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Tendons are cable-like connective tissues that transfer both active and passive forces generated by skeletal
muscle to bone. In the mature skeleton, the tendon-bone enthesis is an interfacial zone of transitional tissue
located between two mechanically dissimilar tissues: compliant, fibrous tendon to rigid, dense mineralized bone.
In this review, we focus on emerging areas in enthesis development related to its structure, function, and
mechanobiology, as well as highlight established and emerging signaling pathways and physiological processes

that influence the formation and adaptation of this important transitional tissue.

1. Introduction

During development, the absence or constraint of movement can
lead to musculoskeletal disorders such as fracture-prone brittle bones,
malformed and dysplastic joints, respiratory and neurological impair-
ments, and life-long mobility problems [1]. Our ability to move relies on
the transmission of muscle forces to the skeleton in order to articulate
joints and maintain stability during standing, walking, and sitting.
Tendons are cable-like connective tissues that attach muscle to bone and
are essential for the transmission of both active and passive muscle loads
[2,3]. In the mature skeleton, the tendon-bone enthesis is an interfacial
zone of transitional tissue located between compliant, fibrous tendon to
rigid, dense mineralized bone [4-7]. This transitional tissue provides a
mechanism of stress and strain reduction at the interface between two
mechanically dissimilar tissues [5,8,9]. The transmission of muscle
loads from tendon to bone is essential for both enthesis development as
well as healing. Complete removal of loading during enthesis healing,
such as following rotator cuff injury, leads to impaired mechanical
integrity following surgical repair [10] and further exacerbates poor
healing outcomes following chronic injury [10-14].

Paleoanthropological studies have often inferred the mechanically-
dependent adaptation of fibrocartilaginous entheses to describe occu-
pational histories of skeletons [15]. This is often evaluated from skeletal
remains by examining bony structural features such as ridges, tubercles,
and tuberosities (i.e., protuberances on the periosteal surface of bone).
However, a direct link between bone shape and loading histories espe-
cially in paleoanthropological archives is complicated and difficult to

clearly define [16,17], and the ability of the mature enthesis to adapt to
mechanical loads remains contested [18-20]. Nonetheless, the enthesis
is at risk of overuse injuries and pathology, clinically referred to as
enthesopathies, and such injuries can affect adolescent and adult pa-
tients alike. In adolescents, sports-related injuries such as Sever and
Osgood-Schlatter diseases are common clinical pathologies affecting the
apophysis of bone at sites of tendon-bone entheses in children between
the ages of 8-15 years [21]. In this review, we focus on emerging areas
in enthesis development related to its structure, function, and mecha-
nobiology, as well as highlight known and emerging signaling pathways
that contribute to the formation of this important transitional tissue.

2. Structure, function, and development of the enthesis

Tendon-bone entheses are positioned on the periosteal surface of
bone and are typically found at sites of “superstructure” ridges, known
as tuberosities and tubercles. These superstructures give bones their
three-dimensional shape [22-24]. The microscopic structure of the
enthesis varies depending on its anatomical location and mechanical
demands and is characterized as either fibrous (i.e., periosteal, bony) or
fibrocartilaginous [6]. Fibrous entheses are generally found at insertion
sites of stabilizing tendons, whereas fibrocartilaginous entheses are
typically found at insertions of tendons that contribute to joint move-
ment. Fibrous enthesis attach directly to bone and typically form Shar-
pey’s fibers, which are perforating fibers that embed into bone’s
periosteal surface [25]. Fibrocartilaginous entheses consist of four
distinct histological zones, including aligned tendon, unmineralized
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fibrocartilage, mineralized fibrocartilage, and subchondral bone. A
smooth and uniform basophilic tidemark distinguishes the transition
between the two fibrocartilaginous zones, and this tidemark is disrupted
and irregular in enthesopathy. The fibrocartilage enthesis matures
during postnatal growth in response to mechanical loads from skeletal
muscle and consists of cells that express both tenogenic and chondro-
genic factors [24,26-29] (Fig. 1).

Recent work has defined a general mechanism of isometric scaling (i.
e., proportional growth of superstructure size relative to bone size) that
minimizes cumulative superstructure drift along the length of bones
[22]. Superstructures form modularly from a distinct pool of cells that
express both Scleraxis (Scx) and Sox-9, and these superstructures are
reliable phenotypic readouts of enthesis development and muscle
loading during embryonic and postnatal growth in the vertebrate limb
(Fig. 2) [23,27]. The global patterning of superstructures is regulated by
numerous factors, including the GLI-Kriippel family member 3 (Gli3),
transforming growth factor Tgfb, bone morphogenetic protein (BMP4),
and pre-B cell leukemia transcription factor (e.g., Pbx1) [23,24]. Su-
perstructure progenitors differentiate into either chondrocytes (on the
cartilage side) or fibroblasts (on the tendon side) [24,27,30], and this
bi-fated cell mixture is regulated by Kriippel-like (KLF) transcription
factors [26]. Depending on the type of enthesis (i.e., migratory or sta-
tionary), these progenitor populations are either replaced by or differ-
entiate into Glil+ cells that eventually become the enthesis [30,31]. In
the limb, the unique molecular signature of the enthesis depends on its
anatomical positioning (i.e., at the epiphysis, periosteal surface, or
attached to superstructures [6,24,32,33]). The Sox9+/Scx+ cells of the
enthesis, sandwiched between chondrocytes and tendon fibroblasts,
have recently been identified as “bi-fated,” as these cells express a mixed
transcriptome of both chondrogenic and tenogenic genes (Fig. 1) [26].
This shared transcriptome between two otherwise distinct cell types may
suggest that enthesis progenitors share regulatory elements with both
chondrocytes and tendon fibroblasts, and these shared regulatory ele-
ments (e.g., KLF) act as enhancers to drive expression in enthesis cells as
well as in adjacent cartilage (e.g., Coll1al associated elements) and
tendon resident cells (e.g., Collal associated elements) [26].
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The mechanoadaptive nature of the developing limb has been stud-
ied for decades using muscular dysgenesis models in mice. During limb
development, tendon forms as an extension of the cartilage template and
is later loaded by striated muscle. The formation of tendon is predomi-
nantly muscle-independent, with few exceptions [34]. However, the
segregation, elongation, and maintenance of tendon typically depends
on applied loads upon the migration of muscle into the limb bud from
the dermomyotome [23,34-37]. Loss of muscle loading during embry-
onic growth impacts the growth but not the initiation of bone ridge
formation, suggesting that the primordial superstructure emerges prior
to the attachment and contraction of muscle (Fig. 2) [27]. These su-
perstructures are important for skeletal function because they are
three-dimensional bony structures that provide mechanical leverage to
muscle for efficient movement of articular joints and also provide
tendon with a stable anchorage site to bone [23]. The emergence of
superstructures, where entheses attach, occurs prior to muscle migration
into the limb bud and is dependent on expression of the basic
helix-loop-helix transcription factor, Scleraxis and Sox9 (Fig. 2) [38].
The maintenance of superstructures during embryonic growth relies on
skeletal muscle contraction (Fig. 2) [23]. This has also been demon-
strated during postnatal growth, and the structure and mineralization of
the tendon-bone enthesis depends on muscle loading for interface
maturity [28,29,39]. The mineralization patterns and multi-scale
structure of the enthesis have been well described in recent experi-
mental and computational research [4,5,8,40,41]. In the absence of
postnatal muscle loading, fewer Gli1+ cells populate the tendon-bone
interface [30] and the enthesis is less mineralized and mechanically
weaker [28,39]. Conversely, in some models of muscle hypertrophy (e.
g., myostatin”” mice), tuberosities are enlarged in the postnatal skeleton
[42]. Although technically challenging, new approaches to spatially and
temporally control muscle contraction in vivo, such as use of
light-activated muscle contraction using optogenetic stimulation, offer
promise for use in mechanistic studies to improve our understanding of
the mechano-adaptive response of the enthesis during postnatal growth
[43-45]. Because each enthesis is uniquely loaded depending on its
anatomical location and mechanical demands, there exists a broad
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Fig. 1. The enthesis is a transitionally graded tissue positioned between bone and tendon. The primordial enthesis develops from bi-fated progenitor cells expressing
chondrogenic and tenogenic factors (i.e., Scx, Sox9, and Glil). Created with BioRender.com.
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Fig. 2. The deltoid tuberosity is a superstructure on the humerus and is a
reliable readout of tendon and enthesis development as well as muscle loading
in the embryonic limb. In ScxCre-Sox9 mutant mouse embryos (top row), the
deltoid tuberosity (black arrow) and triceps insertion (purple arrow) fail to
initiate formation. In muscleless mouse embryos, the formation of the deltoid
tuberosity is initiated at embryonic day (E) 14.5; however, without muscle
contraction, the tuberosity is not maintained by E18.5. Images modified with
permission from [23,27].

diversity of enthesis structure and size. For example, Felsenthal et al.
recently identified divergent cell programming in migratory and sta-
tionary entheses that depends on the dynamic maintenance and
replacement of Sox9+ and Glil+ cells during postnatal growth (Fig. 3)
[31]. Thus, developing a better understanding of enthesis diversity and
mechanoadaptation is needed.

3. Signaling pathways regulating enthesis formation and
remodeling

The development of tendon and maturation of the enthesis plays a
crucial role in joint shape and alignment [7,23,29,39]. Tendon-bone
entheses and long bone growth plates develop with overlapping and
divergent cell behaviors. Most long bones develop via endochondral
ossification, a process of mesenchymal differentiation and sequential
replacement of cartilage with bone through expansion of growth plates.
This process is mirrored in the tendon-bone enthesis, with establishment
of chondrogenic cells (e.g., Sox9+) and sequential replacement or dif-
ferentiation into fibrocartilage cells (e.g., Glil+) [31]. Morphologically,
the development of the enthesis has been likened to a “miniature” or
arrested growth plate [6,8,30,47]. However, unlike growth plates in
long bones which eventually fuse at skeletal maturity, the fibrocartilage
of the enthesis retains the morphological features of fibrocartilage and
maintain Glil+ cells at the interface throughout postnatal growth [30].
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A major challenge of studying enthesis progenitors at the transcrip-
tional or epigenetic level is the limited number of cells that reside within
a matrix dense tissue, which makes isolation for high-quality sequencing
approaches difficult. Additionally, there does not yet exist an exclusive
marker for enthesis progenitors that can be exclusively used for enthesis
lineage tracing and targeting with Cre-lox strains in mice (Table 1). Kult
et al. recently generated a compound mouse line with transgenes for
Sox9-CreER, Scx-GFP, and tdTomato in an effort to sort enthesis pro-
genitors using fluorescence-activated cell sorting [26]. This approach,
coupled with advancements in single-cell RNA sequencing, established a
useful method to identify enthesis-specific promoters that do not overlap
with adjacent limb tissues. Additionally, the use of high-precision
microdissection approaches to isolate region-specific cells, such as
laser-capture microdissection microscopy [29,30,48], have also shown
promise, and improvements in RNA preservation prior to laser-capture
methods could further improve RNA quality and rigorous downstream
molecular analyses. Ideally, the identification of promoter(s) that
exclusively target enthesis progenitors would allow for mechanistic
studies using Cre-lox; however, there does not yet exist an “enthesis-s-
pecific” Cre strain that does not significantly overlap with other tissues
(Table 1). For example, although used extensively for enthesis-related
investigations, both Scx-Cre and Sox9-Cre lineages are also localized
to tendon, cartilage, and/or perichondrium, as well as organs such as the
kidney, brain, and lungs. Additionally, depending on the timing of in-
duction, Glil-CreERT2 targets a broad range of tissues with
hedgehog-responsive cells including the growth plate of long bones,
mesothelium, kidney, spinal cord, forebrain, and vasculature. This
known and significant overlap in lineage specificity with other tissues is
a challenge for enthesis-related research. Therefore, new discoveries in
the identification of novel promoters that could be used for Cre-lox or
CRISPR-based recombination have the potential to advance the field.
For example, the development of paired recombination and inversion
strategies using Cre-lox and FLP-FRT to exclusive target Sox9/Scx
co-expressing cells and not Sox9- or Scx-only cells could strengthen
enthesis-only specification and could improve robustness of targeting
only entheseal progenitors instead of flanking tissues.

In spite of these technical challenges related to enthesis specificity,
much of what we know and understand of enthesis development has
been discovered using transgenic mouse lines for the controlled speci-
fication, expression, and deletion of specific genes. Phenotypic readouts,
such as the size and shape of tuberosities, provide a first-pass assessment
of enthesis-related changes. The gradient morphology, mineralization,
and mechanical strength of the enthesis are also important readouts for
assessing the contributions of specific genes to enthesis development in
transgenic strains. Some emerging pathways in enthesis development,
described below, could provide insight into mechanisms of enthesis
degeneration. The use of mouse and other vertebrate models (e.g.,
zebrafish) provide tools to mechanistically test biological pathways of
enthesis development which is also critical for identifying potential
regenerative strategies following injury.

3.1. TGF-f and BMP signaling

The transforming growth factor-p (TGF-p) superfamily includes a
family of proteins, such as TGF-fs (TGF-p1 and TGF-p3) and bone
morphogenetic proteins (BMPs, e.g., BMP2 and BMP4). TGF-f signaling
is a critical pathway for joint and tendon development [60,61,68-71].
The recruitment and maintenance of differentiated tendon cells is
regulated by TGF-p and its receptors, including TGF-p2, TGF-p3, and
TGFBR2 [60,69]. Additionally, deletion of either TGFPR2 in the limb
bud or BMP4 in tendon in mice leads to a complete loss of the deltoid
tuberosity, suggesting it also regulates enthesis and superstructure
specification [23,27,69,72]. The requirement of TGFBR2 for tuberosity
growth likely depends on tendon (e.g., ScxCre) but not cartilage (e.g.,
Col2aCre). Canonical TGFf signaling involves ligand binding via re-
ceptors on the cell surface followed by translocation to the nucleus via



M.L. Killian Seminars in Cell and Developmental Biology 123 (2022) 64-73

A. Migratory entheses
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Fig. 3. The establishment of the postnatal enthesis depends on either (A) migratory (e.g., replacement) or (B) stationary (e.g., maintenance and differentiation) of the
progenitor cells at the interface between tendon and bone. (C) Enthesis maturation results in dynamic remodeling of collagen-rich extracellular matrix, with pre-
dominantly collagen type I (Coll) in tendon, collagen type II (Col2) in the cartilage template, and deposition of collagen type X at the enthesis and in the secondary
ossification center. Timelines shown are representative of mouse enthesis development; P = postnatal day. Modified from [31,46].

the cytoplasm. These ligands may be derived from or diffuse into the subfamilies canonically signal via Smads; specifically, TGFp signals via
tendon and enthesis from surrounding muscle, and the secretion of TGFf Smad 2/3, and BMP signals via Smads 1/5/8 [76]. Recent work by
is thought to be, in part, mechanically mediated [73]. TGFpRs plays a Schlesinger et al. showed that loss of Smad4 leads to thinner tendons and
role in musculoskeletal tissue crosstalk and has the potential to promote induction of joint contracture, suggesting an essential role of BMP
tendon regeneration [74,75]. Downstream, the TGFp and BMP signaling during tendon growth [52].
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Table 1
Previously reported Cre strains used for targeting the tendon-bone enthesis in mice.
Cre Enthesis prevalence Inducible Overlapping expression with other tissues References
Constitutive Cre strains
Scx-Cre High No Yes; tendon, ligament, periosteum, trabecular bone, kidney, lung, brain, endothelial cells [23,27,30,47,
49-54]
Prrx1-Cre High, for appendicular No Yes; all lateral plate mesoderm-derived tissues [7,24,29,55,
skeleton 56]
Wntl-Cre High, for neural crest No Yes; midbrain, dorsal spinal cord [571
cells only
Gdf5-Cre High, for intra-articular ~ No Yes; articular joint tissues including ligaments, cartilage, meniscus, tendons [46]
attachments
Inducible Cre strains
Glil- High Yes, tamoxifen Yes; broad expression in other tissues during embryogenesis, including growth plate, [30,31]
CreERT (postnatal) mesothelium, kidney, neural stem cells, alveoli, hair follicles, heart, and vascular smooth
muscle cells.
Sox9- High, for stationary Yes, tamoxifen Yes; cartilage/tendon as well as brain, lung, heart, pancreas and kidney. Sox9+ cells [24,31,58]
CreERT attachments (embryonic) labeled during embryonic development are replaced by Glil+ cells.
Gdf5- Moderate to low Yes, tamoxifen Yes; proximal chondrocytes, ligaments [59]
CreER (embryonic;
E11.5-12.5)
Col2- Low or none Yes, tamoxifen (early Yes; secondary ossification center, articular cartilage [30]
CreERT postnatal; <P14)
Scx- Low or none Yes, tamoxifen Does not label embryonic tendons or the postnatal enthesis [60-62]
CreERT2
Cre strains (potential for enthesis targeting)
Prrx1- Not reported Yes, tamoxifen Yes; periosteum [63]
CreERT2
Fgf18- Not reported Yes, tamoxifen Yes; lung, limb bud, palate, skeleton, central nervous system, and hair follicle [64]
CreERT2
Collal- Not reported Yes, tamoxifen Yes; osteoblasts, odontoblasts, some tendons [65]
CreER
Postn-Cre Not reported but likely No Yes; myofibroblasts, tendon [66,671]

The TGFp superfamily also signals via non-Smad pathways such as
MAPK and NF-xB [77]. While the link has yet to be fully established in
the tendon-bone enthesis, recent work by Abraham et al. showed that
targeting of the NF-kB pathway via IKKf can dramatically influence
enthesis maturation as well as its ability to repair following injury [50].
This work and that of others supports the need for further investigations
related to crosstalk between immunomodulation and tendon-bone
enthesis development.

3.2. Fibroblast growth factor (FGF) signaling

FGF ligands are secreted signaling proteins that bind to and activate
a family of high affinity protein tyrosine kinase receptors (FGF re-
ceptors, FGFRs) [78]. Most bones grow via endochondral ossification, a
process of mesenchymal differentiation and sequential replacement of
cartilage with bone through growth plates. Several key steps of endo-
chondral ossification are dependent on activation and repression of
FGFR [79] and FGF ligands such as FGF2, FGF9, and FGF18 [80-82].
FGFR activation elicits a wide breadth of cellular processes and is
especially important during bone development. In the growth plate of
long bones, resting zone chondrocytes express low levels of Fgfr2,
proliferating and pre-hypertrophic cells express high levels of Fgfr3, and
hypertrophic chondrocytes express high levels of Fgfrl [78]. FGFR3
signaling in growth plate chondrocytes is especially critical for regu-
lating bone growth and activating mutations of FGFR3 result in
decreased chondrocyte hypertrophy and proliferation [79,83,84].
Developing bone has distinct patterns of the FGF9 and FGF receptor
expression in both intramembranous and endochondral bone formation
[78]. Endochondral bone development relies on the expansion of the
embryonic and postnatal growth plate, which is regulated by both
FGFR1 and FGFR3, whereas intramembranous formation occurs in the
absence of FGFR3 and depends on FGFR1. The patterns of FGF ligands
and receptors in developing bone are well established; however, the
patterns of FGF signaling in the developing enthesis have only recently
been elucidated [57,85,86]. In the developing mouse patellar tendon,
Fgfrl is highly expressed in the tendon mid-substance and tibial

68

insertion [85]. Liang et al. showed, in mice, the mature enthesis fibro-
cartilage expresses Fgfr3 and Klotho, but not Fgfrl [86], which may
underly its mineralized expansion and susceptibility to enthesopathy.

As previously mentioned in this review, the tendon-bone enthesis
forms as an arrested growth plate with an endochondral-like zone.
However, the developing enthesis differs from the growth plate during
endochondral ossification in several ways. For one, the resident pro-
genitor pool of the enthesis remains static even into postnatal maturity,
whereas the expansion of the growth plate dynamically remodels and is
replaced with trabecular bone throughout longitudinal bone growth.
Additionally, the developing enthesis lacks a resting zone of prolifer-
ating chondrocytes, which is a critical regulator of growth plate
expansion; instead, the enthesis is constrained by tendon fibroblasts.
Tendon extends via cell proliferation and differentiation in the tendon
anlage and then elongates following recruitment of mesenchymal pro-
genitors [35]. The enthesis relies on matrix synthesis from both fibro-
blasts (e.g., Scx+ cells), chondrocytes (e.g., Sox9+ cells), and
fibrochondrocytes (e.g., Gli1+ cells) (Fig. 1) [23,24,27,30,31]. This cell
fate is unique to the enthesis and strikingly different than the growth
plate. Recent work studying enthesis development in the mouse
mandible showed the cell fate of enthesis progenitors, specifically Scx+
cells, is regulated by FGF signaling via Fgfr2-Fgf2 signaling [57].
Although the formation of the craniofacial bones and limb bones have
divergent cell origins (cranial neural crest [87] vs. lateral plate meso-
derm [88], respectively) and undergo different patterns of bone for-
mation (intramembranous vs. endochondral, respectively), these
findings suggest a potent role of FGF signaling during enthesis
development.

3.3. Hedgehog signaling and cilia

Mineralization processes during endochondral bone formation are
regulated by hedgehog (Hh) signaling [89,90]. Chondrocyte maturation
in the growth plate is regulated by Indian Hh, expressed by
pre-hypertrophic  and  hypertrophic  chondrocytes, via a
negative-feedback loop with parathyroid hormone-related protein
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(PTHrP). Indian Hh induces PTHrP expression in chondrocytes further
away from the growth plate in the periarticular region, which suppresses
chondrocyte maturation. This process is recapitulated in the postnatal
enthesis [30,31,46]. Phenotypic characteristics of ScxCre-Pthrp mutant
mice have enlarged superstructures at sites of fibrous entheses [47], and
unloading of entheses results in reduced expression of PTHrP [91].
Conversely, enthesis unloading leads to increased Glil expression [30,
49] and ablation of Gli1+ cells as well as Hh signaling in enthesis pro-
genitors results in a nearly complete loss of the mineralized fibro-
cartilage zone [30].

In vertebrates, Hh signaling relies on bidirectional intraflagellar
transport (IFT) of proteins in cilia [92,93]. Localization of IFT88 in the
postnatal enthesis has been correlated with Glil+ cells and tendon
unloading leads to increased expression of primary cilia genes [49].
Additionally, loss of cilia motor proteins such as Kif3a leads to formation
of synchondroses [94], which resemble entheseal fibrocartilage. In the
postnatal growth plate, primary cilia are important in Hh signaling and
are required for Hh activation as well as the proteolytic processing of
Gli3 to either an activator or repressor form [95]. Specifically, in the
absence of Hh, Gli3 is proteolytically cleaved into a short form with
repressor activity [96]. However, in the presence of Hh, Gli3 cleavage is
inhibited and it then acts as a transcriptional activator [97]. The overlap
and divergent behavior of cilia and ciliary Hh signaling is an unexplored
area in enthesis development that warrants further investigation.

4. Physiology and pathophysiology of the enthesis
4.1. Extracellular matrix (ECM)

The structure and function of the enthesis relies on the establishment
and remodeling of its ECM. The primordial matrix of the enthesis is
predominantly collagen and includes types I, III, VI, IX, and XI collagen
[98]. As it matures, the ECM of the enthesis undergoes a dynamic
remodeling for spatially segregation of regions that richly express and
deposit type I, II, and X collagens (Fig. 3) [31,46,99]. ECM markers of
the developing enthesis include sustained expression of Col12 and Tnc,
as well as Bgn during its postnatal development [31]. Indeed, the
enthesis is rich in hyalectans (chondroitin sulfate proteoglycans, spe-
cifically aggrecan and versican) [4,6] and small leucine-rich pro-
teoglycans (e.g., chondroadherin and biglycan, which control fibril size
and interaction with collagen) [4,26,31,85,100]. These recent studies
using proteomic analyses have helped better describe the ECM patterns
of the enthesis, yet the dynamics and remodeling throughout growth are
still unknown.

Tendon and enthesis regeneration is challenging in adult mice,
however zebrafish are capable of fully regenerating tendons and this
process is regulated by BMP signaling [74]. In zebrafish, muscle and
cartilage connective tissues may also contain signaling cues such as
BMPs that, after cell ablation in these tissues, can promote directional
cell recruitment [74]. That ECM can be exploited for tissue regeneration
is not new [101-103], yet what the composition of the matrix should be
still remains unclear. Some processes of enthesis development have been
mimicked in engineered strategies of enthesis regeneration, including
the use of gradients in mineralization, alignment, and stiffness
[104-106]. Parallels in matrix remodeling during enthesis development
may also be elucidated using models of scarless wound healing and
tissue regeneration. During wound healing in other tissues, such as
muscle and bone, the provisional matrix functions to promote prolifer-
ation and matrix deposition by migrating fibroblastic cells [102,107].
This matrix-guided development has been primarily studied in organ-
isms capable of regenerating limbs following amputation, such as in
amphibians (newts, axolotl, and Xenopus), as well as in tissues that can
undergo regeneration following injury, such as mouse skin [108-114].
Hyaluronic acid and sulfated proteoglycans (e.g., heparan sulfate) are
two key ECM components that contribute to the “pattern following” and
“pattern forming” processes, respectively, of positional biochemical
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properties in developing and regenerating tissues. The “pattern
following” cells (in newts) rely on positional information (e.g., retinoic
acid [110] and hyaluronic acid [108]) in order to migrate towards or
within a transitional ECM, whereas the “pattern forming” cells are
responsible for synthesizing this transitional matrix [115]. In axolotl,
“pattern forming” cells deposit heparan sulfate proteoglycans in order to
control growth factor signaling, including FGF and BMP signaling [109].
The discovery of enthesis-specific ECM turnover and dynamics is likely
with use of innovative techniques to visualize ECM composition and
proteolysis, such as non-canonical amino acid labeling [116-118] and
damaged collagen hybridization [119,120], respectively.

4.2. Enthesopathies

The presentation of inflammation, damage, and outgrowth of the
mature enthesis is a clinical problem resulting in pain and dysfunction
that is challenging to treat [32,121]. In children, apophyseal injuries are
associated with increased loading at the enthesis and can lead to painful
disorders such as Sever disease, Osgood-Schlatter syndrome, and Little
Leaguer’s elbow [122]. Many of these conditions, especially for pedi-
atric patients, are treated non-surgically, primarily with rest and
stretching [123]. Arthritic conditions, such as diffuse idiopathic spinal
hyperostosis (DISH) and spondylosis, are linked to mechanical loading
as well as metabolic dysfunction [124,125]. Enthesopathy can be initi-
ated by loading-induced microdamage, such as in tennis elbow and
Achilles insertional tendinopathy [2,126]. Degeneration and inflam-
mation likely contribute to unresolved enthesopathy and related joint
diseases, such as osteoarthritis, tendinopathy, and rotator cuff disease
[50,127-129]. Hallmark characteristics of unresolved tendinopathy and
enthesopathy include neovascularization and increased innervation of
the tendon and enthesis [130], yet the healthy enthesis is not well
vascularized or innervated [131,132]. Rheumatological conditions,
such as fibromyalgia and psoriasis, can also manifest entheseal changes
and damage which are likely not purely mechanically derived. X-linked
hypophospathemia (XLH) is also a risk factor for enthesopathy, which
manifests in pervasive osteophyte formation in fibrocartilaginous
entheses [86]. This disease, which effects mineralization of the enthesis,
has been studied using Hyp mice, a model of the XLH mutation that
mimics the human syndrome (including via hypophosphatemia and
elevated circulating FGF-23) [86].

4.3. Future directions in enthesis research

In adult tendon, hypervascularity induces a “state-switch” that likely
leads to advancement in pathology and matrix degradation [133]. Yet
we do not fully understand if and how the tendon-bone enthesis, and
tendon more generally, is vascularized during its development or how
tendon and enthesis vascularity influences its ability to heal following
injury. Recent work using in vitro models of mechanical-stress depri-
vation models of tendon fascicles has shown that mimicking a patho-
physiological environment under normal oxygen tension culture
conditions can lead to pathophysiological processes associated with
increased oxidative stress (e.g., activation of hypoxia-inducible factor
(HIF-1) and NADPH oxidase, which produce reactive oxygen species in
response to hyperoxia) [133]. In vitro, low oxygen conditions (i.e.,
hypoxia) can promote tendon cell differentiation and maturation and
limit tendon fascicle contraction [133-135]. It is likely that the standard
culture conditions of normoxia are in fact mimicking a pathological
condition for tendon. Hypoxia can also induce a phenotypic switch from
tenocyte to fibrochondrocyte in vitro which may depend on Rho/Rac
GTPase signaling [136], a well-established pathway controlling cellular
mechanosensing [137]. The ability of a cell to respond to hypoxic stress
can lead to depletion of ATP in cells [138] and Racl activation [139],
further influencing its ability to adhere to substrates, migrate, and un-
dergo gene transcription. However, if and how oxygenation and
vascularization contribute to the development of the tendon-bone
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enthesis remains unexplored.

The environment of the mammalian embryo is predominantly hyp-
oxic prior to the establishment of the cardiovascular system and avail-
ability of oxygen [140]. Cells are able to survive hypoxic stress
depending on the stability of HIF1a [141]. Additionally, when Hifla is
positively regulated, oxygen consumption and cell proliferation are
tamped down while collagen synthesis is elevated even in spite of low
oxygen availability [141-143]. Several elegant studies have demon-
strated that the fetal growth plate maintains an oxygen gradient and
growth plate development relies on expression of the transcription fac-
tor HIF-1a [140-142,144]. In the hypoxic growth plate, increased levels
of Hifla also lead to decreased mitochondrial respiration and oxygen
consumption, ultimately promoting cell survival [145]. Like the fetal
growth plate, the enthesis is an avascular tissue [131]. Thus, the exis-
tence of an oxygen gradient during enthesis development may be
essential for collagen synthesis and metabolic demands and
reprogramming.

New directions in the field related to the metabolic bioenergetics
during tendon and enthesis development and adaptation are ripe for
exploration, especially focused on glycolysis, lactate production, and
oxidative phosphorylation. For example, the role of hypoxia and sta-
bility of Hifla during tendon and enthesis development is unclear, as is
the function of mitochondria during formation of these ECM-dense tis-
sues. Additionally, the ability of enthesis progenitors to balance energy
demands and regulate autophagy during its rapid and expansive growth
remains unexplored.

5. Conclusion

The enthesis is an interfacial collagen-rich tissue essential for the
joint motion and stability and functions as a stress-reducer between
tendon and bone. Its development in the vertebrate skeleton is complex
and mechano-adaptive, and recent discoveries have identified a unique
pool of mixed tenogenic and chondrogenic cells that form and maintain
this unique tissue. These bi-fated cells between tendon and bone have
overlapping and divergent characteristics to an arrested growth plate,
including TGF-p/BMP, FGF, and Hedgehog signaling. Future research
will be required to more clearly understand the physiology of the
enthesis, including identifying cellular patterns and ECM composition
during the dynamic postnatal remodeling process and also elucidating
the role of hypoxia and cellular metabolism during enthesis develop-
ment and pathogenesis.
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