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Abstract—A convolutional autoencoder for complete phase reconstruction in Digital Holographic Microscopy is reported. After proper
training, this computationally efficient method reconstructs DHM holograms accurately when compared to the traditional approaches.
This learning-based method is trained and validated with experimental samples of red blood cells.
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1. INTRODUCTION

One of the most common tools to recover the phase information of microscopic translucent samples is Digital Holographic
Microscopy (DHM) [1], [2]. This imaging technique has a broad number of applications in biology and biomedicine [3]-[5].
Nonetheless, to reconstruct an aberration-free phase image from a DHM hologram, a computationally demanding numerical spatial
filtering process must be precisely executed. This spatial filtering process involves i) a proper selection of the frequency components
carrying the information of the sample in the Fourier domain of the acquired hologram, and ii) some phase compensation method
for the tilting angle between the interfering waves in this off-axis technique. Although different numerical approaches have been
proposed to fully compensate and reconstruct DHM holograms in phase [6], [7], the computational complexity of these proposals
still restricts the proper recovery of phase maps at video rates[8]. In this contribution, we propose a convolutional autoencoder-
based method to fully compensate and reconstruct DHM holograms without the need for any spatial filtering process. Thus, once
the model is appropriately trained, there is a reduction of the computational complexity in the hologram reconstruction. This
learning-based model is trained with a dataset composed of 24,024 sections of phase images reconstructed from experimentally
acquired DHM holograms. Our proposal is validated with biological samples of red blood cells.

II. DIGITAL HOLOGRAPHIC MICROSCOPY

In this proposal, a typical Mach-Zehnder type DHM setup is used, Figure 1. In this setup, the light source is a 532nm He-Ne laser,
which is expanded and collimated by a beam expander and then divided into two waves by a first beam splitter. The object wave
illuminates the sample after being reflected by a plane mirror, and then the light scattered by the specimen is collected by a
40X/0.65NA infinity-corrected microscope objective (MO). A tube lens generates a magnified image of the sample at its back focal
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and/or the second beam splitter. The off-axis configuration ensures that Fig. 1. Typical off-axis Digital Holographic Microscopy setup.
both amplitude and phase images can be reconstructed from a single

hologram, being the DHM system more suitable for dynamic imaging.

The following procedure was executed to create a dataset that consists of pair of DHM holograms and their corresponding
reconstructed phase images. Firstly, we recorded the holograms from unstained red blood cells using our off-axis DHM system. In
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total, we recorded 858 different holograms. Secondly, these holograms were reconstructed using an optimized version of [6] to
provide fully-compensated phase images. Finally, each pair of hologram and reconstructed phase images was divided into small
images with 256x256 pixels to generate our dataset of 24,024 images.

III. PROPOSED LEARNING-BASED METHOD FOR FULL PHASE RECONSTRUCTIONS

The experimental dataset was used to train a convolutional autoencoder whose structure is depicted in Figure 2. In this model,
80% of the dataset was used to train the network and the remaining dataset was used to validate its performance. The encoder part of
this model comprises three convolutional layers, with 256, 128, and 64 filters, each having a stride of 2 pixels. Finally, a flatten layer
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autoencoder, resulting in an output grayscale image of
256x256 pixels. The training of this model was performed via
a logarithmic loss function with a batch size of 16 images, a
gradient descent optimizer, and during 30 epochs.
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Figure 3 shows the results of the proposed learning-based
model after proper training. The experimental DHM
Fig. 2. Convolutional autoencoder for full phase reconstructions in DHM. holograms are shown in panels (a) to (d). Whereas the
reconstructed phase images using the traditional method are
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depicted in panels (e) to (h), the reconstructed phase images
obtained by our convolutional autoencoder are shown in panels (i)
to (I). Although the proposed convolutional model introduces ]
some noise in the cells’ edges, it presents several advantages over
the traditional method. Firstly, the proposed convolutional
autoencoder provides additional detailed features inside some cells
that cannot be recovered using the traditional method, see green
circles in Figs. 3(g) and (k). Our approach also reduces the
background noise in the reconstructed phase images, as the red
circles show. Finally, our learning-based model reconstructs some
cells that are incorrectly reconstructed by the traditional method,
as shown by the blue circles. This setback of the conventional
approach is due to the illumination inhomogeneities for different
regions of the recorded DHM holograms, as shown by comparing
Fig. 3(a) and (b). After training the model, the proposed method
requires 5 ms to compute a phase map of 256x256 pixels running
on a personal computer powered by an Intel Core 17-8700 @
3.20GHz. The traditional method requires 35 ms to reconstruct the | Fig. 3. Result of the proposed method for phase reconstruction in DHM.
same image and use the same laptop, leading to a 7-fold reduction
in time achieved by the proposed convolutional autoencoder. In summary, the proposed learning-based method recovers the phase
information of biological samples accurately from a single DHM hologram with reduced computational complexity.
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