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Abstract: Decades of scientific research have been conducted on developing and evaluating
methods for automated emotion recognition. With exponentially growing technology, there is
a wide range of emerging applications that require emotional state recognition of the user. This
paper investigates a robust approach for multimodal emotion recognition during a conversation.
Three separate models for audio, video and text modalities are structured and fine-tuned on MELD
dataset. In this paper, a transformer-based cross-modality fusion with EmbraceNet architecture is
employed to estimate the emotion. The proposed multimodal network architecture can achieve
up to 65% accuracy, which significantly surpasses any of the unimodal models. We provide
multiple evaluation techniques applied to our work to show that our model is robust and can
even outperform the state-of-the-art models on the MELD dataset.

Keywords: multimdoal Emotion recognition; multimodal fusion; crossmodal transformer; atten-
tion mechanism

1. Introduction

In recent years there has been a growing number of studies that attempted to
recognize human emotion from either speech [1-3], text [4,5], or facial expressions [6,7].
In reality, emotional communication is a temporal and multimodal process; typical
human conversations consist of a variety of cues and expressions that are rarely static.
Thus, multiple studies have highlighted the importance of multi-sensory integration
when processing human emotions [8-11].

Emotion recognition has extensive application prospects, including but not limited
to Human-Robot Interaction (HRI), Socially Assistive Robotics (SAR), Human-Computer
Interaction (HCI), and medicine. Discussion regarding the effectiveness of multimodal
HRI has dominated the research in recent years. For example, in the paper by Stiefelha-
gen et al. [12], researchers discussed a novel multimodal HRI system, which included
speech recognition, multimodal dialogue processing, visual detection, tracking, and
identification of users, which combined both head-pose estimation and pointing gesture
recognition. The study with human participants concluded that the incorporation of
all of these modalities increased participant’s engagement and made the HRI scenario
more natural. For socially assistive robots (SAR) to effectively communicate with human
beings, robotic systems should have the ability to interpret human affective cues and to
react appropriately by exhibiting their own emotional response. In the work by Hong
et al. [13], the researchers presented a multimodal emotional HRI architecture to assist
in natural, engaging, bidirectional emotional communication between humans and a
robot. Both body language and vocal intonation were measured to recognize the user’s
affection state. The results of the experiment with human participants have proved
that bi-direction emotion recognition instigated more positive valence and less negative
arousal during the interaction. Kim et al. [14] developed an audio-based emotion recog-
nition system that can estimate the expression levels for valence, arousal, and dominance.
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The extracted features from the speech data were used for training the automatic emotion
classifier. This classifier offers emotional communications in a natural manner during
human-robot interaction experiences for children with autism spectrum disorder (ASD).
More recently, the study of [15] also applied deep learning methods for recognizing the
emotion from the music. Several deep learning networks were employed to train the
extracted spectral features from the music and predict the levels of arousal and valence.

Emotion recognition has also been heavily studied in the context of Human-
Computer Interaction (HCI). Creating human-computer interaction that would be as
natural and efficient as human-human interaction requires not only recognizing the
emotion of the user but also expressing emotions. An example of such research could be
the works of Maat and Pantic [16], where authors proposed a system that is capable of
learning and analyzing the user’s context-dependent behavior and adapting the interac-
tion to support the user. Another example of an HCI system with emotion recognition
is the Intelligent Tutoring System developed by Kapoor et al. [17], which incorporated
multisensory data to assist in detecting frustration to predict when the user needs help.
Emotion-oriented HCIs aim to not only automatically recognize emotional states but
also mimic or synthesize emotions in speech, or facial expressions. As an example,
previous studies focused on generating voices, which would have relevant emotional
sentiment [18,19]. Learning emotions from the speech provided a way of generating
convincingly emotional speech [20].

Medical specialists can also benefit from using emotion recognition systems as a
diagnosing tool for a wide range of medical symptoms. For example, in the study by
France et al. [21], researchers compared the acoustic trends in the speech of healthy,
depressed, and suicidal individuals. Another medical example could be clinical studies
of schizophrenia and the flat affect, which is indicative symptom of the diseases and is
characterized as diminished emotional expressions [22,23].

In general, user affect is detected using a unique combination of body language
and vocal intonation, and multimodal classification is performed using computational
models, e.g., a Bayesian Network [24,25]. When applied in the robotics domain, human
emotion recognition in the HRI system can especially make the interaction more natural,
understandable, and intuitive [26]. In the study by Barros et al. [27], a Cross-Channel
Convolutional Neural Network (CNN) structure was proposed for investigating how
emotions are expressed by a robotic system changed the perception of human users. The
network was able to predict human emotions using features based on facial expressions
and body motions. The emotion recognition system was tested in a real HRI scenario
with the iCub robot. The robot was able to detect three different emotional states and
gave feedback by changing its mouth and eyebrow LEDs. In another study by Javed et
al. [28], the robotic system was trained to recognize emotion states from both typically
developing children and children with ASD. With the goal of measuring the overall
engagement of the child during the HRI session, emotion recognition was used as one of
the measured features. Therefore, it is believed that advancing emotion recognition from
human beings can significantly improve the role of empathy in HRI scenarios as well.

In this study, a robust transformer-based multimodal fusion network for emotion
recognition is presented. The embedding vectors from each individual modality are
extracted from domain-specific models and fused via our proposed cross-modality trans-
former. In addition to considering the joint representation across different modalities, we
introduce a robust multimodal fusion network to combine all the representation vectors
from each modality. The results reach the state-of-the-art performance on the evaluated
dataset.

2. Related Studies
2.1. Multimodal Fusion for Emotion Recognition

The primary fusion strategies from previous studies for multimodal emotion recog-
nition can be classified into feature-level (early) fusion, decision-level (late) fusion, and
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model-level fusion [29]. Conventionally, feature-level fusion concatenates the features
from different modalities to get a joint representation, and the concatenated features
are fed into a single classifier for emotion recognition. Schuller et al. [30] presented the
baseline models, which concatenated the audio and visual features into a single feature
vector and used support vector regression to predict the continuous affective values.
Recent study [31] also investigated using Long Short-Term Memory Recurrent Neural
Network (LSTM-RNN) to train different modalities of features and to combine different
feature vectors via concatenation. However, feature-level fusion may suffer from the
problem of data sparseness [29], so the performance of combining different modalities
via a simple concatenation is limited.

Unlike feature-level fusion, decision-level fusion employs and trains separate clas-
sifiers for each modality and combines the outputs from each classifier to get the final
prediction. Liu et al. [32] applied different kernel-based classifiers for different modali-
ties and boosted the fusion results at the decision-level. However, decision-level fusion
does not consider the mutual relations between different modalities, which results in
losing correlated information among different modalities.

Researchers have also taken advantage of deep learning models for model-level
fusion, which also consider the interrelations between different modalities. Chen et
al. [33] achieved model-level fusion by concatenating the high-level features from dif-
ferent modalities. More recently, Choi et al. [34] proposed a novel multimodal fusion
architecture based on the neural network for classification tasks. The model architecture
assured both the effectiveness of the cross-modal relationship and the robustness of
fusing different modalities.

2.2. Transformer Method

Multimodal emotion recognition (MMER) with the fusion by transformer has drawn
much attention recently. The transformer is a network architecture that purely depends
on the attention mechanism without any recurrent structure [35]. The latest studies focus
on using attention mechanisms to fuse different modalities of features for MMER [36—
39]. Ho et al. [36] proposed a multimodal approach based on Multi-level Multi-Head
Fusion Attention mechanism and RNN to combine audio and text modalities for emotion
estimation. The paper also stated that the method of attention mechanism fusion for
multiple modalities improves emotion recognition performance comparing to the uni-
modal approach. Another study by Huang et al. also compared decision-level and
feature-level fusions by using the attention mechanism [37]. This study utilized the
transformer to fuse audio and visual modalities at the multi-head attention level. The
experiments showed that the proposed method could have better performance via
feature-level fusion.

The previous study has investigated the use of the crossmodal transformer to
reinforce a target modality by introducing the features from another modality, which
also learn the attention across these two modalities features [40]. One recent study [39]
proposed a multimodal learning framework based on the crossmodal transformer target
for conversational emotion recognition, combining word-level features and segment-
level acoustic features as the inputs. The results demonstrate the effectiveness of the
proposed transformer fusion method. Another recent study [38] combined three different
modalities, text, audio, and vision, with features extracted from the pre-trained Self-
Supervised-Learning model. This study designed a transformer-based multimodal
fusion mechanism that also considered the inter-modality connections and achieved
state-of-the-art results for the task of MMER.

Even though the effectiveness of combining two different modalities by using the
attention mechanism has been widely studied, the challenge emerges when there arise
needs to combine three or more modalities due to the structure of multi-head atten-
tion. For this reason, most previous studies for MMER based on attention mechanism
proposed and tested the network architecture for only two modalities [36,37,39]. The
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study [38] deployed models for combining three modalities, but a simple feature con-
catenation was added at the end to combine different modalities of features. However, in
practice, concatenating different high-dimensional features may result in data sparseness
and degrade the performance [29].

3. Dataset

Multimodal Emotion Lines Dataset (MELD) [41] is an extended version of the
EmotionLines dataset [42]. MELD dataset includes a total of 13708 samples segmented
out from the TV Series Friend'’s, with the samples grouped as 9989 for training, 1109 for
validation, and 2610 for testing. Each segmented sample has the following data attributes
that have been used in this study: video clip, utterance, text from the utterance, and
emotion labels. There are seven emotion labels available for the dataset: Anger, Disgust,
Sadness, Joy, Neutral, Surprise, and Fear. These are typically considered to be the basic
emotions, and other emotions are seen either as combinations of these basic emotions as
studied by Bower [43]. Label distributions in train, validation and test datasets can be
seen in Figure 1. There is an inherent imbalance in the MELD dataset,Neutral samples
have the dominating number of samples in each of the datasets. Utterance audio clips are
varied in time length but are averaged to around 5 seconds long recording. On average,
there are around 7 words per one utterance. The average duration of an utterance is
3.95s, and the average number of utterances per dialogue is 9.6. The number of emotions
per dialogue is 3.3 on average.
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Figure 1. Number of samples per one emotion label for training, validation and testing dataset.

4. Methods

In this study, three different deep learning models are introduced for feature extrac-
tion from three different modalities. The cross-modality fusion transformer approach
and the EmbraceNet for fusion are discussed for multimodal classification.

4.1. Feature Extraction

Three different deep neural networks are used for feature extraction: Generative
Pre-trained Transformer (GPT), WaveRNN, and FaceNet+RNN. Transfer Learning is a
training scheme that provides help for training small dataset [44]. Transfer Learning
proposed first pre-training the model in a large scale dataset, and then for another smaller
target dataset, pre-trained model can be fine-tuned and achieve desired performance
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efficiently. Therefore, Transfer Learning paradigm is adopted in this study. In the stage
of feature extraction, we first fine-tune the domain-specific models for the emotion
classification task with a single modality. Then, we extract the features before the fully
connected layer from the fine-tuned models, which prepare for the fusion and training
in the multimodal fusion stage. Figure 2 shows a dialogue sample from the conversation
of two actors, and different modalities of features from the dialogue are fed into the
corresponding models. The WaveRNN will accept the audio features from the sentence’s
audio clip, and the sequential face images from the video clip will be fed into the
FaceNet+RNN model. For the text modality, the input consists of the dialogue of the
history, current sentence, and reply.

4.1.1. Model for Text Modality

We use the GPT [45] as our language model for extracting the features from the
text modality. GPT is a multi-layer transformer-based model, which was pre-trained
on BookCorpus dataset [46] and fine-tuned on the MELD dialogue dataset. As shown
in Figure 2, the transfer learning scheme proposed by Wolf et al. [47] was adapted.
Interested readers can refer their repository’ for more details. To estimate the emotional
states of the current sentence, we combine the history of the dialogues, the current
sentence, and the reply sentence to generate sentence embeddings. Then the position
embeddings and segment embeddings are summed up to build a single input sequence
for the transformer model to get the output sequence tokens.

l’ WaveRNN ‘

Surprise Neutral Neutral Anger
-
You liked i Which Part haabout. You fell
awd exactly? © scene wi asleep!
liked it? the kangaroo?
Joy Neutral Surprise Sadness
The whole I was surprised to Don’t go. 1
Oh, yeah! thing! Can see a kangaroo in am so% ’ g \
we go? a world war epic. - FaceNet +

i )
[TTTTT] EE O3 Gr

History Current Reply !

Figure 2. The cross-modality attention fusion Transformer

The optimization of the model is performed by multi-task learning. The fine-tuning
is performed by introducing a combination of different loss functions: (1) next-sentence
prediction loss, (2) language modeling loss, (3) emotion classification loss. For the next-
sentence prediction loss, L(s), a special token [CLS] is added at the end of the input
sequence. The optimization goal is to train a classifier to discriminate the gold reply
(ground-truth sentence) from the randomly sampled distractor (the sentence other than
ground-truth). The corresponding last hidden state for token [CLS] is passed to the
linear classifier, and the cross-entropy loss is used to optimize the classifier. For the
language modeling loss, L(l), the final hidden states of the outputs are extracted to
predict the next reply tokens, and the cross-entropy loss is used to optimize the language
model. For the emotion classification loss, L(e), a multi-layers classifier is introduced

1

https:/ / github.com/huggingface/transfer-learning-conv-ai
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for classifying seven emotion labels from the MELD dataset. During training, the last
hidden state from the final hidden layer is fed into the classifier to predict the emotions,
and the cross-entropy loss is computed to optimize the emotion model. Finally, the total
loss function for optimization is the sum of these losses:

L(total) = L(s) + L(I) + L(e). )

4.1.2. Model for Audio Modality

WaveRNN [48] model is used as an audio model to extract features from the original
audio clips. The original waveform of the audio and generated spectrogram of the signal
are both inputted to the model. The pre-trained model used in this study was trained
on L]Speech dataset [49]. During the pre-processing, waveforms are sampled with the
16000 Hz sample rate, and spectrograms are generated. Moreover, zero-padding for the
batch inputs is applied on-the-fly during training. The input channels of waveform and
spectrogram have to be 1, so we average the values from both channels of the audio
inputs. All the pre-processing is implemented via the torchaudio library?. As shown
in Figure 2, the acoustic features from the time interval of one person’s speeches are
extracted as the inputs for the model.

The input shapes for the WaveRNN can be defined as follows:

[batch_size,n_channel = 1, feature_size = (n_time — kernel_size + 1) x hop_length|
for the input waveform, and
[batch_size, n_channel = 1,n_freq, n_time)

for the input spectrogram, where hop_length = 200, kernel_size = 5, and n_time =
240 in this study. As can be seen in Figure 3, the feature vector with the shape of
[(n_time — kernel_size + 1) X hop_length = 47200,512] before the fully connected layer
of WaveRNN model is extracted, where 512 is the default feature size of WaveRNN
output. A classifier consists of two consecutive linear layers at the end will give us the
predictions of emotional states.

I

47200%512 1024x512 1024

Spectrogram 7}

WaveRNN

Waveform

Figure 3. The classifier added to WaveRNN.

4.1.3. Model for Face Modality

Deep CNN has been widely studied for facial emotion recognition from videos
by extracting the sequence of face embeddings [50-52]. Studies show that combining
deep CNN and temporal models can effectively recognize facial emotion from the
videos [50,52]. FaceNet is a deep CNN model that has been utilized to identify facial
features from the image inputs [53]. FaceNet has an open-source library® implemented
by Pytorch designed for face verification, recognition, and feature extraction. Multi-task
CNN (MTCNN) [54] recognizes a face in the video frames and returns the sequence

2 https:/ /pytorch.org/audio/stable/index.html

3

https:/ /github.com/timesler/facenet-pytorch
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of the cropped images with the detected face from the video input. Afterward, we
use the Inception ResNet (V1) model, which was pre-trained on VGGFace2 [55] and
CASIA-Webface [56] datasets, to extract the sequence of face embeddings from the
sequence of images. The dimension of the returned embeddings, by default, equals 512.
As illustrated in Figure 2, we can get a sequence of face embeddings during the time
interval of one person’s speech.

Furthermore, we incorporate an RNN-based model to learn the temporal relations
in the sequence of images. Gated recurrent unit (GRU) [57] is similar to long short-term
memory (LSTM) [58] network with a forget gate but more efficient for training. The
formulations of the GRU network can be stated as follows:

e  Update gate z;: defines how much of the previous memory to keep.
zp = o (Woxp + UPl—q), )

®  Reset gate r;: determines how to combine the new input with the previous memory.

re=0(Wx +Uh_1), ®)
e Cell value i
hiy = tanh(Whx; + U (hy_1 © 1)), @
e  Hidden value h;:
hy=(1—z) Ol +zt ©hy_y, ®)

where © denotes the Hadamard product.

The extracted sequence of face images has variable lengths; therefore, some samples
are down-sampled to the fixed length. Due to the limitation of the GPU’s memory
and the consideration of training efficiency, the fixed length for the extracted images
sequence in this study is set to 50 images. Oppositely, zero-padding is applied during
data pre-processing to the sequences with a shorter length. Finally, during training, the
last hidden state value, /i, of the GRU outputs are extracted, and a classifier is introduced
to learn the emotion classification task.

4.2. Robust Cross-Modality Fusion Transformer with EmbraceNet

Feature Extraction

Overall Robust Fusion

Cross-Modality Transformer Fusion
V Transformer

(A—=F)

FaceNet +

Transformer

RNN |
: (T-F)

Transformer
F =T

Text

@

Audio

Embrace
Net

" \ Transformer

(A—=T)

" Transformer

{ WaveRNN « (F=4)
Transformer

(T—>A)

Figure 4. The crossmodal fusion transformer [40] with EmbraceNet [34]
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In this section, we demonstrate the network architecture for multimodal fusion and
classification, which is depicted in Figure 4. Our model consists of two main parts, the
cross-modality transformer fusion and overall robust fusion.

4.2.1. Cross-Modality Transformer Fusion

The idea of the crossmodal transformer was initially proposed by Tsai et al. [40].
The crossmodal transformer can enrich the information for one modality from another
modality. In this study, we adapt the network architecture to fuse different input
modalities for emotion recognition. Following the formulation of [40], for example, we
denote the passing of modality A information to another modality B by using "A — B".
The multi-head attention was proposed in works by [35], where the attention function is
mapping Query, Keys, and Values to the output.

Figure 5 shows the architecture of the crossmodal transfromer. We denote the
the input features for modalities A and B are X, € RTaxda X, e RTa%ds where T
and d are sequence length and feature size. As shown in Figure 5, We can define
the Query as Q4 = X4Wp,, Keys as Kp = XpWkg,, Values as Vg = XgWy,, where
Wo, € RAaxdy, Wk, € Rsxdy Wy, € RIE%4v are the weights. Then, the fused attention
output vector Y from modality A to B can be represented as follows:

Yattention = Attention(XA, XB)
X4K],
d

T

= softmax( ) VB

(6)

— Add & Norm

R

Feed Forward ‘

A

—— Multihead(X,, Xg) = [head,, head,, ... head;|W°

— Add & Norm

Attention

Ja

. KT
‘ Multi-Head head; = softmax (QA B) Vg

Modality A Modality B
Figure 5. The architecture of the crossmodal transformer.

Following the setting from the previous study [35], we also add a residual connec-
tion from Query to the attention output and come with the layer normalization.

X = LﬂyerNorm(Yattention + QA) %

Then, a feed-forward layer is applied, which consists of two fully connected layers with
a ReLU activation function:

fx = Linear(x) = xA} + by. 8)
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xg = ReLU(fy). &)
fr, = Linear(xg) = x4 AL T+ bxa, (10)

where A, € R4*20x Al € R?xxdx and by € R%x, b, € R,
Finally, another residual connection with normalization is used to get the final
embedding representation vector from Modality A to B.

outy_,g = LayerNorm(fx, + x). (11)

Taking the example of the crossmodal fusion for text modality, the final attention
representation of the feature is the Hadamard product of two cross-modality features as
suggested in previous study [38], which is given as follows:

Attentiont = outp_,7 ® outa_,7. (12)

where A denotes audio, F denotes face and T denotes text, and ® denotes the Hadamard
product.

During training, the crossmodal transformer module transforms the source modal-
ity into the Key/Value pair to interact with Query, the target modality. The previous
study shows that the crossmodal transformer can learn correlated information across
modalities [40].

4.2.2. EmbraceNet for Robust Multimodal Fusion

For the multimodal emotion recognition task, we are not only considering cross-
modal fusion by using the transformer but also want to assure the robustness of com-
bining the multimodal outputs. We employ the EmbraceNet [34] into our network
architecture, which focuses on dealing with cross-modal information carefully and
avoids performance degradation by the cause of the partial absence of data.

As can be seen in Figure 6, the EmbraceNet consists of two main components,
docking layers and an embracement layer.

= .
Face o r ]
Embedding = (-
& ar

Text o rT | é‘

Embedding [ - %

dr dr’ e
Audio o r [ |
Embedding [ -
dA Efl
Docking Layer Embracement Layer

Figure 6. The EmbraceNet for multimodal fusion
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4.2.3. Docking Layers

Three different deep learning models are used to get the feature vectors from three
different modalities. Each modality has different characteristics and different sizes of
extracted feature vectors, so the docking layers act as a preprocessing module before
being fed into the embracement layer by converting different modalities features into
the same size. The docking layers consist of a fully connected layer followed by a ReLU
activation function. Each feature vector from different modalities is converted to the
same embracement size, which in this study is equal to 256. Finally, the docking layers
output m feature vectors, dk e {d(l), d(z), .y d(m) }, where m = 3 denotes the number of
modalities in this study, and d¥ = [dgk), dgk), e dgk)]T ,where c is the dimensionality of
the vector.

4.2.4. Embracement Layer

The embracement layer is formalized as follows. Let r; = [ri(l), r?, ...rgm)]

; , where
i€ {1,2..,ctand m € {1,2,3}, be a vector that can be drawn from a multinomial
distribution, i.e.,

r; ~ Multinomial(1, p), (13)

where p = [p1, p2, ..., pm|T are probabilities values and Yy py = 1. It should be noted that
only one value of r; is equal to 1 and the rest values are 0. Then the vector r; is applied
to d¥ as

d'" =0 oa®), (14)

where ©® denotes the Hadamard product (i.e., dg(k) = ri(k) . dl(k) ). Finally, the model
combined all the features to generate a fused embedding vector e = [ey, €2, ..., e:|T, and

e =y di®, (15)
k

where e is the final output vector for final the multimodal fusion emotion classification
task. In this study, k € {F, T, A} and the final representation of the output vector is:

ei= Yy dW. (16)
ke{F,T,A}

As stated in [34], the docking layers will consider the correlations between different
modalities during training cause only part of the feature embedding vector for each
modality will be further processed in the embracement layer. The selected features’
indices are randomly changed so that each docking layer will learn to generate similar
embedding vectors, and the embracement layer can generate the same output. The
multinomial distribution for the selection process also acts as a regularization step,
preventing the model from excessively learning from specific modalities.

5. Experiments
5.1. Computational Environment

Pytorch (version 1.8) with the CUDA version of 10.2 is utilized to develop the model
and evaluate the performance of the MELD dataset. The training of the model is run on
two Nvidia GeForce GTX 2080 Ti graphic cards with 11GB memory.

5.2. Training Details

The training process consists of two parts. As stated above, we first fine-tune the
single modality data via three different domain-specific models. For the text modality,
the inputs are the word embeddings of the sentence, including the history of a dialogue
and the reply. Secondly, the input for the video modality is a sequence of face images
with a fixed sequence length. Finally, the input for the audio modality is a combination
of an audio waveform and spectrogram data for the audio modality.
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Furthermore, for the proposed multimodal fusion model, we combine all of the
extracted features from the domain-specific models before the last fully connected layers.
We use the stochastic gradient descent (SGD) optimizer with a learning rate of 0.001, and
the cross-entropy loss for the multiclass classification problem.

5.3. Evaluation Metrics

We evaluate the performance of multimodal emotion recognition task using these
evaluation metrics: Accuracy, Balanced Accuracy, Precision, Recall, F1 score. Using the
notations of the true positive (TP), true negative (TN), false positive (FP), false negative
(FN), the expression of these metrics are given as follows:

TP+ TN
A = 17
U = TP+ FP+ TN + FN’ (17)
itivit [ ficit
Balanced Accuracy = o ; Specifict g (18)
- TP
Precision = TP L ED’ (19)
TP
Recall = ——— 2
= TP EN (20)
Precision x Recall
F1 = 21
Precision + Recall’ 1)
where TP
Sensitivity = TP+ EN’ (22)
e TN
= ——— . 2
Specificity TN - EP (23)

It should be noted that the Balanced Accuracy is commonly used for evaluating
imbalanced datasets; thus, it is believed that it would be effective for evaluating the
MELD dataset. Balanced Accuracy for multiclass classification is defined as the average
Recall obtained from each of the classes. The Precision shows how many positive predicted
samples are truthfully positive, and the Recall tells how many positive samples are
correctly classified as positive by the model. F1 score takes both precision and recall into
account which is the harmonic mean of Precision and Recall.

5.4. Performance Evaluation

We evaluate the performance of our fusion model via the following strategies: (1)
Compare the performances of the classification for the unimodal and for the multimodal
models and (2) Contrast the performances of our proposed method with existing studies.
The visualization of the performance includes using confusion matrix and the feature
embedding visualization of the MELD dataset using t-distributed Stochastic Neighbor
Embedding (t-SNE) [59].

6. Results and Discussion
6.1. Performance Comparison between Single Modality and Multi-Modalities

There are seven emotion labels from the MELD dataset (Neutral, Joy, Sadness, Anger,
Surprise, Fear, and Disgust, that) that were trained to be recognized. Since the MELD
dataset has already been divided into training, validation, and test sets, we built our
cross-modality fusion model, tuned the training hyper-parameters based on the train
and validation set, and evaluated the model on the test set to get final results. Table
1 shows the performances of single modality and the proposed multi-modal fusion
model. The fusion evaluation is performed by evaluating the classification results of
the fused representation vectors. The fusion model outperforms all single modality
models from the weighted average metrics. Specifically, the proposed fusion model
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326 achieved a Precision of 63.1%, a Recall of 65.0%, and an F1 score of 64.0% based on the
32z weighted average. The text-modality model contributes the most to the final fusion
328 results, achieving a weighted average F1 of 61.8%.

Table 1: The performance of the classification results for MELD dataset. (PRE: precision, REC: recall, F1: F1 score).

Modality
Emotion Audio Face Text Multimodal
PRE | REC | F1 PRE | REC | F1 PRE | REC | F1 PRE | REC | F1
Neutral 485 | 998 | 65.2 | 48.1 | 99.0 | 64.7 | 72.7 | 82.1 | 77.1 | 74.0 | 849 | 79.1
Joy 455 | 1.2 24 | 15.0 | 0.7 14 | 544 | 53.7 | 541 | 56.7 | 57.2 | 56.9
Sadness 0.0 0.0 00 |00 0.0 0.0 | 40.1 | 332 | 363 | 49.6 | 29.3 | 369
Anger 60.0 | 0.9 1.7 | 0.0 0.0 0.0 |53.4 | 391 | 451 | 514 | 447 | 478
Surprise 16.7 | 04 07 |00 0.0 0.0 |53.0 | 60.0 | 56.3 | 544 | 61.4 | 57.7
Fear 0.0 0.0 00 |00 0.0 0.0 |16 | 10.0 | 123 | 50.0 | 6.0 10.7
Disgust 0.0 0.0 00 |00 0.0 0.0 |524 | 162 | 247 | 471 | 11.8 | 188
Weighted Avg. | 40.0 | 484 | 438 | 255 | 47.8 | 333 | 61.0 | 62.6 | 61.8 | 63.1 | 65.0 | 64.0

320 Table 2 presents the overall performance of single and multimodal models. Evaluat-
;30 ing the performance of each individual modality, the modality of text has the highest
s Accuracy and Balanced Accuracy from the experiments. However, the face modality
32 has the lowest results. All evaluation metrics show that our multimodal fusion model
33 outperforms the unimodal results.

Table 2: The overall classification results of single modal and multimodal.

Modality Accuracy | Balanced Accuracy | F1
Audio 48,4 14.6 43.8
Face 47.8 14.3 33.3
Text 62.6 42.0 61.8
Multimodal | 65.0 42.2 64.0
334 The inherent imbalance issue from the MELD dataset causes the low performance of

a5 the Balanced Accuracy, which is also reflected in the confusion matrix of the multimodal
36 results. As can be seen in Figure 7, most of the predictions of samples tend to lie in the

Confusion Matrix

neutral RIEEEEY 0.0625 0.0224 0.0312 0.0321 0.0008 0.0016

0.2761 0.0174 0.0597 0.0721 0.0000 0.0025

joy
0.4327 0.0817 0.2933 0.1154 0.0721 0.0048 0.0000

sadness

anger 0.2485 0.1243 0.0325 0.4467 0.1302 0.0030 0.0148

True label

surprise | 0-1464 0.1179 0.0214 0.1000 0.0000 0.0000

fear|0-4000 0.0600 0.1000 0.2200 0.1400 0.0600 0.0200

disqust 0.3824 0.0441 0.0735 0.2500 0.1324 0.0000 0.1176

> 9 > (2 N X

G K & ge, & ‘&'o L
& & £ K &>

< < & N

Predicted label

Figure 7. The confusion matrix for the multimodal results.
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first column of the confusion matrix, which is the Neutral emotional class.The reason for
this issue is that over 47% of the samples from the MELD dataset are labeled as Neutral.
So the model is influenced by the data imbalance and learns more weights for the Neutral
emotional class.

6.2. Comparison with Existing Studies

Table 3 compares the performance of the proposed model with the existing studies
that also implemented the multimodal architecture and tested it on the MELD dataset.
Most of the previous studies [36,39] only considered the audio and text modalities.
However, a study by Siriwardhana et al. [38] proposed a multimodal fusion model for
combining the modality of audio, face, and text and has achieved state-of-the-art results.
The results from the previous studies attribute that both Accuracy and F1 scores are
improved by combining multiple modalities compared with a single modality. The
previous results have also yielded that single modality models for both audio and face
modalities cannot learn any distinct emotion features, which is also supported by the
results of our experiments. Comparing with the study by [38], our proposed method
achieves higher Accuracy and equivalent F1 scores, which matches the state-of-the-art
performance and propounds the robustness in multimodal emotion classification.

Model Modality Acc | F1

A 488 | 45.3

N. Ho et al. T 61.7 | 59.0
Multimodal

(A+T) 63.3 | 60.6

Audio 46.9 | 38.2

Z. Lian et al. Text 60.6 | 58.3
Multimodal

(A+T) 62.0 | 60.5
.. Multimodal

S. Siriwardhana et al. (A+F+T) 64.3 | 63.9

Audio 484 | 32.1

. . Face 47.8 | 314

Cross-modality Fusion (proposed) Toxt o6 6o
Multimodal

(A+F+T) 65.0 | 64.0

Table 3: The comparison of the proposed model with existing studies. (A: Audio, F: Face,
T: Text)

6.3. t-SNE Visualization for the MELD dataset

Figure 8 shows the visualization of the embedding outputs from the last fully
connected layer of our proposed model. The embedding vectors are projected into a
2D plan by using t-SNE [59]. As can be seen, the sparseness of the Neutral class spans
over all the other classes, which makes training more challenging. However, it is not
particularly surprising given the fact that emotion Neutral may contain characteristics
from either emotion.

It can also be seen that the cluster of Surprise emotion is father away than Neutral
emotion data points, meaning the model generate distinct features for this class, which
also can be reflected from Table 1 that emotion Surprise get highest F1 score among the
other emotion classes except for Neutral.
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Figure 8. The t-SNE visualization for the MELD dataset.

7. Conclusions

This study demonstrates a robust multimodal emotion classification architecture,
which includes crossmodal transformer fusion to combine three different modalities
of input information. The architecture considers both the joint relations between the
modalities and robustly fuses different sources of representation vector. Three separate
prediction models are adapted to identify emotion from audio, visual, and textual inputs.
Text, audio, and image inputs were trained by GPT, WaveRNN, and FaceNet+GRU,
respectively. Designed transformer-based fusion mechanism with EmbraceNet has
demonstrated the ability to solve the task of multimodal feature fusion from multiple
pre-trained models. EmbraceNet takes the attention outputs from the crossmodal models,
embraces them to build a fused representation of the emotion embedding vectors. The
experiment’s metrics have shown that our multimodal classification model outperforms
every single modality model. However, due to innate imbalance in the dataset, Balanced
Accuracy is generally lower than Accuracy. Future studies should consider introducing
data augmentation techniques to handle the imbalanced data issue.

Furthermore, experimental results on the MELD datasets demonstrate the effective-
ness of the proposed method. The performance of our method can reach the previous
state-of-the-art strategies [38] (with 0.7% performance improvement on Accuracy). The
performance of the F1 score is equivalent. Nevertheless, our proposed network ar-
chitecture extends the idea of multimodal emotion recognition with the crossmodal
transformer, and the structure of the network can also be expanded for a higher number
of input modalities. For future study, other input modalities such as different physio-
logical measurements should also be added to this network architecture. Besides, the
emotions stimulated by actors from a comedy can be exaggerated and different from
real emotions, which could also lead to biased results [60]. Therefore, more multimodal
datasets should be evaluated in the future work.
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