism, because the mutual information

is invariant under permutations.

C.3 Proof of Theorem 6.2
To prove the theorem, we need to show our payment in Mech-

anism 3 with the latent label recovery mapping f from reports

Xn′

→ Y is a robust mutual information estimation pair for any
ϵ∗
1
> 0 and ϵ∗

2
> 0 when the number of tasksm and the number of

agents n are large enough. Formally, given a sample X ∈ Xn′

with

the latent label Y ∈ Y from (X,Y,w, Γ), the latent label recovery
mapping f maps X to Y .5

First we show Eq. (2): for any adversary strategy σA ∈ SA , the

expected payment of agent i ∈ R satisfies:

uP,Li (τR ,σA ) = E
X ,τR,σA

[
Li (X̂ )

]
≥ Ef ∼F [twMI(Xi ; f (X−i ))]−ϵ

∗
1
.

Let E be the event that the estimation Ỹs is equal to the latent label
Ys for all s ∈ TR up to a permutation π on Y,

E := {∃π ,∀s ∈ TR , Ỹ
(1)
s = π (Ys )}.

When E happens, the latent labels are all correctly recovered up

to some permutation π . Mechanism 3 approximately pays agent

i with the termwise mutual information between her reports and

latent labels, twMITV(Xi ;Y )−ϵ
∗
1
/2whenm is large enough because

the termwise mutual information is invariant under permutation.

On the other hand, if the event E fails, agent i loses at most 1,

because the termwise mutual information is bounded by 1.

Therefore, to complete the proof of Eq. (2), we only need to prove

Claim C.7.

Pr[E] ≥ 1 − ϵ∗
1
/2 (16)

We can show this by taking n and m large enough and using

union bound on Lemma C.1, C.2 and C.6. Due to space limit, we

omit the details here.

Now we show Eq. (3) is satisfied: for all σR and i

uP,Li (σR ,σA ) = E
X ,σR,σA

[
Li (X̂ )

]
≤ Ef ∼F [twMI(Xi ; f (X−i ))]+ϵ

∗
2
.

Recall that agent i is in group G2. Regardless of the value of Γ̃,
Eq. (11), is a function of reports in group G1. Therefore, by data

processing inequality, fix an arbitrary Γ̃ the mutual information

between Ỹ (1)
in Eq. (11) and i’s report is smaller than the mutual

5
Such mapping is not well-defined since we cannot always recover the latent label

from a finite number of signals. However, as we show in the results, it is sufficient to

approximately recover the latent label which is possible as the number of signal is

large enough.

information between the reports in group G1 and i’s reports. Let
˜fΓ̃ denote such mapping, and we have

twMI(Xi ; ˜fΓ̃(XG1
)) ≤ twMI(Xi ;XG1

) ≤ twMI(Xi ;X−i ).

Moreover, because {Xi,s }i are mutually independent conditional

on the latent variable Ys for all s , by data processing inequality

twMI(Xi ;X−i ) ≤ twMI(Xi ;Y ) ≤ twMI(Xi ; f (X−i )) + ϵ
∗
2
/2

where the last inequality comes from rerunning the above argument

so that f (X−i ) = Yi with probability 1 − δ where δ < ϵ∗
2
/2. Finally,

by Lemma 3.1, we complete the proof by takingm large enough

such that for any Γ̃

uP,Li (σR ,σA ) ≤ twMI(Xi ; ˜fΓ̃(XG1
)) + ϵ∗

2
.

C.4 Parameter Optimization for Symmetric DS
Model

Similar to Appendix B.3, here we have three steps to optimize the

parameters. First, by Lemma C.1, n should be lower bounded such

that we can randomly select a small number of agents so long as the

fraction of adversarial agents in it is basically unchanged. Second,

if n andm satisfy the requirements of the black-box batch learning

algorithm (Definition B.2), it can guarantee the parameters of the

symmetric DS model will be recovered with small error. Third,

we write the latent label recovery algorithm in Appendix C.2 as a

black box, which leads to an additional requirement on n andm.

Integrating these three parts together, we rewrite Theorem 6.2 in

terms of the black-box parameters and n andm can be optimized.

Definition C.8. Black-box DS model latent label recovery algo-

rithm (αr ,dr ,ψr ):
Given a symmetric DS model with parameter (w, Γ), let αr and dr
be the parameters given by the algorithm, which could be func-

tions ofw, Γ. Suppose for any task, there are nr samples of which

a (1 − α) fraction are i.i.d. draws from the distributionwyΓy given

the latent label of that task is y, while the remaining α fraction are

adversarialy controlled. If α < αr , given an estimation of Γ, Γ̃, such
that maxy ∥Γ̃y − Γy ∥2 ≤ dr , nr = Ω(ψr (ϵr )) andmr = o(1/ϵr ) then
there is a recovery algorithm Lr s.t. the latent label of any task

s ∈ [mr ] can be recovered with probability at least 1 −O(ϵr ).

As an example, we use the maximum likelihood estimation in

the previous proof which serves as a special case of this black box

algorithm. Here, αr is the upper bound of the fraction of adversaries
required by the algorithm. The input of the latent label recovery

algorithm is an estimation of the distribution Γ. The upper bound of
the tolerance of the error of the input distribution is denoted as dr .
Finally,ψr determines the lower bound of the number of samples.

Now, we write Theorem 6.2 in the black-box form.

Theorem C.9. Given a batch learning algorithm L
b

with
parameters (αb ,hb ,ψb ), and a DS model latent label recov-
ery algorithm Lr with parameters (αr ,dr ,ψr ), let α∗ =

min{αb/3,αr }. For RowdyCrowds(PDS ,α) setting on the sym-
metric DS model, if α ≤ α∗, there exists an n∗ =

O
(
max

{
log 1/ϵ ∗

(α ∗−α )2 , (ψb (α , ϵ
∗,hb (α ,dr )))

1

2 ,ψr (ϵ
∗)

})
, such that if n >

n∗, m > hb (α ,dr )(n
∗)3 and m = o(1/ϵ∗), then we have a O(ϵ∗)-

informed truthful mechanism.
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The proof is basically identical to the proof of Theorem B.3, and

we omit it for space constrain.

Using L
batch

(Theorem 3.2) as Lb and the maximum likelihood

estimator as Lr , we can recover Theorem 6.2. Let αb = αbatch =
1/900, hb (α , ϵb ) = α2/ϵ2b , ψb (α ,δ ,kb ) = (kb + log 1/δ )/α2, and

αr = γDS , dr = ϵkl , ψr (ϵr ) = log 1/ϵr , where γDS and ϵkl are
defined in Lemma C.6. Plugging these in Theorem C.9 we obtain

the following corollary, which is another version of Theorem 6.2.

Corollary C.10. Let α∗ = min{α
batch

/3,γDS }. Then, for any
RowdyCrowds(PDS ,α) setting on the symmetric DS model, if α ≤ α∗,

there exists an n∗ = O
(
max

{
log 1/ϵ ∗

(α ∗−α )2 ,
(
1

d2

r
+

log 1/ϵ ∗

α 2

) 1

2

})
, such that

if n > n∗,m >
(
α
dr

)
2

(n∗)3 andm = o(1/ϵ∗), then we have a O(ϵ∗)-
informed truthful mechanism.
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