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Abstract

We consider the problem of routing a large fleet of drones to deliver packages simul-
taneously across broad urban areas. Besides flying directly, drones can use public transit
vehicles such as buses and trams as temporary modes of transportation to conserve energy.
Adding this capability to our formulation augments effective drone travel range and the
space of possible deliveries but also increases problem input size due to the large transit
networks. We present a comprehensive algorithmic framework that strives to minimize
the maximum time to complete any delivery and addresses the multifaceted computational
challenges of our problem through a two-layer approach. First, the upper layer assigns
drones to package delivery sequences with an approximately optimal polynomial time allo-
cation algorithm. Then, the lower layer executes the allocation by periodically routing the
fleet over the transit network, using efficient, bounded suboptimal multi-agent pathfinding
techniques tailored to our setting. We demonstrate the efficiency of our approach on sim-
ulations with up to 200 drones, 5000 packages, and transit networks with up to 8000 stops
in San Francisco and the Washington DC Metropolitan Area. Our framework computes
solutions for most settings within a few seconds on commodity hardware and enables drones
to extend their effective range by a factor of nearly four using transit.

1. Introduction

Rapidly growing e-commerce demands have strained dense urban communities by increasing
delivery vehicle traffic and impacting travel times for public and private transit (Holgúın-
Veras et al., 2018). Operators need to redesign their current method of package distribution
in cities (Kafle, Zou, & Lin, 2017). Drones are promising options for logistic networks due
to their agility, aerial reach, and recent technological advances, and the flexibility and
ease of establishing drone networks. However, they have limited travel range and carrying
capacity (Sudbury & Hutchinson, 2016). In contrast, ground-based transit networks have
less flexibility but greater coverage and throughput. By combining the strengths of both, we
can achieve both commercial benefits and social impact, e.g., reducing ground congestion
and delivering essential products.

Analysts have studied how drone-augmented commodity transport in urban areas could
improve the traditional delivery ecosystem (Lohn, 2017; Gulden, 2017; D’Andrea, 2014;
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delivery sequences. Then, the lower layer executes the allocation by periodically routing
the fleet over the transit network. For the upper layer, we develop an approximately opti-
mal polynomial time task allocation method. For the lower layer, we extend techniques for
efficient bounded-suboptimal multi-agent pathfinding to account for time-dependent tran-
sit networks and individual agent energy constraints. We present results supporting the
scalability of our approach on simulations with up to 200 drones, 5000 packages, and tran-
sit networks of up to 8000 stops in San Francisco and the Washington DC Metropolitan
area. Our framework computes solutions for most settings in a few seconds on commodity
hardware and enables drones to travel up to 360% of their flight range using transit.

We wish to emphasize that due to its decoupled nature, our approach does not provide
global optimality guarantees. But we do show that each individual layer has guarantees
relating to the subproblems they solve, under some assumptions; we point out those as-
sumptions throughout the text.

Our paper is structured as follows. We first highlight some relevant existing research.
In Section 2 we present an overview of our two-layer approach. We then elaborate on
the upper task allocation layer in Section 3 and the lower multi-agent pathfinding layer
in Section 4. In Section 5 we describe the surrogate cost estimate used to couple the two
layers. We then present extensive experimental results on several aspects of our framework
in Section 6 and conclude with Section 7.

We presented a preliminary version of this paper in the International Conference on
Robotics and Automation (Choudhury et al., 2020). The current work has additional dis-
cussions, proofs and experimental results, which we now summarize. Section 3 describes the
task-allocation algorithm in greater detail; we include a comprehensive proof on the bounded
suboptimality of solution cost, for which we had previously given a short sketch. We also
analyze the algorithm’s computational complexity in detail and obtain a concrete bound
(we had previously only shown the polynomial runtime). Section 4 presents new speedup
techniques for Focal-MCSP, which is used to find paths for individual agents within the
MAPF layer, and a new diagram and pseudocode for the overall layer. Section 5 is brand
new and discusses the surrogate cost estimate. For the experimental results of Section 6,
we revise and update our numbers from the previous version and provide two new sets of
results on replanning strategies and the relative performance of two surrogate estimates.

1.1 Overview of Related Work

We now summarize three areas of previous work related to our overall problem: drone-
assisted delivery, autonomous mobility-on-demand, and multiagent pathfinding. They use
a range of ideas from operations research, transportation systems, and artificial intelligence.

1.1.1 Drone-Assisted Delivery Planning

Recent work considers socially-aware motion planning for drones to operate in urban en-
vironments around humans (Yoon et al., 2019). They compute trajectories that minimize
human discomfort by accounting for safety perception in close proximity to the drone. An
intent-aware probabilistic approach predicts collisions in an uncertain environment to plan
drone trajectories around stochastic humans. Control strategies for rendezvous between
multiple agents (e.g., a drone and a ground vehicle) have also been developed (Rucco et al.,
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2018; Haberfeld et al., 2020). Finally, Choudhury et al. (2019) proposed a method to plan
and execute routes for a single autonomous agent using multiple modes of transit.

1.1.2 Autonomous Mobility-on-Demand Services

Our problem is similar to routing a fleet of autonomous vehicles for on-demand mobility
services (Solovey et al., 2019; Iglesias et al., 2019; Wallar et al., 2018). These approaches
compute routes for vehicles (customer-carrying or empty) to fulfill travel demand and min-
imize total operational cost. Some recent works combine such services with public transit,
allowing passengers to use several modes of transportation in the same trip (Salazar et al.,
2018; Zgraggen et al., 2019). However, they abstract away inter-agent constraints and dy-
namics and are unsuitable for autonomous pathfinding. Our task allocation setting is an
instance of the vehicle routing problem (Caceres-Cruz et al., 2014; Otto et al., 2018; Toth
& Vigo, 2014). The vehicle routing problem and its variants are typically solved by mixed
integer linear programming formulations that are less scalable to large real-world settings
of interest, or by heuristics that can have suboptimal performance.

1.1.3 Multi-Agent Path Finding

In the second layer of our approach, we must solve a multi-agent pathfinding (MAPF)
problem (Erdmann & Lozano-Perez, 1987). Since all drones are on the same team, we
have a centralized or cooperative pathfinding setting (Silver, 2005). The MAPF problem is
NP-hard to solve optimally (Yu & LaValle, 2013), but many existing solvers do work well
in practice (Felner et al., 2017).

From an algorithmic perspective, our approach for decomposing the overall drone de-
livery problem into a two-layered solution of task allocation and MAPF, shares similarities
with approaches for pickup and delivery in a warehouse setting that use a similar decom-
position (Ma et al., 2017; Hönig et al., 2018; Liu et al., 2019). However, our method differs
in several crucial aspects. First, we develop a specialized task allocation algorithm that
exploits the problem structure, whereas the previous works use a black-box solver for the
travelling salesman problem without any polynomial-time guarantees. Second, these previ-
ous approaches have not considered pathfinding over large time-dependent transit networks,
let alone with constraints on the drone flight range and constraints on inter-drone conflicts.
These new constraints and features make our MAPF problem even more difficult to solve.
Also note that our MAPF solver uses models, algorithms and practical techniques from the
transportation planning community (Delling et al., 2009; Bast et al., 2016).

2. Methodology

We describe our formulation and approach at a high-level and illustrate the various inter-
acting components.

2.1 Problem Formulation

We operate a centralized homogeneous fleet of m drones in a city-scale domain. There are
` product depots with known geographic locations, denoted by VD := {d1, . . . , d`} ⊂ R

2.
The depots are both product dispatch centers and drone-charging stations. At the start of
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a suitable time interval (e.g., a day), we receive a batch of delivery request locations for k
different packages, denoted VP := {p1, . . . , pk} ⊂ R

2, where k � m. We assume that any
package can be dispatched from any depot; our approach exploits this property to optimize
the makespan, i.e., the maximum execution time for any drone delivery and subsequent
return to a depot. In Section 3, we mention how we can accommodate dispatch constraints.

The drones carry packages from depots to delivery locations. They can extend their
effective travel range by using public transit vehicles, which are unaffected by drone actions.
We must route drones to deliver all packages while minimizing makespan. A drone path
consists of its current location and the sequence of depot and package locations to visit
with a combination of flying and riding on transit. The limited drone energy imposes
a maximum flight distance constraint. A feasible solution must also satisfy inter-drone
constraints such as collision avoidance and transit vehicle capacity limits. We assume that
a drone carries one package at a time, which is reasonable given state-of-the-art drone
payloads (Sudbury & Hutchinson, 2016); drones are recharged in negligible time upon
visiting a depot (e.g., a battery replacement); depots have unlimited drone capacity; the
transit network is deterministic with respect to locations and vehicle travel times. Some of
these assumptions will be justified subsequently in the proper context.

2.2 Approach Overview

In principle, we could solve our entire problem as a mixed integer linear program (MILP).
However, for real-world problems (hundreds of drones, thousands of packages, and large
transit networks), even state-of-the-art MILP approaches will not scale well. Even a simpler
problem that ignores interaction constraints is an instance of the notoriously challenging
multi-depot vehicle routing problem (Otto et al., 2018). Thus, we decouple our problem
into two distinct subproblems that we solve stage-wise in layers.

The upper layer (Section 3) performs task allocation to decide which packages are de-
livered by which drone and in what order. It takes as input the known depot and package
delivery locations and an estimate of the drone travel time between every pair of locations.
It then solves an optimization problem that minimizes delivery makespan and computes
three sets of decisions: assigning to each package (i) the dispatch depot and (ii) the deliv-
ery drone, and to each drone (iii) the order of package deliveries. We develop an efficient
polynomial-time task-allocation algorithm with an approximately optimal makespan.

The lower layer (Section 4) performs route planning for the drone fleet to execute the
allocated delivery tasks. It generates detailed routes of drone locations in space and time
and the transit vehicles used, while accounting for the time-varying transit network. It
also ensures that (i) multiple drones do not board transit simultaneously, (ii) no transit
vehicle exceeds its drone-carrying capacity, and (iii) drone energy constraints are respected.
To efficiently handle individual and inter-drone constraints, we frame the routing problem
as an extension of multi-agent path finding (MAPF) to transit networks. We adapt a
scalable, bounded suboptimal variant of a highly effective MAPF solver called Conflict-
Based Search (Sharon et al., 2012) to solve the problem of planning a set of routes, one
for each drone (to deliver its current package). Finally, we can execute the full sequence of
delivery tasks in a receding horizon fashion by replanning routes for the next delivery task
of a drone after it has completed its current one.
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liveries. Our objective is to minimize the maximum travel time among all drones
while computing the above three sets of decisions.

We begin this section by formally defining the allocation problem and discussing its
relation to the m travelling salesman problem. We then describe our MergeSplitTours

algorithm and present proofs for approximate optimality and polynomial-time complexity.
For the allocation layer, we seek a set of m paths of minimum makespan (the maximum

travel time for a path in the set) and we call this the m minimal visiting paths problem
(m-MVP). We only need paths that start and end at depots, not tours. A key element of
m-MVP is the allocation graph GA = (VA, EA), with vertex set VA = VD ∪ VP (Figure 3a).
Each directed edge (u, v) ∈ EA is weighted according to an estimated travel time cuv from
the location of u to that of v in the city. We now define the m-MVP problem in full:

Definition 1. (The m-MVP problem) Given allocation graph GA, the m minimal visiting
paths problem (m-MVP) requires finding m paths P ∗

1 , P
∗
2 , . . . , P

∗
m (denoted compactly as

P ∗
1:m) on GA, such that (1) each path P ∗

i starts at some depot d ∈ VD and terminates at
the same or different d′ ∈ VD, (2) exactly one path visits each package p ∈ VP , and (3) the
maximum travel time of any of the paths is minimized.

Let opt be the optimal makespan, i.e., opt := maxi∈[m] length(P
∗
i ), where length(·)

denotes the total travel time along a given path or tour. We make four observations. First,
if a path contains the sub-path (d, p), (p, d′), for some d, d′ ∈ VD, p ∈ VP , then p should be
dispatched from depot d and the drone delivering p will return to d′ after delivery. Second,
a package p being found in P ∗

i indicates that drone i ∈ [m] should deliver it. Third, P ∗
i fully

characterizes the order of packages delivered by drone i. Fourth, the solution determines
the initial depot locations of the drones (represented by the first vertex along P ∗

i ), to further
optimize the solution cost.

3.1 Assumptions

The m-MVP problem is a special case of the asymmetric m-travelling salesman prob-
lem (Bektas, 2006), for a directed underlying graph, which is NP-hard even for m = 1
on general graphs (Asadpour et al., 2017); it is not known whether the specific instance of
our problem is NP-hard as well. Moreover, the current best polynomial-time approxima-
tion yields a fairly large approximation factor O(log n/ log log n), where n is the number of
vertices. The problem is made even harder by the fact that the triangle inequality does not
apply to our metric of travel time.

To mitigate these difficulties, we make two simplifying assumptions concerning the struc-
ture of the allocation graph GA. The first assumption excludes edges that require more than
half of the allowed flight range between package and depot locations. Later on we will exploit
this to develop a polynomial-time approximation algorithm.

Assumption 1. If (d, p) ∈ EA, where d ∈ VD, p ∈ VP (and similarly for edges from p to
d), then it is possible to travel from d from p within half the allowed travel range, while
accounting for energy savings due to transit travel. Additionally, under those conditions,
if there exist (d, p) ∈ EA, where d ∈ VD, p ∈ VP , then there must also exist d′ ∈ VD such
that (p, d′) ∈ EA, to allow the drone to successfully return from a delivery mission. If
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(d, d′) ∈ EA, where d, d′ ∈ VD, then it is possible to travel from d from d′ within the full
allowed flight range, while accounting for energy savings due to transit travel.

As we flagged in Section 2.1, we can also model any other dispatch constraints by
excluding the necessary edges from the corresponding depot. The next assumption ensures
that a drone can move between any pair of depots, possibly by going through a sequence of
depots along the way, while potentially recharging when passing through a depot.

Assumption 2. The subgraph GA(VD) induced by the vertices VD is strongly connected.
That is, GA(VD) contains a directed path from any d ∈ VD to any other vertex d′ ∈ VD.

Below, we develop a new polynomial-time algorithm for m-MVP that returns a near
optimal solution, under the above assumptions.

3.2 MergeSplitTours Algorithm

Before describing our MergeSplitTours algorithm for solving m-MVP (Algorithm 1), we
present a key subroutine that solves the minimal connecting tours (MCT) problem. For
simplicity, we formally define MCT as an integer program in Table 1. But we can efficiently
implement MergeSplitTours in polynomial time without invoking an integer program
solver ; we will discuss this point further in the next subsection.

The solution to MCT provides MergeSplitTours with an initial set of tours T that
connects packages to depots within tours to minimize the total edge weight in Equation (1).
The constraint in Equation (4) ensures that each package is connected to precisely one
incoming and one outgoing edge from and to depots, respectively. The final constraint
in Equation (5) enforces inflow and outflow equality for every depot. Edges connecting
packages can be used at most once, whereas edges connecting depots can be used multiple
times. Solving MCT yields the assignment {xuv}(u,v)∈EA

, i.e., which edges of GA are used
and how many times. This assignment implicitly represents the desired collection of the
tours T1, . . . , Tt.

We can now describe MergeSplitTours in detail. The algorithm consists of the
following three main steps, which are illustrated in Figure 3:

Step 1 (Line 1): We generate a collection of t tours (1 6 t 6 k) of minimum total
distance, denoted as T1, . . . , Tt, such that exactly one tour covers every package p ∈ VP .
This step is achieved by solving the minimal connecting tours (MCT) problem in Table 1.
The solution to MCT is given by an assignment {xuv}(u,v)∈E, which indicates which edges
of G are used and for how many times (we denote this edge assignment compactly as x

hereafter). Lemma 1 below discusses why this assignment implicitly encodes T1, . . . , Tt, the
desired collection of tours.

Lemma 1. (Disjoint Tours of MCT) Let x be the output of MCT (GA, VP ). There exists
a collection of vertex-disjoint tours T1, . . . , Tm′, such that for every (u, v) ∈ EA for which
xuv > 0, there exists Ti in which (u, v) appears exactly xuv times.

Proof. By the definition of MCT, for every p ∈ Vp, there is precisely one incoming edge
(d, p) and one outgoing edge (p, d′) such that xdp = xpd′ = 1. Also, by Equation (5) the
in-degree and out-degree of every d ∈ VD are equal. We can thus form a Eulerian tour that
traverses every edge (u, v) exactly xuv times.
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Table 1: An integer programming formulation of minimal connecting tours (MCT).

Given the allocation graph GA = (VA, EA), with VA = VD ∪ VP ,

minimize
∑

(u,v)∈EA

xuv · cuv (1)

subject to

xuv ∈ {0, 1}, ∀(u, v) ∈ EA, u ∈ VP ∨ v ∈ VP , (2)

xuv ∈ N>0, ∀(d, d′) ∈ EA, d, d
′ ∈ VD, (3)

∑

d∈N+(p)

xdp =
∑

d∈N−(p)

xpd = 1, ∀p ∈ VP , (4)

∑

v∈N+(d)

xvd −
∑

v∈N−(d)

xdv = 0, ∀d ∈ VD. (5)

where N+(v) and N−(v) denote the incoming and outgoing neighbors of v ∈ VA.

Step 2 (Lines 2-10): The T1, . . . , Tt tours are iteratively merged until a single tour T
is generated. We first identify t > 1 connected depot sets D = {D1, . . . , Dt}, induced by
the MCT solution (line 2). Every depot set Di consists of all depots that belong to one
specific tour Ti, as encoded in the edge assignment x. We then merge the tours and thus the
connected depot sets; we iterate over all combinations of D,D′ ∈ D, d ∈ D, d′ ∈ D′ (lines 5-
8) and choose (d, d′), (d′, d) to minimize cdd′ + cd′d, and then update the edge assignment
x and depot set collection D appropriately (lines 9, 10). For a given D and d ∈ VD,
the notation D(d) represents the depot component D ∈ D that contains d. The resulting
merged tour is of the form (d1, p1, d

′
1, d2, p2, d

′
2, . . . , dl, pl−1, d

′
l), where for a given 1 6 j 6 l,

pi denotes the package delivery location, di is the depot from which the package was taken,
and d′i is the depot to which the drone returns after the delivery. It is possible that d′i = di+1,
i.e., the return depot is also the location from which the next package will be taken. In the
latter case, the cost cd′idi+1

= 0.

Step 3 (Lines 11-18): We split the merged tour T into m paths P1:m where the length
of each path is proportional to the length of T divided by m. Also, every path Pi starts
and ends at a depot (not necessarily the same one). We derive this step from the algorithm
of Frederickson et al. (1976) for m-TSP in undirected graphs.

3.3 Completeness and Optimality

We now analyze the theoretical guarantees of MergeSplitTours. The following theorem
shows that our algorithm returns a feasible solution to m-MVP that is also close to optimal.

Theorem 1. (Approximate Optimality of MergeSplitTours) Suppose that Assump-
tions 1 and 2 hold. Let P1:m be the output of MergeSplitTours. Then, every pack-
age p ∈ VP is contained in exactly one path Pi, and every Pi starts and ends at a depot.
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Algorithm 1: MergeSplitTours

Input: Allocation graph GA = (VA, EA), with VA = VD ·∪ VP ; m > 1 drones.
Output: Paths {P1, . . . , Pm}, such that every package is visited exactly once.

1 x := {xuv}(u,v)∈EA
← mct(GA, VP )

2 D := {D1 . . . , Dt} ← ConnectedDepots(GA,x)
3 while |D| > 1
4 cmin ←∞, dmin ← ∅, d

′
min ← ∅

5 for D,D′ ∈ D, D 6= D′, d ∈ D, d′ ∈ D′

6 if cdd′ + cd′d < cmin

7 cmin ← cdd′ + cd′d, dmin ← d, d′min ← d′

8 xdmind
′

min
← 1, xd′

min
dmin
← 1

9 D ← (D \ {D(dmin),D(d
′
min)}) ∪ {D(dmin) ∪ D(d

′
min)}

10 T := (d1, p1, d
′
1, d2, p2, d

′
2, . . . , dl, pl−1, d

′
l)← GetTour(GA,x)

11 i← 1; j ← 1
12 for i = 1 to m
13 Pi ← {(dj , pj), (pj , d

′
j)}, Li ← cdjpj + cpjd′j , j ← j + 1

14 while Li 6 length(T )/m and j 6 l
15 Li ← Li + cd′j−1

dj + cdjpj + cpjd′j
16 Pi ← Pi ∪ {(d

′
j−1, dj), (dj , pj), (pj , d

′
j)}

17 j ← j + 1

18 return {P1, . . . , Pm}

3.4 Computational Complexity

We conclude this section by proving that we can implement MergeSplitTours in time
polynomial in the input size.

Theorem 2. (Polynomial time complexity of MergeSplitTours) The time complexity
of Algorithm 1 is O(m log n(m+ n log n)), where n = |VA| and m = |EA|.

Proof. The minimal connecting tours (MCT) routine is the computational bottleneck of the
MergeSplitTours algorithm. The MCT problem corresponds to the minimum cost cir-
culation problem (Williamson, 2019, Definition 5.1). If all edge capacities are integral, the
linear relaxation of the circulation problem has a constraint matrix that is totally unimodu-
lar (Ahuja et al., 1993). Hence, the linear relaxation will necessarily have an integer optimal
solution, which will be a fortiori an optimal solution to the original circulation problem with
integral constraints, as we have here. We can solve the minimum cost circulation problem
itself in time O(m log n(m + n log n)), using Orlin’s algorthim, which is the fastest known
strongly polynomial algorithm (Orlin, 1993; Williamson, 2019).

We now analyze the rest of Algorithm 1. We can implement line 2 in time linear in
the size of GA by identifying the strongly connected components of the graph induced by
x (Cormen et al., 2009, Chapter 22.5). Next, we claim that we can implement lines 3–9 in
time O(`2 log `), where ` = |VD|. We precompute the values {c̃dd′ := cdd′ + cd′d}d,d′∈VD

and
sort them in ascending order in O(`2 log `) time. Next, we traverse this list from the smallest

767



Choudhury, Solovey, Kochenderfer & Pavone

value, and for each item c̃dd′ , we check if d, d′ are already in the same depot set D ∈ D. In
case they are not, we update xdd′ = xd′d = 1 and merge D and D′. This process terminates
when D contains a single set. We can maintain D with a simple vector that maintains for
each d ∈ VD the component of D to which it belongs. With this representation, each merge
operation for D requires O(`) time. We must repeat the latter operation O(`) times. Thus,
the complexity of lines 3–9 is still bounded by O(`2 log `).

Next, we analyze the complexity of line 10. We can extract T through an Eulerian
tour on the subgraph of GA induced by x, in time linear in |T |. We can bound the latter
as O(k`), where k = |VP |, as a tour can visit potentially all depots between any two
consecutive packages pi, pi+1 on it. Finally, lines 11–18 are clearly linear in |T |. To conclude,
the MCT computation dominates the overall running time of the algorithm, which is thus
O(m log n(m+ n log n)).

4. Multi-Agent Path Finding

For each drone i ∈ [m], the allocation layer yields a sequence of deliveries d1p1 . . . pldl+1.
The drone route planning layer treats each dpd′ subsequence as an individual task that the
drone needs to execute—leave with the package from depot d, carry it to package location p,
and return to the (same or different) depot d′—without exceeding the total energy capacity.
We seek an efficient and scalable method to obtain high-quality (with respect to travel time)
feasible paths for m different drone tasks simultaneously, using transit options to extend
range. We can execute the full set of delivery sequences by replanning when a drone
finishes its current task and begins a new one; we discuss and compare two replanning
strategies in Section 6.3. Thus, we formulate the problem of multi-drone routing to satisfy
a set of delivery sequences as receding-horizon multi-agent path finding (MAPF) over transit
networks. In this section, we describe the graph representation of our problem and present
an efficient bounded suboptimal algorithm.

For sake of clarity, we restate the simplifying (though realistic) assumptions from Sec-
tion 2 that apply to this layer. Underpinning these assumptions is our focus on the algo-
rithmic challenges that arise in MAPF problems when considering time-dependent transit
networks and per-agent range constraints. The myriad drone-specific engineering issues and
corner cases are better suited for a separate research project. We assume a deterministic
setting where buses follow the timetable precisely; dealing with delays and disruptions is a
separate subfield of transportation planning research with tailored methods and heuristics.
Previous work on a single-agent version of this problem considers both uncertainty and
delays and could be integrated here (Choudhury et al., 2019). We ignore energy loss due to
hovering while waiting for a bus by assuming the drone can fly at a lower speed to reach the
bus just-in-time. Drone recharge time at a depot can be ignored by having extra batteries,
replacing the used ones immediately, and recharging them offline. We could accommodate
non-zero recharge times anyway by replanning for a drone after it has been recharged, since
we only plan routes for one delivery task per drone at a time.

4.1 Multi-Agent Path Finding with Transit Networks (MAPF-TN)

We frame the problem of Multi-Agent Path Finding with Transit Networks (MAPF-TN)
by extending standard MAPF to allow agents to use one or more modes of transit, besides
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Figure 4: We illustrate the key elements of the directed operation graph in MAPF-TN. To
aid visualization, we show only a single drone task (planning from depot d to package p and
then returning to depot d′) and two bus trips τ1 and τ2, with drone-carrying capacities of 1
and 2 respectively. Each trip is a directed sequence of transit vertices, which are represented
as time-stamped locations or coordinates, e.g., (s1τ1 , t

1
τ1
) is the first stop for bus trip τ1, with

the bus arriving at location s1τ1 at time t1τ1 . A transit edge is one between two consecutive
transit vertices, and a flight edge is one from a drone location to a transit vertex.

moving themselves. Incorporating transit networks introduces additional challenges and
underlying structure. The input to MAPF-TN is the set of m tasks (d, p, d′)1:m and the
directed operation graph GO = (VO, EO). In Section 3, the allocation graph GA only
considered depots and packages and edges between them. Here, in addition to the depot
and package locations, the MAPF-TN operation graph VO also includes the set of vertices
VTN from the transit network. Therefore, we have VO = VD ∪ VP ∪ VTN . In general, the
depot and package locations (specific street addresses) are distinct from the transit network
stops. Figure 4 illustrates the key components of the MAPF-TN operation graph.

We first describe how we define the transit vertices VTN , using the standard time-
expanded representation from the transportation planning community (Pyrga, Schulz, Wag-
ner, & Zaroliagis, 2008). We are given the timetable of a transit network (e.g., of buses).
The timetable comprises a set of bus trips T . Each trip τ ∈ T is a directed sequence
of transit vertices, which are bus-stop locations (geographical coordinates) stamped with
the arrival time (a standard assumption for convenience is that the arrival and subsequent
departure are simultaneous). We can thus encode a trip as τ = {(s1τ , t

1
τ ), (s

2
τ , t

2
τ ) . . .}, where

s is the location and t is the corresponding time-stamp. Therefore, the full set of transit
vertices is VTN =

⋃

τ∈T τ , i.e. the collection of all trips.

We now discuss the edges EO in our directed operation graph. Any edge e = (u, v)
is a transit edge if its source u and target v are consecutive transit vertices on the same
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trip τt; any other edge is a flight edge. An edge is time-constrained if v ∈ VTN and time-
unconstrained otherwise. Every edge has three attributes: traversal time T , energy ex-
pended N , and capacity C. Since each vertex is associated with a location, ‖v−u‖ denotes
the geographical distance between vertices. MAPF typically abstracts away agent dynam-
ics; we have a simple model where drones move at constant speed σ, and distance flown
represents energy expended. Due to the high graph density (drones can fly point-to-point
between many stops), we do not explicitly enumerate edges but generate them on-the-fly
during search, as in previous single-agent work (Choudhury et al., 2019).

We now define the three attributes for the edge set EO. For time-constrained edges,
T (e) = v.t − u.t is the difference between target and source time-stamps (if u ∈ VD ∪ VP ,
u.t is the chosen departure time), and for time-unconstrained edges, T (e) = ‖v − u‖/σ
is the time of direct flight. For flight edges, N(e) = ‖v − u‖ (flight distance), and for
transit edges, N(e) = 0. For transit edges, C(e) is the finite drone-carrying capacity of
the vehicle (which would depend on its size), while for flight edges, capacity is irrelevant
and we set C(e) = ∞. Here, we assume that collision-free drone flight in open space can
be accommodated and we abstract away inter-flight-edge collision constraints (Ho, Salta,
Geraldes, Goncalves, Cavazza, & Prendinger, 2019).

We now have a well-defined graph for our MAPF-TN problem. The remaining relevant
details carry over from the standard formulation of MAPF problems. An individual path
πi for drone i from di through pi to d′i is feasible if the energy constraint

∑

e∈πi
N(e) 6 N̄

is satisfied, where N̄ is the drone’s maximum flight distance. The drone should also be
able to traverse the distance of a time-constrained flight edge in time, i.e., σ× (v.t− u.t) >
‖v − u‖. For simplicity, we abstract away energy expenditure due to hovering in place by
flying the drone at a reduced speed to reach the transit just in time. The constraint N̄ is
then only on the traversed distance. The cost of an individual path is the total traversal
time, T (πi) =

∑

e∈πi
T (e). A feasible solution Π = π1:m is a set of m individually feasible

paths that does not violate any shared constraints, which can be of two kinds (Figure 5): (i)
Boarding constraint, i.e., no two drones may board the same vehicle at the same stop; (ii)
Capacity constraint, i.e., a transit edge e may not be used by more than C(e) drones. As
with the allocation layer, the global objective for MAPF-TN is to minimize the solution
makespan, argminΠmaxπ∈Π T (π), i.e., minimize the worst individual completion time.

4.2 Conflict-Based Search for MAPF-TN

To tackle MAPF-TN, we consider the family of MAPF algorithms built upon Conflict-
Based Search (Sharon et al., 2012). The multi-agent level of Conflict-Based Search identi-
fies shared constraints and imposes corresponding path constraints on the single-agent level.
The single-agent level computes optimal individual paths that respect all constraints. If in-
dividual paths conflict (by violating a shared constraint), the multi-agent level adds further
constraints to resolve the conflict, and invokes the single-agent level again for the conflict-
ing agents. Conflict-Based Search obtains optimal multi-agent solutions without having
to run potentially expensive joint multi-agent searches. However, its performance can de-
grade heavily with many conflicts in which constraints are violated. Figure 5 illustrates how
conflicts are generated and resolved in our MAPF-TN problem.
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CAPACITY = 2

BOARDING 

CONFLICT

(a)

CAPACITY = 2

CONFLICT 

RESOLVED

(b)

CAPACITY= 1

CAPACITY 

CONFLICT

(c)

CAPACITY= 1

CONFLICT 

RESOLVED

(d)

Figure 5: In our formulation of multi-agent path finding with transit networks, conflicts arise
from the violation of shared inter-drone constraints: (a) boarding conflicts between two or
more drones and (c) capacity conflicts between more drones than the transit vehicle can
accommodate. The modified paths after resolving the corresponding conflicts are depicted
in (b) and (d), respectively.

For scalability to large operation graphs (due to the underlying transit networks), we
use a bounded suboptimal variant of Conflict-Based Search called Enhanced Conflict-Based
Search (ECBS), which can be orders of magnitude faster than the optimal one (Barer,
Sharon, Stern, & Felner, 2014). ECBS uses bounded suboptimal Focal Search (Pearl &
Kim, 1982) instead of best-first A* (Hart, Nilsson, & Raphael, 1968) at both levels. In
addition to the regular open list of A*, Focal Search maintains a separate subset of the
open list with those nodes whose f-value, i.e., the sum of cost-to-come and heuristic cost-
to-go is bounded suboptimal with respect to the best f-value seen so far. This subset, the
so-called focal list, ensures that once a solution is found it is guaranteed to be bounded
suboptimal. It also allows Focal Search to use an (often domain-dependent) inadmissible
heuristic to guide the search, which can prioritize efficiency.

We now describe three modifications to the standard ECBS framework for our MAPF-
TN problem formulation. The first two are necessary extensions to allow the bounded-
suboptimality of ECBS to carry over directly to the MAPF-TN problem: a generalized

771



Choudhury, Solovey, Kochenderfer & Pavone

lower-level search routine that accounts for individual agent constraints and a generalized
handling of conflicts to account for transit edge capacities. The third is a collection of
MAPF-TN specific speedup techniques that improve empirical performance without sacri-
ficing bounded suboptimality. Algorithm 2 provides (rather coarse-grained) pseudocode for
the multi-agent search level of ECBS for our MAPF-TN problem.

4.2.1 Focal Weight-Constrained Search

The single-agent search in MAPF-TN must satisfy a path-wide constraint (traversal dis-
tance) in addition to minimizing the objective function of traversal time. This constraint
satisfaction requirement is atypical for classical MAPF problems. For the shortest path
problem on graphs, adding a separate path-wide weight constraint makes it NP-hard (Garey
& Johnson, 1990). Most algorithms for such weight-constrained shortest path search re-
quire an explicit enumeration of the edges (Dumitrescu & Boland, 2003; Carlyle et al.,
2008). We extend the A* for Multi-Constraint Shortest Path (A*-MCSP) algorithm (Li
et al., 2007), which is suitable for our implicit graph representation, to focal search; we call
this subroutine Focal-MCSP.

Focal-MCSP uses separate heuristics on both the cost and the weight constraint func-
tions. It maintains only the intermediate paths to expanded nodes whose f-value is both
bounded suboptimal and feasible with respect to the constraint. The algorithmic extension
of A*-MCSP to Focal-MCSP is quite straightforward but the extensive book-keeping of the
feasible intermediate paths with bounded suboptimal f-value requires a careful implemen-
tation for efficiency. Therefore, we omit separate pseudocode for Focal-MCSP as it would
require several additional implementation-specific symbols and hamper overall readability;
the interested reader can consult the respective pseudocodes of A*-MCSP (Li et al., 2007)
and Focal Search (Pearl & Kim, 1982).

By uniting the constraint satisfying pathfinding logic of A*-MCSP and the bounded
suboptimality heuristic search logic of Focal Search, i.e., Focal-MCSP yields (by construc-
tion) a bounded suboptimal feasible path from the start to the goal. Furthermore, from
the analysis of Enhanced Conflict-Based Search (Barer et al., 2014), ECBS is bounded
suboptimal if the single-agent graph search routine for individual agents is also bounded
suboptimal. Therefore, by construction, Enhanced Conflict-Based Search (ECBS)
with Focal-MCSP yields a bounded suboptimal solution to Multi-Agent Path
Finding with Transit Networks (MAPF-TN).

4.2.2 Capacity Conflicts in MAPF-TN

In the classical MAPF formulation, at most one agent can occupy a particular vertex or
traverse a particular edge at a given time. Therefore, conflicts between p > 1 agents yield p
new nodes in the high-level search tree of Conflict-Based Search and its variants. In MAPF-
TN, however, transit edges have capacity C(e) > 1. Consider a solution generated during
a run of ECBS that has assigned to some transit edge p > C(e) > 1 drones. To guarantee
bounded suboptimality of the solution, we must generate all

(

p
p−c

)

sets of constraints, where
c = C(e). Each such set of (p−c) constraints represents one subset of (p−c) agents restricted
from using the transit edge in question.
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Algorithm 2: The multi-agent level of Enhanced CBS for MAPF-TN.

Input: Drone Tasks (d, p, d′)1:m, Operation Graph GO, Cost function T (·), Weight
function N(·), Weight constraint N̄ , Suboptimality Factor ε
Output: Drone routes π1:m that respect per-drone and inter-drone constraints

1 Initialize A as root of multi-agent level ECBS search tree
2 A.constraints← ∅ // Empty constraint set

3 A.solution = {πi}1:m where πi ← Focal-MCSP(di, pi, d
′
i, VTN , N̄ , N, T, ε)

// Individually feasible and bounded suboptimal drone paths

4 A.cost = maxπi∈A.solution T (πi) // Makespan of set of paths

5 Insert A into Open and Focal // Initialize both lists

6 while Open 6= ∅
7 mincost← Top(Open).cost
8 Focal← Focal \ {O ∈ Open | O.cost > (1 + ε) ·mincost} // Only retain

bounded suboptimal nodes in focal list

9 S ← PopBest(Focal) // Can use inadmissible heuristic in criteria

10 if S.solution has no conflicts
11 return S.solution
12 C ← first conflict in S // Either boarding or capacity conflict

13 for each conflicting path πj in C
14 Initialize new node P // Child node in ECBS search tree

15 P.constraints← S.constraints ∪ C.constraints // Include constraints

derived from conflict

16 P.solution← S.solution \ πj
17 P.solution← P.solution ∪ Focal-MCSP(dj , pj , d

′
j , VTN , N̄ , N, T, ε)

// Recompute conflicting path with updated constraints

18 P.cost = maxπi∈P.solution T (πi) // Compute updated makespan

19 Insert P into Open and Focal

As we will show in Section 6.2, conflict resolution is a significant bottleneck for solving
large MAPF-TN instances. In our experiments, we generated all constraint subsets of
a capacity conflict for completeness, however, pathological scenarios may arise where this
degrades empirical performance. Future research could consider a principled way to analyse
constraint set enumeration and an efficient way to implement it in practice.

4.2.3 Focal-MCSP Speedup Techniques

The NP-hardness of multi-agent path finding (Yu & LaValle, 2013) and the additional com-
putational challenges of MAPF-TN (energy constraint on per-agent paths; large and dense
transit graphs) make empirical performance paramount, given our need for scalability on
real-world scenarios. We now discuss two speedup techniques for our single-agent search
routine (Focal-MCSP) that improve its efficiency while maintaining its bounded subopti-
mality (in turn ensuring bounded suboptimality of the overall MAPF-TN solution). These
speedup techniques are not exhaustive; there is an entire body of work in transportation
planning devoted to speeding up algorithm runtimes (Delling et al., 2009).
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Preprocessing Public Transit Networks
Focal-MCSP depends significantly on the quality of admissible heuristics, i.e., heuristics
that underestimate the cost to the goal, for both the objective (elapsed travel time) and the
constraint (flight distance traversed). We know the public transit network and its timetable
for a given area in advance. We can analyze and preprocess this network to obtain admissi-
ble heuristics and use them in multiple instances of MAPF-TN throughout a business day,
while searching for paths to a specific package delivery location.

For the objective of elapsed travel time, a potential lower bound is the time-of-flight
directly to the goal, ignoring public transit (of course, taking such a route in practice is
usually infeasible due to the flight distance constraint). Therefore, we define this heuristic

simply as hT (v, vg) =
‖vg−v‖

σ
, where σ is the average drone speed, vg is the goal node and v

is the expanded node. The above heuristic is admissible if the average drone speed is higher
than average transit speed. This assumption is valid for the bus networks and drone speed
parameters of our experiments in Section 6; the buses operate primarily in urban streets
with strict speed limits and must also follow a timetable and wait for passengers to board.
All of these factors drive down the average transit speed below the drone flight speed in
practice. A more data-driven heuristic could be obtained by analyzing actual drone flight
times, but that is out of our scope.

For the constraint on flight distance traversed, we use a heuristic based on extensive
network preprocessing. We consider the minimal time window such that every instance of
a transit vehicle trip in the network can start and finish (as per the timetable). We then
create a so-called trip metagraph, where the vertex set is VD ∪ VP ∪ VT ; recall that VD and
VP are the sets of depot and package vertices respectively. Each vertex in VT represents a
single transit vehicle trip from the first to the last stop on its route, and encodes its sequence
of time-stamped stops. The trip metagraph is complete, i.e., there is an edge between every
pair of metagraph vertices.

We now define the cost due to flight distance traversed for each directed trip metagraph
edge e = (rτ , rτ ′), hereafter denoted as e = (rτ → rτ ′) for notational convenience. The
trip metagraph vertices rτ , rτ ′ ∈ VT correspond to transit vehicle trips Rτ and Rτ ′ , respec-
tively; we reiterate that each trip metagraph vertex (besides the package and depot vertices)
represents a full trip of a transit vehicle, and each transit vehicle trip has time-stamped
stops that are themselves transit vertices in the operation graph, i.e., VTN ⊂ VO =

⋃

τ∈T ττ
(from Section 4.1). Therefore, the trip metagraph edge cost (due to flight distance) between
two vertices that each represent a trip is

N(rτ → rτ ′) = min
u∈Rτ ,v∈Rτ ′

‖v − u‖, such that σ × (v.t− u.t) > ‖v − u‖,

where, as before, v.t refers to the time-stamp of the trip stop v ∈ Rτ ′ . The edge cost
here is thus the shortest flight distance between stops from one trip to another that the
drone can cover in the time difference between them. For the trip metagraph edges between
depots and packages, we simply set the energy cost as the direct flight distance between
the corresponding depot and/or package locations. For all other edges, i.e., where one
vertex rτ corresponds to a trip Rτ and the other v to a depot/package, we set the edge
cost N(rτ → v) = N(v → rτ ) = minu∈Rτ ‖v − u‖, i.e, the closest distance between the
depot/package and the trip.
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Given the complete specification of the edge cost function for the trip metagraph, we
now run Floyd-Warshall’s All-Pairs Shortest Path algorithm (Cormen et al., 2009) on it to
get a cost matrix N̄T . This cost matrix encodes the minimum flight distance required to
switch from one trip to another, from a trip to a depot/package and vice versa, and between
two depots/package locations, either using the transit network or flying directly, whichever
option is shorter.

We can now define the heuristic function hN for the flight distance traversed to the Focal-
MCSP goal node vg ∈ VD ·∪ VP . The heuristic function assigns a value to the operation
graph node v ∈ VO ≡ (VD ·∪ VP ∪ VTN ) expanded during Focal-MCSP. If v ∈ VD ·∪ VP is a
depot or package, we set hN (v, vg) = N̄T (v, vg), i.e., the Floyd-Warshall cost matrix value.
Otherwise, v ∈ VTN is a transit vertex. Recall that each transit vertex is associated with a
corresponding transit trip; let the trip that contains v be Rτ . We then set heuristic value
hN (rτ , vg) = N̄T (rτ , vg), where rτ ∈ VT is the trip metagraph vertex corresponding to the
trip Rτ . The heuristic hN as defined above is a lower bound on the drone’s flight distance
from the expanded operation graph node to the target depot/package location.

In practice, we will solve multiple MAPF-TN instances throughout a business day, with
traffic delays and other timetable disruptions. The handling of dynamic networks and
timetable delays is a separate subfield of research in transportation planning and out of
our scope (Delling et al., 2009; Bast et al., 2016). We assume that travel times between
locations do not vary throughout the day, and we ignore the effect of disruptions to the
pre-determined timetable (both are assumptions made often in transit planning).

Pruning the Search Space
We mentioned earlier that we do not explicitly enumerate the edges of the operation graph
but rather implicitly encode and generate them just-in-time during the node expansion
stage of Focal-MCSP. An implicit edge set makes Focal-MCSP memory-efficient at the cost
of additional computation time for the outgoing edges during search. However, we are
able to prune the set of out-neighbors of a vertex expanded during Focal-MCSP, while still
guaranteeing bounded suboptimality.

Let u ∈ VO be an operation graph vertex expanded during Focal-MCSP. Consider the
transit vertices of any trip Rτ (if u ∈ VTN is itself a transit vertex, consider a trip different
from the one that u lies on). The transit vertices of Rτ are candidate out-neighbors for
the expanded node u, i.e., candidate target vertices of a time-constrained flight edge from
u that connects to the trip Rτ . While considering these flight connections to a trip Rτ , we
only need to add the transit vertices on Rτ that are non-dominated by any other in terms
of time difference and flight distance (explained subsequently). We show in the following
lemma how this pruning does not violate the bounded suboptimality of Focal-MCSP; the
lemma formalizes the logic that if a transit connection is useful to the drone, a stop that is
both earlier and closer in distance than another will always be preferred.

Lemma 2. (Bounded suboptimal search-space pruning in Focal-MCSP) Let u ∈ VO be
expanded during Focal-MCSP. Let v1 and v2 be two consecutive transit vertices on trip Rτ

such that v1 dominates v2. Notationally, (v1.t, ‖v1 − u‖) � (v2.t, ‖v2 − u‖), i.e. v1.t < v2.t
(equality cannot hold as two different stops on the same trip must have different time-
stamps) and ‖v1 − u‖ 6 ‖v2 − u‖. Then, pruning v2 as an out-neighbor for u does not
change the solution cost of Focal-MCSP.

775



Choudhury, Solovey, Kochenderfer & Pavone

The following proof relies heavily on the analysis of A*-MCSP, upon which Focal-MCSP
is based (Li et al., 2007, Section V).

Proof. We assume v1 and v2 are both reachable by the drone, i.e., σ×(v.t−u.t) > ‖v−u‖ for
v = v1, v2, otherwise they are rejected anyway. Since (v1 → v2) is a transit edge, the flight
distance N(v1 → v2) = 0, by definition. Focal-MCSP tracks both the objective (traversal
time) and constraint (flight distance) values of partial paths to nodes. It discards a partial
path dominated by any other on both metrics.

The two possible partial paths to v2 from the expanded node u are u → v2 and u →
v1 → v2. Let the flight distance accumulated on the path thus far to u be Wu. The traversal
time cost at v2 for both partial paths is v2.t (since v2 is time-stamped). The accumulated
flight distance at v2 for u→ v2 is Wu+N(u→ v2) = Wu+‖v2−u‖. But for u→ v1 → v2,
the corresponding accumulated weight at node v2 is Wu + N(u → v1) + N(v1 → v2) =
Wu+‖v1−u‖ < Wu+‖v2−u‖, by our original assumption. By construction, Focal-MCSP
will discard the partial path u → v2 in favor of u → v1 → v2. Therefore, pruning v2 as an
out-neighbor has no effect on the solution of Focal-MCSP.

Our proof above was for consecutive vertices on a transit trip; we can extend it to the
full sequence of vertices on the trip by induction. We use Kung’s algorithm to find the
non-dominated transit trip vertices (Kung et al., 1975). For two criteria functions, Kung’s
algorithm yields a solution in O(n log n) time; here n is the size of the set and the bottleneck
is sorting the set for one criterion. In our specific case, the transit trip vertices are already
sorted in increasing order of time-stamps. Therefore, we can add out-neighbors for a transit
trip in O(n) time, which is as fast as we could have done anyway.

There is a crucial practical caveat to the preceding section. We have presented a gen-
eral MAPF solver over transit networks that computes a set of conflict-free, weight-feasible,
and bounded suboptimal cost paths for each agent from its start to its goal, a novel con-
tribution in and of itself. However, for the drone delivery problem, a dpd′ task requires
a bounded suboptimal path from d to p and another from p to d′, such that their con-
catenation is feasible. Neither Conflict-Based Search nor Multi-Constraint Shortest Path
methods address such path concatenation settings, and developing a general extension for
this purpose is a non-trivial problem and out of our scope.

We circumvent this problem of computing a bounded-suboptimal, weight-constrained,
concatenated path, by simply running Focal-MCSP twice (from d to p and p to d′) with
half the energy constraint each time, and concatenating the resulting paths. By doing so,
we can guarantee feasibility but not completeness, since our space of solutions is that of
all dpd′ paths. We use this abstraction for computational convenience, but it is one we
could realize in practice as well. Instead of a single battery, we could fit the drone with two
smaller batteries, each providing half the flight range of the larger (since battery capacity
increases with volume). The first battery would power the drone’s journey to the delivery
location, and the second would power its return to a depot.
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5. Surrogate Cost Estimate for Layer Coupling

In order to scale to large problems, we use a decomposition-based stage-wise optimization
instead of jointly solving for allocation and multi-agent pathfinding over transit networks.
Such stage-wise methods suffer from an approximation gap compared to the optimal solution
of the full problem. For us, this gap manifests in the surrogate cost estimate for the drone
travel time in the task allocation layer; the optimality property of the task allocation layer
is in terms of this surrogate. The allocation layer’s solution determines the start and goal
locations and thus constrains the set of feasible solutions for the multi-agent pathfinding
layer. The better the surrogate estimate, the more coupled the layers are, i.e., the better is
the solution of the first stage for the second one.

Surrogate functions typically trade efficiency for approximation quality. An easy-to-
compute travel time surrogate, for instance, is the drone’s direct flight time between two
locations (ignoring possible use of transit). However, such a surrogate can be particularly
poor when the drone requires transit to reach an out-of-range target. As we mentioned ear-
lier in Section 2.2, we pre-compute a surrogate travel time estimate that accounts for the
transit network. Consider the given geographical area of operation encoded as a bounding
box of coordinates (Figure 6 illustrates both areas that we work with). During preprocess-
ing, we generate a representative set of locations across the area. We use a quasi-random
low dispersion sampling scheme to compute the locations for good coverage (Halton, 1960).
This set of locations induces a Voronoi partition of the geographical area into regions, where
the locations are the so-called sites, one for each region (Cormen et al., 2009). Any point
in the full bounding box is associated with the nearest element in the set of sites and the
corresponding region that it falls in, by an appropriate distance metric.

Next, we compute a drone travel time estimate between each pair of locations or sites.
The actual drone travel time in the course of a business day would depend on the state of
the transit network when the route is planned. During preprocessing we choose a certain
representative time segment of the daily timetable; specifically, we choose the smallest time
window within which at least one instance of a bus trip is executed on every route in the
area. Using this snapshot of the transit network, and our Focal-MCSP search algorithm,
we pre-compute the drone travel time between every pair of Voronoi sites, assuming in each
case that the drone trip begins at the start of the time window.

One such transit network snapshot is sufficient for our experiments as we only evaluate
the MAPF layer on at most two delivery tasks per drone, with the second task used only for
evaluating the replanning strategies. In an actual deployment, we could generate multiple
transit network snapshots over the course of a business day (e.g., morning, afternoon, and
evening), compute a corresponding surrogate for each snapshot, and use the appropriate
surrogate when allocating at the start of each session of the day.

Recall that the task allocation layer queries the estimated travel time between two
depot/package locations v, v′ ∈ VD ·∪VP during its computations. Both v and v′ have corre-
sponding nearest representative locations (the sites of the Voronoi regions they respectively
fall in). We then use the pre-computed travel time estimate between the corresponding sites
for MergeSplitTours; here we assume the travel time between the representative sites
dominates the last-mile travel between each site and its corresponding depot/package. If v
and v′ are in the same cell, i.e., their nearest Voronoi site is the same, we use the direct flight
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Table 2: (All times are in seconds) The mean computation time for MergeSplitTours,
over 100 different trials for each setting. The numbers demonstrate that MergeSplit-

Tours is polynomial in input size and highly scalable. Here, k = |VP | is the number of
package deliveries and ` = |VD| is the number of depots. For all instances that took longer
than 60 s, we used 10 trials. Values greater than 1× 103 s are rounded out.

k ` = 2 ` = 5 ` = 10 ` = 20 ` = 30

50 0.004 0.016 0.057 0.248 0.658
100 0.012 0.050 0.195 0.807 2.117
200 0.038 0.173 0.699 2.968 8.409
500 0.201 1.025 4.384 18.19 49.97
1000 0.781 4.109 24.30 76.58 397.9
5000 22.74 319.2 1089 3581 6435

The size of the time-expanded network, |VTN |, is the total number of stops made by all
trips; |VTN | = 4192 for SFMTA and |VTN | = 7608 for WMATA (recall that edges are im-
plicit, so |ETN | varies with problems, but the full graph GO is dense). We set the drone
flight range constraint conservatively to 7 km and the average speed to 25 kph, based on
DJI Mavic 2 specifications.3 For the much larger WMATA area, we used a flight range of
10 km to enable more feasible solutions.

In this section, we first evaluate the two main components: the task allocation and multi-
agent path finding layers. We then compare the performance of two replanning strategies for
when a drone finishes its current delivery, and two different surrogate travel time estimates
for coupling the layers.

6.1 Task Allocation

The number of depots ` and packages k determine the size and computational complexity of
the allocation problem, which in turn affects the runtime that we evaluate here. The number
of drones m is irrelevant for these experiments and we just set it equal to the number of
depots; the choice of surrogate function is also irrelevant for allocation computation time
and near-optimality, which is over the space of allocations that use the given surrogate
as the edge cost. We display the runtimes for MergeSplitTours with varying `, k over
SFMTA in Table 2; the test cases are randomly generated locations over the SFMTA area.

The roughly quadratic increase along a specific row or column reflects the complexity
bound (Theorem 2) of our approximately optimal MergeSplitTours algorithm. Given
the commodity hardware we used, the absolute runtimes are reasonable. Consider
the setting of 5000 deliveries and 10 depots, which is large enough to represent a half-day
in a large urban area. The average runtime is 1089 s or approximately 18min, which is
negligible compared to a half-day operation time of several hours. We do not compare with
naive mixed-integer linear programming even for allocation, as the number of variables
would exceed (` · k)2, in addition to the expensive subtour elimination constraints (Miller
et al., 1960).

3. https://www.dji.com/mavic-2/info#specs
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Table 3: (All times are in seconds) An extensive analysis of the MAPF-TN layer, on 100
trials for each setting of depots and agents (and 30 trials for 5 depots and 50 agents).
Each trial uses different randomly generated depots and delivery locations. We randomly
sampled the integer carrying capacity of any transit edge C(e) from {3, 4, 5}, representing
single and double buses, and set the suboptimality factor for ECBS to 1.1.

Plan Time Range Ext. Transit Used Mean

Depots Agents Median Mean Mean Max Mean Max Makespan

San Francisco
(

|VTN | = 4192 ;Area 150 km2
)

5 10 0.61 1.17 1.53 3.41 2.93 6 2554.7
5 20 1.39 2.13 1.61 2.66 3.48 6 2886.8
5 50 2.13 3.89 1.64 2.48 4.2 6 3380.9
10 20 0.41 1.02 1.24 2.35 2.31 6 2091.6
10 50 0.73 1.46 1.38 3.58 2.94 5 2504.7
10 100 2.09 7.29 1.43 2.16 3.67 8 2971.8
20 50 0.17 0.46 0.98 1.69 1.09 7 1273.6
20 100 0.49 1.05 1.06 1.79 1.61 9 1642.4
20 200 0.89 2.10 1.13 2.31 2.23 6 1898.5

Washington DC
(

|VTN | = 7608;Area 400 km2
)

5 10 3.91 5.65 1.66 3.08 3.18 7 5167.3
5 20 9.01 13.1 1.79 3.21 3.57 8 5384.5
5 50 19.1 28.9 2.07 3.21 4.44 7 6140.2
10 20 1.61 4.67 1.37 3.12 2.57 7 4017.2
10 50 4.77 15.8 1.72 3.03 3.53 7 5312.3
10 100 18.1 26.2 1.86 3.18 4.25 8 5623.9
20 50 0.73 1.92 1.29 2.88 2.23 7 3571.8
20 100 2.45 5.24 1.48 2.67 3.19 6 4304.5
20 200 4.68 10.5 1.61 2.87 3.58 7 5085.6

6.2 Multi-Agent Path Finding with Transit Networks (MAPF-TN)

The multi-agent pathfinding problem is NP-hard to solve optimally (Yu & LaValle, 2013).
Researchers have previously benchmarked variants of Conflict-Based Search and shown that
Enhanced Conflict-Based Search (ECBS) is among the most effective (Barer et al., 2014;
Cohen et al., 2016). Therefore, we focus on evaluating our modified ECBS for multi-agent
pathfinding with transit networks (MAPF-TN) rather than redundant baselining. Table 3
quantifies several aspects of our MAPF-TN solver with varying numbers of depots (`) and
agents (m). Each row shows aggregate results on randomly generated scenarios, 100 trials
for smaller settings and 30 trials for larger ones. Before each trial, we run the allocation
layer and collect m different dpd′ tasks, one for each agent. We then run our MAPF-TN
solver on this set of tasks to compute a solution.

Our approach scales to very large numbers of agents (200) and transit networks (nearly
8000 vertices); the highest average makespan for the true delivery time is less than an hour
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(3380.9 s) for San Francisco and 2 hours (6140.2 s) for Washington (recall that this delivery
time includes the time for each drone to return to its destination depot); drones are using
up to 9 transit options per route to extend their range by up to 360%. As we anticipated,
conflict resolution is a major bottleneck of MAPF-TN. A higher ratio of agents to
depots increases conflicts due to shared transit, thereby increasing plan time, e.g., compare
(5, 20), i.e. 5 depots and 20 agents, to (10, 20). A higher number of depots puts more
deliveries within flight range of a depot, reducing conflicts, makespan, and the need for
transit usage and range extension, e.g. compare (10, 50) to (20, 50).

We briefly discuss two kinds of pathological corner cases in our experiments, for which
we terminated the corresponding trials. The first corner case is that of excessively high
computation time due to too many high-level conflicts when certain capacity-constrained
bus trips become bottlenecks for drones to make their deliveries; we discard any MAPF
trial that exceeds 180 s of computation time. The second corner case is when one or more
drones have no feasible path to their next destination, because the destination was out of
flight range and there was no usable transit option. We do not report separate metrics for
the corner cases as they are quite rare (at most one or two of the 100 trials for a setting,
and only in a handful of the many settings). More importantly, in practice we can handle
both of them by replanning for a subset of drones, dispatching them, and replanning for
the remaining once the next set of bus trips has commenced.

The plan times are consistently higher for Washington than for San Francisco. The
operation area for Washington DC is nearly three times that of North San Francisco and the
WMATA bus network is nearly twice as big as SFMTA. Consequently, drones have a higher
need for using transit to satisfy deliveries (the average transit usage metric is consistently
higher than for SF), even with the higher drone flight range of 10 km as compared to 7 km.
The WMATA bus network is more sparse in the outskirts and suburban areas, and transit
becomes more of a bottleneck than for San Francisco. Additionally, the average low-level
search time is higher because of the larger transit graph. Altogether, these conditions lead
to Washington having both higher single-agent search times and more multi-agent conflicts.
The relative range extension for Washington is similar to that for San Francisco despite the
higher base flight range, which means that drones are reaching further off delivery locations
in the absolute distance sense.

We make a few more general comments on the scalability of our MAPF-TN layer. Recall
that each low-level search is actually two concatenated searches (from d→ p and p→ d′), so
the effective number of agents is actually 2m and not m; this observation only strengthens
our scalability claim. In our benchmarks, we randomly generate depot placements, but
an intelligent placement can reduce the number of high-level conflicts and significantly
impact plan times (a key question for future work). The running times reported here
are pessimistic, because we release drones simultaneously from the depots, which increases
conflicts. However, a gradual release by executing the MAPF-TN solver over a longer
horizon would result in fewer conflicts, allowing us to cope with an even larger drone fleet.
Finally, we could even parallelize our solver for increased efficiency (Cohen et al., 2018).

With regards to solution quality (makespan), consider the real-world significance of
the result that even for a large metropolitan area of 400 km2, the longest delivery and
subsequent return to the depot in a set of up to m = 200 tasks is well under 2 hours. We
used a representative transit window that is largely replicated throughout the rest of the
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Table 4: (All times are in seconds) We compare replanning strategies for a subset of the
scenarios from Table 3 for the San Francisco network, over 20 trials for each setting. The
boldfaced entries are for the scenarios where one strategy is strictly equal to or better than
the other in terms of plan time and makespan.

Replan-1 Replan-m

Replan Mean Replan Mean
Depots Agents Time Makespan Time Makespan

5 10 0.271 2943.1 0.645 2880.1
5 20 0.034 3092.2 1.599 3092.2
20 50 0.006 1463.5 0.278 1463.5
20 100 0.009 1952.2 0.399 1952.2

day; therefore, for a given business day of, say, 12 hours, we can expect any drone to make
at least 7 deliveries, and typically many more.

6.3 Replanning Strategies

Until now, we have discussed how our MAPF-TN solver computes paths for a single dpd′

task for each drone. Recall that the task allocation layer assigns drones to a sequence
of deliveries. Instead of computing paths for the entire sequence for each drone ahead of
time, we use a receding horizon approach where we replan for a drone after it completes
its current task. Our MAPF-TN computation time is negligible compared to the actual
solution execution time (compare the ‘Plan Time’ and ‘Makespan’ columns in Table 3);
therefore, a receding horizon strategy is quite reasonable in practice.

In this context, there are two natural replanning strategies: replanning only for the
finished drone, while maintaining the paths of all the other drones (we call this Replan-1),
and replanning for all drones from their current states (we call this Replan-m). These two
approaches are at the opposite ends of the efficiency-optimality spectrum. The Replan-m
strategy will be optimal among replanning strategies, while being the most computationally
expensive. On the other hand, Replan-1 requires only the computation of a single path,
since the remaining m− 1 paths are unaffected.

To evaluate the two replanning strategies, we use the same setup as for MAPF-TN.
For each MAPF-TN solution, with one path for each drone, we consider the drone that
finishes its assigned delivery and returns to its depot first. Since we use a continuous time
representation, ties are unlikely in practice. For Replan-1, we re-run the low-level search
for the finished drone. We update the full m-agent solution with the new path, updating
makespan if need be. For Replan-m, we re-run the full MAPF-TN solver for all m agents
with their current states (at the time) as their initial state and obtain a different (m-agent)
solution.

In Table 4, we compare the makespan and computation times of the m-agent solu-
tions we obtain from the two strategies. We used a representative subset of the scenarios
in Table 3; few depots with a low agent/depot ratio (5, 10); few depots with a higher ra-
tio (5, 20); and similarly for many depots, i.e., (20, 50) and (20, 100). Clearly, Replan-1
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Table 5: We compare our MAPF-TN results from Table 3 (Mean Plan Time and Makespan)
against those where the framework uses the direct flight time as a surrogate estimate for
MergeSplitTours instead of our preprocessed surrogate using representative locations.
For each setting, i.e., row, in the SF and DC scenarios separately, if one of the surrogates is
strictly equal to or better than the other for both plan time and makespan, then the record
is boldfaced. The values for the Preprocessed columns are copied over from Table 3

.

San Francisco Washington DC

Preprocessed Direct Preprocessed Direct

Plan Mean Plan Mean Plan Mean Plan Mean
Depots Agents Time Mksp. Time Mksp. Time Mksp. Time Mksp.

5 10 1.17 2554.7 1.51 2624.8 5.65 5167.3 13.6 4654.7
5 20 2.13 2886.8 2.69 3092.9 13.1 5384.5 35.2 5339.6
5 50 3.89 3380.9 5.08 3412.4 28.9 6140.2 51.1 6323.4
10 20 1.02 2091.6 0.83 1868.9 4.67 4017.2 11.9 4527.3
10 50 1.46 2504.7 1.25 2247.3 15.8 5312.3 28.6 5509.6
10 100 7.29 2971.8 3.78 2649.6 26.2 5623.9 53.8 5774.1
20 50 0.46 1273.6 0.27 1079.1 1.92 3571.8 8.49 4058.1
20 100 1.05 1642.4 0.64 1371.1 5.24 4304.5 22.8 4613.9
20 200 2.10 1898.5 1.43 1426.2 10.5 5085.6 17.6 5216.1

achieves solutions of essentially the same makespan as Replan-m, at fairly lower
computational cost. This result motivates our decision to use Replan-1 in practice.

In principle, we could design scenarios where Replan-1 has a much worse makespan
compared to Replan-m than demonstrated in Table 4. However, the Replan-1 strategy is
only suboptimal when (i) the (m − 1) unfinished drone paths could conflict with the new
individual path of the drone that has just finished and when (ii) resolving the conflict(s)
would have prioritized the path of the replanned drone over the others. In practice, it is
unlikely that both of these conditions hold together, especially when there are many depots
and some drones can fly directly to their next target. In our trials with 20 depots, for
instance, the suboptimality conditions for Replan-1 never hold together, which is why the
makespans for those two rows are exactly the same for both strategies.

6.4 Surrogate Estimates

We now compare two different surrogate travel time estimates: the preprocessed approx-
imate travel time between representative locations in the city using transit (as described
in Section 5) and the direct flight time between two locations, ignoring transit. For the
earlier results in Table 3 (where we ran MAPF-TN on the first dpd′ task for each drone),
the MergeSplitTours task allocation algorithm used the preprocessed surrogate for the
allocation graph edge costs. As a comparison, we re-run the exact same scenarios for both
cities, as in Table 3 using the direct flight time surrogate as the edge cost for Merge-

SplitTours. We compare the two primary performance factors, plan time and solution
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makespan for both surrogates in Table 5. For the same scenario in a city, if one surrogate
yields equal or lower time and makespan than the other, its entry is boldfaced.

We expect the direct flight time surrogate to be a poor estimate in scenarios where transit
is used frequently, because the allocation step does not account for it. Accordingly, we do
observe a difference in plan time and solution quality between Preprocessed and Direct
Flight for the settings with fewer depots and higher agent-to-depot ratios. For the settings
with 5 depots in San Francisco, and for almost all settings in Washington (except the first
two), both computation time and the makespan are lower for the preprocessed estimate,
i.e., it is strictly better than direct flight. But for the settings in San Francisco with 10 or
more depots, in most cases the drones are close enough to their deliveries to fly directly
(recall the lower average transit usage of those cases from Table 3). Here the direct flight
surrogate tends to be more accurate, leading to solutions that have lower makespan and are
cheaper to compute.

The choice of surrogate cost clearly impacts the result of the allocation layer and in turn
the downstream solution and corresponding makespan of the MAPF layer. However, our
experiments suggest that there is no obvious winner between the two and it is
ultimately an empirical question as to whether one is better for a particular setting than
another. Even our explanations for the difference in makespan between them are at best
rules of thumb. The questions of what other good surrogates might be, whether multiple
surrogates can be combined in an ensemble, and what the good heuristics are for choosing
a surrogate for a particular setting, are all potential avenues for further research.

7. Conclusion

We presented a comprehensive algorithmic framework for the problem of large-scale drone
delivery of packages over transit networks. In our two-stage approach, we first solve the de-
livery sequence allocation problem with an approximately optimal polynomial time method,
and then route the team of drones to deliver the packages with an efficient bounded subop-
timal multi-agent pathfinding routine tailored to large transit networks.

We demonstrated various properties and results of our approach through extensive simu-
lations with two real-world transit networks: our framework can scale to hundreds of drones
and thousands of packages, computing close-to-optimal solutions that satisfy the many sys-
tem constraints typically within a few seconds; drones can greatly extend their effective
travel range using ground transit (upto 360% on our trials); we can execute a sequence of
deliveries throughout a business day in a receding horizon fashion; our preprocessed sur-
rogate travel time estimate can enable faster computation and lower makespan solutions
when drones are likely to require transit.

A key future direction of work on the operations research side is to conduct case studies
that estimate the operational cost of our framework, evaluate its impact on reducing road
traffic congestion, and consider potential externalities like noise pollution and disparate
impact on urban communities. On the algorithmic side, one future direction to explore
is to connect the upper and lower layers of our approach better by potentially enhancing
the allocation layer to capture (approximately) the interactions between multiple drones
and also to consider the role of the surrogate cost between layers in greater depth. Besides
our current preprocessed surrogate, other entirely different surrogate costs and potential
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combinations of them could be explored. Another broad direction is to extend our model
to account for delays and uncertainty in the travel pattern of transit vehicles (Müller-
Hannemann et al., 2007) and delivery time windows (Solomon, 1987), to jointly route
ground vehicles and drones, to optimize for the placements of depots whose locations are
currently randomly generated and given as input, and to plan for new delivery requests
streaming in online. These directions will be crucial milestones en route to deploying our
ideas in practice.
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