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Machine Learning Analysis of Self-Assembled Colloidal Cones
David Doan,? Daniel J. Echeveste,” John Kulikowski ® and X. Wendy Gu*?

Optical and confocal microscopy is used to image the self-assembly of microscale colloidal
particles. The density and size of self-assembled structures is typically quantified by hand, but this
is extremely tedious. Here, we investigate whether machine learning can be used to improve the
speed and accuracy of identification. This method is applied to confocal images of dense arrays of
two-photon lithographed colloidal cones. RetinaNet, a deep learning implementation that uses a
convolutional neural network, is used to identify self-assembled stacks of cones. Synthetic data is
generated using Blender to supplement experimental training data for the machine learning model.
This synthetic data captures key characteristics of confocal images, including slicing in the z-
direction and Gaussian noise. We find that the best performance is achieved with a model trained
on a mixture of synthetic data and experimental data. This model achieves a mean Average
Precision (mAP) of ~85%, and accurately measures the degree of assembly and distribution of
self-assembled stack sizes for different cone diameters. Minor discrepancies between ML and
hand labeled data is discussed in terms of the quality of synthetic data, and differences in cones of

different sizes.
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1. Introduction

Microscopy has been a cornerstone of characterization techniques since its inception in the 17"
century.! Microscopes are widely used to study biological objects, materials and minerals, and
chemicals.?”’ The resulting data from these microscopes are images, which need to be quantified
for rigorous statistical analysis. However, this can require extensive user training or expertise.®’
Common outputs are the size, shape, and spacing of objects, as well as the categorization of objects
by their identifying characteristics. Quantification is especially difficult for images with objects of
complex shape, that are non-uniform in size, shape or spatial distribution, or closely packed or
overlapping objects. For these cases, commonly used analytical methods, such as Fourier
transforms to quantify periodicities, or thresholding to differentiate between objects or the object
and background, may be insufficient to identify the regions of interest. Because of these
limitations, achieving accurate statistics from these types of datasets is time-consuming and may
be prone to large errors.

For the field of colloidal self-assembly of microscale particles, statistical analysis of self-
assembled structures is needed to quantify the quality of a method or sample and understand the
underlying physics. Usually, optical images are manually analyzed in order to determine the order
of assembly and distribution of assembly configurations. Sacanna et al. used optical images to
quantify the self-assembly distribution between different size spheres and cavities.'® Mori et al.
and Kawai et al. used optical images to quantify the order of assembly of microparticles onto
templated structures.!!!? Tigges et al. used confocal images to quantify degree of assembly and
other metrics.!> Although these works use similar metrics, such as degree of assembly and
distribution of assembly configurations, quantifying these from optical images can be drastically
different due to unique particle geometries (i.e., spheres vs cubes vs cones). This leads to
developing specialized workflows that can only be applied to a specific particle geometry or
intensive hand labeling.

Machine learning has revolutionized image processing in many areas such as biology,
medicine, material science, and mechanical engineering by identifying objects within images.'*!”
While the precise output of a machine learning implementation varies based on the supplied data
(e.g., segmentation or bounding boxes), the most common goal is to determine the contents of an
image, as related to a defined set of classifications. Two classic examples are that of machine

learning applied to text recognition and general object identification.!®!” Utilizing large, manually
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labeled datasets, these applications of machine learning signaled the potential for this new
computational technique to rival human image recognition. However, machine learning is possible
in these cases because of the copious amounts of experimental data available. Unfortunately, many
applications involving microscopy, including self-assembly, do not result in enough images for
training data. In the cases where there may be enough data to train a model, labeling the data is
likely still limited by time and resource constraints.

Here, we utilize synthetic data to supplement real microscopy images to enable us to use
machine learning to identify objects in confocal microscopy images. We evaluate the efficacy of
this approach on confocal images of densely packed self-assembled, colloidal microscale cones.
These cones can form 1D nested chains. These structures pose a challenge to conventional object
detection because the cones are partially obscured while assembled and the cones looks different
depending on their orientation to the substrate (i.e., circular face on the substrate, curved sidewall
on the substrate, nested structures in 1D chains). Because of these unique challenges, these cones
are an ideal test case for determining the potential of machine learning as applied to self-assembly.
Training our machine learning model on 200 synthetic images and 4 real images allowed us to
achieve a mean average precision (mAP) of ~85%. The utility of our trained models was then
furthered through post-processing steps to estimate the number of cones in a self-assembled
structure and the total number of assembled cones in an image. We find that these estimates, while
tending to be biased to underestimating, provide an accurate representation of the relative

frequency of self-assembled structures of different sizes.

2. Fabrication and Assembly of Microcones

Microscale cones are fabricated on the Nanoscribe Photonic GT (Nanoscribe, GmbH) with a
proprietary acrylic-based resist, IP-Dip (Nanoscribe, GmbH), and a high magnification objective
(63X NA 1.40 Zeiss) according to a previously developed method (Figure 1).!*?° Cones with
diameters of 4.5 um, 7 pm, and 10 um were fabricated and self-assembled following Tigges et al.'?
The 4.5 pm particle has a nominal height of 2.5 um and a wall thickness of ~0.25 pum. The
dimensions of the 7 pm and 10 pm particles are proportional to the 4.5 pm particle. After
fabrication, the particles are developed in SU-8 developer, treated with Pluronic F127 to stabilize

the particles in solution, and dispersed into an aqueous solution in a glass well. A 0.7g/L
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concentration of 4 MDa polyethylene oxide (PEO) is then added to the solution as a depletant. The
cones are allowed to assemble and are imaged after 24 hours using confocal laser scanning
microscopy. A 405 nm excitation laser and 450-500 nm emission filter are used to image the

particles, which are photoluminescent.

Figure 1. Process of printing and dispersing particles. A) Create a 3D model of conical shape using

CAD software. B) Print particles on a substrate using 2 photon lithography. C) Resulting array of
particles. D) Transfer particles into a glass well for imaging. E) SEM images of printed 4.5 um
conical particles. Scale bar is 1 um. F) Optical image of 4.5 um particle dispersed in a glass well

after deposition. Scale bar is 10 pm.

3. Synthetic Data Generation

Synthetic data is used to generate high-fidelity labeled datasets for training machine learning
models when there is insufficient experimental data for training purposes. There are many methods
to generate synthetic data. For example, generative adversarial networks (GANS), traditional CGI,
and domain randomization have all been used successfully.?!>* Broadly, these methods fall into
the categories of learned replication and model-centric image generation. Learned replication
techniques use tools such as GANs to create synthetic images that minimize a cost function based
on a set of ground-truth training data. GANs have been used to generate images for autonomous
driving, facial recognition, and text recognition.?* Model-centric image generation uses a computer

simulation or image rendering software (e.g., Blender) to generate synthetic data that captures the

4
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major features of the ground-truth data specified by the user. Model-centric image generation has
been previously utilized for generating images for object detection and autonomous driving.?>2®
Here, we choose model-centric image generation due to its ability to generate synthetic images
based solely on prior knowledge of our target system; that is to say, it does not require the user to
process data to then generate synthetic data. While there are promising projects that allow this for
GAN’s, labeled data is generally needed.? It is possible to combine multiple machine learning
methods to combine their strengths, but this significantly increases the complexity and expertise
needed for implementation. Furthermore, the model-centric approach is appealing since it is highly
generalizable—studying a new particle geometry will not require the training of a new
synthesizing network, such as with a GAN. Utilizing model-centric synthesis, we can fold the
image generation process into a larger synthesis, training, and evaluation workflow.

Our machine learning workflow is seen in Figure 2 and 3. Figure 2 shows the process of
generating synthetic training data. This starts with creating a 3D CAD model of the particle of
interest, which matches the geometry of the cones. This particle is then imported into Blender,
where the particles are manually assembled into nested stacks of 1-5 particles in size (Figure
2A). This type of nested stack geometry is experimentally observed in our samples, and are regions
of interest. In principle, the generation of stacked particles could be automated, but this would be
prohibitively expensive computationally because of the non-convex shape of the particle. The next
step is to generate an image with many stacks of particles with random location and orientation
(Figure 2B). The particles are mainly oriented with the axis of the cones in the plane of the image,
with a small, random, out-of-plane rotation to mimic the experimental data. This image is turned
into a model of a confocal microscope image by creating slices in the imaging direction (z-slice),
where the distance between the slices corresponds to the z-step size of the confocal microscope
used to generate the data. These slices are convolved with a Gaussian point spread function and
then added back together. Finally, Gaussian noise is added to the image. These operations are to
replicate the optical processes of excitation, capture, and 2-D projection that occurs during
confocal microscopy, in which point illumination is rastered in 2D or 3D to build a high-resolution
image. This process is similar to a previously published method for generating confocal
microscopy synthetic data.*® Finally, the synthesized image, paired with information on the

location of stacked particles within the image, is used for training data.
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Figure 2: Generation of synthetic training data using Blender. A) A 3D CAD model of a hollow
cone is loaded into Blender and assembled into stacks of nested cones. B) Single cones and stacks
of cones are randomly distributed within an image. C) 2D slices of the image are rendered. D)
These 2D slices are convolved with a point spread function and added back together, along with

Gaussian noise to produce synthetic data that mimics confocal images.

4. Machine Learning Method

The synthetic data and a small subset of experimental data are used to train an implementation of
RetinaNet for use on our target, unlabeled data (Figure 3). RetinaNet is a deep learning
implementation that uses a feature pyramid network (FPN), a specialized convolutional neural
network (CNN), to find features within an image.’! Within RetinaNet, an additional pair of CNN’s
is then used to determine the bounding box and label objects based on features at various scales
within the image. While RetinaNet uses this process to detect objects within an image, density
estimation and point ID are two potential alternative techniques implemented in other machine
learning models.*>* Instead of training the model to identify and label objects within an image,
density estimation uses the features in an image to regress the number of particles, but not
necessarily their locations. The point ID method works similarly to RetinaNet, but with object
centers (instead of bounding boxes) being the target of inference. Often a method prepared for
point ID can easily be converted to the regression task.>>** Object detection was chosen for the

current study because it allows for identification of particle orientation, which greatly affects
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whether two adjacent particles are “related” (stacked). RetinaNet is chosen for its speed and
cutting-edge performance on image localization and identification benchmarks.?! However, in
alternative implementations, models other than RetinaNet could be trained and used for inference.

For example, the U-Net architecture would be reasonable for use with segmented data. '’

Experimental Data

Training Data

Inference

RetinaNet | =—p Model

Figure 3: Diagram of model training and inference process. Synthetic and experimental images
are used as inputs to train a RetinaNet model with pre-trained weights. From this training model,
an inference model is generated to identify stacks of nested particles in unlabeled experimental

confocal images.

5. Ablation Study on Training Inputs

The effect of modifying the number of data, type of data, and the use of pre-trained initial weights
is evaluated using an ablation study. For our ablation study, a batch size of 2, an initial learning
rate of 1x10™, an early-stop patience of 100 epochs, and a learning rate reduction on plateau of
1x107!, with a patience of 70 epochs is used. The only class our model was trained to identify was
“stacked”, as opposed to identifying different classes corresponding to the number of cones in a
stack. Our standard model is trained on 200 synthetic images and 4 experimental images with the
standard pre-trained ImageNet weights. Experimental images were randomly chosen for training,

with at least one image of each cone size included when possible. All experimental images are pre-

7



processed by matching the color distribution to a template image to reduce contrast variance
between images. The images are then split into 612 pixel by 612 pixel sub-images. The mean
average precision (mAP) for a 50% intersection over union (IoU) is estimated by validating the
model over 79 experimental images. mAP is a measure of the area under the Precision-Recall
curve, which is a curve plotting precision (the ratio of correct detections to total detections) against
recall (the ratio of correct detections to total possible correct detections). Loss, a common measure
of model performance during training, is the sum of the smooth L1 loss associated with regressing
the bounding box coordinates and the focal loss, which is associated with label predictions. *' For
the standard model, the highest mAP is ~82%. This ImageNet model is then compared to a model
with no pre-trained weights, and a model using weight pre-trained on Microsoft’s Common
Objects in Context (COCO) dataset. The mean average precision (mAP) and loss are measured per
epoch for each case (see Figure 4A). The highest achieved mAP for no weights and COCO are
~53% and ~77%, respectively. The mAP plateaus at a training epoch of ~80 in all cases. The
results of the COCO and ImageNet runs both show that our analysis can take advantage of transfer
learning from more traditional datasets. The better performance of ImageNet compared to COCO
is likely because ImageNet is a larger dataset that consists of more diverse categories than
COCO.13

Different combinations of synthetic and experimental images are also investigated. The
number of synthetic images (0, 200, 400) is varied while keeping the number of experimental
images (4) the same. The number of experimental images (0, 4, 8) is then varied while keeping the
number of synthetic images (200) the same. All these models are trained with ImageNet pre-trained
weights. The mAP and loss are measured per epoch for each case (see Figure 4B and C). The
highest achieved mAP is ~85% with 200 synthetic images and 8 experimental images. It is notable
that the use of 200 synthetic images with 4 experimental images outperforms the model trained on
400 synthetic images and 4 experimental images. This is despite the 400 synthetic image model
having a lower loss. This indicates that, above a certain threshold, the inclusion of more synthetic
data leads to a degradation in performance due to overfitting. A similar effect was noted in Yao et.
al. and also motivated their use of a relatively small sample of synthetic data for training.’®> The
use of only experimental images (2, 4, 6, 8, 10) is evaluated in Figure 4D. The highest achieved

mAP is ~81% for 10 experimental images, which is marginally better than 8 experimental images
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(mAP ~79%). This performance is comparable to the use of 200 synthetic data with 4 experimental

images.
1.0 ' ' L Net 1.0 ' ' B 200 SYN+BEXP
09 10 0.9 § memiss Lo
08 - ~—y 0.8 o P
0.7 Nk | 4 0.7 | 1
06 2 0.6 p
% 05 0.1 3 % 05 0.1 3
04 0.4
0.3 0.3
0.2 - 0.01 0.2 0.01
0.1 0.1
00 r r 0.001 0.0+ r r 0.001
0 50 100 150 0 50 100 150
c Epoch D Epoch
10 . 1.0 . r
W 200 SYN+4EXP & 0SYN+BEXP HM O0SYN+10EXP
0.9+ s anyioe p10 0.9+ 3 SSMiaEE A oswvese |10
0.8- i
0.7- 1
0.6
2 05 @
o 0.4 3
0.4-
0.3-
0.2 L 0.01
14 0.1
0.0 ; ; . ; . 0.001 0.0 e , ; . 0.001
0 50 100 150 0 50 100 150
Epoch Epoch

Figure 4: Mean average precision (mAP) and loss vs training epoch for A) 200 synthetic images
and 4 experimental images with different pre-trained weights (ImageNet, COCO, and no weights).
B) 200 synthetic images with 0, 4, and 8 experimental images with ImageNet pre-trained weights.
C) 0, 200, and 400 synthetic images and 4 experimental images with ImageNet pre-trained
weights. D) 0 synthetic images and 2, 4, 6, 8, and 10 experimental images with ImageNet pre-

trained weights.

6. Validation and Discussion

A 100 - 200 um square region is experimentally imaged to quantify the degree of self-assembly.
This region contains approximately 900 particles for the 4.5 um cones, 1100 particles for the 7 pum

cones, and 1200 particles for the 10 um cones. This number is estimated by calculating the density
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of a smaller region and extrapolating it to the rest of the image. From this data, the degree of
assembly, and the stack size distribution are determined manually. Degree of assembly is defined
as the total number of stacked particles divided by the total number of particles in the imaged
region. The stack size distribution can be characterized using the stack number average, which is
a weighted average of the conical particles in a stack divided by the total number of stacks. The
degree of assembly is determined to be ~2% for the 4.5 um cones, ~30% for the 7.5 um cones, and
~33% for the 10 pum cones (Figure 6A). The stack distribution is shown in Figure 6B, 6C, and

6D for the 4.5 um cones, 7 um cones, and 10 pm cones, respectively.

The best machine learning model (i.e., RetinaNet trained with 200 synthetic images and 8
experimental images with ImageNet pre-trained weights) is used to analyze the same images.
Figure 5 shows different cone sizes labeled by the machine learning model, along with close-ups
of the stack configurations. From the machine learning model, the estimated degree of assembly
is ~1% for the 4.5 pm cones, ~26% for the 7 pm cones, and ~32% for the 10 um cones (Figure
6A). Stacks of cones inferred by the model are categorized by aspect ratio and area to determine
the stack size distribution. Labeled experimental data is used to determine the aspect ratio and

average area of the bounding box for each stack size. The resulting inference bounding boxes are

then binned using these metrics to determine the stack size.

Figure 5: Machine learning model inference of stacked particles. Images of stacked particles, with
closeups, identified by machine learning for the A) 4.5 um cones, B) 7 um cones, and C) 10 um
cones. Close up image of a longer stacked particle being identified as a combination of smaller

stacks. Scale bars are 25 pm.
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Figure 6: Histograms of hand labeled data and machine labeled data. A) Degree of assembly (%)

of 4.5 um, 7 um, and 10 um cones for hand labeled (green) and machine labeled (red) data.

Distribution of stack size for B) 4.5 um, C) 7 pym, and D) 10 pm cones.

The degree of assembly predicted by the model is within 2% of the manually calculated value for

the 4.5 pm cone, within 4% for the 7 pm cone, and within 1% for the 10 um cone. For all cases,

both the degree of assembly and the stack average number are underestimated by the machine

learning model. However, the trend of increasing degree of assembly with increasing cone

diameter is captured. Figure 6B and 6C shows that the stack distribution seems to capture a similar
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number of stack instances for the 7 um and 10 um but severely underestimates the larger stacks.
Stack instances are underestimated in the 4.5 pm case.

These errors can be partially attributed to the machine learning model inference, the
synthetic data used, and the post-processing algorithm. Although RetinaNet implements FPN,
which should result in a scale-invariant model, the experimental images are not scale-invariant.
The machine learning model was trained on at least one image of each cone size. However, the
low degree of assembly of the 4.5 pm cones led to a sparsity of labeled data for training, which
makes it more difficult to accurately identify 4.5 um cones using the machine learning model. In
addition, due to the resolution of the confocal microscope, the features that the model uses to
identify stacks is slightly different between the 4.5 um cones and the larger cones. As shown in
the close-up images of the identification of cones in Figure 5, the smaller 4.5 um cones have a
slightly different contrast profile than the 7 um or 10 um cones. This may account for the larger
discrepancies that we see for the 4.5 um cones. We would also like to note that since the 4.5 um
cones have a low degree of assembly, there are few objects to identify, such that missing one object
leads to a large statistical difference.

The machine learning model also had difficulty identifying larger stack sizes accurately. For
example, for the 10 pm particles, a stack of 9 particles was identified by hand but not by the
machine learning model. Figure SC shows that the machine learning model splits up the 9 stack
into smaller stacks. This is because the stack has some curvature. The machine learning model
cannot accurately identify this stack because curvature is not represented in the synthetic images
that are generated. In addition, a stack of this size appears rarely, such that it is unlikely that a
similar stack was represented in the experimental images used to train the model. Only stacks of
size less than 5 were represented in our synthetic images. Additional synthetic data of large stacks
with a variety of curvature would help with this issue. This motivates future work on procedurally
generating the synthetic stacks due to the difficulty of generating a large amount of varied synthetic
stacks by hand. Another issue with identifying large stacks is that the machine labeled data holds
no information about the spatial relationship between stacks. This leads to the situation observed
in Figure 5C, in which two stacks in close proximity, with an aligned orientation is not identified
as a single stack. Addressing this shortcoming would require an alternative labeling scheme and a

different machine learning model.

12
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In addition to misidentifying larger stack sizes, the underestimation of stack size can also be
attributed to the post-processing algorithm which categorizes stacks size by aspect ratio and area
of the bounding box. We expect that a stack larger than 4 or 5 has a larger aspect ratio (length to
width) than a smaller one. However, this does not necessarily translate to a larger bounding box
aspect ratio. The larger stack can be positioned at a diagonal, making its bounding box effectively
1:1. This can be mitigated by accounting for the area of the bounding box, but the correspondence
between bounding box size and stack size is not perfect, leading to the misidentification of stack
size. This post-processing algorithm could be replaced with another CNN, which would classify

the stack size.

7. Conclusion

In this paper we demonstrate the use of machine learning, trained on a mix of synthetic and
experimental data, for the identification of self-assembled microscale cones in densely packed and
noisy confocal images. We have implemented a model-based process for synthesizing training
data. Through post-processing steps, we were able to obtain estimates of percent assembly within
an image and the distribution of cone stack size, which was found to follow the same trends as in
hand labeled data. Further improvements in object detection and accuracy could be achieved by
implementing the procedural generation of synthetic images and better rendering. With improved
synthetic images, the variation in the experimental data could be captured more accurately. With
improved rendering, we would be able to better represent the unique elements of our experimental
data in our synthetic data, allowing for more efficient learning transfer. This work shows that
machine learning paired with effective synthetic data synthesis can enable the rapid and accurate

quantification of microscale structures, such as self-assembled colloids.
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