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Abstract

Human emotions are expressed through multiple modalities,
including verbal and non-verbal information. Moreover, the
affective states of human users can be the indicator for the
level of engagement and successful interaction, suitable for
the robot to use as a rewarding factor to optimize robotic be-
haviors through interaction. This study demonstrates a mul-
timodal human-robot interaction (HRI) framework with rein-
forcement learning to enhance the robotic interaction policy
and personalize emotional interaction for a human user. The
goal is to apply this framework in social scenarios that can let
the robots generate a more natural and engaging HRI frame-
work.

Introduction

This paper presents an ongoing study on multimodal human-
robot interaction (HRI) with a reinforcement learning (RL)
dialogue agent. To develop an effective HRI system for so-
cial robots that can naturally interact with human users, the
robots need to accurately identify the user’s affective states
and respond to the users with personalized behaviors ac-
cordingly. Moreover, robots can also improve the user’s en-
gagement in the long-term interaction (Leite, Martinho, and
Paiva 2013) through personalized interaction policy. How-
ever, in reality, emotion recognition could be challenged in
HRI since humans convey information and feelings via dif-
ferent sources of social cues such as facial expression, body
language, and speech. Thus, the studies of multimodal emo-
tion recognition have attracted considerable interest in re-
cent years.

These fusion strategies in the previous years can be sum-
marized into three main categories: feature-level fusion,
decision-level fusion, and model-level fusion (Wu, Lin, and
Wei 2014). Schuller et al. (2012) demonstrated a base-
line model in the Audio/Video Emotion Challenge (AVEC)
2021, which concatenated the audio and visual features us-
ing feature-level fusion and then used support vector re-
gression to predict the continuous affective values. On the
other hand, the decision-level fusion can process different
types of inputs with diverse classifiers, and the final estima-
tion can fuse the outputs from all classifiers. For example,
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the posterior probabilities from the predictions of the audio
and video classifiers can be combined to get the final esti-
mations (Schuller et al. 2011). Deep learning models, such
as Long-Short Term Memory Recurrent Neural Network
(LSTM-RNN), have been used to achieve a model-level fu-
sion (Chen and Jin 2016). More recently, researchers have
leveraged the transformer to fuse different modalities of in-
puts (Tsai et al. 2019; Xie, Sidulova, and Park 2021), where
the transformer is proposed by Vaswani et al. (2017) for
solving Sequence-to-Sequence (Seq2Seq) problem based on
attention mechanism only without any recurrent structure as
RNN.

Once the robots have the ability to recognize the user’s
affective states, the HRI system can utilize this information
as inputs and determine the behaviors of the robots. The uti-
lization of emotional models in HRI can create more nat-
ural and engaging HRI experiences, as evidenced by Fic-
ocelli et al. (Ficocelli, Terao, and Nejat 2015). The devel-
oped emotional model can also be used for the empathetic
appraisal for social robots that can interact with children in
the long-term study (Leite et al. 2014). One recent study also
presents a social robot with emotional interaction that can
elicit particular emotions using non-verbal emotional behav-
iors (Shao et al. 2020). Thus, we believe that the affective
states of the human user can be an effective indicator for the
HRI system to generate more engaging and natural behav-
iors for the interaction.

Moreover, in order to develop a more natural HRI frame-
work, the robots need to learn human preferences and skills.
Recent studies utilize RL to let the robots learn social skills
through the interactions (Kim et al. 2017; Qureshi et al.
2018). Furthermore, Ritschel (2018) proposed an RL frame-
work that can adapt robot behavior using social signals.
Robots’ capacity to learn multimodal cues adaptively and
associate them with the context is recognized as being the
vital factor in HRI. Cui et al. (2020) proposed a novel data-
driven framework, EMPATHIC, which aims to improve the
policy of the agent in learning tasks by using implicit hu-
man facial reactions feedback. However, there is still a need
for the study on the RL agent for multimodal HRI. Thus,
in this study, we present a multimodal HRI system with an
RL framework that can accept multiple modalities of inputs
to shape the reward signal and adapt the robot behaviors to
generate more positive feedback for personalized interaction



with the user. For the rest of the paper, We first present the
developed dialogue RL framework in our system cause the
speech will be the primary social cue for our robot platform.
Then, we depict the integral diagram of our multimodal HRI
system. Finally, we propose the evaluation plan for our fu-
ture study.

Related Studies

Recent studies in multimodal HRI are providing enhanced
abilities for emotional interaction (Liu et al. 2016; Hong
et al. 2020; Li et al. 2019), where the emotional abili-
ties, including understanding users’ affective states and ex-
pressing emotional behaviors accordingly. In the study pro-
posed by Liu et al. (2016), multiple modalities, including
vocal, facial, and gesture features, were combined to detect
the emotions by using a Bayesian classifier. The Nao hu-
manoid robot was used as the platform to convey emotional
behaviors by mimicking the user’s behaviors. Hong et al.
(2020) proposed a multimodal emotional HRI architecture
that can interpret human emotional states via multimodal so-
cial cues and promote natural bidirectional communications
with users. Gestures and vocal features were fused to detect
the user’s affect and the robot utilized the user’s affect to ex-
press the corresponding emotional behaviors. Another study
by Li et al. (2019) also used emotions for a spoken dialogue
system in multimodal HRI which aimed to conduct the nat-
ural conversation. The study proposed an emotion recogni-
tion model which combines valence from prosody and senti-
ment analysis for the robot to express reactive emotions ad-
equately. However, previous studies failed to consider using
a dedicated dialogue system for the HRI system (Liu et al.
2016; Hong et al. 2020) or did not use different multimodal
reactive emotion expressions for the robot (Li et al. 2019).

Methodology

This section will first formulate the natural language pro-
cessing (NLP) problem we will solve with the RL agent
based on physiological rewards. Then, we will introduce our
overall robot system that can personalize the behaviors of
our robot for more natural HRI scenarios.

Problem Formulation

In the Seq2Seq problem of NLP, the goal is to train a lan-
guage model (LM) than can create a mapping between the
input sequence (zg,...,x,) € X and output sequence
(Yo, ---,Yn) € Y, where X and Y are the input and out-
put space, respectively. Given a vocabulary >, where both
X and Y € Y, and a LM can generate sequences of tokens
(Yo, ---,yn) € Y with a probability distribution using the
chain rule (Bengio et al. 2003):

PWos--ym) = [ pwilzo....,znz1). (D
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Given the current sequences of tokens, LM can generate
the probability distribution of the next token. We use the
probability distribution assigned by LM as the initialization
of the policy, mp = p with learnable parameters ¢, and then

train my via RL. A reward functionr : X x Y — R can be
defined and use RL to optimize the expected reward:

E =Eq;ylr(z,y))- @

We formulate the reward r as a distance-based function
based on Russel’s circumplex psychological model of af-
fect (Russell 1980). The positive emotions, such as happy,
and excited have positive rewards given by the values of
arousal (A) and valence (V) of these emotions. On the con-
trary, the negative feelings will be assigned negative reward
values. Thus, the reward can be expressed as follows:

r(z,y) =tV A2+ V2. 3)

The objective of our RL task is to generate more positive
responses. To achieve this, we need first to train a reward
model to estimate the reward based on the generated embed-
ding vectors from the LM. Following the setting of the pre-
vious study (Xie and Park 2021), a linear classifier is added
on the top of the LM to estimate the emotion and predict
the level of arousal and valence values. The reward model is
optimized using this loss:
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Figure 1: The workflow of the proximal policy optimization
(PPO) with psychological rewards.

Following Ziegler et al. (2019), when fine-tuning the pol-
icy Ty to optimize the reward via proximal policy optimiza-
tion (PPO) algorithm (Schulman et al. 2017), the Kullback-
Leibler (KL) divergence penalty is added to prevent 7y from
changing too fast from p. Thus, a modified reward function
is given by:

o (ylz)

R(x,y) = T(.il),y) —Blo p(y|$)

; ®

where 3 can be chosen either fixed or adaptive using KL val-
ues (Schulman et al. 2017). As can be seen in Figure 1, the
main objective for policy iteration will consider both psy-
chological rewards and the KL values. The overall training
process is given in Algorithm 1. The RL agent will optimize
the LM for each sentence with annotated emotions, and by
leveraging the reward function 5, the LM model will gen-
erate more positive responses but doesn’t deviate too much
compared with the original model.



Algorithm 1: PPO with psychological reward

Algorithm parameters: either fixed or dynamic f3;

Initialize ™ = p;

Initialize r to p (reward model added on top of LM);

foreach episode do

Run language model policy 7 to generate
sentence embeddings vectors;

Optimize the reward model by the embedding
vectors using loss (4);

Update the language model parameters 6 via PPO
with reward function (5);

0« ¢

end
return 7*;

Pre-trained Language Model

Generative Pre-training Transformer (GPT) (Radford et al.
2018) is considered to be employed as the pre-trained LM in
this study. GPT is transformer-based LM, where the trans-
former is designed purely based on the attention mechanism
proposed by Vaswani et al. (2017). GPT consists of multiple
layers of transformer with self-attention operations, and it is
also pre-trained on the large corpus.

To enable the LM the ability to recognize emotions from
the dialogue, the GPT is also fine-tuned on a dialogue
dataset, MELD dataset (Poria et al. 2018), which is target-
ing for the task of emotion recognition during the conversa-
tion. Each sentence from each dialogue sample of the dataset
is annotated with an emotion category. The emotion labels
available in the MELD dataset are Anger, Disgust, Sadness,
Joy, Neutral, Surprise, and Fear. The expert annotations of
this dataset can provide the model the ability to assess the
emotion of each user’s response. The reward model, r in the
RL optimization process, is added as an extra layer on top of
the GPT model, which is also mentioned in Algorithm 1.

Human-Robot Interaction Design

A multimodal HRI system will be designed for evaluat-
ing the RL framework. As can be seen in Figure 2, sev-
eral modalities of observations, such as body gestures, fa-
cial expression, and speech, will be considered as the so-
cial cues and input to the system. The extracted features for
the body gestures will be the human skeleton joint poses,
and facial landmarks for the facial expression, and sentence
embeddings for the conversational speech. The robotic plat-
form will be the Pepper robot manufactured by the SoftBank
robotics group (SoftBank 2021). Several modalities of in-
puts are then to be fused as part of the reward signals to
the RL agent. The overall reward signal will also combine
the human preferences, such as the self-evaluations from the
user as the intrinsic rewards. We will adopt a self-assessment
scale for the measurement of user’s emotions, e.g., the self-
assessment manikin (Bradley and Lang 1994), which is a
non-verbal assessment tool that can measure affective reac-
tions to different stimuli. The personalized robot behaviors
are learned by creating the mapping between the interaction
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Figure 2: The proposed multimodal HRI framework with RL.
agent. Our robotic system (Pepper) will observe and learn
human behaviors and multimodal responses, while updating
behavioral policy focused on personalizing for each user.

context and the affective states. The interaction context in-
cludes the textual, vocal, and gesture information from the
users. The personalized robot behaviors will also be opti-
mized through the RL reward signals.

Evaluation Plan

We plan to conduct a user study to evaluate the performance
of our HRI system in generating personalized behaviors and
eliciting positive emotions from the users. A two-stage study
will be conducted. In the first stage, we will give the model
the general knowledge of recognizing human emotions via
multimodal inputs and generating feedback accordingly. To
achieve this, we will use a large-scale dataset to train the
model. Moreover, we will test the ability of the LM to gen-
erate positive responses after optimization by the reward sig-
nals. In the second stage, we will hold the user study to
evaluate our HRI system. The agent will be personalized
by utilizing the user’s multimodal information and prefer-
ences. Our hypothesis is that multimodal social cues can
give the robot a better ability to understand human emo-
tional states and enhance interactive behaviors. To evaluate
the user study, we propose to use Negative Attitudes towards
Robots Scale (NARS) (Nomura et al. 2006) and Engage-
ment (Sidner et al. 2004) questionnaires. This study hypoth-
esizes that the proposed measures between the test group
and the control group should be significantly different. A
two-sided independent samples t-test would be done to com-
pare the mean values of every extracted feature between two
groups.

The experiment will be held using the Pepper humanoid
robot. The user can prompt different basic topics to express
their emotions during the interaction, and our empathetic di-
alogue agent in the system will respond accordingly. The
built-in dialogue module from the Pepper robot will be used
as the baseline for the control group, which only includes



simple pre-defined chit-chat and rule-based contents. After
the experiment, the NARS and Engagement questionnaires
will be used to score both models.

Conclusion

In this study, we present a multimodal HRI framework with
an RL agent. The NLP problem optimized by RL is formu-
lated and solved by the PPO algorithm. The physiological
measures will be investigated to be used as the reward sig-
nals for optimizing the RL agent. GPT is used as the pre-
trained language model for the dialogue system. The pro-
posed multimodal HRI framework will be evaluated with
a two-stage user study. Different inputs modalities will be
fused to recognize the user’s affective states, which will also
be treated as intrinsic reward signals for the RL agent. By
fusing the multimodal behaviors/responses and preferences
as rewards from the users, the robotic behaviors can be per-
sonalized through learning human skills and preferred feed-
back. We are optimistic that this work will extend the cur-
rent research on social robots to provide more natural and
personalized interaction capabilities, especially using mul-
timodal HRI interaction policies and optimization through
RL. For the future study, we propose using this framework
to analyze and detect emotional cues from multimodal inter-
action data and provide personalized intervention for ado-
lescents with Autism Spectrum Disorder (ASD).
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