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allow for the estimation of annual primary production and
dynamics of primary production over time. For these reasons
many research programs have compiled long time series of
production measurements based on this technique.

The assumptions underlying the 14C approach pose chal-
lenges for interpretation of the data and inferences drawn
about ecosystems. First, this approach estimates production
only of the water placed in the bottle under the environmental
conditions in which it is incubated. Consequently, extrapolat-
ing production to a region of the lake or the whole ecosystem
entails assumptions about the representativeness of those incu-
bations for the region to which they are being extrapolated.
Furthermore, because some carbon fixed during the incubation
can be respired (Vollenweider et al. 1974; Peterson 1980), the
technique is commonly presumed to underestimate pelagic
gross primary production (GPP) and may be closer to net pri-
mary production (NPP). The magnitude of the underestimation
is dependent on incubation time and algal turnover rates (Hall
et al. 2007), although there are approaches to account for this
underestimation (Legendre et al. 1983). In addition, the costs
associated with specialized training and certifications to handle
isotopes, management of radioactive waste, and the time-
consuming nature of the incubations constrain the extent to
which the methods are applied in most research programs.
Nonetheless, this technique has been the standard by which all
other approaches have been compared (Peterson 1980;
Marra 2002), although free-water techniques are quickly
becoming more popular (Staehr et al. 2010).

Over the past two to three decades, free-water O2 tech-
niques (Cole et al. 2000; Staehr et al. 2010; Vachon
et al. 2020) have emerged as a common approach to estimate
production of aquatic ecosystems because the data can be
readily obtained at high frequencies using in situ sensors.
While O2 techniques have long been used to estimate produc-
tion in aquatic systems (Sargent and Austin 1949; Odum 1956;
Staehr et al. 2010), the advent of automated sensors capable of
making in situ, high-frequency measurements of O2 greatly
reduced the labor associated with this technique along with
providing opportunities to gather the data during difficult
sampling conditions, such as storm events or ice breakup. Sev-
eral models can be used to estimate metabolism from sensor
data (Cole et al. 2000; Hanson et al. 2008; Batt and Carpen-
ter 2012; Holtgrieve et al. 2013; Solomon et al. 2013; Phil-
lips 2020). These approaches all assume that biological
production and atmospheric exchange drive changes in oxy-
gen (Odum 1956). A major advantage of the free-water O2

approach is that it allows multiple components of metabolism
(GPP, ecosystem respiration [R], and net ecosystem production
[NEP]) to be estimated simultaneously. In addition, free-water
O2 metabolism estimates can integrate across habitats
(e.g., benthic and pelagic production) when the sensor is
located in a well-mixed parcel of water that is in contact with
these habitats (Van de Bogert et al. 2007). Because of the rela-
tive ease of measurement using this technique, many

researchers and research groups, such as the Global Lake Eco-
logical Observatory Network (Weathers et al. 2013), have
adopted this technique (Solomon et al. 2013). However, esti-
mates based on the free-water O2 approach can be difficult to
interpret because metabolic rates exhibit substantial vertical
(Staehr et al. 2012b) and horizontal (Van de Bogert et al. 2012)
heterogeneity within a lake, and movement of water parcels
past the sensor can cause oxygen levels recorded by the sensor
to change even in the absence of biological processes (Rose
et al. 2014). Furthermore, along with spatial differences in pro-
cesses, how models account for atmospheric gas exchange
(Dugan et al. 2016) can lead to noisy high-frequency observa-
tions (Batt and Carpenter 2012) or to large and significant
changes in estimated metabolism rates between days
(Solomon et al. 2013). Therefore, heterogeneity complicates
the interpretation of the results and potentially compromises
their accuracy at short temporal scales.

As the free-water O2 and other approaches based on high-
frequency in situ data continue to gain popularity over the
14C incubations, much is yet to be learned about how esti-
mates of GPP compare between the two approaches. There is a
long history of comparing 14C incubations to O2 production
from light/dark bottle incubations to determine production
levels in marine and aquatic environments (Williams
et al. 1983; Bender et al. 1987; Gazeau et al. 2007). Similarly,
studies in marine ecosystems have compared 14C incubations
to steady-state, sample-based oxygen methods such as 18O
labeling, triple-isotope, 17Δ, O2/Ar, et al, and have generally
found that the 14C methods produce lower estimates (Juranek
and Quay 2005; Quay et al. 2010; Hamme et al. 2012;
Regaudie-de Gioux et al. 2014). To our knowledge, no direct
comparison of the free-water O2 and bottle 14C methods
across multiple lakes and years have been made (but see
Lauster et al. 2006 for free-water and O2 bottle comparisons).

Here, we use 20 lake-years of data from four lakes that differ
in trophic status to assess how similar in situ free-water O2

pelagic epilimnetic production estimates are to concurrent
pelagic epilimnetic estimates made using 14C incubations.
Given the commonly presumed bias of 14C to slightly under-
estimate GPP (Peterson 1980; Hall et al. 2007), we expect free-
water O2 approach to yield higher estimates than the 14C
approach, but they would have proportionally similar results
(e.g., regression slope would be 1 between the two methods).

Materials and procedures
Study lakes

Daily lake 14C pelagic production, high-frequency O2, water
temperature, and meteorological data were collected as part of
ongoing long-term research projects in northern Wisconsin
(North Temperate Lakes [NTL] Long-Term Ecological Research
Program1; Trout and Sparkling Lakes), California (Castle Lake

1lter.limnology.wisc.edu

35

Lottig et al. Comparing 14C and in situ O2 primary production estimates

http://lter.limnology.wisc.edu


Environmental Research and Education Program2; Castle
Lake), and Ohio (Center for Aquatic & Watershed Sciences3;
Acton Lake). Sparkling and Trout Lakes are embedded in a
landscape that is predominantly a mix of deciduous and conif-
erous forest (54%), lakes (13%), and wetlands (28%; Mag-
nuson et al. 2006). Both NTL study lakes are oligotrophic/
mesotrophic with relatively low nutrient and chlorophyll con-
centrations (Table 1). Castle Lake is a meso-oligotrophic, sub-
alpine (1646 m. a.s.l.) lake (Vander Zanden et al. 2006) located
in northern California with similar nutrient and chlorophyll
concentrations as Trout and Sparkling Lakes (Table 1). Acton
Lake is a hypereutrophic reservoir (Table 1) that was created in
1957 by damming a creek for recreational use. Watershed
landuse is primarily row crop agriculture (> 80%, Vanni
et al. 2001).

Data analyzed in this study were all collected at the “deep
hole” primary sampling site in each respective lake and were
limited to observations collected in June, July, and August,
which represent the time period that characterizes summer
stratification, to ensure that both approaches were estimating
pelagic primary production. As a consequence of restricting
sampling to the summer stratified period, at no time during
the study were any of the lakes mixed or iso-thermal.

14C production methods
The approaches for estimating primary production in the

study lakes using 14C incubations differed slightly between
the three research programs, but each estimated daily epi-
limnetic pelagic production (mmol C m�3 d�1). In NTL lakes,
integrated samples of water from the surface of the lake to the
bottom of the epilimnion were collected between 2007 and
2013 using a 1.5-in. sampling tube approximately every
2 weeks during the open-water season (first described in these
lakes by Adams et al. 1993). Samples were labeled with inor-
ganic 14C in the form of NaHCO3 and then incubated in the
laboratory for 3-h across a range of light intensities with addi-
tional dark bottles to correct for non-uptake sorption of 14C at
ambient epilimnetic water temperature. The resultant
photosynthesis–irradiance (P–I) data were used to derive P–I

curves by fitting a three-parameter photosynthesis light-
inhibition model (Platt et al. 1980) to these data. The P–I cur-
ves were coupled with concurrent, high-frequency photosyn-
thetically active radiation (μmol m�2 s�1; PAR) measurements
and water column light extinction data (m�1) to estimate daily
primary production (mmol C m�3 d�1) in both Sparkling and
Trout Lake. Over this time period, the availability of data for
14C production varied due to sporadic sample contamination
and equipment failures. Light profiles were quantified in NTL
lakes every 2 weeks using a LI-COR LI-192 light sensor to esti-
mate light extinction coefficients, and PAR was continuously
measured (1–10-min intervals) using a LI-COR LI-190 light
sensor.

At Castle Lake, vertical water collections were made from
13 depths between the surface and 30 m; duplicate light sam-
ples and one dark bottle sample from each depth were labeled
with inorganic 14C in the form of NaHCO3 and then incu-
bated in situ at the depth of collection for 4 h. Detailed
methods of 14C production estimates are described in
Goldman et al. (1963) and Goldman (1968). Total daily inci-
dent solar radiation was measured throughout the summer
with a LI-COR Li-200 pyranometer. Light profiles at the height
of the solar day were measured using a Biospherical Instru-
ments 2104P radiometer. Daily phytoplankton productivity
rates were calculated by scaling productivity measured during
the incubation period by the fraction of the total daily PAR
received during the incubation.

Methods for 14C incubations in Acton Lake were similar to
those in NTL lakes. Integrated samples were collected from the
euphotic zone (usually equal to the epilimnion) and incubated
in the laboratory for 1–2 h with NaH14CO3 at a range of light
intensities (including dark bottles; Fee 1990). Incubations were
usually done every 2 weeks (23 of 55 experiments over the
4 years) or more frequently (24 experiments); only eight
experiments were done at intervals >2 weeks. As in NTL lakes,
P–I curves were coupled with high-frequency PAR measure-
ments, and water column light extinction data collected at
weekly intervals. Light extinction coefficients were derived
from weekly light profiles (Li-193) and surface PAR was mea-
sured continuously at an associated weather station on Acton
Lake. Detailed methods for how 14C production was estimated
are described in Knoll et al. (2003).

Table 1. Study lake characteristics. Nutrient and chlorophyll a values (standard deviation) are epilimnetic values averaged over the
study period.

Location Area Mean Total nitrogen Total phosphorus Chlorophyll a
(lat, lon) (ha) Depth (m) (mg L�1) (mg L�1) (μg L�1)

Trout 46.03, �89.67 1565.1 14.6 0.20 (0.07) 0.004 (0.004) 1.4 (1.3)

Sparkling 46.01, �89.70 63.7 10.9 0.21 (0.04) 0.005 (0.004) 1.2 (0.5)

Castle 41.23, �122.38 19 11.4 0.15 (0.09) 0.007 (0.003) 0.8 (0.2)

Acton 39.58, �84.76 232 3.9 2.70 (1.70) 0.102 (0.026) 70.0 (20.9)

2aquaticecosystemslab.org/projects/castlelake
3https://actonltreb.blog/
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Free-water O2 metabolism methods
The same approach was used to estimate pelagic primary

production (mmol C m�3 d�1; GPP) in all lakes using in situ
time series of O2 data. Free-water O2 production estimates
were based on high frequency measurements of O2 (mg L�1),
water temperature (�C), PAR (μmol m�2 s�1), wind speed
(m s�1), and barometric pressure (mbar). Data frequencies var-
ied from 1 to 15 min based on the research program and the
year data were collected. The raw, high-frequency time series
of O2 and water temperature were filtered to remove outliers
by excluding values that were greater than 3 and 5 standard
deviations, respectively, from a 7-d running average
(Supporting Information Figure S11A,B; sensu Phillips 2020).
The choice of sampling frequencies has implications for the
processes influencing O2 patterns and the amount of data
needed to characterize those processes (Staehr et al. 2010). In
general, frequencies between 30 min and 3 h are optimal for
capturing changes driven by biological processes (Staehr
et al. 2010). Thus, we extracted hourly time series (i.e., 1 mea-
surement every 60 min) for all high frequency data by averag-
ing observations (mean value) on the hour of observation
(n = 4–60 depending on frequency of raw data) centered on
the hour (Phillips 2020) for use in metabolism models.

Epilimnetic depth (m) was quantified from either high-
frequency thermistor string data (Trout, Sparkling, and Acton
Lakes) or discrete temperature profiles (Castle Lake). The high-
frequency data were filtered for outliers as outlined above and
epilimnetic depth determined using the rLakeAnalyzer pack-
age (Read et al. 2011; Winslow et al. 2019) at the temporal fre-
quency of the raw data. Hourly aggregate data were then
extracted based on a 1-d running average to reduce the signifi-
cant amount of noise that existed in these estimates
(Supporting Information Figure S1C). rLakeAnalyzer was also
used to quantify epilimnetic depth from bi-monthly water
temperature profile data in Castle Lake and linearly interpo-
lated at hourly time steps between observations.

Exchange of dissolved gas with the atmosphere is a critical
component of metabolism models, and, while there are sev-
eral different models for estimating piston velocities in lentic
ecosystems (Dugan et al. 2016), the model proposed by Vac-
hon and Prairie (2013) is robust across multiple different types
of lakes (Dugan et al. 2016). Piston velocities (m hr�1) were
calculated using the LakeMetabolizer R package (Winslow
et al. 2016) and the parameterization proposed by Vachon
and Prairie (2013). Light extinction coefficients (m�1), which
were typically quantified bi-monthly in all lakes, were linearly
interpolated at hourly time steps between observations, and
combined with epilimnetic depth and PAR to estimate the
integrated light levels within the epilimnion of each lake for
use in the metabolism model (Staehr et al. 2012a,
Phillips (2020).

The data described above were used to generate daily esti-
mates (mmol O2 m�3 d�1) of GPP, R, and NEP using a time-
varying ecosystem metabolism model (Phillips 2020). This

model differs from many of the more commonly used metabo-
lism models (Winslow et al. 2016) in that the model is not fit
iteratively over a daily time scale, but rather characterizes
changes across all time periods (hourly measurements across
4–7 years of data) for a given lake in a single model fit, as well
as constraining GPP and R to positive and negative values
respectively (i.e., ecologically feasible ranges; Phillips 2020).
This takes advantage of the fact that the physical and biological
processes governing ecosystem metabolism and other aspects of
DO dynamics are autocorrelated through time, which means
that this shared information can be used to inform the parame-
ter estimates across all time points. Furthermore, this method is
statistically unified because it uses all data to fit a single model,
which facilitates characterizing the uncertainty in the ecosys-
tem metabolism estimates (Phillips 2020).

The equation used in this metabolism model to represent
the relationship between light and GPP differs slightly from
that presented in Phillips (2020) in that we used a photo-
inhibition P–I curve (Steele 1962) to describe GPP (sensu
Staehr et al. 2016) instead of a light saturating curve:

PI ¼ Pmax
I

Iopt
exp 1� I

Iopt

� �
,

where PI is the production rate at light intensity I, Pmax is the
maximum production rate, and Iopt is the optimal light inten-
sity. This photoinhibition model was chosen because recent
work by Staehr et al. (2016) found that photoinhibition often
occurred in lakes, and where photoinhibition does not occur,
there appears to be little difference in metabolism model pre-
dictive performance among model formulations (Hanson
et al. 2008). The model by Steele (1962) is one of the simplest
photoinhibition models (two parameters), and regardless of
the P–I curve formulation chosen, it is often difficult to distin-
guish significant differences in model fits between different
models (Aalderink and Jovin 1997). Simple models are often
better than their more complex counterparts (Peters
et al. 2004; Downing 2009) and decreasing the number of
parameters that needed to be fit by the Bayesian metabolism
model increased the ease at which the model converged. Both
Pmax and Iopt, along with the model coefficient associated with
R (see Phillips 2020), were allowed to vary through time at a
daily time scale. The degree of auto-correlation in the parame-
ters through time was constrained by hierarchical variance
parameters in the random walk components of the model.
Attempts to fit these parameters were unsuccessful, which is
unsurprising as hierarchical variances often have poor
identifiability. Thus, the random walk variances were treated
as a “tuning parameters” and were selected manually such that
the model converged while producing meaningful temporal
smoothing in the parameters of the photoinhibition curve.

Observed O2 time series were fit to all years (Trout Lake:
2007–2010, 2012; Sparkling Lake: 2007–2013; Castle Lake:
2014–2017; Acton Lake: 2010–2012, 2014) simultaneously for
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each lake individually (i.e., lake-specific metabolism model
fitting). Missing values in the model input data time series left
some days with fewer than 24 observations. Although the
metabolism model is robust to missing data because it fits the
entire time series simultaneously instead of in discrete daily
time steps, we did not estimate metabolism parameters for an
individual day if more than 2 h of data were missing for that

day (Phillips 2020). The model was fit via Stan (Stan Develop-
ment Team 2020) run in R (R Core Team 2020) using the rstan
package as described in Phillips (2020). Posterior median
values were used for daily GPP values along with the 0.025
and 0.975 quantiles of the posterior values to characterize the
95% credible intervals. Model fits were validated by checking
effective sample size, bR, tree depth, energy Bayesian Fraction
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Fig. 1. Time series of pelagic epilimnetic primary production determined from high frequency in situ dissolved oxygen data (color) and discrete mea-
surements of epilimnetic primary production determined from 14C incubations (black) in four lakes that range in trophic status from ologitrophic to hyp-
ereutrophic. Light colored shaded areas represent the 95% credible interval of the free-water O2 estimate.
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of Missing Information, and divergence (see Betancourt 2007).
Metabolism parameters were not estimated when the epi-
limnetic depth was shallower than the O2 sensor (< 0.5 m in
Trout, Sparkling, and Acton Lakes; < 3 m Castle Lake; 4% of all
observations).

We recognize that prior research has identified a range in
values of photosynthetic quotient for converting production
estimates to units of carbon. The most direct evidence for pho-
tosynthetic quotient in the lakes analyzed as part of this study
comes from prior research on NTL Lakes (Hanson et al. 2003).
Given the differing scales (bottle vs. ecosystem) of 14C vs. free-
water O2 measurements and the range of productivity observed
in the study, we did not feel justified in estimating a value
directly from the data used in this study. Thus, gross primary
production values (mmol O2 m�3 d�1) were converted to units

of carbon (mmol C m�3 d�1) assuming a photosynthetic quo-
tient (O2:CO2) of 1.25 that was independently determined for
NTL lakes (Hanson et al. 2003) and within the range (1.2–1.29)
of other studies (Bott 1996; Hanson et al. 2003; Wielgat-Rychert
et al. 2017).

Data and code (Lottig et al. 2021) associated with the analyses
included in this manuscript are available for download through
the Environmental Data Initiative (https://environmentaldata
initiative.org).

Assessment
The goal of the analyses presented here is to compare 14C

and free-water O2 daily primary production estimates to deter-
mine how interchangeable these two approaches are. We spe-
cifically tailor our analyses to identify two potential biases.
First, given the commonly presumed bias of 14C to slightly
underestimate GPP (Peterson 1980; Hall et al. 2007), we
wanted to know if there are constant differences in the magni-
tude of daily production values between the two approaches
(i.e., we expected free-water O2 approach to yield higher esti-
mates than the 14C approach). Second, we wanted to know if
there were any fixed biases (i.e., intercept of linear regression
different from zero) and/or proportional biases between the
two methods (i.e., slope of linear regression different from 1).
Our assumption was that free-water O2 estimates of GPP
would be slightly higher than 14C (i.e., fixed bias) but the two
methods were expected to yield proportionally similar results.
If there were no significant fixed or proportional biases, we
interpret the results to mean that the methods are inter-
changeable for the lakes considered in this study. Because
both 14C and O2 estimates contain measurement errors
(Macedo 2001; Pemberton et al. 2006; Solomon et al. 2013),
we used robust error-in-variables regression (Passing and Bab-
lok 1983) implemented in the mcr R package (Manuilova
et al. 2014). Error-in-variable regression approaches, such as
this, account for errors in both the Independent and Depen-
dent variables instead of assuming that error only exists in the
Dependent variable and the independent variable is known
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Fig. 2. Comparison of 14C and free-water O2 production (mmol C m�3 d�1)
estimates from concurrent observations in four lakes of varying trophic
status. Error bars are 95% credible intervals from Bayesian metabolism
model. Marginal plots are density distributions. Solid black line is line of
equality (1:1).

Table 2. Error-in-variable regression results for all lakes as well as lakes separated by productivity class. Standard error (SE) and lower
and upper 95% confidence intervals (CI) are also reported. Regressions using data from all lakes were log transformed prior to analysis.

Estimate SE Lower CI Upper CI

All lakes

Intercept 0.201 0.039 0.103 0.257

Slope 0.926 0.041 0.849 1.003

High productivity lake

Intercept �194.6 266.4 �765.8 68.14

Slope 2.445 1.691 0.987 6.215

Low productivity lakes

Intercept 1.464 0.736 �0.071 2.311

Slope 1.019 0.276 0.636 1.559
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with certainty. Failure to account for errors in the indepen-
dent variable can lead to regression dilution (i.e., bias slopes
towards zero). Analyses that included all lakes across the entire
productivity gradient were conducted on log10 transformed
data, while the remaining regression analyses were conducted
using non-transformed data.

Across the four lakes included in this study, we had
20 lake-years of concurrent 14C and free-water O2 pelagic, epi-
limnetic primary production estimates (Acton Lake: 4 yr,
Castle Lake: 4 yr, Sparkling Lake: 7 yr, Trout Lake: 5 yr, Fig. 1).
Direct comparisons between production estimates were avail-
able on 101 discrete days. In most cases (61% for all lakes;
75% excluding Castle Lake), 14C estimates of production were
contained within the 95% credible intervals of the free-water
O2 estimates and the seasonal patterns were similar between
the two approaches (Fig. 1, but see Castle Lake).

A strong linear relationship was observed between the two
approaches for estimating in-lake production across the
approximately 200 mmol C m�3 d�1 pelagic epilimnetic pro-
duction gradient observed in this study (Fig. 2). Error-in-
variable regression using all discrete observations (n = 101)
included the line of equality indicating across large gradients
of pelagic epilimnetic production, there was no proportional
difference between the two approaches for measuring pro-
duction in the lakes examined here (Table 2). The slight
rightward shift (Fig. 2, Table 2) in the distribution of free-
water O2 as well as an intercept significantly greater than
0 in the error-in-variables regression is consistent with the
general assumption that 14C production methods typically
quantify a value lower than GPP (Peterson 1980, Hall

et al. 2007). Confidence intervals of nontransformed error-in-
variable regression for Acton Lake (high productivity) and
low productivity lakes included the line of equality (Table 2).
While the residuals around the 1:1 line are distributed simi-
larly for both the oligotrophic and hypereutrophic systems
here (Fig. 2), we lacked data for mesotrophic systems and
thus it is unknown if the same pattern would be observed in
these systems as well.

The linear relationships between 14C and free-water O2

within lakes were not as strong as the relationships observed
both across lakes and across wide gradients in pelagic epi-
limnetic production (Fig. 3, Table 3). For example, in Trout
Lake there is a significant negative relationship as the credible
intervals do not include zero (Table 3). The lack of a strong 1:1
linear relationship in lakes that have a limited range of 14C
estimates is likely due to the limited range of observed produc-
tion values within a given lake combined with the uncertainty
of both 14C (not quantified) and free-water O2 production esti-
mates (quantified). Despite the narrow range of 14C produc-
tion observed in the different lakes, most of the points cluster
around the 1:1 line and a majority (61%; 75% excluding Cas-
tle Lake) of the 95% credible intervals of the free-water O2 esti-
mates intersect the 1:1 line. We note that Castle Lake is
unique among lakes in this study in that the data indicate a
consistently lower production (about 1.7 mmol C m�3 d�1 off-
set) value estimated with the 14C approach relative to the free-
water O2 approach (Table 3). We believe there are a few poten-
tial reasons for this including unique methodological consid-
erations for this long-term dataset (see Discussion section).

Discussion
Our results indicate that the pelagic, epilimnetic 14C and

free-water O2 production approaches examined here can be
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Fig. 3. Discrete lake point estimate comparisons of 14C and free-water
O2 production estimates from concurrent observations in four lakes of
varying trophic status. Error bars are 95% credible intervals from Bayesian
metabolism model. Solid black line is line of equality (1:1).

Table 3. Error-in-variable regression results for each individual
lake. Standard error (SE) and lower and upper 95% confidence
intervals (CI) are also reported.

Estimate SE Lower CI Upper CI

Acton Lake

Intercept �194.6 266.4 �765.8 68.14

Slope 2.445 1.691 0.987 6.215

Castle Lake

Intercept 1.671 0.376 1.089 2.381

Slope 1.115 0.251 0.640 1.717

Trout Lake

Intercept 8.157 3.260 5.689 16.66

Slope �0.735 0.794 �2.928 �0.137

Sparkling Lake

Intercept 4.846 9.591 �45.54 1.210

Slope 2.817 2.889 0.783 16.17
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interpreted similarly for the lakes considered in this study dur-
ing summer stratified conditions. Across gradients in produc-
tion from oligotrophic to hypereutrophric systems, both of
these approaches provide production estimates that are very
similar in magnitude. Comparison of results between both
methods indicated no statistically significant deviation from
the 1:1 relationship, although there is evidence that, as
expected, 14C estimates may be slightly lower than free-water
O2 estimates of pelagic epilimnetic production.

A priori, we anticipated that free-water O2 estimates would be
proportional to 14C estimates and that 14C estimates would be,
on average, slightly lower than free-water O2, because

14C esti-
mates tend to lie between GPP and NPP (Peterson 1980). In gen-
eral, the results confirmed our expectations. The lack of strong
statistical evidence when comparing the relationship across a
wide gradient in of productivity (i.e., all lakes in the study) of
lower 14C relative to O2 estimates in our study may reflect the
considerable uncertainty in both estimates, which we account
for in our analysis via the error-in-variables approach. In addi-
tion, the research programs responsible for generating the 14C
production estimates specifically targeted short incubation
periods to generate estimates that closely approximated GPP
(Hall et al. 2007). Thus, even though we observed slightly lower
14C production estimates relative to the free-water O2 estimates,
the lack of strong statistical significance across all analyses is not
necessarily surprising given approaches used by the research pro-
grams collecting the 14C production data.

The specific results for Castle Lake are an exception to the
conclusions based on results drawn from the full dataset span-
ning all lakes. There is strong evidence that 14C estimates are
significantly lower than free-water O2 estimates for this lake
alone, even though the two approaches are proportionally
similar. We consider two potential reasons for this pattern in
Castle Lake. First, the degree to which 14C production esti-
mates approximate GPP relative to NPP is influenced by incu-
bation time (Hall et al. 2007), whereby shorter incubations
tend to estimate a value closer to GPP, represented in this
study as free-water O2 estimates. Castle Lakes incubations were
the longest (� 4 h) of any of the three programs that collected
14C data, and thus it might be expected that the relative differ-
ence between the approaches was greatest for this program
compared to the other two programs that collect 14C data. The
other potential issue relates to how the 14C data from Castle
Lake were generated (see Methods above). Briefly, samples
were incubated in situ for 4 h from 10:00 to 14:00 h (time
period of maximum solar insolation), and the relationship
between production and solar insolation (i.e., P–I curve) was
assumed to be linear; whereas, a relationship that includes
photoinhibition is likely more accurate (Huovinen 1999).
Because the incubations were conducted when solar insolation
was near maximal and not across a range of light intensities
(see Lizon and Lagadeuc 1998), this approach has the potential
to substantially underestimate production rates at lower light

levels regardless of the shape of the true P–I curve. Nearly, all
of the lower 14C epilimnetic production estimates in Castle
Lake were in samples that were incubated directly at the lake’s
surface where solar insolation is much greater relative to insu-
lation deeper in the water column. Samples incubated at
deeper depths had higher production estimates and would be
consistent with P–I curves characterized by strong photo-
inhibition. Thus, while not influencing the overall patterns
across all lakes, Castle Lake serves as a reminder that it will be
important to account for potential differences in how both
14C and free-water O2 production data are generated and
understand the limitations of the methods employed for
either approach.

While we suggest that free-water O2 and 14C epilimnetic
daily pelagic production approaches are largely interchange-
able when comparing across large gradients in productivity, it
is important to emphasize that there is still substantial vari-
ability between the methods. It can be difficult to reliably fit
free-water metabolism models in some systems, especially low
productivity systems, because physical processes influencing
O2 often dominate the O2 temporal patterns and/or errors in
accounting for these physical processes influencing O2 result
in unrepresentative results. While physical processes are less
of a concern for incubations, there is a suite of other concerns
(Hall et al. 2007). At the hypereutrophic end of the productiv-
ity spectrum, high variability in daily free-water O2 estimates
are common (Williamson et al. 2020), and bottle incubations
for 14C production may miss important temporal and/or spa-
tial variability that is captured by the free-water O2 approach.
The variability in free-water O2 estimates also has implications
for within lake comparisons between methods when historical
14C estimates are characterized by a very constrained range of
values. In many cases in this study, the free-water O2 credible
intervals were equal to the range of 14C estimates observed
within a single lake. Given the lack of explicit uncertainty esti-
mates associated with up scaling 14C estimates to the ecosys-
tem scale along with the sensitivity of the method
(Marra 2002), it is unclear if small differences between
methods within a lake are real or an artifact of the scale at
which the estimates were generated (i.e., ecosystem vs. bottle).
Nonetheless, it is clear that the two approaches yield close
agreement across a wide range of productivity values.

Estimating metabolism parameters, including primary pro-
duction from free-water O2 data can be challenging in low
productivity systems (McNair et al. 2015; Richardson
et al. 2017; Honti and Istv�anovics 2019) where 14C is generally
considered optimal (Hall et al. 2007). Given that a majority of
the lakes in this study are characterized by low productivity, it
is likely that the ability of the Phillips (2020) model to lever-
age all possible data across multiple years to fit the models
contributed to strong agreement between the free-water O2

and 14C estimates. While not the focus of this study, an explo-
ration of how different free-water O2 models perform may lead
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to a better understanding of when and where different model
formulations could be leveraged (McNair et al. 2015; Honti
et al. 2016; Staehr et al. 2016). Similarly, most 14C production
estimates that we are aware of in freshwater systems do not
propagate uncertainty in the production estimates that are
scaled to the ecosystem scale. Thus, while we can account for
uncertainty in free-water O2 estimates, it is unclear how uncer-
tainty in free-water O2 estimates compare to 14C and how
quantifying uncertainty in 14C estimates may alter our under-
standing about the relationships between these two
approaches of estimating pelagic primary production in lake
ecosystems.

Multisite comparisons like this study are critical for gaining
a better understanding of lake daily production measurements
generated by these two widely used methods, and to help
guide limnologists on which methods to use and how to inter-
pret estimates. Each method has unique advantages and disad-
vantages that may influence the choice of methods for
particular research applications. For example, we would expect
large differences between free-water and bottle estimates in
lakes where littoral and benthic production contribute sub-
stantially to total metabolism, such as in shallow lakes, lakes
with small surface areas, lakes with large surface area to vol-
ume ratios, or during time periods when lakes are not stratified
(Lauster et al. 2006; Van de Bogert et al. 2007). Thus, it is
likely that both methods will continue to be used and there
will be an ongoing need to compare results across methods,
during different seasons, and across a variety of different lake
types. Analyses conducted here provide little evidence of sys-
tematic differences in estimates of epilimnetic, pelagic lake
daily production based on free-water O2 or 14C methods across
a wide gradient in lake trophic status.
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