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Abstract—A convolutional autoencoder for complete phase reconstruction in Digital Holographic Microscopy is reported. After proper 

training, this computationally efficient method reconstructs DHM holograms accurately when compared to the traditional approaches. 

This learning-based method is trained and validated with experimental samples of red blood cells. 
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I. INTRODUCTION 

One of the most common tools to recover the phase information of microscopic translucent samples is Digital Holographic 

Microscopy (DHM) [1], [2]. This imaging technique has a broad number of applications in biology and biomedicine [3]–[5]. 

Nonetheless, to reconstruct an aberration-free phase image from a DHM hologram, a computationally demanding numerical spatial 

filtering process must be precisely executed. This spatial filtering process involves i) a proper selection of the frequency components 

carrying the information of the sample in the Fourier domain of the acquired hologram, and ii) some phase compensation method 

for the tilting angle between the interfering waves in this off-axis technique. Although different numerical approaches have been 

proposed to fully compensate and reconstruct DHM holograms in phase [6], [7], the computational complexity of these proposals 

still restricts the proper recovery of phase maps at video rates[8]. In this contribution, we propose a convolutional autoencoder-

based method to fully compensate and reconstruct DHM holograms without the need for any spatial filtering process. Thus, once 

the model is appropriately trained, there is a reduction of the computational complexity in the hologram reconstruction. This 

learning-based model is trained with a dataset composed of 24,024 sections of phase images reconstructed from experimentally 

acquired DHM holograms. Our proposal is validated with biological samples of red blood cells. 

II. DIGITAL HOLOGRAPHIC MICROSCOPY 

In this proposal, a typical Mach-Zehnder type DHM setup is used, Figure 1. In this setup, the light source is a 532nm He-Ne laser, 
which is expanded and collimated by a beam expander and then divided into two waves by a first beam splitter. The object wave 
illuminates the sample after being reflected by a plane mirror, and then the light scattered by the specimen is collected by a 
40X/0.65NA infinity-corrected microscope objective (MO). A tube lens generates a magnified image of the sample at its back focal 
plane To avoid spherical aberrations due to the use of the MO, the tube 
lens is placed in telecentric regime [4]. The reference wave propagates 
with no perturbations to a plane mirror and the second beam splitter, which 
recombines both the object and reference waves to generate the 
interference pattern (i.e., the DHM hologram). The DHM hologram is 
recorded by a CMOS sensor (1920x1200 square pixels with side 5.86 μm) 
located at the back focal plane of the tube lens, i.e., image-plane conditions 
are met. In this image-plane DHM setup, the off-axis angle between the 
interfering waves is adjusted by tilting the mirror in the reference arm 
and/or the second beam splitter. The off-axis configuration ensures that 
both amplitude and phase images can be reconstructed from a single 
hologram, being the DHM system more suitable for dynamic imaging. 

The following procedure was executed to create a dataset that consists of pair of DHM holograms and their corresponding 
reconstructed phase images. Firstly, we recorded the holograms from unstained red blood cells using our off-axis DHM system. In 

 

Fig. 1. Typical off-axis Digital Holographic Microscopy setup. 
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total, we recorded 858 different holograms. Secondly, these holograms were reconstructed using an optimized version of [6] to 
provide fully-compensated phase images. Finally, each pair of hologram and reconstructed phase images was divided into small 
images with 256x256 pixels to generate our dataset of 24,024 images. 

III. PROPOSED LEARNING-BASED METHOD FOR FULL PHASE RECONSTRUCTIONS 

The experimental dataset was used to train a convolutional autoencoder whose structure is depicted in Figure 2. In this model, 
80% of the dataset was used to train the network and the remaining dataset was used to validate its performance. The encoder part of 
this model comprises three convolutional layers, with 256, 128, and 64 filters, each having a stride of 2 pixels. Finally, a flatten layer 

is added to transform the bi-dimensional information obtained 
by the stack into a one-dimensional vector, which is further 
summarized by a latent layer of 512 neurons. As expected, the 
decoder part of the model is a mirrored version of the 
autoencoder, resulting in an output grayscale image of 
256x256 pixels. The training of this model was performed via 
a logarithmic loss function with a batch size of 16 images, a 
gradient descent optimizer, and during 30 epochs. 

Figure 3 shows the results of the proposed learning-based 
model after proper training. The experimental DHM 
holograms are shown in panels (a) to (d). Whereas the 
reconstructed phase images using the traditional method are 

depicted in panels (e) to (h), the reconstructed phase images 
obtained by our convolutional autoencoder are shown in panels (i) 
to (l). Although the proposed convolutional model introduces 
some noise in the cells’ edges, it presents several advantages over 
the traditional method. Firstly, the proposed convolutional 
autoencoder provides additional detailed features inside some cells 
that cannot be recovered using the traditional method, see green 
circles in Figs. 3(g) and (k). Our approach also reduces the 
background noise in the reconstructed phase images, as the red 
circles show. Finally, our learning-based model reconstructs some 
cells that are incorrectly reconstructed by the traditional method, 
as shown by the blue circles. This setback of the conventional 
approach is due to the illumination inhomogeneities for different 
regions of the recorded DHM holograms, as shown by comparing 
Fig. 3(a) and (b). After training the model, the proposed method 
requires 5 ms to compute a phase map of 256x256 pixels running 
on a personal computer powered by an Intel Core i7-8700 @ 
3.20GHz. The traditional method requires 35 ms to reconstruct the 
same image and use the same laptop, leading to a 7-fold reduction 
in time achieved by the proposed convolutional autoencoder. In summary, the proposed learning-based method recovers the phase 
information of biological samples accurately from a single DHM hologram with reduced computational complexity. 
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Fig. 2. Convolutional autoencoder for full phase reconstructions in DHM. 

 

 

Fig. 3. Result of the proposed method for phase reconstruction in DHM. 

 

Authorized licensed use limited to: University of Memphis Libraries. Downloaded on February 23,2022 at 17:07:27 UTC from IEEE Xplore.  Restrictions apply. 


