ELSEVIER

Contents lists available at ScienceDirect

Journal of Public Economics

journal homepage: www.elsevier.com/locate/jpube

"Rugged individualism" and collective (in)action during the COVID-19 pandemic *

Samuel Bazzi a,b,c,1, Martin Fiszbein b,e,2, Mesay Gebresilasse d,3

- ^a University of California, San Diego, United States
- ^b NBER, United States
- ^c CEPR, United Kingdom
- ^d Amherst College, United States
- ^e Boston University, United States

ARTICLE INFO

Article history: Received 17 September 2020 Revised 18 December 2020 Accepted 18 December 2020 Available online 20 February 2021

IEL codes:

H12

H23 H75

I12 I18

P16

Keywords: Individualism American frontier Social distancing COVID-19

ABSTRACT

"Rugged individualism"—the combination of individualism and anti-statism—is a prominent feature of American culture with deep roots in the country's history of frontier settlement. Today, rugged individualism is more prevalent in counties with greater total frontier experience (TFE) during the era of westward expansion. While individualism may be conducive to innovation, it can also undermine collective action, with potentially adverse social consequences. We argue that America's frontier culture hampered responses to the COVID-19 pandemic. Across U.S. counties, greater TFE is associated with less social distancing and mask use as well as weaker local government effort to control the virus. We argue that frontier culture lies at the root of several more proximate explanations for the weak collective response to public health risks, including a lack of civic duty, partisanship, and distrust in science.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Individualism is often associated with resourcefulness and innovation. However, it may also hinder collective action. In the context of infectious disease epidemics, non-pharmaceutical interventions like social distancing and mask use can be key components of effective public health responses. During the COVID-19 pandemic, adoption of these practices has varied widely across and within countries. This variation has important consequences

for the spread of the virus, but its origins remain widely debated. We argue that individualism is an important driving factor.

This paper shows that collective action against COVID-19 in the United States was hampered by the culture of "rugged individualism"—the combination of individualism and antistatism. The public health response to COVID-19 is significantly weaker in U.S. localities with a longer frontier experience, which Bazzi et al. (2020) identify as a key driver of rugged individualism. Frontier culture, with its deep roots in American history, cuts across known cultural divides in the U.S., including urban-rural and north-south, and thus sheds new light on the stark geographic variation in opposition to effective public health efforts to contain COVID-19.

During the process of westward expansion that marked the early history of the U.S., the frontier favored independence and self-reliance. Frontier settlers had opportunities for upward mobility but also faced significant challenges, with little social infrastructure to turn to. Frontier locations were historically more individualistic, as suggested by Turner (1893) and established in

^{*} We thank the editor and two anonymous referees for comments and Austin Wright for sharing data. All errors are our own.

¹ University of California, San Diego, School of Global Policy & Strategy, 9500 Gilman Drive, 0519, La Jolla, California, 92093.

² Boston University, Department of Economics, 270 Bay State Rd., Boston, MA 02215. United States.

³ Amherst College, Department of Economics, 301 Converse Hall, Amherst, MA 01002, United States.

E-mail addresses: sbazzi@ucsd.edu (S. Bazzi), fiszbein@bu.edu (M. Fiszbein), mgebresilasse@amherst.edu (M. Gebresilasse)

our prior work. Moreover, this distinctive culture persisted: localities that spent more time on the frontier exhibit greater individualism and anti-statism in the long run.

In this paper, we argue that rugged individualism can undermine individual and policy responses to social challenges that require internalization of externalities. While the COVID-19 context may be unique, collective action problems are ubiquitous in human societies (Ferguson, 2020; Ostrom, 2000). Our results suggest that individualism—and the particular strand shaped in U.S. history—may have important implications for other domains of public life where the need for collective action arises.

We identify a weaker response to the pandemic in counties with greater total frontier experience (TFE), i.e., the duration of exposure to frontier conditions historically. This can be seen in the responses of residents as well as local governments. We measure social distancing with county-level mobility data over several months starting in February 2020. While high- and low-TFE counties exhibit little difference in mobility before mid-March (in particular, before the week of the national pandemic declaration), a sharp differential emerges thereafter, as residents of high-TFE counties are less likely to avoid non-essential trips outside the home.

We also find that greater TFE is associated with less use of face masks in public space, another important response to curb infectious disease transmission. Residents in high-TFE counties are significantly more likely to report never, rarely, or only sometimes using masks when outside the home. The stark differences we find in mask use (measured in July 2020) complement the analysis of social distancing described above, which additionally relies on within-county time variation.

The negative influence of TFE on social distancing and mask use is not due to confounding demographic and climatic differences. We consider a host of factors emphasized in prior work on COVID-19, including population density, temperature, income, education, and racial composition. Contemporary population density is particularly relevant as it is closely connected to historical settlement patterns. We show that the coefficient estimates of TFE remain sizable even after flexibly accounting for the time-varying relationship between density and social distancing.

We also examine the link between TFE and non-pharmaceutical interventions (NPIs) to control the spread of the virus, including emergency declarations, stay-at-home policies, and mask-use mandates. While many NPIs are enacted by state governments, our results are based only on cross-county policy variation within states. We find that local governments in high-TFE counties are significantly less likely to enact NPIs.

The results indicate that TFE is negatively associated with both individual and policy responses to COVID-19. These two sides of collective inaction are likely connected. Lack of distancing and mask-wearing may reflect weak or absent policies to nudge and coordinate such preventative behaviors. At the same time, the policy choices of local governments tend to reflect the preferences of their constituencies. We do not attempt to disentangle the relative importance of preferences versus policy in shaping behavior.

Individualism and anti-statism, the two defining features of "rugged individualism," are both plausible hindrances to collective action in response to public health crises. Some of the core attributes of individualism—the primacy of personal goals over group goals, the regulation of behavior by personal attitudes rather than social norms—are likely to weaken voluntary social distancing and mask use. Both these actions require people to internalize externalities, a key dimension of the response to infectious diseases (Althouse et al., 2010). In the case of NPIs to limit the spread of COVID-19, there are salient positive externalities. Young people have to comply with distancing even when they may perceive their risks as negligible. Individuals may have to comply with strict iso-

lation even if they are asymptomatic. Mask use is considered more protective of others than oneself. In these cases, the social returns to preventive action are much larger than the private returns.

The negative association of individualism and collective action resonates with recent work on the pandemic. In their discussion of social and behavioral science insights on the pandemic response, Bavel et al. (2020) point to cultural explanations, specifically related to varying degrees of individualism. Frey et al. (2020) show that social mobility declined less in individualistic countries, while Germani et al. (2020) suggest, based on survey data from Italy, that individualistic traits hinder protective behaviors. Our findings on the link between frontier experience and social distancing within the U.S. are concurrent with those of Bian et al. (2020). Our study shows that rugged individualism, with its deep roots in American history, hinders not only voluntary responses but also public policies to fight COVID-19 spread, and that it underlies many proximate explanations for the weak pandemic response across the U.S.

The lack of civic duty is an important channel through which rugged individualism may hamper COVID-19 responses. Several recent papers show that voluntary social distancing is associated with civic culture, i.e., prosocial preferences such as reciprocity, trust, cooperation, and propensity to contribute to the public good (Barrios et al., 2021; Bartscher et al., 2020; Brodeur et al., 2020; Dincer and Gillanders, 2021; Durante et al., 2021). Rugged individualism is not necessarily at odds with civic culture. Some studies suggest a positive association between individualism and social capital.⁴ But on the other hand, self-interest and emphasis on selfreliance may undermine social norms of cooperation. Turner (1893) argued that on the frontier "the tendency is anti-social" and that there was "antipathy to control," perhaps akin to the modern notion of "psychological reactance"-the aversion to norms or regulations constraining individual choices (see Brehm and Brehm, 2013). This trait is likely to undermine collective actions, particularly those requiring new social norms and/or government intervention. We examine the link between TFE and civic culture (proxied by voter turnout, as in Barrios et al., 2021) and find a strong negative association.

Opposition to government intervention, the second defining feature of rugged individualism, is also bound to deter effective public health responses. Local officials with anti-statist constituencies tend to adopt policy stances that align with the strong opposition of their voters to government intervention in its various forms, including coordinated public health efforts. In Bazzi et al. (2020), we show that TFE is associated with opposition to tax redistribution and welfare spending, as well as to the Affordable Care Act (ACA), a salient policy for gauging preferences over public intervention in healthcare.

Moreover, rugged individualism has implications for understanding how partisanship has affected collective action against COVID-19. Bazzi et al. (2020) show that high-TFE counties exhibit stronger (and increasing) support for the Republican Party between 2000 and 2016—a period in which Republican platforms have leaned more and more against government intervention in multiple dimensions, including health and welfare policies. In many respects, the Republican Party has come to embrace the sort of anti-statism at the heart of frontier culture. It is therefore unsurprising that Republican voters engage in less voluntary social distancing and less mask use, and express less support for social distancing policies (Allcott et al., 2020; Barrios and Hochberg, 2020; Milosh et al., 2020; Painter and Qiu, 2020). At the same time,

⁴ See Beilmann et al. (2018), which includes a review of concepts and existing evidence. Individualism could help extend interpersonal cooperation by diluting ingroup favoritism. Moreover, individualism could be more about self-responsibility and autonomy than self-interest, and thus not inconsistent with altruism. Even if individualism is coupled with anti-statism, it can be compatible with grassroots organizing, volunteering, and charity.

Republican governors have been less prone to issue stay-at-home advisories (Baccini and Brodeur, 2020). Our results are consistent with partisan identity and beliefs being an important channel through which rugged individualism has undermined the COVID-19 response.

Another potential mechanism is distrust in science, which may reduce the perceived risks of COVID-19, thereby diminishing voluntary social distancing and mask use as well as compliance with public health advisories (see, e.g., Brzezinski et al., 2020). We assess the implications of TFE along this dimension by examining an issue in which distrust in science plays a central role: beliefs regarding climate change. We find that high-TFE counties exhibit significantly lower prevalence of beliefs that climate change is happening.

Distrust in science may reflect opposition to hierarchies and elites, attitudes that are plausibly bolstered by frontier culture's antipathy to control and non-conformism (Shannon, 1977). Moreover, the notion of "cultural cognition of risk" (Kahan et al., 2011) suggests that risk perceptions are biased to make them compatible with people's values. Since collective responses to COVID-19 require internalization of externalities and constraints on the range of individual choices, they are likely to be contested by rugged individualists. Taylor and Asmundson (2020) find that negative attitudes about masks are rooted in beliefs that masks are ineffective as well as in psychological reactance. They note that the latter may amplify the former: when beliefs are challenged, psychological reactance leads to anger, counter-argument, and reinforcement of priors.

Overall, our findings illustrate a fundamental role for America's rugged individualism in shaping collective action in the face of a public health emergency. Individualism weakens voluntary prevention efforts and undermines support for policy intervention. Opposition to government intervention not only reinforces individual non-compliance with NPIs but also stifles policy coordination across county lines. The social science literature has offered a range of explanations for the weak pandemic response in the U.S. We argue that many of these proximate factors have common, deep roots in the country's frontier history.

The link we draw between "rugged individualism" and the frontier echoes the work of Turner, which has been hugely influential as well as heavily criticized. Turner's narratives often convey a triumphalist overtone about westward expansion, a process of conquest that inflicted massive destruction and death on Native Americans; his perspective displays ethnocentric biases, centering on white male frontier settlers and mostly excluding everyone else (see Limerick, 1988; Limerick et al., 1991; Massip, 2020). Our research recognizes Turner's insights on the cultural influence of the frontier without any endorsement of his ideological orientation.

The term "rugged individualism," popularized by Republican Herbert Hoover in his 1928 presidential campaign, is often used in a celebratory manner. In contrast, some scholars emphasize its negative implications (see, e.g., Eppard et al., 2020; Hsu, 1983). We use it without any inherently positive or negative connotation, taking it as the common-use term that captures the combination of individualism and opposition to state intervention. Even when the preferences and values of "rugged individualism" are sustained by mythical elements or false beliefs, these values and beliefs are no less relevant as such. Understanding culture remains key to under-

standing observed behavior. While our previous work documents the roots and persistence of rugged individualism in U.S. culture, this paper shows that it can have substantial consequences for public well-being.

The paper proceeds as follows. Section 2 describes the data and empirical framework. Section 3 reports our main results on TFE and the evolution of social distancing, mask use, and government policies to fight COVID-19 across U.S. counties. Section 4 explores the relationship of frontier culture with different proximate explanations for collective inaction against COVID-19. Section 5 concludes.

2. Empirical strategy

2.1. Data

Our measure of total frontier experience (TFE) comes from Bazzi et al. (2020). This paper tracks frontier settlement from 1790 onward, identifying the frontier line in each year as the contour beyond which population density falls below 2 people per square mile. Counties within 100 km of this line and with population less than 6 people per square mile are defined as frontier counties. This historically-grounded definition of the frontier captures both dimensions of frontier life: population sparsity and isolation from urban centers. We then construct a novel, county-level measure of TFE, which captures the number of years that each county spent on the frontier from 1790 to 1890, the end of the frontier era according to Turner (1893) and the U.S. Census Bureau. The geographic variation in TFE can be seen in Appendix Fig. A.1, reproduced from Bazzi et al. (2020). Our baseline analysis focuses on the 2,036 heartland counties whose entire frontier history can be observed from 1790 to 1890. Robustness checks extend to the West Coast and 20th century frontier. Appendix Table A.1 provides summary statistics for this and other variables in the analysis.

We capture individual and policy responses to the pandemic with measures of social distancing, mask use, and local NPIs. Our core time-varying outcome of interest is social distancing. We consider two proxies based on mobility data. First, we use the Social Distancing Scoreboard from Unacast. This location-based data from cellphones captures the number of non-essential visits to locations outside the home. Second, we use Google COVID-19 Community Mobility Reports, which measure the percent change in visits to six types of destinations: workplaces, residential, grocery and pharmacy, parks, transit stations, and retail and recreation. We focus on mobility around workplaces for comparability with Unacast. We use both sources to capture mean county-level mobility through August 2020 relative to pre-pandemic levels (i.e., a value of -40 implies a reduction of 40% in social mobility with respect to pre-pandemic levels).⁷ The Unacast and Google data cover 1,378 and 1,872 counties in our sample, respectively.8

Around mid-March 2020, both the Unacast and Google data show steep and abrupt reductions in social mobility. This has been discussed at length in prior research and in the popular press. Fig. 1 reveals a novel feature of this declining mobility, namely that it

⁵ Merriam-Webster defines it as "the practice or advocacy of individualism in social and economic relations emphasizing personal liberty and independence, self-reliance, resourcefulness, self-direction of the individual, and free competition in enterprise." Wikipedia's entry defines it as "a term that indicates the ideal whereby an individual is totally self-reliant and independent from outside, usually state or government assistance"

⁶ Workplace and residential comprise the bulk of mobility, and results for time at residential areas are roughly the mirror image of the results for time at workplaces. Unacast also reports measures of distance traveled and human encounters that deliver similar results.

⁷ Google defines as baseline value for each day of the week the median value for that day of the week before February 7. Unacast defines as baseline value for each day of the week the average value for that day before March 9.

⁸ The set of counties missing from the Unacast data remains stable over time while, for a subset of counties, the Google data are available in some periods but not others. Our results are robust to restricting to those counties observed over the entire period and to reweighting counties according to their odds of being observed, estimated as a logit function of TFE and the baseline covariates described below.

(a) Non-Essential Visits (b) Time at Workplaces (Unacast) (Google Community Mobility) 20 -Fourth Quartile of TFE First Quartile of TFF non-essential visits time at workplaces p.p. change relative to baseline -10 Fourth Quartile of TFE **-**20 First Quartile of TEE -60 Feb 19 Apr 15 May 13 Jun 10 Jul 8 Jul 29 Feb 12 Mar 11 Apr 8 May 6

Fig. 1. TFE and Social Distancing: Basic Patterns. Notes: These graphs plot the evolution of social mobility since the beginning of reporting for each series in early 2020. Each measure reflects a weekly average mobility over all days in the week relative to pre-pandemic levels. The dark black (light gray) line corresponds to counties with total frontier experience in the top quartile (bottom quartile)..

was more pervasive in low-TFE counties. Looking across the two outcomes, residents of counties in the top 25% of TFE (26–63 years) practice roughly 10–20% less social distancing than those in the bottom 25% (TFE from 0 to 11 years). This sizable gap emerges rather suddenly in mid-March and persists for several months thereafter. Although suggestive of a link with frontier culture, this pattern could be due to any number of factors that might be correlated with TFE and social distancing. Our empirical strategy, explained in the next section, aims at ruling out such confounders of the relationship between TFE and the pandemic response.

We measure mask use with a nationally-representative survey. The data, by The New York Times and Dynata, are based on roughly 250,000 interviews conducted in early July. The survey asked respondents about the frequency of mask use ranging from never to always. It provides a cross-county snapshot of mask use several months into the pandemic, at a time when the virus had reached most of the country and mask use itself remained a hot-button cultural issue.

We measure county-level policy responses across four NPIs: emergency declarations, stay-at-home orders, business closures, and mask mandates. The first three NPIs are recorded in the National Association of Counties (NACo) County Explorer dataset, which covers over 3,070 counties across the U.S. through April 15, 2020. Our analysis focuses on the cross-section of policy enactment as this is where the primary variation lies (i.e., most counties enacted policies around the same time in March). The mask mandates come from the dataset compiled by Wright et al. (2020) and cover the entire U.S. through August 4, 2020.

2.2. Estimating equations

Our empirical strategy is twofold. First, we identify differential trends in social distancing across high- and low-TFE counties around the national emergency declaration on March 13th. Second,

we estimate cross-sectional specifications that relate TFE to mask use and county-level NPIs. We do not relate social distancing trends to the timing of state- or county-level NPIs out of concern for endogenous policy implementation. Indeed, our analysis of NPIs suggests that TFE is associated with county-level policies to fight the pandemic.

Our analysis of differential trends in social distancing is based on the following equation:

$$y_{ct} = \alpha + \sum_{j=min}^{max} \beta_j \text{TFE} \times \mathbf{1} \text{(time since March 13}$$

= \mathbf{j}) + $\theta_c + \gamma_t + \varepsilon_{ct}$, (1)

where y_{ct} is a measure of social distancing in county c at time t, TFE captures total frontier experience (scaled in decades), $\mathbf{1}$ (time since March 13 = j) are indicators for the time until/after the national pandemic declaration on March 13th, θ_c is a county fixed effect, and γ_t is a time fixed effect.

We view the national pandemic declaration as a salient information and coordination shock, and thus consider the days before the week around March 13 as a reference point to assess differential responses by level of TFE. However, news of COVID-19 spread in the U.S. before this week, so it is possible that there were differential responses before. 12

We consider two extensions of Eq. (1): (i) state×time fixed effects $(\theta_{s(c)t})$, and (ii) interactions of 1(time since March 13=j) with other pre-determined correlates of social distancing, an important one being population density. Together with the baseline Eq. (1), these specifications address potential confounding by time-invariant unobservables as well as differential trends across high- and low-TFE counties. We also estimate a simpler difference-in-differences analogue of (1) in the Appendix to present some robustness checks more compactly.

Our cross-sectional estimating equation is given by:

$$y_c = \alpha + \beta TFE_c + \mathbf{x}_c' \gamma + \theta_s + \varepsilon_c,$$
 (2)

⁹ The Unacast and Google data exhibit differences in the extent of recovery to prepandemic mobility levels. Our empirical strategy ensures that aggregate swings in the data are not a confounding factor in understanding how TFE relates to social distancing.

¹⁰ https://github.com/nytimes/covid-19-data/blob/master/mask-use/README.md.

¹¹ The data was retrieved from https://ce.naco.org/?dset=COVID-19&ind=Emer gency%20Declaration%20Types.

¹² To be precise, the week around March 13 as we define it is March 11–17; weeks are arbitrarily defined from Wednesday to Tuesday in our default option when aggregating the data, taking the first day of a week to be the first weekday of the calendar year. Results are robust to defining weeks from Sunday to Saturday or from Monday to Sunday. They are also robust to considering frequencies higher or lower than weekly.

where y_c captures mask use, county-level NPIs, or various proximate causes of COVID-19 responses, \mathbf{x}_c is a vector of predetermined county-level controls used in Bazzi et al. (2020), ¹³ and θ_s is a state fixed effect. We consider a number of extensions to Eq. (2), focusing on confounders explored in our prior work and new ones specific to the pandemic response. In all regressions, we cluster standard errors based on an arbitrary grid-cell approach that allows for correlated unobservables across all counties within 60 miles (Bester et al., 2011). ¹⁴

3. Rugged individualism and collective inaction

This section shows that frontier culture hindered collective action against COVID-19. Total frontier experience (TFE)—the duration of historical exposure to frontier conditions—has a negative association with social distancing, mask use, and local-government NPIs in response to COVID-19. These results are robust to addressing various alternative explanations for the stark geographic differences in the public health response.

3.1. Social distancing

Using specification (1), we find that high-TFE counties practiced considerably less social distancing after the national emergency declaration on March 13. Fig. 2 shows that around that date, TFE starts displaying a positive association with non-essential visits (panel a) and time spent at work (panel b). Panels (c) and (d) show similar patterns when we include state-by-week FE instead of simply week FE. The more demanding FE help account for variation in state-level policies at different points in time as well as differential regional evolution of public health risks (and thus of perceived needs for social distancing and other responses).

The dynamic path of point estimates in Fig. 2 show a sharp break in mobility patterns around mid-March. Each additional decade of TFE is associated with 2 percentage points (p.p.) higher likelihood of non-essential visits (panels a and c) and roughly 1.5 p.p. more time spent at work (panels b and d). This differential response materializes quickly after March 13 and is consistent with less social distancing in high-TFE counties. These are substantial magnitudes given that the within-week, cross-county standard deviation in non-essential visits is 24 p.p. and in time at work is 6 p.p.

We see little evidence of differential trends before mid-March. Panels (a) and (b) suggest that residents of low-TFE counties were not increasingly less mobile prior to public awareness about the severity of COVID-19 risk. This is consistent with the abruptness of the information shock in early March. With state-by-week FE in panels (c) and (d), we see some indication of a pre-trend, though the sharp jump in coefficients after the emergency declaration remains so large that it continues to suggest a strong break from the counterfactual trend.

The gap in social distancing between high- and low-TFE counties becomes narrower over time in some specifications. Nearly two months after the national emergency declaration, TFE becomes significantly less correlated with social distancing in panels (a), (b) and (d). This partial convergence in behavior between high- and low-TFE places might reflect various forces, e.g., increased response in high-TFE places as they eventually converge in perceived health risks, or weaker response in low-TFE places as

residents grow fatigued with protracted social distancing. Heterogeneous regional patterns that affect risk perceptions and calls for collective action might also play a role. ¹⁵ Indeed, when accounting for some of this regional heterogeneity using state-by-week FE, the convergence patterns appear more muted, with the initial differential persisting through late August.

3.2. Mask use

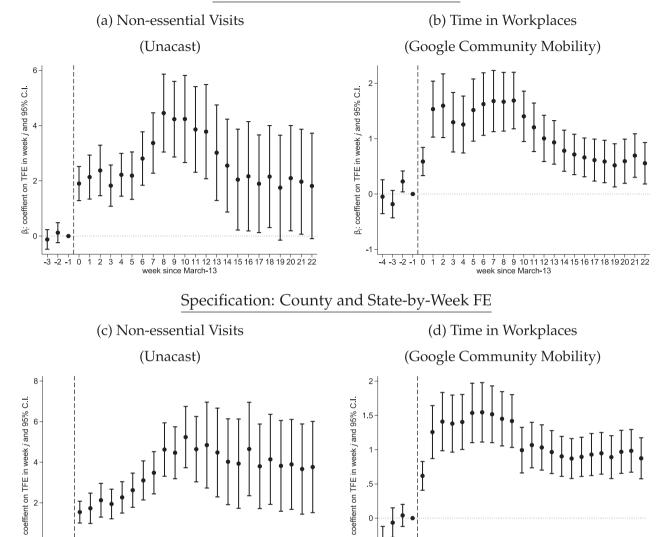
Besides less social distancing, high-TFE counties exhibit lower mask use. Those unwilling to voluntarily restrict activities outside the home may well be engaging in other preventative behaviors, and some may view mask use as one such substitute behavior. Although plausible, this hypothesis is rejected in Table 1. The estimates, based on Eq. (2), suggest that greater TFE is associated with more residents reporting never, rarely, or sometimes using masks, and fewer residents reporting that they always wear a mask. Each additional decade of TFE is associated with roughly a 5–6 percent shift from regular mask use to never or rarely wearing one. These are sizable differences given that 17% of residents in the average county report never or rarely wearing a mask outside the home while 48% report always wearing a mask.

Combined with weaker social distancing, the lower mask use in high-TFE counties is consistent with individualistic opposition to collective action. Mask use, perhaps more than other risk-prevention behaviors, is seen as providing greater protection to others than to oneself. As such, the choice to wear a mask conveys concern for the well-being of those encountered in public space. The apparent greater lack of concern in high-TFE counties may stem from individualistic attitudes. It might also be due to weaker signals from local government about the importance of mask use or to distrust in the underlying science around efficacy in reducing risk.

3.3. Local policies

We now show that local governments in high-TFE counties are less likely to implement policies aimed to slow the spread of COVID-19. We examine the association of TFE and NPIs at the county level. Using Eq. (2), we consider four types of interventions for which implementation varies widely across counties: emergency declarations, stay-at-home policies, business closure policies, and mask mandates.

Table 2 reports a negative association between TFE and each of these NPIs, strongly significant for all but the business closure interventions. With state fixed effects, these estimates isolate variation in county-level NPIs holding constant the state-level NPIs in place for those counties. While more than half of the variation in policies across counties is driven by variation across states, there is also substantial within-state variation. The estimated coefficients are sizable: each additional decade of TFE is associated with a decrease in the likelihood of NPIs on the order of 18% for emergency declarations (column 1), 50% for stay-at-home policies (column 2), and 9% for mask mandates (column 4).


The results thus far suggest a strong link between frontier culture and the pandemic response. Residents of high-TFE counties are more likely to eschew social distancing and mask use, and their representatives are more likely to avoid public intervention aimed at changing individual behavior. These two sides of collective inaction are, of course, connected. Lack of distancing and mask-wearing may reflect weak or absent policies to nudge and coordinate such

¹³ These include county area; county centroid latitude and longitude; distance to oceans, lakes and rivers from the county centroid; mean county temperature and rainfall; elevation; and average potential agricultural yield.

¹⁴ Inference is robust to an alternative, spatial HAC adjustment following Conley (1999) with a bandwidth of 1,000 km as well as to clustering by state using a wild bootstrap procedure.

¹⁵ When controlling for time-varying, county-level COVID-19 cases and deaths, the same general pattern from Fig. 2 survives. These results in Appendix Fig. A.2 suggest that the dynamic relationship between TFE and social distancing is not solely driven by confounding changes in the local prevalence of infection risk.

Specification: County and Week FE

β.. Ī 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

.5

Fig. 2. TFE and Social Distancing. Notes: This figure reports estimates of Eq. (1) with week and state-by-week fixed effects. All panels display point estimates by week and 95% confidence intervals corresponding to standard errors clustered by arbitrary 60-square-mile grid cells..

Table 1 TFE and Mask Use.

	How often do you wear a mask in public when you expect to be within six feet of another person?							
	Never (1)	Rarely (2)	Sometimes (3)	Frequently (4)	Always (5)			
Total frontier experience	0.006*** (0.002)	0.004*** (0.001)	0.009*** (0.002)	-0.000 (0.002)	-0.019*** (0.003)			
Number of Counties	2,036	2,036	2,036	2,036	2,036			
Dep. Var. Mean	0.086	0.089	0.132	0.211	0.482			
R^2	0.30	0.27	0.25	0.16	0.54			
State Fixed Effects	✓	✓	∠	∠	/			
Geographic/Agroclimatic Controls	/	∠	~	/	/			

Notes: This table reports estimates of Eq. (2) for county-level means across a series of mutually exclusive responses to a question about mask use in early July 2020. The regressions control for state fixed effects and the following predetermined controls: county area; county centroid latitude and longitude; distance to oceans, lakes and rivers from county centroid; mean county temperature and rainfall; elevation; and average potential agricultural yield. Standard errors are clustered by arbitrary 60-square-mile

Significance levels: *: 10% **: 5% ***: 1%.

Table 2 Local Policies.

	Emergency Declaration (1)	Stay at Home (2)	Business Closure (3)	Mask Mandate (4)
total frontier experience	-0.042*** (0.011)	-0.025*** (0.007)	-0.003 (0.003)	-0.036*** (0.008)
Number of Counties	2,036	2,036	2,036	2,035
Dep. Var. Mean	0.236	0.048	0.006	0.405
R^2	0.20	0.16	0.06	0.61
State Fixed Effects	✓	✓	_	_
Geographic/Agroclimatic Controls	~	~	~	~

Notes: This table reports linear probability estimates of Eq. (2) for the incidence of four county-level NPIs listed at the top of each column. The regressions control for state fixed effects and the following predetermined controls: county area; county centroid latitude and longitude; distance to oceans, lakes and rivers from county centroid; mean county temperature and rainfall; elevation; and average potential agricultural yield. Standard errors are clustered by arbitrary 60-square-mile grid cells.

Significance levels: *: 10% **: 5% ***: 1%.

preventative behaviors. At the same time, the policy choices of local governments often reflect the preferences of their constituencies. While preferences and policies both shape behavior, we do not attempt to disentangle their relative importance in this paper.

3.4. Robustness checks

We consider several alternative explanations for the relationship between TFE and the response to COVID-19. First, the results in Fig. 2 cannot be fully explained by other county-specific determinants of COVID-19 risk and social distancing. We show this in Appendix Figs. A.3-A.6 by separately interacting several countylevel covariates with time-to-event, mirroring the interaction with county-level TFE. The potential confounders include population density, temperature, income, education, and racial composition, each of which has featured prominently in prior work exploring the pandemic risk and response (see, e.g., Ahmadi et al., 2020; Brown and Ravallion, 2754: Chiou and Tucker, 2698: Coven and Gupta, 2020; Sajadi et al., 2020). While some, like population density and temperature, remain the subject of debate about the precise risk mechanism, the mere perception of risk could shape prevention behavior. Some of these measures are themselves potential outcomes of TFE, which can make interpretation difficult. Nevertheless, the fact that the results are robust to these additional controls suggests that they are unlikely to be important confounders. Appendix Table A.2 provides similar evidence of robustness using a simpler difference-in-differences specification with county FE that merely interacts TFE and the other covariates with an indicator for weeks after March 13.

The estimates for mask use and local policies are also generally robust to adding the same potential confounders as controls (see Appendix Tables A.3–A.5). Together, these results suggest that TFE captures variation in the pandemic response that is not related to leading demographic and environmental factors associated with COVID-19 risk.

Disentangling Population Density. It is worth emphasizing that our findings cannot be explained by differences in population density across high- and low-TFE counties. Contemporary population density is strongly decreasing in TFE, and in some of the robustness checks described above, a linear control for density reduced the estimated coefficient of TFE in the regressions for social distancing, mask use, and NPIs. Appendix Tables A.6 and A.7 show that the coefficients on TFE remain sizable with even more flexible controls for density. The matching-type exercise in column 4 is an extremely demanding specification: for each county, we find the county within the same state with the most

Table 3Civic culture, anti-statist partisanship, and distrust in science.

	Civic Capital (Avg.	Republican Vote Share	Don't Think Global
	Turnout	vote briare	Warming
	2000-16)	2016	Is Happening
	(1)	(2)	(3)
total frontier experience	-0.438**	3.154***	0.919***
	(0.176)	(0.416)	(0.130)
Number of Counties	2,036	2,036	2,036
Dep. Var. Mean	57.865	65.420	21.751
R^2	0.53	0.32	0.35
State Fixed Effects	✓	✓	~
Geographic/Agroclimatic Controls	~	~	~

Notes: This table reports estimates of Eq. (2) for the outcomes listed at the top of each column. The regressions control for state fixed effects and the following predetermined controls: county area; county centroid latitude and longitude; distance to oceans, lakes and rivers from county centroid; mean county temperature and rainfall; elevation; and average potential agricultural yield. Standard errors are clustered by arbitrary 60-square-mile grid cells.

Significance levels: *: 10% **: 5% ***: 1%.

similar population density and create matched pairs, define a dummy for each pair, and then add these as fixed effects (interacted with the post-March 13 indicator in the social distancing regressions). Columns 5 and 6 split the sample into counties above versus below the 90th percentile of population density, the former being urban areas. The estimated coefficients for TFE generally remain significant across these specifications, which suggests that frontier culture and its implications for collective action cut across the density divide.

Regional Variation and the 20th Century Frontier. Appendix Tables A.8 and A.9 explore regional heterogeneity in the associations of TFE with social distancing, mask use, and NPIs. First, we add 105 West Coast frontier counties that were settled by frontier migrants starting in the mid-19th century (column 1). We then split the sample by Census region: the Midwest (column 2), the South (column 3), and the West (column 4). The estimates are noisier for the latter given the smaller number of counties. In subsequent columns 5–8, we extend the frontier time-frame, thereby including counties that experienced frontier conditions beyond 1890. Overall, the findings remain largely unchanged across all these checks.

4. Frontier culture and proximate causes of inaction

This section explores why frontier culture undermined the pandemic response. We show that TFE underlies several leading explanations for opposition to social distancing, mask use, and NPIs.

In Table 3, we examine the association of TFE with civic culture, anti-statist partisanship, and trust in science. Each of these has been linked to variation in the public health response to COVID-19. We argue here that frontier culture underpins these findings. There are of course numerous other correlates of the individual and policy response to COVID-19. Our goal in this section is not to provide an exhaustive account of the role of TFE in understanding all of these associations documented in prior work. Rather, we aim to demonstrate that frontier culture may be a unifying explanation across a set of important factors underlying the public health response to the pandemic.

Many have argued that civic culture helped to promote voluntary social distancing. The strand of individualism cultivated on the American frontier tends to go against civic culture. Historically, frontier settlers had to rely on themselves for protection and prevention, and to improve their living conditions. While returns to cooperation may have been high, maintaining reciprocity would

have been challenging given the high population mobility on the frontier. The "rugged" aspect of frontier culture, and the prevalence of violence in frontier societies, plausibly made this type of individualism particularly inimical to civic culture.

We explore the association of TFE with a common proxy measure of civic culture: voter turnout. Barrios et al. (2021) show that this measure is negatively correlated with social distancing. We share their interpretation: weaker civic culture implies lower disposition to internalize externalities and take costly actions that contribute to the common good. Table 3 reveals a negative association between TFE and average voter turnout across the last five presidential elections (column 1).¹⁶ Each additional decade of TFE is associated with nearly 0.5 p.p. lower turnout relative to a mean of 58% (std. dev. of 8.7%).

Residents of high-TFE counties not only display lower civic capital but also greater anti-statist partisanship, which can be an obstacle to public health during a pandemic, Bazzi et al. (2020) show that high-TFE counties exhibit stronger and increasing support for the Republican Party between 2000 and 2016 (see column 2 of Table 3 below for the estimated coefficient of TFE in 2016). During this period, the Republican platform has increasingly aligned with the principles of rugged individualism. In Bazzi et al. (2020), we showed that TFE is associated with opposition to tax redistribution, welfare spending, and other forms of government intervention, including the Affordable Care Act (ACA). Opposition to the ACA, a program for state-led provision of affordable health care, reflects, in part, opposition to seeing health as a right or as a public good. This ideology is likely to hamper the response to an infectious disease epidemic like COVID-19, which requires individuals and government to address externalities through collective action. Opposition to tax redistribution and welfare programs may also be an obstacle, since stay-at-home policies require support for individuals whose livelihoods are threatened.

The anti-statist element of rugged individualism and its partisan expression in the Republican Party may have limited the policy response to the pandemic while also undermining individual willingness to engage in costly collective action around social distancing and mask use. Others have shown that Republican voters are less likely to engage in social distancing (Barrios and Hochberg, 2020; Gadarian et al., 2020; Painter and Qiu, 2020) and mask use (Milosh et al., 2020), and that Republican leaders are more likely to downplay the risks of COVID-19 (Allcott et al., 2020) and less likely to issue NPIs (Baccini and Brodeur, 2020). We argue that the frontier culture of rugged individualism lies at the heart of these partisan responses to the pandemic.

Another way in which frontier culture has shaped the pandemic response is through distrust in science and experts more generally. Frontier culture, insofar as it leads to opposition to all kinds of hierarchies, may be associated with distrust in science. Historically, the frontier was characterized by novel and uncertain conditions where traditions and rules of thumb acquired elsewhere were often ill-suited. This created an advantage for individualism, a trait that is associated with resourcefulness, non-conformism, and inventiveness (see Raz, 2020; Shannon, 1977). While the context changed, frontier history may have created an enduring cultural opposition toward established norms and hierarchies, including those based on science. Moreover, people's perceptions of risks and scientific consensus may be biased to make them congenial to their values (Kahan et al., 2011). In combination with the aversion of rugged individualists to any constraints on their choices (their "psychological reactance"), this can lead to distrust in scientific guidelines on COVID-19 responses.

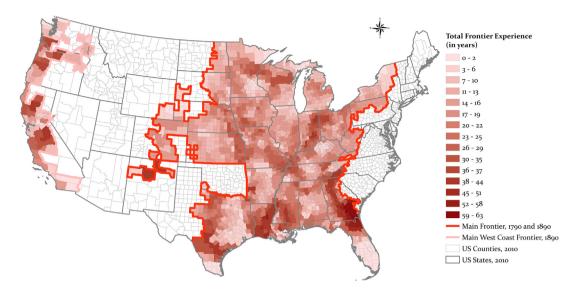
To assess this possibility, we examine a salient topic on which distrust in science plays a key role: beliefs regarding climate change. Brzezinski et al. (2020) show that those who believe in the severity of global warming are more likely to engage in social distancing and to comply with government-mandated public health advisories. We show in Table 3 that frontier culture is associated with disbelief in climate change. Each additional decade of TFE is associated with a 1 p.p. increase in the share of residents that does not believe global warming is happening, according to survey data collected by the Yale Program on Climate Change Communication (Howe et al., 2015). This is a considerable magnitude given that 22% of residents in the average county hold such disbelief. This result suggests that distrust in science may be one important way in which frontier culture undermines public health campaigns.

5. Conclusion

American rugged individualism—the combination of individualism and opposition to government intervention—has undermined collective action against the COVID-19 pandemic. We provide the first empirical evidence that frontier culture is central to understanding the weak public health response. Counties with longer historical frontier experience exhibit less mask use, less social distancing, and fewer NPIs. These counties also exhibit weaker civic capital, stronger anti-statist partisanship, and greater distrust in science, which are, among others, important proximate determinants of the country's weak public health responses. We argue that America's frontier culture of rugged individualism is at the heart of its flawed responses to the COVID-19 pandemic. Effective responses require strong collective action, the likes of which has eluded many areas of the country with a deep historical connection to the frontier.

The fragmented response to COVID-19 that we identify may have broader aggregate implications. As high- and low-TFE counties adopt different approaches to the pandemic, this makes it more difficult to blunt the spread of infection (see Chandrasekhar et al., 2020; Holtz et al., 2020). Prevention success in one county may be offset and even undone as individuals come into contact with those from other counties with weaker responses. Ultimately, America's federal system of government—itself intertwined with the country's frontier history—makes it difficult to avoid such spillovers.

Individualistic responses to collective risk can pose grave public health consequences, especially in a context like the U.S. where institutions freely permit such a response. The U.S. legal system is predicated on the protection of individual liberties and decentralized governance. In his book, *The Pox of Liberty: How the Constitution Left Americans Rich, Free, and Prone to Infection*, Troesken (2015) describes how the institutional emphasis on individual liberties undermined America's historical response to smallpox by making vaccination avoidance possible. Looking forward, frontier culture could create challenges for COVID-19 immunization campaigns. While America is considerably richer and its healthcare more advanced today, institutional foundations remain similar, and rugged individualism seems more entrenched than ever.


Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

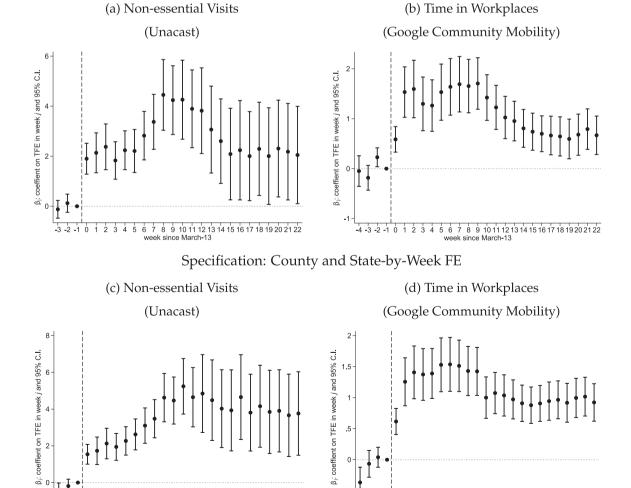
Appendix A

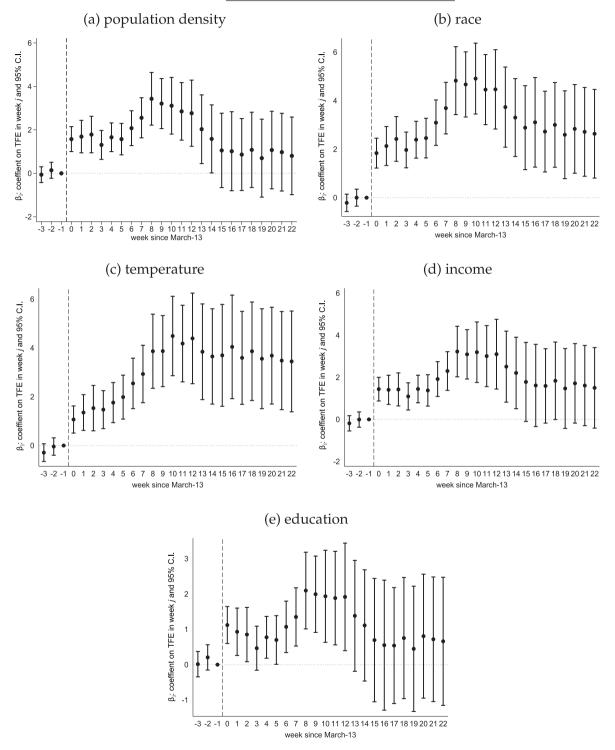
See Figs. A.1-A.6.

¹⁶ The county-level voting outcomes in this section are based on data from Leip's Atlas of U.S. Presidential Election Presidential Elections (see https://uselectionatlas.org).

Fig. A.1. Total Frontier Experience (1790 to 1890). *Notes*: This figure is reproduced from Bazzi et al. (2020). It is based on county-level data from NHGIS (Manson et al., 2019). Total frontier experience is the total number of years the county was within 100 km of the frontier line and its population density was below 6 people per square mile, between 1790 and 1890. The white areas to the east of the 1790 main frontier line are counties for which we do not know frontier history given the lack of Population Census data before 1790. The white areas to the west are beyond the 1890 frontier line..

Specification: County and Week FE




Fig. A.2. TFE and Social Distancing controlling for Lagged Per Capita Cases and Deaths. *Notes*: This figure displays estimation results of Eq. (1) for two different outcomes, with and without state-by-week fixed effects. All panels display point estimates by week and 95% confidence intervals corresponding to standard errors clustered by arbitrary 60-square-mile grid-cells.

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 week since March-13

Specification: County and Week FE, with Additional Controls

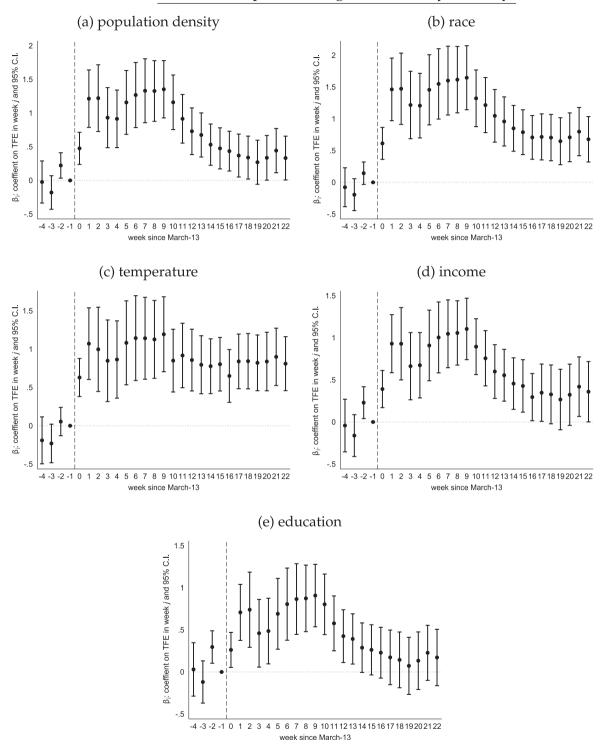

Outcome: Non-essential Visits (UNACAST)

Fig. A.3. Robustness Checks: TFE and Social Distancing. *Notes*: This figure displays estimation results for our specification in Eq. (1) controlling for, separately, county level population density, race (share of white population), mean temperature, median income or education (share with post-secondary educatiob) interacted with time-to-event dummies, in all cases including county and week fixed effects. All panels display point estimates by week and 95% confidence intervals corresponding to standard errors clustered by arbitrary 60-square-mile grid-cells.

Specification: County and Week FE, with Additional Controls

Outcome: Time in Workplaces (Google Community Mobility)

Fig. A.4. Robustness Checks: TFE and Social Distancing. *Notes*: This figure displays estimation results for our specification in Eq. (1) controlling for, separately, county level population density, race (share of white population), mean temperature, median income or education (share with post-secondary educatiob) interacted with time-to-event dummies, in all cases including county and week fixed effects. All panels display point estimates by week and 95% confidence intervals corresponding to standard errors clustered by arbitrary 60-square-mile grid-cells.

Specification: County and State-by-Week FE, with Additional Controls

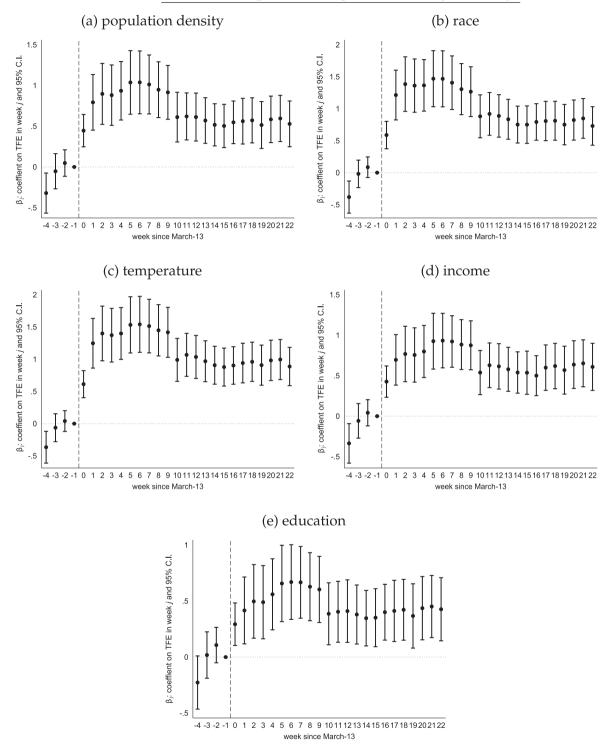

Outcome: Non-essential Visits (UNACAST)

Fig. A.5. Robustness Checks: TFE and Social Distancing. *Notes*: This figure displays estimation results for our specification in Eq. (1) controlling for, separately, county level population density, race (share of white population), mean temperature, median income or education (share with post-secondary educatiob) interacted with time-to-event dummies, in all cases including county and state-by-week fixed effects. All panels display point estimates by week and 95% confidence intervals corresponding to standard errors clustered by arbitrary 60-square-mile grid-cells.

Specification: County and State-by-Week FE, with Additional Controls

Outcome: Time in Workplaces (Google Community Mobility)

Fig. A.6. Robustness Checks: TFE and Social Distancing. *Notes*: This figure displays estimation results for our specification in Eq. (1) controlling for, separately, county level population density, race (share of white population), mean temperature, median income or education (share with post-secondary educatiob) interacted with time-to-event dummies, in all cases including county and state-by-week fixed effects. All panels display point estimates by week and 95% confidence intervals corresponding to standard errors clustered by arbitrary 60-square-mile grid-cells.

Table A.1 Summary Statistics.

	Mean	Standard Deviation	Minimum	Maximum
SOCIAL DISTANCING				
Non-Essential Visits (Unacast)	-10.78	23.05	-59.73	339.85
Time at Workplaces (Google Community Mobility)	-22.70	5.47	-67.00	-9.81
MASK USE				
Never	0.09	0.06	0.00	0.42
Rarely	0.09	0.05	0.00	0.38
Sometimes	0.13	0.06	0.01	0.42
Frequently	0.21	0.06	0.05	0.48
Always	0.48	0.13	0.16	0.88
LOCAL POLICY INDICATORS				
Emergency Declaration	0.24	0.42	0.00	1.00
Stay at Home	0.05	0.21	0.00	1.00
Business Closure	0.01	0.08	0.00	1.00
Mask Mandate	0.41	0.49	0.00	1.00
CIVIC CULTURE, PARTISANSHIP AND DISTRUST IN SCIENCE				
ave. turnout 2000–16	57.85	8.69	16.18	100.00
Trump's vote share	65.40	13.86	12.64	91.83
Percent Who Don't Think Global Warming Is Happening	21.75	4.54	6.85	32.02
ADDITIONAL VARIABLES				
Total Frontier Experience (in decades)	1.82	1.12	0.00	6.30
pop. density	137.16	349.69	0.29	5423.86
share white	85.43	15.57	10.66	99.22
temperature	12.71	4.65	-0.63	23.72
median income	50831.50	11916.85	25385.00	124947.00
share post-sec. educ	20.17	8.44	5.40	66.50

Notes: The social distancing measures are averages of the corresponding weekly mobility indices between February and August 2020. The mask use variables correspond to county-level means of responses to a question about mask use ("How often do you wear a mask in public when you expect to be within six feet of another person?) in early July 2020. The local policies variables correspond to county level indicators for the county ever passing specic non-pharmaceutical interventions.

Table A.2Robustness Checks: TFE and Social Distancing, with Additional Controls

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
			(a) No	n-essential Visits	(Unacast)			
TFE × post-March-13	2.645*** (0.619)	1.746*** (0.529)	3.238*** (0.579)	3.255*** (0.645)	2.057*** (0.593)	1.003* (0.531)	1.731*** (0.544)	
pop. density × post-March-13	, ,	-0.018*** (0.002)	, ,	, ,		, ,	-0.007*** (0.001)	
share white \times post-March-13			0.483*** (0.054)				0.282*** (0.058)	
temperature × post-March-13				-0.685*** (0.218)			-0.469** (0.237)	
median income \times post-March-13					-0.000*** (0.000)		0.000*** (0.000)	
share post-sec. educ \times post-March-13						-1.027*** (0.061)	-1.097*** (0.106)	
Number of County-Weeks	35,828	35,828	35,828	35,750	35,828	35,828	35,750	
Number of Counties	1,378	1,378	1,378	1,375	1,378	1,378	1,375	
Dep. Var. Mean	-10.8	-10.8	-10.8	-10.8	-10.8	-10.8	-10.8	
	(b) Time at Workplaces (Google Community Mobility)							
TFE × post-March-13	1.075*** (0.192)	0.787*** (0.151)	1.119*** (0.191)	0.996*** (0.189)	0.635*** (0.131)	0.413*** (0.129)	0.390*** (0.121)	
pop. density \times post-March-13		-0.007*** (0.001)					-0.003*** (0.001)	
share white \times post-March-13			0.028** (0.011)				0.007 (0.012)	
temperature × post-March-13				0.070 (0.053)			-0.045 (0.041)	
median income × post-March-13					-0.000^{***} (0.000)		-0.000*** (0.000)	
share post-sec. educ \times post-March-13						-0.420*** (0.019)	-0.306*** (0.026)	
Number of County-Weeks	49,938	49,938	49,938	49,857	49,938	49,938	49,857	
Number of Counties	1,872	1,872	1,872	1,869	1,872	1,872	1,869	
Dep. Var. Mean	-22.4	-22.4	-22.4	-22.4	-22.4	-22.4	-22.4	
County Fixed Effects	✓	~	1		/	1	1	
Time Fixed Effects							1	

Notes: This table reports estimates of the simpler difference-in-differences analogue of specification in Eq. (1) for two different outcomes and accounting for potential confounders interacted with an indicator for post-March-13. Standard errors are clustered by arbitrary 60-square-mile grid cells. Significance levels: *: 10% **: 5% ***: 1%.

Table A.3 Robustness Checks: TFE and Mask Use, with Additional Controls.

	Share who always wear a mask in public when they expect to be within six feet of another person								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
total frontier experience	-0.019***	-0.014***	-0.016***	-0.019***	-0.015***	-0.012***	-0.008***		
-	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)		
pop. density		0.000***					0.000***		
		(0.000)					(0.000)		
share white			-0.002***				-0.002***		
			(0.000)				(0.000)		
temperature				-0.001			-0.008		
				(0.009)			(0.007)		
median income					0.000***		0.000***		
					(0.000)		(0.000)		
share post-sec. educ						0.005***	0.002***		
						(0.000)	(0.000)		
Number of Counties	2,036	2,036	2,036	2,036	2,036	2,036	2,036		
Dep. Var. Mean	0.482	0.482	0.482	0.482	0.482	0.482	0.482		
R^2	0.54	0.58	0.56	0.54	0.58	0.60	0.63		
State Fixed Effects	✓	✓	✓	✓	✓	✓	✓		
Geographic/Agroclimatic Controls	/	✓	/	✓	✓	✓	/		

Notes: This table reports estimates of Eq. (2) for the main mask use outcome while accounting for potential confounders at the county level. The regressions control for state fixed effects and the following additional predetermined controls: county area; county centroid latitude and longitude; distance to oceans, lakes and rivers from county centroid; mean county rainfall; elevation; and average potential agricultural yield. Standard errors are clustered by arbitrary 60-square-mile grid cells. Standard errors are clustered by arbitrary 60-square-mile grid cells. Significance levels: *: 10% **: 5% ***: 1%.

Table A.4 Robustness Checks: TFE and Local Policies, with Additional Controls (I).

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
			(a) County P	Policies: Emergency	Declarations			
total frontier experience	-0.042*** (0.011)	-0.025** (0.011)	-0.035*** (0.011)	-0.042*** (0.011)	-0.030*** (0.010)	-0.023** (0.011)	-0.013 (0.010)	
pop. density	, ,	0.000*** (0.000)	, ,	, ,	, ,	, ,	0.000***	
share white			-0.003*** (0.001)				-0.002** (0.001)	
temperature				-0.013 (0.021)			-0.032 (0.017)	
median income					0.000*** (0.000)		0.000**	
share post-sec. educ						0.012*** (0.001)	0.005*** (0.002)	
Number of Counties	2,036	2,036	2,036	2,036	2,036	2,036	2,036	
Dep. Var. Mean	0.236	0.236	0.236	0.236	0.236	0.236	0.236	
R ²	0.20	0.24	0.20	0.20	0.23	0.24	0.27	
State Fixed Effects Geographic/Agroclimatic Controls	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<i>-</i>	سر سر	
Geographic/Agrochmatic controls	(b) County Policies: Stay at Home Policies							
total frontier experience	-0.025***	-0.014**	-0.021***	-0.025***	-0.019***	-0.014**	-0.009	
total Holitici experience	(0.007)	(0.006)	(0.007)	(0.007)	(0.006)	(0.006)	(0.006)	
pop. density		0.000***					0.000**	
share white		(0.000)	-0.002***				(0.000) -0.001	
share white			(0.001)				(0.000)	
temperature			, ,	0.024*			0.012	
and the transfer				(0.014)	0.000***		(0.014)	
median income					(0.000)		0.000**	
share post-sec. educ					(0.000)	0.007***	0.003**	
•						(0.001)	(0.001)	
Number of Counties	2,036	2,036	2,036	2,036	2,036	2,036	2,036	
Dep. Var. Mean	0.048	0.048	0.048	0.048	0.048	0.048	0.048	
R ²	0.16	0.23	0.16	0.16	0.19	0.21	0.25	
State Fixed Effects Geographic/Agroclimatic Controls	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<i>-</i>	<i></i>	
Geographic/Agrochinatic Collitois	~		-	-	-			
				olicies: Business Clo				
total frontier experience	-0.003	-0.001	-0.002	-0.003	-0.002	-0.002	-0.001	

(continued on next page)

Table A.4 (continued)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
	(a) County Policies: Emergency Declarations								
	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)	(0.003)		
pop. density		0.000					0.000		
		(0.000)					(0.000)		
share white			-0.000				-0.000		
			(0.000)				(0.000)		
temperature				0.001			-0.001		
				(0.003)			(0.003)		
median income					0.000		0.000		
					(0.000)		(0.000)		
share post-sec. educ						0.001*	0.000		
						(0.000)	(0.000)		
Number of Counties	2,036	2,036	2,036	2,036	2,036	2,036	2,036		
Dep. Var. Mean	0.006	0.006	0.006	0.006	0.006	0.006	0.006		
R^2	0.06	0.07	0.06	0.06	0.06	0.06	0.07		
State Fixed Effects	✓	✓	✓	✓	✓	✓	✓		
Geographic/Agroclimatic Controls	✓	✓	/	✓	✓	✓	✓		

Notes: This table reports estimates of Eq. (2) for local policy outcomes while accounting for potential confounders at the county level. The regressions control for state fixed effects and the following additional predetermined controls: county area; county centroid latitude and longitude; distance to oceans, lakes and rivers from county centroid; mean county rainfall; elevation; and average potential agricultural yield. Standard errors are clustered by arbitrary 60-square-mile grid cells. Standard errors are clustered by arbitrary 60-square-mile grid cells.

Table A.5Robustness Checks: TFE and Local Policies, with Additional Controls (II).

	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
	(d) County Policies: Mask Mandates								
total frontier experience	-0.036***	-0.025***	-0.028***	-0.037***	-0.030***	-0.019**	-0.012		
	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)	(0.008)		
pop. density		0.000***					0.000		
		(0.000)					(0.000)		
share white			-0.004***				-0.003***		
			(0.001)				(0.001)		
temperature				-0.031			-0.043**		
•				(0.020)			(0.017)		
median income				, ,	0.000***		-0.000		
					(0.000)		(0.000)		
share post-sec. educ					, ,	0.012***	0.011***		
•						(0.001)	(0.002)		
Number of Counties	2,035	2,035	2,035	2,035	2,035	2,035	2,035		
Dep. Var. Mean	0.405	0.405	0.405	0.405	0.405	0.405	0.405		
R^2	0.61	0.63	0.62	0.61	0.62	0.64	0.65		
State Fixed Effects	✓	✓	✓	✓	✓	✓	✓		
Geographic/Agroclimatic Controls	✓	/	/	✓	✓	/	✓		

Notes: This table reports estimates of Eq. (2) for local policy outcomes while accounting for potential confounders at the county level. The regressions control for state fixed effects and the following additional predetermined controls: county area; county centroid latitude and longitude; distance to oceans, lakes and rivers from county centroid; mean county rainfall; elevation; and average potential agricultural yield. Standard errors are clustered by arbitrary 60-square-mile grid cells. Standard errors are clustered by arbitrary 60-square-mile grid cells.

Significance levels: *: 10% **: 5% ***: 1%.

Significance levels: *: 10% **: 5% ***: 1%.

Table A.6 Disentangling Population Density: TFE, Social Distancing, and Mask Use.

	(1)	(2)	(3)	(4)	(5)	(6)		
Pop Dens x post-March-13		~						
Pop Dens Decile Within-State x post-March-13 FE								
Pop Dens Neighbor Matching Within-State x post-March-13 FE				1				
Sample Restriction	None	None	None	None	> 90th	≤ 90th		
						tile urban		
					pop. sn	are, 2010		
		Pan	el (a): Non-Essent	ial Visits (Unacas	t)			
TFE \times post-March-13	2.645***	1.746***	0.748	0.845*	1.191	1.681***		
	(0.619)	(0.529)	(0.560)	(0.499)	(1.138)	(0.591)		
Number of County-Weeks	35,828	35,828	35,542	35,750	3,588	32,240		
R^2	0.70	0.70	0.70	0.73	0.69	0.69		
	Panel (b): Time in Workplaces (Google Community Mobility)							
TFE × post-March-13	1.075***	0.787***	0.641***	0.558***	0.336	0.796***		
	(0.192)	(0.151)	(0.147)	(0.111)	(0.440)	(0.153)		
Number of County-Weeks	49,938	49,938	49,537	49,852	4,995	44,943		
R^2	0.91	0.91	0.91	0.92	0.96	0.90		
		Panel (c):	Share who alway	s wear a mask ir	public			
			xpect to be within					
total frontier experience	-0.019***	-0.014***	-0.012***	-0.010***	-0.012	-0.013***		
•	(0.003)	(0.003)	(0.003)	(0.003)	(0.007)	(0.003)		
Number of Counties	2,036	2,036	2,021	2,036	201	1,832		
R^2	0.54	0.58	0.59	0.82	0.59	0.55		
County Fixed Effects	~	✓	✓	✓	~	1		
Week Fixed Effects	✓	✓	✓	✓	✓	1		

Notes: This table disentangles the effects of TFE on social distancing outcomes from the effects of contemporary population density by controlling for the differential effects of population density in several ways. Column 1 reports the baseline estimates with county and week fixed effects. Column 2 adds an interaction of the 2010 population density with post-March 13 indicator. Column 3 includes fixed effect for the decile of within-state population density interacted with week indicators. Column 4 includes fixed effects indicators within-state pairs of counties that have the most similar population density in 2010 interacted with week indicators. Columns 5 and 6 split the sample into counties above and below the 90th percentile of contemporaneous urban population shares. Standard errors are clustered by arbitrary 60-square-mile grid cells. Column 4 and 5 additionally cluster (two-way) on the population density deciles and within-state county-pairs, respectively.

Significance levels: *: 10% **: 5% ***: 1%.

Table A.7Disentangling Population Density: TFE and Local Policies

	(1)	(2)	(3)	(4)	(5)	(6)		
Pop Dens x post-March-13		~						
Pop Dens Decile Within-State x post-March-13 FE			/					
Pop Dens Neighbor Matching Within-State x post-March-13 FE				✓				
Sample Restriction	None	None	None	None	> 90th	≤ 90th		
					percent	ile urban		
					pop. sh	are, 2010		
			(a): Emergency	Declaration				
total frontier experience	-0.042***	-0.025**	-0.017	-0.022	0.025	-0.021°		
	(0.011)	(0.011)	(0.011)	(0.014)	(0.035)	(0.012)		
Number of Counties	2,036	2,036	2,021	2,036	201	1,832		
R^2	0.20	0.24	0.25	0.63	0.27	0.20		
	(b): Stay at Home Policies							
total frontier experience	-0.025***	-0.014**	-0.012*	-0.012*	-0.051*	-0.009		
•	(0.007)	(0.006)	(0.006)	(0.007)	(0.029)	(0.006)		
Number of Counties	2,036	2,036	2,021	2,036	201	1,832		
R^2	0.16	0.23	0.25	0.69	0.48	0.13		
			(c): Business Clo	osure Policies				
total frontier experience	-0.003	-0.001	-0.001	0.000	0.040	-0.003		
•	(0.003)	(0.003)	(0.003)	(0.004)	(0.029)	(0.002)		
Number of Counties	2,036	2,036	2,021	2,036	201	1,832		
R^2	0.06	0.07	0.06	0.52	0.23	0.04		
			(d): Mask N	Mandates .				
total frontier experience	-0.036***	-0.025***	-0.019**	-0.022**	-0.037	-0.018^{*}		
1	(0.008)	(0.008)	(0.008)	(0.010)	(0.036)	(0.008)		
Number of Counties	2,035	2,035	2,020	2,035	201	1,831		
Number of Counties R ²	2,035 0.61	2,035 0.63	2,020 0.65	2,035 0.83	0.44	0.67		

(continued on next page)

Table A.7 (continued)

	(1)	(2)	(3)	(4)	(5)	(6)
State Fixed Effects	∠	~	✓	∠	∠	/
Geographic/Agroclimatic Controls	u	✓	∠	✓	✓	~

Notes: This table disentangles the implications of TFE and those of contemporary population density for local policies in several ways. Column 1 reports the baseline with state fixed effects and geographic and agroclimatic controls. Column 2 controls for contemporaneous population density. Column 3 includes fixed effects for the decile of within-state population density. Column 4 included fixed effects for the nearest-neighbor matching based on 2010 population density. Columns 5 and 6 split the sample into counties above and below the 90th percentile of contemporaneous urban population shares. The regressions control for state fixed effects and the following additional predetermined controls: county area; county centroid latitude and longitude; distance to oceans, lakes and rivers from county centroid; mean county rainfall; elevation; and average potential agricultural yield. Standard errors are clustered by arbitrary 60-square-mile grid cells. Standard errors are clustered by arbitrary 60-square-mile grid cells. Column 4 and 5 additionally cluster (two-way) on the population density deciles and within-state county-pairs, respectively.

Significance levels: *: 10% **: 5% ***: 1%.

Table A.8Adding West Coast, Extended Time Frame, Regional Heterogeneity. TFE, Social Distancing, and Mask Use

Frontier Time Frame: Regional Sample Restriction:	Baseline (1790–1890)				Extended (1790–1950)				
	Baseline + West Coast (1)	Only Midwest (2)	Only South (3)	Only West (4)	Extended Sample (5)	Only Midwest (6)	Only South (7)	Only West (8)	
	(a): Non-Essential Visits (Unacast)								
TFE \times post-March-13	2.793*** (0.576)	6.577*** (1.708)	1.563** (0.606)	1.593 (1.388)	1.386*** (0.528)	8.135*** (1.839)	1.339** (0.527)	1.343** (0.505)	
Number of County–Weeks R ²	38,168 0.70	15,106 0.67	18,460 0.76	3,120 0.80	42,926 0.68	15,340 0.65	20,410 0.75	5,694 0.67	
	(b): Time in Workplaces (Google Community Mobility)								
TFE × post-March-13	1.157*** (0.185)	1.144*** (0.377)	1.003*** (0.213)	1.053 (0.774)	0.604*** (0.141)	1.475*** (0.319)	0.786*** (0.184)	0.632** (0.238)	
Number of County–Weeks R ²	52,608 0.91	23,270 0.91	23,882 0.92	3,757 0.95	59,956 0.91	23,675 0.91	26,693 0.92	7,889 0.93	
	(c): Share who always wear a mask in public when they expect to be within six feet of another person								
total frontier experience	-0.019*** (0.003)	-0.031*** (0.006)	-0.018*** (0.004)	-0.002 (0.009)	-0.012*** (0.002)	-0.016*** (0.006)	-0.015*** (0.003)	-0.005* (0.003)	
Number of Counties R ²	2,141 0.58	987 0.40	936 0.44	152 0.55	2,499 0.59	1,037 0.42	1,074 0.46	322 0.72	
County or State Fixed Effects Week FE	<i>✓</i>	<i>V</i>	<i>V</i>	✓		<i> </i>		<i>I</i>	
Geographic/Agroclimatic Controls	-	1	1		-				

Notes: Focusing on the key social distancing outcomes, this table extends our baseline sample of counties and examines region-by-region sample splits. Column 1 adds counties along the secondary West Coast frontier. Column 2 restricts to counties in the Midwest Census region, column 3 restricts to the South region, and column 4 restricts to the West, which includes the counties added in column 1 plus others in states in the West region but falling inside the 1890 main east-to-west frontier line. Column 5 expands the column 1 sample to include counties beyond the (main and secondary) 1890 frontier lines but inside the eventual frontier line realized by 1950. Columns 6–8 then proceed with the same region-by-region sample splits. Standard errors are clustered by arbitrary 60-square-mile grid cells.

Significance levels: *: 10% **: 5% ***: 1%.

See Tables A.1–A.9.

Table A.9 Adding West Coast, Extended Time Frame, Regional Heterogeneity. TFE and Local Policies

Frontier Time Frame:	Baseline (1790–1890)				Extended (1790–1950)			
Regional Sample Restriction:	Baseline +	Only	Only	Only	Extended	Only	Only	Only
	West Coast	Midwest	South	West	Sample	Midwest	South	West
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	(a): Emergency Declaration							
total frontier experience	-0.039***	-0.060***	-0.039***	0.023	-0.020***	-0.041***	-0.027***	-0.004
	(0.011)	(0.018)	(0.015)	(0.026)	(0.007)	(0.014)	(0.010)	(0.010)
Number of Counties	2,141	987	936	152	2,500	1,038	1,074	322
R ²	0.26	0.10	0.19	0.45	0.28	0.09	0.19	0.42
	(b): Stay at Home Policies							
total frontier experience	-0.027***	-0.013	-0.027***	-0.034	-0.021***	-0.005	-0.029***	-0.018***
	(0.007)	(0.010)	(0.008)	(0.023)	(0.004)	(0.009)	(0.006)	(0.005)
Number of Counties	2,141	987	936	152	2,500	1,038	1,074	322
R ²	0.24	0.12	0.16	0.50	0.22	0.12	0.16	0.40

Table A.9 (continued)

Frontier Time Frame:	Baseline (1790–1890)				Extended (1790–1950)			
Regional Sample Restriction:	Baseline + West Coast (1)	Only Midwest (2)	Only South (3)	Only West (4)	Extended Sample (5)	Only Midwest (6)	Only South (7)	Only West (8)
	(c): Business Closure Policies							
total frontier experience	-0.002 (0.003)	-0.002 (0.002)	-0.002 (0.004)	0.012 (0.011)	-0.004** (0.002)	-0.001 (0.002)	-0.003 (0.003)	-0.004 (0.003)
Number of Counties R ²	2,141 0.09	987 0.02	936 0.08	152 0.35	2,500 0.11	1,038 0.02	1,074 0.07	322 0.22
	(d): Mask Mandates							
total frontier experience	-0.038*** (0.008)	-0.050*** (0.017)	-0.035*** (0.010)	-0.023 (0.038)	-0.032*** (0.006)	-0.029** (0.013)	-0.041*** (0.008)	-0.027** (0.010)
Number of Counties R ²	2,140 0.61	987 0.60	935 ´ 0.61	152 0.49	2,499 0.58	1,038 0.60	1,073 0.57	322 0.43
State Fixed Effects Geographic/Agroclimatic Controls	<u> </u>	<u> </u>	<u> </u>	✓	<u>~</u>	<u> </u>	<u> </u>	<u> </u>

Notes: Focusing on the local policy outcomes, this table extends our baseline sample of counties and examines region-by-region sample splits. Column 1 adds counties along the secondary West Coast frontier. Column 2 restricts to counties in the Midwest Census region, column 3 restricts to the South region, and column 4 restricts to the West, which includes the columnies added in column 1 plus others in states in the West region but falling inside the 1890 main east-to-west frontier line. Column 5 expands the column 1 sample to include counties beyond the (main and secondary) 1890 frontier lines but inside the eventual frontier line realized by 1950. Columns 6–8 then proceed with the same region-by-region sample splits. The regressions control for state fixed effects and the following additional predetermined controls: county area; county centroid latitude and longitude; distance to oceans,lakes and rivers from county centroid; mean county rainfall; elevation; and average potential agricultural yield. Standard errors are clustered by arbitrary 60-square-mile grid cells. Significance levels: *: 10% **: 5% ****: 1%.

References

Ahmadi, Mohsen, Sharifi, Abbas, Dorosti, Shadi, Ghoushchi, Saeid Jafarzadeh, Ghanbari, Negar, 2020. Investigation of effective climatology parameters on COVID-19 outbreak in Iran. Sci. Tot. Environ., 138705.

Allcott, Hunt, Boxell, Levi, Conway, Jacob, Gentzkow, Matthew, Thaler, Michael, Yang, David Y., 2020. Polarization and public health: Partisan differences in social distancing during the Coronavirus pandemic, J. Public Econ., 191, 104254, Fleevier

Althouse, Benjamin M., Bergstrom, Theodore C., Bergstrom, Carl T., 2010. A public choice framework for controlling transmissible and evolving diseases. Proc. Nat. Acad. Sci. 107 (suppl 1), 1696–1701.

Baccini, Leonardo, Brodeur, Abel, 2020. Explaining Governors' response to the COVID-19 pandemic in the United States, Am. Politics Res., pp. 1532673X20973453, SAGE Publications Sage CA: Los Angeles, CA.

Barrios, John M., Hochberg, Yael, 2020. Risk perception through the lens of politics in the time of the covid-19 pandemic, NBER Working Paper 27008.

Barrios, John M., Benmelech, Efraim, Hochberg, Yael V., Sapienza, Paola, Zingales, Luigi, 2021. Civic capital and social distancing during the covid-19 pandemic, J. Public Econ., 193, 104310, Elsevier.

Bartscher, Alina K., Seitz, Sebastian, Slotwinski, Michaela, Siegloch, Sebastian, Wehrhöfer, Nils, 2020. Social capital and the spread of Covid-19: Insights from European countries, CESifo Working Paper Series 8346.

Bavel, Jay J. Van, Baicker, Katherine, Boggio, Paulo S., Capraro, Valerio, Cichocka, Aleksandra, Cikara, Mina, Crockett, Molly J., Crum, Alia J., Douglas, Karen M., Druckman, James N., et al., 2020. Using social and behavioural science to support COVID-19 pandemic response. Nature Hum. Behav., 1–12.

Bazzi, Samuel, Fiszbein, Martin, Gebresilasse, Mesay, 2020. Frontier culture: The roots and persistence of "rugged individualism" in the United States. Econometrica 88 (6), 2329–2368.

Beilmann, Mai, Kööts-Ausmees, Liisi, Realo, Anu, 2018. The relationship between social capital and individualism-collectivism in Europe. Soc. Indic. Res. 137 (2),

Bester, C. Alan, Conley, Timothy G., Hansen, Christian B., 2011. Inference with dependent data using cluster covariance estimators. J. Econometrics 165(2), 137–151.

Bian, Bo, Li, Jingjing, Xu, Ting, Foutz, Natasha, 2020. Individualism During Crises, SSRN Working Paper 3626841.

Brehm, Sharon S., Brehm, Jack W., 2013. Psychological Reactance: A Theory of Freedom and Control. Academic Press.

Brodeur, Abel, Grigoryeva, Idaliya, Kattan, Lamis, 2020. Stay-At-Home Orders, Social Distancing and Trust, IZA Discussion Paper No. 13234.

Brown, Caitlin S and Martin Ravallion, "Inequality and the Coronavirus: Socioeconomic Covariates of Behavioral Responses and Viral Outcomes Across US Counties," NBER Working Paper 27549, 2020.

Brzezinski, Adam, Kecht, Valentin, Van Dijcke, David, Wright, Austin L., 2020. Belief in science influences physical distancing in response to covid-19 lockdown policies, University of Chicago, Becker Friedman Institute for Economics Working Paper (2020–56).

Chandrasekhar, Arun G., Goldsmith-Pinkham, Paul S., Jackson, Matthew O., Thau, Samuel, 2020. Interacting Regional Policies in Containing a Disease, Available at SSRN.

Chiou, Lesley, Tucker, Catherine, 2020. Social distancing, internet access and inequality, NBER Working Paper 26982.

Conley, T.G., 1999. GMM estimation with cross sectional dependence. J. Econometrics 92 (1), 1–45.

Coven, Joshua, Gupta, Arpit, 2020. Disparities in mobility responses to covid-19, NYU Stern Working Paper.

Dincer, Oguzhan, Gillanders, Robert, 2021. Shelter in place? Depends on the place: Corruption and social distancing in American states. Social Sci. Med., 269, 113569 Elsevier

Durante, Ruben, Guiso, Lugi, Gulino, Giorgio, 2021. Asocial capital: Civic culture and social distancing during COVID-19. J. Public Econ., 194, 104342, Elsevier.

Eppard, Lawrence M., Rank, Mark R., Bullock, Heather E., Chomsky, Noam, Giroux, Henry A., Brady, David, Schubert, Dan, 2020. Rugged Individualism and the Misunderstanding of American Inequality. Lehigh University Press.

Ferguson, William D., 2020. The Political Economy of Collective Action, Inequality, and Development. Stanford University Press.

Frey, Carl Benedikt, Chen, Chinchih, Presidente, Giorgio, 2020. 'Democracy, culture, and contagion: political regimes and countries responsiveness to Covid-19. Covid Econ. 18. 1–20.

Gadarian, Shana Kushner, Goodman, Sara Wallace, Pepinsky, Thomas B., 2020. Partisanship, health behavior, and policy attitudes in the early stages of the COVID-19 pandemic, Working Paper, 2020.

Germani, Alessandro, Buratta, Livia, Delvecchio, Elisa, Mazzeschi, Claudia, 2020. Emerging adults and COVID-19: the role of individualism-collectivism on perceived risks and psychological maladjustment. Int. J. Environ. Res. Public Health 17 (10), 3497.

Holtz, David, Zhao, Michael, Benzell, Seth G., Cao, Cathy Y., 2020. Interdependence and the cost of uncoordinated responses to COVID-19. In: Rahimian, Mohammad Amin, Yang, Jeremy, Allen, Jennifer, Collis, Avinash, Moehring, Alex, Sowrirajan, Tara, Ghosh, Dipayan, Zhang, Yunhao, Dhillon, Paramveer S., Nicolaides, Christos, Eckles, Dean, Aral, Sinan (Eds.), Proceedings of the National Academy of Sciences.

Howe, Peter D, Mildenberger, Matto, Marlon, Jennifer R, Leiserowitz, Anthony, 2015. "Geographic variation in opinions on climate change at state and local scales in the USA. Nature Clim. Change 5 (6), 596–603.

Hsu, Francis L.K., 1983. Rugged Individualism Reconsidered: Essays in Psychological Anthropology. University of Tennessee Press.

Kahan, Dan M., Jenkins-Smith, Hank, Braman, Donald, 2011. Cultural cognition of scientific consensus. J. Risk Res. 14 (2), 147–174.

Limerick, P.N., 1988. The Legacy of Conquest: The Unbroken Past of the American West. WW Norton & Company.

Limerick, Patricia Nelson, Rankin, Charles, Milner II, Clyde A., 1991. Trails: Toward a New Western History. University Press of Kansas.

Manson, Steven, Schroeder, Jonathan, Van Riper, David, Ruggles, Steven, 2019. IPUMS National Historical Geographic Information System: Version 14.0 [Database]. Minneapolis, MN: IPUMS.

Massip, Nathalie, 2020. The Historiography of the American West: Frontier (s), Borders, Borderlands. In: Reading (s)/Across/Borders, Brill Rodopi, pp. 72–85.

Milosh, Maria, Painter, Marcus, Van Dijcke, David, Wright, Austin L., 2020. Unmasking Partisanship: How Polarization Influences Public Responses to Collective Risk, University of Chicago, Becker Friedman Institute for Economics Working Paper, (2020–102).

- Ostrom, Elinor, 2000. Collective action and the evolution of social norms. J. Econ. Perspect. 14 (3), 137–158.
- Painter, Marcus, Qiu, Tian, 2020. Political beliefs affect compliance with covid-19 social distancing orders, Available at SSRN 3569098.
- Raz, Itzchak Tzachi, 2020. Learning is Caring: Soil Heterogeneity, Social Learning and the Formation of Close-knit Communities, Unpublished Manuscript.
- Sajadi, Mohammad M., Habibzadeh, Parham, Vintzileos, Augustin, Shokouhi, Shervin, Miralles-Wilhelm, Fernando, Amoroso, Anthony, 2020. Temperature and latitude analysis to predict potential spread and seasonality for COVID-19," SSRN 3550308.
- Shannon, Fred A., 1977. The Farmer's Last Frontier: Agriculture, 1860–1897, Vol. 5, ME Sharpe.
- Taylor, Steven, Asmundson, Gordon, J.G., 2020. Negative attitudes about facemasks during the COVID-19 pandemic: The dual importance of perceived ineffectiveness and psychological reactance,' medRxiv.
- Troesken, Werner, 2015. The pox of liberty: how the constitution left Americans rich, free, and prone to infection. University of Chicago Press.
- Turner, Frederick Jackson, 1893. The Significance of the Frontier in American History. In: Proceedings of the State Historical Society of Wisconsin.
- Wright, Austin L., Chawla, Geet, Chen, Luke, Farmer, Anthony, 2020. Tracking Mask Mandates During the Covid-19 Pandemic, University of Chicago, Becker Friedman Institute for Economics Working Paper 104.