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 3 

Optical and confocal microscopy is used to image the self-assembly of microscale colloidal 4 

particles. The density and size of self-assembled structures is typically quantified by hand, but this 5 

is extremely tedious. Here, we investigate whether machine learning can be used to improve the 6 

speed and accuracy of identification. This method is applied to confocal images of dense arrays of 7 

two-photon lithographed colloidal cones. RetinaNet, a deep learning implementation that uses a 8 

convolutional neural network, is used to identify self-assembled stacks of cones. Synthetic data is 9 

generated using Blender to supplement experimental training data for the machine learning model. 10 

This synthetic data captures key characteristics of confocal images, including slicing in the z-11 

direction and Gaussian noise. We find that the best performance is achieved with a model trained 12 

on a mixture of synthetic data and experimental data. This model achieves a mean Average 13 

Precision (mAP) of ~85%, and accurately measures the degree of assembly and distribution of 14 

self-assembled stack sizes for different cone diameters.  Minor discrepancies between ML and 15 

hand labeled data is discussed in terms of the quality of synthetic data, and differences in cones of 16 

different sizes. 17 
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1. Introduction  36 

Microscopy has been a cornerstone of characterization techniques since its inception in the 17th 37 

century.1 Microscopes are widely used to study biological objects, materials and minerals, and 38 

chemicals.2–7 The resulting data from these microscopes are images, which need to be quantified 39 

for rigorous statistical analysis. However, this can require extensive user training or expertise.8,9 40 

Common outputs are the size, shape, and spacing of objects, as well as the categorization of objects 41 

by their identifying characteristics. Quantification is especially difficult for images with objects of 42 

complex shape, that are non-uniform in size, shape or spatial distribution, or closely packed or 43 

overlapping objects. For these cases, commonly used analytical methods, such as Fourier 44 

transforms to quantify periodicities, or thresholding to differentiate between objects or the object 45 

and background, may be insufficient to identify the regions of interest. Because of these 46 

limitations, achieving accurate statistics from these types of datasets is time-consuming and may 47 

be prone to large errors. 48 

 For the field of colloidal self-assembly of microscale particles, statistical analysis of self-49 

assembled structures is needed to quantify the quality of a method or sample and understand the 50 

underlying physics. Usually, optical images are manually analyzed in order to determine the order 51 

of assembly and distribution of assembly configurations. Sacanna et al. used optical images to 52 

quantify the self-assembly distribution between different size spheres and cavities.10 Mori et al. 53 

and Kawai et al. used optical images to quantify the order of assembly of microparticles onto 54 

templated structures.11,12 Tigges et al. used confocal images to quantify degree of assembly and 55 

other metrics.13 Although these works use similar metrics, such as degree of assembly and 56 

distribution of assembly configurations, quantifying these from optical images can be drastically 57 

different due to unique particle geometries (i.e., spheres vs cubes vs cones). This leads to 58 

developing specialized workflows that can only be applied to a specific particle geometry or 59 

intensive hand labeling.  60 

 Machine learning has revolutionized image processing in many areas such as biology, 61 

medicine, material science, and mechanical engineering by identifying objects within images.14–17 62 

While the precise output of a machine learning implementation varies based on the supplied data 63 

(e.g., segmentation or bounding boxes), the most common goal is to determine the contents of an 64 

image, as related to a defined set of classifications. Two classic examples are that of machine 65 

learning applied to text recognition and general object identification.18,19 Utilizing large, manually 66 
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labeled datasets, these applications of machine learning signaled the potential for this new 67 

computational technique to rival human image recognition. However, machine learning is possible 68 

in these cases because of the copious amounts of experimental data available. Unfortunately, many 69 

applications involving microscopy, including self-assembly, do not result in enough images for 70 

training data. In the cases where there may be enough data to train a model, labeling the data is 71 

likely still limited by time and resource constraints.  72 

 Here, we utilize synthetic data to supplement real microscopy images to enable us to use 73 

machine learning to identify objects in confocal microscopy images. We evaluate the efficacy of 74 

this approach on confocal images of densely packed self-assembled, colloidal microscale cones. 75 

These cones can form 1D nested chains. These structures pose a challenge to conventional object 76 

detection because the cones are partially obscured while assembled and the cones looks different 77 

depending on their orientation to the substrate (i.e., circular face on the substrate, curved sidewall 78 

on the substrate, nested structures in 1D chains). Because of these unique challenges, these cones 79 

are an ideal test case for determining the potential of machine learning as applied to self-assembly. 80 

Training our machine learning model on 200 synthetic images and 4 real images allowed us to 81 

achieve a mean average precision (mAP) of ~85%. The utility of our trained models was then 82 

furthered through post-processing steps to estimate the number of cones in a self-assembled 83 

structure and the total number of assembled cones in an image. We find that these estimates, while 84 

tending to be biased to underestimating, provide an accurate representation of the relative 85 

frequency of self-assembled structures of different sizes.   86 

 87 

2. Fabrication and Assembly of Microcones 88 

Microscale cones are fabricated on the Nanoscribe Photonic GT (Nanoscribe, GmbH) with a 89 

proprietary acrylic-based resist, IP-Dip (Nanoscribe, GmbH), and a high magnification objective 90 

(63X NA 1.40 Zeiss) according to a previously developed method (Figure 1).13,20 Cones with 91 

diameters of 4.5 μm, 7 μm, and 10 μm were fabricated and self-assembled following Tigges et al.13 92 

The 4.5 μm particle has a nominal height of 2.5 μm and a wall thickness of ~0.25 μm. The 93 

dimensions of the 7 μm and 10 μm particles are proportional to the 4.5 μm particle. After 94 

fabrication, the particles are developed in SU-8 developer, treated with Pluronic F127 to stabilize 95 

the particles in solution, and dispersed into an aqueous solution in a glass well. A 0.7g/L 96 
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concentration of 4 MDa polyethylene oxide (PEO) is then added to the solution as a depletant. The 97 

cones are allowed to assemble and are imaged after 24 hours using confocal laser scanning 98 

microscopy. A 405 nm excitation laser and 450-500 nm emission filter are used to image the 99 

particles, which are photoluminescent. 100 

 101 

 102 

Figure 1. Process of printing and dispersing particles. A) Create a 3D model of conical shape using 103 

CAD software. B) Print particles on a substrate using 2 photon lithography. C) Resulting array of 104 

particles. D) Transfer particles into a glass well for imaging. E) SEM images of printed 4.5 μm 105 

conical particles. Scale bar is 1 μm. F) Optical image of 4.5 μm particle dispersed in a glass well 106 

after deposition. Scale bar is 10 μm. 107 

 108 

3. Synthetic Data Generation  109 

Synthetic data is used to generate high-fidelity labeled datasets for training machine learning 110 

models when there is insufficient experimental data for training purposes. There are many methods 111 

to generate synthetic data. For example, generative adversarial networks (GANs), traditional CGI, 112 

and domain randomization have all been used successfully.21–23 Broadly, these methods fall into 113 

the categories of learned replication and model-centric image generation. Learned replication 114 

techniques use tools such as GANs to create synthetic images that minimize a cost function based 115 

on a set of ground-truth training data. GANs have been used to generate images for autonomous 116 

driving, facial recognition, and text recognition.24 Model-centric image generation uses a computer 117 

simulation or image rendering software (e.g., Blender) to generate synthetic data that captures the 118 
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major features of the ground-truth data specified by the user. Model-centric image generation has 119 

been previously utilized for generating images for object detection and autonomous driving.25–28 120 

Here, we choose model-centric image generation due to its ability to generate synthetic images 121 

based solely on prior knowledge of our target system; that is to say, it does not require the user to 122 

process data to then generate synthetic data. While there are promising projects that allow this for 123 

GAN’s, labeled data is generally needed.29 It is possible to combine multiple machine learning 124 

methods to combine their strengths, but this significantly increases the complexity and expertise 125 

needed for implementation. Furthermore, the model-centric approach is appealing since it is highly 126 

generalizable—studying a new particle geometry will not require the training of a new 127 

synthesizing network, such as with a GAN. Utilizing model-centric synthesis, we can fold the 128 

image generation process into a larger synthesis, training, and evaluation workflow.    129 

 Our machine learning workflow is seen in Figure 2 and 3. Figure 2 shows the process of 130 

generating synthetic training data. This starts with creating a 3D CAD model of the particle of 131 

interest, which matches the geometry of the cones. This particle is then imported into Blender, 132 

where the particles are manually assembled into nested stacks of 1-5 particles in size (Figure 133 

2A). This type of nested stack geometry is experimentally observed in our samples, and are regions 134 

of interest. In principle, the generation of stacked particles could be automated, but this would be 135 

prohibitively expensive computationally because of the non-convex shape of the particle. The next 136 

step is to generate an image with many stacks of particles with random location and orientation 137 

(Figure 2B). The particles are mainly oriented with the axis of the cones in the plane of the image, 138 

with a small, random, out-of-plane rotation to mimic the experimental data. This image is turned 139 

into a model of a confocal microscope image by creating slices in the imaging direction (z-slice), 140 

where the distance between the slices corresponds to the z-step size of the confocal microscope 141 

used to generate the data. These slices are convolved with a Gaussian point spread function and 142 

then added back together. Finally, Gaussian noise is added to the image. These operations are to 143 

replicate the optical processes of excitation, capture, and 2-D projection that occurs during 144 

confocal microscopy, in which point illumination is rastered in 2D or 3D to build a high-resolution 145 

image. This process is similar to a previously published method for generating confocal 146 

microscopy synthetic data.30 Finally, the synthesized image, paired with information on the 147 

location of stacked particles within the image, is used for training data.   148 

 149 
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 150 

Figure 2: Generation of synthetic training data using Blender. A) A 3D CAD model of a hollow 151 

cone is loaded into Blender and assembled into stacks of nested cones. B) Single cones and stacks 152 

of cones are randomly distributed within an image. C) 2D slices of the image are rendered. D) 153 

These 2D slices are convolved with a point spread function and added back together, along with 154 

Gaussian noise to produce synthetic data that mimics confocal images.      155 

 156 

4. Machine Learning Method 157 

The synthetic data and a small subset of experimental data are used to train an implementation of 158 

RetinaNet for use on our target, unlabeled data (Figure 3). RetinaNet is a deep learning 159 

implementation that uses a feature pyramid network (FPN), a specialized convolutional neural 160 

network (CNN), to find features within an image.31 Within RetinaNet, an additional pair of CNN’s 161 

is then used to determine the bounding box and label objects based on features at various scales 162 

within the image. While RetinaNet uses this process to detect objects within an image, density 163 

estimation and point ID are two potential alternative techniques implemented in other machine 164 

learning models.32,33 Instead of training the model to identify and label objects within an image, 165 

density estimation uses the features in an image to regress the number of particles, but not 166 

necessarily their locations. The point ID method works similarly to RetinaNet, but with object 167 

centers (instead of bounding boxes) being the target of inference. Often a method prepared for 168 

point ID can easily be converted to the regression task.32,33 Object detection was chosen for the 169 

current study because it allows for identification of particle orientation, which greatly affects 170 
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whether two adjacent particles are “related” (stacked). RetinaNet is chosen for its speed and 171 

cutting-edge performance on image localization and identification benchmarks.31 However, in 172 

alternative implementations, models other than RetinaNet could be trained and used for inference. 173 

For example, the U-Net architecture would be reasonable for use with segmented data.15          174 

 175 

 176 

Figure 3: Diagram of model training and inference process. Synthetic and experimental images 177 

are used as inputs to train a RetinaNet model with pre-trained weights. From this training model, 178 

an inference model is generated to identify stacks of nested particles in unlabeled experimental 179 

confocal images. 180 

 181 

5. Ablation Study on Training Inputs 182 

The effect of modifying the number of data, type of data, and the use of pre-trained initial weights 183 

is evaluated using an ablation study. For our ablation study, a batch size of 2, an initial learning 184 

rate of 1x10-4, an early-stop patience of 100 epochs, and a learning rate reduction on plateau of 185 

1x10-1, with a patience of 70 epochs is used. The only class our model was trained to identify was 186 

“stacked”, as opposed to identifying different classes corresponding to the number of cones in a 187 

stack. Our standard model is trained on 200 synthetic images and 4 experimental images with the 188 

standard pre-trained ImageNet weights. Experimental images were randomly chosen for training, 189 

with at least one image of each cone size included when possible. All experimental images are pre-190 
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processed by matching the color distribution to a template image to reduce contrast variance 191 

between images. The images are then split into 612 pixel by 612 pixel sub-images. The mean 192 

average precision (mAP) for a 50% intersection over union (IoU) is estimated by validating the 193 

model over 79 experimental images. mAP is a measure of the area under the Precision-Recall 194 

curve, which is a curve plotting precision (the ratio of correct detections to total detections) against 195 

recall (the ratio of correct detections to total possible correct detections). Loss, a common measure 196 

of model performance during training, is the sum of the smooth L1 loss associated with regressing 197 

the bounding box coordinates and the focal loss, which is associated with label predictions. 31 For 198 

the standard model, the highest mAP is ~82%. This ImageNet model is then compared to a model 199 

with no pre-trained weights, and a model using weight pre-trained on Microsoft’s Common 200 

Objects in Context (COCO) dataset. The mean average precision (mAP) and loss are measured per 201 

epoch for each case (see Figure 4A). The highest achieved mAP for no weights and COCO are 202 

~53% and ~77%, respectively. The mAP plateaus at a training epoch of ~80 in all cases. The 203 

results of the COCO and ImageNet runs both show that our analysis can take advantage of transfer 204 

learning from more traditional datasets. The better performance of ImageNet compared to COCO 205 

is likely because ImageNet is a larger dataset that consists of more diverse categories than 206 

COCO.19,34    207 

 Different combinations of synthetic and experimental images are also investigated. The 208 

number of synthetic images (0, 200, 400) is varied while keeping the number of experimental 209 

images (4) the same. The number of experimental images (0, 4, 8) is then varied while keeping the 210 

number of synthetic images (200) the same. All these models are trained with ImageNet pre-trained 211 

weights. The mAP and loss are measured per epoch for each case (see Figure 4B and C). The 212 

highest achieved mAP is ~85% with 200 synthetic images and 8 experimental images. It is notable 213 

that the use of 200 synthetic images with 4 experimental images outperforms the model trained on 214 

400 synthetic images and 4 experimental images. This is despite the 400 synthetic image model 215 

having a lower loss. This indicates that, above a certain threshold, the inclusion of more synthetic 216 

data leads to a degradation in performance due to overfitting. A similar effect was noted in Yao et. 217 

al. and also motivated their use of a relatively small sample of synthetic data for training.35 The 218 

use of only experimental images (2, 4, 6, 8, 10) is evaluated in Figure 4D. The highest achieved 219 

mAP is ~81% for 10 experimental images, which is marginally better than 8 experimental images 220 
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(mAP ~79%). This performance is comparable to the use of 200 synthetic data with 4 experimental 221 

images.   222 

 223 

Figure 4: Mean average precision (mAP) and loss vs training epoch for A) 200 synthetic images 224 

and 4 experimental images with different pre-trained weights (ImageNet, COCO, and no weights). 225 

B) 200 synthetic images with 0, 4, and 8 experimental images with ImageNet pre-trained weights.  226 

C) 0, 200, and 400 synthetic images and 4 experimental images with ImageNet pre-trained 227 

weights. D) 0 synthetic images and 2, 4, 6, 8, and 10 experimental images with ImageNet pre-228 

trained weights. 229 

6. Validation and Discussion  230 

A 100 - 200 μm square region is experimentally imaged to quantify the degree of self-assembly. 231 

This region contains approximately 900 particles for the 4.5 μm cones, 1100 particles for the 7 μm 232 

cones, and 1200 particles for the 10 μm cones. This number is estimated by calculating the density 233 
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of a smaller region and extrapolating it to the rest of the image. From this data, the degree of 234 

assembly, and the stack size distribution are determined manually. Degree of assembly is defined 235 

as the total number of stacked particles divided by the total number of particles in the imaged 236 

region. The stack size distribution can be characterized using the stack number average, which is 237 

a weighted average of the conical particles in a stack divided by the total number of stacks. The 238 

degree of assembly is determined to be ~2% for the 4.5 μm cones, ~30% for the 7.5 μm cones, and 239 

~33% for the 10 μm cones (Figure 6A). The stack distribution is shown in Figure 6B, 6C, and 240 

6D for the 4.5 μm cones, 7 μm cones, and 10 μm cones, respectively.  241 

 The best machine learning model (i.e., RetinaNet trained with 200 synthetic images and 8 242 

experimental images with ImageNet pre-trained weights) is used to analyze the same images. 243 

Figure 5 shows different cone sizes labeled by the machine learning model, along with close-ups 244 

of the stack configurations. From the machine learning model, the estimated degree of assembly 245 

is ~1% for the 4.5 μm cones, ~26% for the 7 μm cones, and ~32% for the 10 μm cones (Figure 246 

6A). Stacks of cones inferred by the model are categorized by aspect ratio and area to determine 247 

the stack size distribution. Labeled experimental data is used to determine the aspect ratio and 248 

average area of the bounding box for each stack size. The resulting inference bounding boxes are 249 

then binned using these metrics to determine the stack size. 250 

 251 

Figure 5: Machine learning model inference of stacked particles. Images of stacked particles, with 252 

closeups, identified by machine learning for the A) 4.5 μm cones, B) 7 μm cones, and C) 10 μm 253 

cones. Close up image of a longer stacked particle being identified as a combination of smaller 254 

stacks. Scale bars are 25 μm. 255 
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 256 

Figure 6: Histograms of hand labeled data and machine labeled data. A) Degree of assembly (%) 257 

of 4.5 μm, 7 μm, and 10 μm cones for hand labeled (green) and machine labeled (red) data.  258 

Distribution of stack size for B) 4.5 μm, C) 7 μm, and D) 10 μm cones.  259 

The degree of assembly predicted by the model is within 2% of the manually calculated value for 260 

the 4.5 μm cone, within 4% for the 7 μm cone, and within 1% for the 10 μm cone. For all cases, 261 

both the degree of assembly and the stack average number are underestimated by the machine 262 

learning model. However, the trend of increasing degree of assembly with increasing cone 263 

diameter is captured. Figure 6B and 6C shows that the stack distribution seems to capture a similar 264 
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number of stack instances for the 7 μm and 10 μm but severely underestimates the larger stacks. 265 

Stack instances are underestimated in the 4.5 μm case.  266 

  These errors can be partially attributed to the machine learning model inference, the 267 

synthetic data used, and the post-processing algorithm. Although RetinaNet implements FPN, 268 

which should result in a scale-invariant model, the experimental images are not scale-invariant. 269 

The machine learning model was trained on at least one image of each cone size. However, the 270 

low degree of assembly of the 4.5 μm cones led to a sparsity of labeled data for training, which 271 

makes it more difficult to accurately identify 4.5 μm cones using the machine learning model. In 272 

addition, due to the resolution of the confocal microscope, the features that the model uses to 273 

identify stacks is slightly different between the 4.5 μm cones and the larger cones. As shown in 274 

the close-up images of the identification of cones in Figure 5, the smaller 4.5 μm cones have a 275 

slightly different contrast profile than the 7 μm or 10 μm cones. This may account for the larger 276 

discrepancies that we see for the 4.5 μm cones. We would also like to note that since the 4.5 μm 277 

cones have a low degree of assembly, there are few objects to identify, such that missing one object 278 

leads to a large statistical difference.  279 

 The machine learning model also had difficulty identifying larger stack sizes accurately. For 280 

example, for the 10 μm particles, a stack of 9 particles was identified by hand but not by the 281 

machine learning model. Figure 5C shows that the machine learning model splits up the 9 stack 282 

into smaller stacks. This is because the stack has some curvature. The machine learning model 283 

cannot accurately identify this stack because curvature is not represented in the synthetic images 284 

that are generated. In addition, a stack of this size appears rarely, such that it is unlikely that a 285 

similar stack was represented in the experimental images used to train the model. Only stacks of 286 

size less than 5 were represented in our synthetic images. Additional synthetic data of large stacks 287 

with a variety of curvature would help with this issue. This motivates future work on procedurally 288 

generating the synthetic stacks due to the difficulty of generating a large amount of varied synthetic 289 

stacks by hand. Another issue with identifying large stacks is that the machine labeled data holds 290 

no information about the spatial relationship between stacks. This leads to the situation observed 291 

in Figure 5C, in which two stacks in close proximity, with an aligned orientation is not identified 292 

as a single stack. Addressing this shortcoming would require an alternative labeling scheme and a 293 

different machine learning model.  294 
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 In addition to misidentifying larger stack sizes, the underestimation of stack size can also be 295 

attributed to the post-processing algorithm which categorizes stacks size by aspect ratio and area 296 

of the bounding box. We expect that a stack larger than 4 or 5 has a larger aspect ratio (length to 297 

width) than a smaller one. However, this does not necessarily translate to a larger bounding box 298 

aspect ratio. The larger stack can be positioned at a diagonal, making its bounding box effectively 299 

1:1.  This can be mitigated by accounting for the area of the bounding box, but the correspondence 300 

between bounding box size and stack size is not perfect, leading to the misidentification of stack 301 

size. This post-processing algorithm could be replaced with another CNN, which would classify 302 

the stack size.  303 

 304 

7. Conclusion  305 

In this paper we demonstrate the use of machine learning, trained on a mix of synthetic and 306 

experimental data, for the identification of self-assembled microscale cones in densely packed and 307 

noisy confocal images. We have implemented a model-based process for synthesizing training 308 

data. Through post-processing steps, we were able to obtain estimates of percent assembly within 309 

an image and the distribution of cone stack size, which was found to follow the same trends as in 310 

hand labeled data. Further improvements in object detection and accuracy could be achieved by 311 

implementing the procedural generation of synthetic images and better rendering. With improved 312 

synthetic images, the variation in the experimental data could be captured more accurately. With 313 

improved rendering, we would be able to better represent the unique elements of our experimental 314 

data in our synthetic data, allowing for more efficient learning transfer. This work shows that 315 

machine learning paired with effective synthetic data synthesis can enable the rapid and accurate 316 

quantification of microscale structures, such as self-assembled colloids.  317 
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