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ABSTRACT

Prediction markets are powerful tools to elicit and aggregate be-
liefs from strategic agents. However, in current prediction markets,
agents may exhaust the social welfare by competing to be the first
to update the market. We initiate the study of the trade-off between
how quickly information is aggregated by the market, and how
much this information costs. We design markets to aggregate timely
information from strategic agents to maximize social welfare. To
this end, the market must incentivize agents to invest the correct
amount of effort to acquire information: quickly enough to be useful,
but not faster (and more expensively) than necessary. The market
also must ensure that agents report their information truthfully and
on time. We consider two settings: in the first, information is only
valuable before a deadline; in the second, the value of information
decreases as time passes. We use both theorems and simulations to
demonstrate the mechanisms.
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1 INTRODUCTION

Eliciting information about uncertain events is crucial for informed
decision making. Information is often acquired by individual agents.
To achieve collective intelligence, the key problems are to elicit and
aggregate timely and truthful information from dispersed agents.
Prediction markets (PMs) allow agents to bet on the occurrence
of future events: the outcome of a presidential election, the winner
of a football game, etc. Market prices reflect society’s aggregated
estimate of the outcome. However, prediction markets tend to only
pay the first agent bringing information to the market. For example,
in the market of a tennis match, if one player wins a set, likely the
price of the market will shift dramatically. Because sportscasts are
usually delayed by a few seconds, agents with real-time information
(say with a confederate attending the match) reap the rewards by
trading just seconds before others. This provides little to no societal
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value as the price would be updated seconds later anyhow. This
practice is widespread. People, called “courtsiders”, are paid to
attend sports events and send back real-time information [10, 13].
The US Open ejected 20 spectators for courtsiding and banned them
from future events [24]. While this information is useful to those
profiting from it, it is hardly more than a waste of money and time
for our society.

The importance of speed in trading on information is under-
scored by the infamous $300 million, 827 mile fiber optic cable from
New York City to Chicago. The cable reduced the round-trip latency
to 13.1 milliseconds [1] by offering a more direct route, bypassing
Philadelphia, than the previous 1000 mile cable took with round
trip latency 14.5 milliseconds.

We want to design systems that work well for society rather
than promoting speed that is not needed but is merely a byproduct
of the market design. Increasingly, businesses are seen not merely
as profit-maximizing, but as responsible and responsive to their
various stakeholders [25].

Maximizing welfare rather than profit has various economic
motivations as well. To gain market share and maximize long-term
revenue, a company may also want to benefit other companies
that it makes deals with. For example, many sponsored search
auctions maximize welfare instead of revenue [22]. Since profit is a
lower bound of social welfare (when agents’ utility is non-negative),
higher welfare potentially leads to high profit. Welfare-maximizing
auctions and profit-maximizing auctions are shown to be very
close in terms of both welfare and efficiency [2, 7]. In our settings,
though our mechanism maximizes social welfare, its profit is still
high, illustrated in Figure 7.

Apart from social welfare concerns, another potential challenge
with prediction markets is that agents may want to delay reporting
their information to increase their rewards [4, 9, 20]. We show
that in the settings we study, this is still a problem for traditional
prediction markets, and we resolve this problem in our mechanisms.

1.1 Our Contribution

Motivated by the above concerns, we answer the following question:
How to aggregate timely and truthful information to maximize
social welfare?

We formulate the process as a principal-agent problem. The
principal first suggests a contract which maps agents’ reports to
rewards. Then each agent decides his hidden actions (how much
effort and how to report) strategically to maximize his utility. The
principal knows neither agents’ actions nor the relation between
agents’ actions and quality of information. This makes our problem
different from those in standard contract theory. To resolve this,
we design two new markets to maximize social welfare under the
following two settings.
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In the single batch setting, a principal needs to decide by a
particular deadline. To maximize social welfare, the principal needs
to incentivize agents to invest the correct cost. Agents’ costs are
hidden, and they can misreport. For this setting, we propose the
Fair Prediction Market (FPM, Mechanism 1), in which the expected
reward for every truthful agent is the same.

In the sequential setting, the value of information decreases as
time passes. Besides dealing with agents’ hidden costs and misre-
porting behaviors, the principal also needs to encourage timely
reports. We propose the Marginal Value Prediction (MVP) Market
(Mechanism 2), in which every agent is paid by his contribution to
the value of information.

Compared to the traditional prediction market, our mechanisms
have more desirable properties, as shown in Table 1.

Table 1: Comparing the traditional prediction market (PM)
and our mechanisms.

PM FPM MVP Market
Timing sequential single-batch  sequential
Truthfulness v v v
Timeliness N.A. v
Social Optimality v v

1.2 Related Works

One line of works studies when agents should report their signals
in prediction markets [4, 9, 15, 20]. They find that whether infor-
mation will be aggregated quickly depends on agents’ information
structure. Agents will delay reporting if their information is “com-
plementary”, and rush to report if it is “substitutional”. Earlier in
the finance literature, [14, 19, 21] analyze how private information
is disseminated into real financial markets using different models.
The market behavior depends on the numbers of insiders, noise
traders, and market makers.

Chakraborty and Das [8] find that when agents are risk-averse,
the market scoring rule acts as an opinion pool. Agents’ risk aver-
sion avoids the issue that agents will always pull the market price
toward their own belief without ever reaching a consensus. We
do not have this issue because, in our model, agents believe that
the signals of each other are useful and are willing to do Bayesian
updates.

For costly information, if the effort level is binary, it’s well-
known that we can scale the reward to compensate for the cost
of effort. This approach encourages agents to invest effort and in-
creases the liquidity of the prediction [23]. In our paper, we consider
a more complicated setting: The effort level is continuous, and the
relation between agents’ actions and the quality of information
is unknown. Azar and Micali [3] uses contract theory to delegate
computation where acquiring data is costly, but assume the prin-
cipal has some ability to verify the data. Moreover, our goal is to
maximize social welfare, not just collect accurate decisions.

Budish et al. [6] investigate the continuous limit order book mar-
ket and the high-frequency trading arms race. They show examples

1146

AAMAS 2021, May 3-7, 2021, Online

that such arms races induce rents that harm the liquidity of the
market. They propose a frequent batch market which discretizes
the time to mitigate the necessity to be first, and show that the
above-mentioned example does not hold in their new markets.

1.3 Outline.

In Section 2, we provide some basic notations, assumptions, and
definitions; frame the problem we want to solve; and describe how
prediction markets work. In Section 3, we show how prediction
markets may fail to collect timely reports. In Section 4, we pro-
pose Mechanism 1 for the single-batch setting and show that it is
truthful and maximizes the social welfare. In Section 5, we propose
Mechanism 2 for the sequential setting and show that it is truthful,
timely and maximizes social welfare. At last, we present some con-
crete examples to compare our mechanism to prediction markets
in Section 6.

2 PRELIMINARIES

There is a principal and a set of agents N = {1,...,n}.! Let Y
be the outcome space, y € Y be the true outcome, and Y be the
random variable for the outcome. For each agent i € N, let X; be the
private information of agent i, and X; be the set of possible values
of X; where Xj is finite. The principal wants to collect information
from agents to better predict y, and her utility depends on the value
of information.?

2.1 Information Structure

We assume agents’ signals X1, ..., X are i.i.d. conditioning on the
outcome Y. Every agent knows the joint distribution Pr[Xp, Y]. The
principal knows the prior of the outcome Pr[Y], but she may not
know Pr[X} | Y].

Example 2.1. Consider a binary outcome space Y = {0, 1}, and
binary signal spaces X; = {0,1} for all i € N. The prior of the
outcome is given by Pr[Y = 1] = a. There is a noise level § €
[0,1/2) such that each signal is an independent noisy observation
of the outcome Pr[X; =Y] = 1— fforalli € Nandy € {0,1}.
Suppose the principal wants to predict Y and her utility is 1 (1) if
correct (incorrect). Let & = 1/2. If she only knows the prior of the
outcome, her expected utility is 0. However, if all agents collectively
provide their prediction Pr[Y | Xj, ..., Xn], the principal’s utility
is greater than 0. For example, if n = 1, her expected utility is
1-28>0.

2.2 The Mechanism Design Problem

Acquiring signals is costly for agents. Hence, agents may not bother
to invest effort and may misreport their information. The principal
needs to incentivize agents to invest some effort to acquire their
signals, without observing how much effort they actually invest.
Formally, the mechanism has three stages:

(1) The principal publishes a contract which maps reports and
the outcome to payments. Agents accept (or refuse).

'Throughout the paper, we use ‘she’ and ‘he’ for the principal and agents respectively.
%In reality, it could be other people who value the information in the market, use it
to do something outside the market, and then get utility based on the quality of the
information. Without loss of generality, we simply aggregate all such utility into that
of the principal. [11, 16]
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(2) Each agent chooses a hidden effort level and submits a report
to the principal.

(3) The true outcome (that agents are guessing at) is revealed.
The principal rewards each agent according to the contract.

Each agent’s utility is his reward from the principal minus his
effort level. Agents are rational and maximize their expected utility
based on their beliefs over future events. The principal’s utility is
the value of information minus the rewards given to the agents. The
social welfare is the total utility of all agents and the principal.

We want to design mechanisms whose resulting social welfare
equals that in the centralized setting, where every agent’s action is
controlled by the principal. In particular, we hope that the agents
invest the same amount of effort and report just the same as in the
centralized setting.

Throughout the paper, we are only looking for symmetric equi-
librium. This is reasonable since agents’ signals are i.i.d. and they
have no a priori means to coordinate. However, it is important to
know that a non-symmetric strategy profile can be better than a
symmetric one in terms of social welfare. For instance, as shown
in Figure 1, social welfare may decrease as the number of agents
increases, a phenomenon shared across a wide range of economic
models: the tragedy of commons, the game of chicken, etc. In such
cases, if we break the symmetry and only allow a restricted number
of agents to participate, the social welfare will increase.

At each time during the whole process, for each agent, given the
information he has and the strategies of other agents, he has a belief
over all uncertainty — including the randomness of the world and
other agents’ private information. His immediate strategy should
maximize his expected utility given his current information. If a
strategy profile satisfies the above property, it is called a perfect
Bayesian equilibrium.3

We say a mechanism is individually rational if every agent
has non-negative expected utility in every Nash equilibrium.

2.3 Prediction Markets with Scoring Rules

Scoring rules have a very long history [5, 12, 16, 17]. Market scoring
rules were introduced by Hanson [18] to study prediction markets.
A scoring rule for an outcome y is a function S: Ay x Y — R,% so
that S(p, y) is the score assigned to a prediction p when the true
outcome realized is Y = y. Formally,

Definition 2.2 (Proper Scoring Rule). S: Ay x Y — Ris called a
proper scoring rule if for any b,p € Ay,

L sb.1] 2 E[S(p V)]

A proper scoring rule is strict if the equality holds only if b = p. In

other words, reporting one’s belief results in a higher score than
reporting other distributions. Such a report is said to be truthful.

3Here is a more rigorous definition. In an extensive-form game, for each game state h,
let 777 (h) denote its reach probability according to strategy profile o. We simply use
7t (h) if o is clear from the context. For each information set I, let £ (I) = Y,;,c; 7 (h).
Let u? (h) denote h’s expected utility according to o. For each information set I
with 7(I) > 0, let u(I) = Eperlu(h)] = Yperu(h)m(h)/x(I). For a strategy
profile o, let 07—, denote the same strategy profile except the strategy at information
set I is changed to s. A strategy profile o = (o1,...,0,) is a perfect Bayesian
equilibrium if for every information set I with 7(I) > 0, for every strategy s at I,
u?(I) > u%l-s(I).

4Ay is the set of all probability distributions over Y.
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Prediction markets with a scoring rule proceed as follows: A
public belief p € Ay is maintained in the market. Initially, p = po.
Agents can change the market belief arbitrarily, resulting in a belief
sequence po, P1, P2, - - .. After the outcome is revealed, for every
k > 1, the agent who changes py_1 to py is rewarded (or charged,
if negative) by

S(Pk:y) = S(Pk-1.9);
where S is a proper scoring rule.

In prediction markets, if each agent is only allowed to report
once (and they believe other agents are rational), then the reports
will be truthful. In particular, each agent will report his posterior
distribution using the market information as the prior and his
private information as the evidence.

PROPOSITION 2.3. If signals are independent conditioned on the
outcome, then agents can perform a Bayesian update knowing only
the current market belief (and the likelihood of their own signals). In
particular, they need not know the history of updates.

3 LIMITATIONS OF PREDICTION MARKETS

In this section, we show by examples how the original form of pre-
diction markets may perform undesirably: agents may 1) invest too
much effort, which decreases the social welfare, and 2) intentionally
delay their reports.

3.1 Inflated Effort and Poor Welfare

Current theories of prediction markets do not consider agents’ effort
to discover signals: How much effort should an agent invest? For
some easy, accurate information, it would be a waste of resources
if everyone invests a lot.

We model the cost of information by an access function F :
R0 — [0, 1] that maps from an effort level (the cost that an agent
spends) to the probability of getting signals. Each agent i decides
his effort level ¢; and then obtains his signal X; with probability
F(c;). We assume the access function is the same for every agent
as common knowledge but unknown to the principal.

Suppose agents’ signals are structured as in Example 2.1 with
a =1/2and f =0, ie, all X;’s are identical to the outcome and
are exact substitutes to each other. Also, only the first agent who
changes the belief will get one unit of reward, and others will get
zero. In this case, every agent wants to be the first. If multiple agents
get signals, we assume each of them receives the reward with equal
probability since they are symmetric.

Suppose the principal’s value of information is described by a
proper scoring rule S. She needs to choose a proper scoring rule S
for the prediction market. Unfortunately, she is unable to maximize
the social welfare because she doesn’t know the access function
F and the information structure Pr[X | Y] (characterized by f in
this case). We will see in this section that, if she chooses S = S
for prediction markets, the social welfare could be very poor. This
is in stark contrast to the mechanisms we propose later in this
paper, where the social welfare is maximized when S = S, without
the need to know anything about F or Pr[X | Y]. Our results are
summarized in Figure 1.

We consider two examples of access functions and compute
the social welfare of the market as the number of agents increases.
When every agent’s effort is c, social welfare is the total value minus
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Figure 1: Red solid: Optimal (Centralized). Blue dashed: Pre-
diction markets. Top: Linear access function F(c) = 3¢ with
¢ € [0,1/3]. Bottom: Exponential access function F(c) =
1—e73¢ with ¢ > 0. In both (linear and exponential) cases, the
total costs (right column) are high in the strategic setting. In
the linear case, agents spend all potential social value and
have zero social welfare. In the exponential case, the total
cost increases as the number of agents increases.

cost. The value is 1 when at least one agent derives his signal, and
the total cost is cn, so in expectation,

W (¢) = (1= (1-F(c)") —cn. (1)

ProrosITION 3.1 (LINEAR AcCCESs). Givenn > 2, A > 1 and a
linear access function is F(c) = Ac for ¢ € [0,1/A], the optimal
social welfare with n agents is W (") (copt) =1 — A/ (n=1) n(At-
/1_"/("_1)) > 0 in the centralized setting, but the social welfare
wn) (cself) is zero in the strategic setting.

PROPOSITION 3.2 (EXPONENTIAL ACCESS). Givenn > 2,1 > 1
and an exponential access function F(c) = 1 — e~ forc > 0. As
n — oo, the optimal social welfare with n agents is W(”)(copt) =
1—(1+1nA)/A > 0, but the social welfare in the strategic setting is
W (cserp) = O(1/n).

3.2 Delayed Report

Unfortunately, prediction markets do not guarantee timely reports,
i.e., one may wait for others to report. This is undesirable when
the value of information decays quickly. Suppose agents’ signals
are structured as in Example 2.1 with & = 0.02, = 0.2. Consider
the quadratic scoring rule, where we let G(p) = ||p||% and S(p,y) =
G(p) + (VG(p),(Sy —p) =2p(y) — ||p||%. Contrary to the intuition,
the marginal value of a report does not monotonically decrease. As
shown in Figure 2, the largest increase in the scoring rule is due
to the third report, not the first or the second. Thus, an agent who
believes he is likely to be the first will wait before reporting.
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Figure 2: Left: The expected score after k reports. Right: The
expected reward for the k-th report, which is the difference
between two consecutive values in the left plot. Note that it’s
not decreasing!

4 SINGLE BATCH MODEL

We want to design new mechanisms to deal with the above issues.
In particular, we assume the market belief is used by someone
whose utility is the “quality” of the market belief minus the rewards
she gives to the agents. Then, we maximize social welfare and
encourage truthful and timely reports. We first ignore the time
factor and consider a simple case, where each agent i:

(1) chooses to invest ¢; € R much effort,

(2) gets a signal X; with probability F(c;), and reports b; to the
mechanism,

(3) receives some reward r; from the mechanism.

We want to design a reward function (contract) from agents’ re-
ports to rewards in order to maximize the social welfare. If p is the
aggregated belief from agents’ reports, the value of information is
represented as a (strictly) proper scoring rule S(p,y), where y is
the outcome. The principal’s utility U, each agent i’s utility u;, and
the social welfare W, are given by: U = E[S(p, Y)] — >, E[ri], ui =
E[ri]—ci, W = E[S(p,Y)]—-2; ci. Here the expectation is taken over
all randomness (ex-ante), i.e., agents compute it based on the infor-
mation in Stage 1. Note that given the information valuation S and
the information structure, assuming agents are truthful, the ex-ante

social welfare only depends on the agents’ effort ¢ = (c1,...,cn).
We call ¢* an optimal effort profile if
¢ € argmax (p{Ey[sm Nl- el @)

1

where p is the Bayesian posterior of the outcome given all signals.

4.1 Mechanism and Theorem

To incentivize agents to invest the optimal effort, we want to design
a mechanism that, given agents’ reports, outputs an aggregated
belief p € Ay and a reward for each agent. This task is challenging
for two reasons:

e The agents’ efforts cy, ..., ¢, and reports by, ..., b, are de-
cided by each agent individually.

e The joint distribution Pr[X}, Y] and the effort function F(c)
are not known to the principal, and thus naively eliciting

agents’ signals X;. does not work.

Our mechanism is shown in Mechanism 1. Each agent k is
asked to report by, = Pr[Xy|Y =y] for each y € Y (one of
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: . Pr[Y=y|Xi,... Xk-1]
them can be omitted). If the mechanism knows PV 2y %X ]

e ; Pr[Y=y|X;,....Xk]
then it is easy to updated it to DY 7y %]

Pr[Y=y | Xy Xi] _ Pr[Y=y | XiXiot] by
Pr[Y#y | Xi,...Xk] PrY#y | X1,...Xk-1] 1=biy
by applying Bayes to both the numerator and denominator of
the first two fractions, and then using the fact that Xj is con-
ditionally independent of Xi,...,X;_;. As a result, we can up-
date Pr[Y =y|X1,...,Xp_1] toPr[Y =y | X1,..., X}] because we
Pr[Y=y|Xi,... Xk-1]

Pr[Y#y | X1,...Xp-1]’
%, and then transform thisback to Pr[Y = y | Xj, ..
W}e; succinctly denote the above process as py, , = Update(pi_1,y, bk, y)
where

given by , be-

, which follows

cause

can first compute use this and by , to compute

pk,ybk,y
1= pr,y) (1= bry) + P ybry
Xl

Update(p,y, by, y) = ( (3

andpk,y :Pr[Y:y|X1,..

Mechanism 1: Fair Prediction Market

Input: a report profile (b, ..., b,) where
by = (bg1s .., bg q-1) is the information provided
by agent k, describing what the agent k’s (claimed)
values of Pr[Xj | Y = y] for each y. For those who do
not obtain a signal, we assume their by, = 1/2 for
y=1,...,d — 1, whered = |Y|.

Output: the reward ry for each agent k, and the aggregated

belief p,
1 fork=1tondo
2 Let (1, ..., n) be a random permutation with z, = k

3 po < Pr[Y]

4 for j =1tondo

5 fory=1tod—-1do // This loop goes through
every y € Y and update the corresponding
entry of p according to the information
provided by agent ;.

6 ‘ Pjy < Update(pj-1,y, bx;,y) as defined in (3)
7 pj,d(_ 1_2(;;%1)],1,;
8 | 1k < S(Pn.y") = S(Pn-1,y") // y* is the true

outcome

A report is said to be truthful if it results in a Bayesian update on
the market belief, where the prior is the previous market belief, the
posterior is the new market belief, and the evidence is the reporter’s
signal. We pay each agent by his improvement on the market belief
as if he were the last one to update. This mechanism is “fair” in the
sense that if everyone is truthful then everyone receives the same
expected reward.

PROPOSITION 4.1. Agent k makes a correct Bayesian update iff

_ Pr[Xp | Y=y]
bk’y = m]‘orallyey.

Note that if p, ,, is known for [Y| — 1 different y’s, then the last
one follows directly since their sum is 1, so each agent needs to
report only |Y| — 1 values, the same number as in the original pre-
diction market, where each agent reports a probability distribution.
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2
THEOREM 4.2. Assume (fc(f)

rational, and there exists a strict perfect Bayesian equilibrium o in
which the expected social welfare is maximized (over all symmetric
strategy profiles), and o satisfies the following properties:
Effort Optimality The effort profile c is optimal (as in (2)).
Truthfulness Each agent makes a Bayesian update on the mar-
ket belief.

< 0.> Mechanism 1 is individually

4.2 Proof Sketch

In order to proof Theorem 4.2, we first show some lemmas.

LEMMA 4.3 (TRUTHFULNESS). Every report by will be truthful,
assuming other reports are truthful. Any deviation will result in a
strictly worse expected reward.

2
LEMMA 4.4 (EFFORT OPTIMALITY). Assume d (fc(zc) < 0. Agents are

incentivized to invest the “right” amount of effort (2) that maximizes
the expected social welfare, assuming all reports are truthful.

LEMMA 4.5. The expected score E[S(p, Y)] of distribution p only
depends on the number of previous updates but not who have made
updates, assuming all reports are truthful.

Proor oF THEOREM 4.2. Each agent i makes two decisions, and
his strategy can be written as o; = (c;, b;), where c; is the effort he
invests at the beginning and b; is his report. By Lemma 4.4, he will
not deviate from c;. By Lemma 4.3, he will not deviate from b;.

The proof for individual rationality is simple: If in a Nash equi-
librium, agent i gets negative expected utility, then he can deviate
to ¢; = 0 and get zero utility. This means he is not in a Nash equilib-
rium. Thus in every Nash equilibrium, every agent has non-negative
expected utility. O

Below is the proofs of the lemmas. Lemma 4.4 is perhaps the
most interesting among the three.

Proor oF LEMMA 4.3. Assuming other reports are truthful, for
avery agent k, we have p,_1 = Pr[Y | all signals except agent k’s].
By the property of strictly proper scoring rule, his best strategy is to
make p, = Pr[Y | all signals] for every possible p,_1. Any deviation
will lower his reward. This is achievable due to Proposition 2.3. O

ProoF oF LEMMA 4.4. Since agents are symmetric to each other,
we look for a symmetric equilibrium, where every agent i invests
the same amount of effort ¢; = c. Let vp = E[S(pg,Y) — S(po, V)],
the expected increase of the score after k updates.

The expected social welfare is given by:

W =E[S(pr, Y)] — nc = E[vg] + E[S(po, Y)] — nc.
Setting the derivative to be zero, we have

dw d
O—E—&E[Uk]—n

dF(c) d n . .
dc dF(c) kZ:;) (k)F(C) (1=F(e))* “og —n

_dF(C) 4 n k-1 _ n—k
== I;)(k)(km (1 - F(c))

5decreasing marginal benefit, a very common assumption in economics.
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~ (= RF(©*(1 = F(©)"* o~ n

_dF(c) o (n-1 k=14 _ n—k
- &0 n(;(k—l)m) (1= Fe)" o
substitute k by k + 1
n-1
(" - F<c>>"—’<—1uk) “n
k
k=0
dF

=n

n—1
d(cC) kZ:(:) (n k 1)F(C)k(l = F()" ™ (01 — o) — . (4)

On the other hand, the expected utility of agent i is
u; = Pr[get signal] E[reward | agent i reports] — cost

= F(c;) . E Y[S(pk, Y) — S(pr_1,Y) | agent i reports] — ¢;
X1 Xy

= F(cj) IE[Uk — vp_1 | agent i reports] — ¢;

n—1
=F(e) ), ( P 1)F(c)’f(l = F(O)" ™ g = 0g) = i
k=0

where c is the amount of effort invested by other agents. Because
F(c;) is concave in cj, u; is also concave in ¢;. We also know that
F(ci) is upper bounded (by 1), so lim¢, »c0 dF(c;)/dc; = 0 and
thus lim¢, 00 du;/dc; = —1. Therefore, there is a unique ¢; that
maximizes the utility, which is either (a) ¢; = 0 or (b) the point with
zero derivative. In case (b), we have

dF ; n-1 _ N
d(c(: : kZ:;) (" k 1)F(C)k(1 —F(e)" ™ (041 —0p) ~ 1.

®)
Equation (5) describes how an agent’s decision c¢; should best re-
sponse to those of others c. In a symmetric equilibrium, ¢; = c.
Then, surprisingly, Equation (5) becomes equivalent to Equation (4).
In case (a), both individually optimal and socially optimal solutions
are ¢; = 0. In other words, the distributed maximization of each
agent’s utility can result in the maximization of social welfare. O

_ dui _
- -

PRrRoOOF OoF LEMMA 4.5. Since signals are identically distributed
and the effort function is the same for every agent, an agent is
indistinguishable from another. The lemma simply follows. O

5 SEQUENTIAL MODEL

In this section, we consider a setting that involves time. Its difference
from the setting of the previous section is that signals are not
received by agents immediately but will be eventually. Formally,
before receiving signal X;, each agent i suffers from a latency T;,
which is a random variable with c.d.f. F;(t). For instance, F.(t) =
1 - e~ means T; ~ Exp(Ac;). Here, F(t) — a generalization of
the access function F(c) used in the previous section — depends on
time. In summary, each agent i € N:

(1) chooses to invest ¢; € R effort,

(2) obtains a signal X; at time T; > 0 generated from c.d.f F, ("),
decidesatimes; > 0 and areport b; to send to the mechanism
at time s;,

(3) receives some reward r; from the mechanism.
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We assume that as long as the agents invest non-zero effort, they
always obtain their signals before the true outcome being revealed
because this is far in the future. The value of the information (mar-
ket belief) evolves over time. Let p(t) € Ay denote the market
belief at time ¢. The value of a belief history {p(#)};>0 is defined
as:V = ft>0 S(p(t),y)h(t)dt, where y is the outcome, S is a strictly
proper scoring rule characterizing the quality of the market be-
lief, and time value function h is a function characterizing how
the value of information diminishes through time. For instance,
h(t) = ne~" means that the value of information decays exponen-
tially. This would be appropriate if the principal needs to make
decision at a random time 7 > 0 generated from an exponential
distribution with parameter 7.

We want to design a mechanism that takes agents’ online reports
as inputs, maintains a real-time market belief, and finally outputs
the reward given to each agent. We also want this mechanism
to be truthful, timely, and social-welfare-maximizing. We say a
mechanism is timely if every agent reports immediately after he
gets a signal. The principal’s utility U, each agent i’s utility u;, and
the social welfare W, are given by: U = E[V] - X, E[ri], ui =
E[ri] — ¢iy, W = E[V] — Y; ¢i. Given proper scoring rule S and
the information structure, assuming the agents aggregate their
information in a truthful and timely manner, the expected social

welfare only depends on the agents’ effort ¢ = (cy, ..., cp). In this
section, we call ¢* an optimal effort profile if
¢’ € argmax (pI,EY[V] - Z c,-). (6)

A

5.1 Mechanism and Theorem

Besides the challenges involved in Section 4 — including the hidden
effort, the unknown information structure and effort function, and
the potential manipulation of agents’ reports — we also need to
deal with another complexity: An agent can choose any time to
report, not necessarily just at the time he receives his signal, and
even before it (i.e., s; < t;). We restrict our focus to mechanisms
where each agent can report only once. Note that this assumption
exists in the previous literature, e.g., in the traditional prediction
market, there would be no truthfulness guarantee without this
assumption. For this sequential setting, we propose Mechanism 2,
which updates a market belief using agents’ reports one by one.
Agents report their information in the same structure as in Section 4.
The mechanism also computes counterfactual market beliefs with
one of the reports skipped. In particular, the counterfactual belief
for agent i’s absence is what the market belief would be if agent
i does not report. The reward for each agent depends on both the
actual and counterfactual market beliefs.

THEOREM 5.1. Assume h(t) > 0 forallt > 0, f[>0 h(t)dt < oo,

2
dg—zz(t) < 0,5 and F.(t) is the c.d.f. of a non-negative random variable

forc = 0. Mechanism 2 is individually rational, and there exists a
strict perfect Bayesian equilibrium that is socially optimal (over all
symmetric strategy profiles) and satisfies the following properties:

Effort Optimality Every agent invests the “right” amount of
effort as (6).

®decreasing marginal benefit
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Mechanism 2: Marginal Value Prediction (MVP) Market
Input: online report bj = (bj1,...,b; 4_1) fromeach agent j
Output: real-time market belief py, and the reward r; for

each agent i

1 po < Pr[Y]

2 fori=1tondo

3 ﬁé —Pr[Y] // p' is the counterfactual market
belief for agent i’s absence

for k =1tondo

'S

5 wait until receive a report from an agent j and denote it
by b;
6 tj < current time

7 fory=1tod—-1do // Update the market belief
with agent j’s report

8 Pk,y < Update(pg_1 4 bj,y) as defined in (3)

o | Pra—1- 280 pry

10 fori=1tondo

11 if i = j then
12 | P < Py
13 else // Update the counterfactual belief

for i’s absence with j’s report
fory=1tod-1do
‘ ;3;( y < Update(ﬁ;c_l ” bj,y) as defined in (3)

~i d-1 i
Pra < 1- Zy:1 pk,y

// After the true outcome y* reveals

Let k(t) = 37_ I[t; < t], p(t) = p(r), and p'(t) = ﬁ,i([).
fori=1tondo

ri = [0 (S(p(0),y%) = S(B* (1), y*))h(1)dt

14

15

16

19 ‘

Truthfulness Each agent makes a Bayesian update on the mar-
ket belief.
Timeliness Foralli € N, s; = t;.

5.2 Intuition and Proof Sketch

Our core idea is to pay each agent by the actual value of information
minus the counterfactual value of information as if he had not
updated the market belief. Let V' be the counterfactual value w.r.t.
agent i. The reward (in Line 19 of Mechanism 2) is given by

V_Vi= / (S(p(),y) — S(F' (1), y))h(1)dt,
t>0

where ' (t) is what the market belief would be at time ¢ if agent i
had not changed anything in the market. Figure 3 gives an intuition
for E[V - 1~/i]. Note that we are not talking about a counterfactual
value for the case as if an agent had not participated the game. The
number of agents is still n, and other agents do the same.

LEMMA 5.2 (EFFORT OPTIMALITY). Agents are incentivized to in-
vest the “right” amount of effort that maximizes the expected social
welfare, assuming all updates are timely and truthful.

LEMMA 5.3 (TRUTHFULNESS). No matter what time an agent makes
his update, a truthful update is better than a non-truthful one, assum-
ing all other updates are truthful.
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Ok (1)

—— c.f. value

—— actual value

t*

Figure 3: Ex-ante total reward received by an agent (taken ex-
pectation over all agents’ signals) for a fixed time sequence
of signal discovery. v = E[S(pr,y) — S(po,y)] is the expected
increase of score due to the first k reports, k(¢) is the num-
ber of report up to time ¢, and t* is the time of report. A late
report (larger t*) reduces the reward. A non-truthful report
shifts the actual curve downward, also reducing reward.

LEmMMA 5.4 (TIMELINESS). Every agent is incentivized to update
the market belief as soon as he gets his signal, assuming all updates
are truthful.

Proor oF THEOREM 5.1. Each agent i decides how much effort
to make at the beginning. By Lemma 5.2, he will not deviate at this
decision. Then, at each time, he decides whether to report and if so,
what to report. By Lemma 5.4, he will report if he has a signal. By
Lemma 5.3, he will report truthfully. O

The proofs of the lemmas are similar to those in Section 4 and
are postponed to the supplementary materials.

5.3 Connection to VCG

There are both similarities and differences between our mechanisms
and the VCG mechanism. They are similar because both of them
have a payoff function that can be interpreted as an actual term
minus a counterfactual term. Also, in our mechanisms, the utility
function of an agent is — to some extent — aligned with the social
welfare as a function of his action, as in VCG.

However, a straightforward application of VCG fails. In VCG, we
need to compute the utility of each agent, which is impossible here,
because the amount of effort each agent invests is never revealed.
In our mechanisms, the alignment of the agent’s utility and social
welfare is achieved implicitly without the principal computing
them. In addition, VCG deals with a single-stage game, while our
mechanisms deal with multi-stage games. This is to say that the
signals must be discovered before they can be (truthfully) revealed.
Finally, VCG guarantees the DSIC (dominant-strategy incentive-
compatible) property, which is not the case in our setting, where
agents respond to others when choosing the effort level.

6 SIMULATIONS

The equilibrium depends on a variety of parameters. In this section,
we analyze how it is affected by ease, noise, and substitutability
of the information. We compare our socially optimal mechanism
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Figure 4: How ease affects agent’s effort.
fort.

(Mechanism 2) with the traditional prediction market.” We assume
the value of information decays exponentially: h(t) = ne™* with
parameter n = 1. The latency of signal discovery is also exponen-
tially distributed: F.(t) = 1—e~*¢?_Here, A can be viewed as the ease
of collecting the information, as the larger A is, the shorter latency
the agent suffers. There are n = 2 agents unless otherwise stated.
To simplify the calculation, we let v = E[S(pr,y) — S(po, y)]. It is
an intermediate variable that depends on the information structure

Pr[X | Y] (or B).

6.1 Ease

Let v; = 2 and vy = 3, defined above. In our mechanism, the
amount of effort in equilibrium automatically adapts to the ease
of collecting information, even though the mechanism does not
know anything about the parameters! Figure 4 is a visualization. In
prediction markets, agents invest too much for very easy (1 — o)
information, thus making the updates unnecessarily quick. For
information that takes a long time to discover, agents still invest
equally much effort in prediction markets, while in our mechanism,
they do not invest anything because we have the ne™* term in the
value of information — the information value decays so quickly
that the gain in information value is overwhelmed by the amount
of effort invested.

6.2 Noise

Consider the scenario described in Section 3.2, with a = 0.1. Recall
that f = Pr[X # Y] is the probability each signal differs from the
true outcome. It can also be regarded as the noise of information. It
turns out that in prediction markets, agents invest too much not
only for very easy information but also for very accurate (f —
0) information, as shown in Figure 5. When the signals become
weak enough, agents no longer invest anything in either prediction
markets (because a late reporting is encouraged) or our mechanism
(because the gain in value is too little).

6.3 Substitutability

Recall that vy is the expected increase of the score due to the first
k updates. We fix vy = 2, and see what happens when v; changes.
Here, v1 /vy can be considered as the substitutability of information.

7Following Section 3.1, we study the case where S = S.

Figure 5: How noise affects agent’s ef- Figure 6: How substitutability v; /v, (pro-
portional to v; since vy is fixed) affects
agent’s effort.

j05

~ | I MVP Welfare
\>> ] 1 MVP Principal
~_]0.0 HE PM Welfare
" 15
100 10

200

Figure 7: A comparison of the social welfare of the MVP mar-
ket, the principal’s utility of MVP market, and the social wel-
fare of the traditional predictions markets. When there are
many agents (n is large) and the signals do not take much
time to obtain (1 is large), the MVP market has both high
social welfare and high utility for the principal.

As shown in Figure 6, in prediction markets, when value is more
concentrated in the first report (higher substitutability), agents
invest more effort to get a signal quickly. Surprisingly, this is not
always the case in our mechanism. When signals are very easy
(quick to obtain), agents tend to invest less when value is more
concentrated in the first signal. This is because even though the
first report brings high value, after the second report, the marginal
value of the first report (against other signals) becomes much less.
Moreover, the easier to obtain a signal, the stronger this effect.

6.4 Social Welfare and Principal’s Utility

As we argue that agents invest too much effort for easy and accurate
information in the traditional prediction market, one may wonder
how bad the effect of such behavior could be on social welfare.
We find that the social welfare approaches to 0 as the number of
agents grows large, while in our proposed mechanism, both social
welfare and the principal’s utility are high, as shown in Figure 7.
In this example, we assume vy = 0 and vy = 1 for each k > 1 (or
equivalently, f = 0). This is similar to what we show in Section 3.1.
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